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Abstract

The goal of quantile regression is to estimate conditional quantiles for specified values of quantile probability using linear

or nonlinear regression equations. These estimates are prone to ‘‘quantile crossing’’, where regression predictions for

different quantile probabilities do not increase as probability increases. In the context of the environmental sciences, this

could, for example, lead to estimates of the magnitude of a 10-year return period rainstorm that exceed the 20-year storm,

or similar nonphysical results. This problem, as well as the potential for overfitting, is exacerbated for small to moderate

sample sizes and for nonlinear quantile regression models. As a remedy, this study introduces a novel nonlinear quantile

regression model, the monotone composite quantile regression neural network (MCQRNN), that (1) simultaneously

estimates multiple non-crossing, nonlinear conditional quantile functions; (2) allows for optional monotonicity, positivity/

non-negativity, and generalized additive model constraints; and (3) can be adapted to estimate standard least-squares

regression and non-crossing expectile regression functions. First, the MCQRNN model is evaluated on synthetic data from

multiple functions and error distributions using Monte Carlo simulations. MCQRNN outperforms the benchmark models,

especially for non-normal error distributions. Next, the MCQRNN model is applied to real-world climate data by esti-

mating rainfall Intensity–Duration–Frequency (IDF) curves at locations in Canada. IDF curves summarize the relationship

between the intensity and occurrence frequency of extreme rainfall over storm durations ranging from minutes to a day.

Because annual maximum rainfall intensity is a non-negative quantity that should increase monotonically as the occurrence

frequency and storm duration decrease, monotonicity and non-negativity constraints are key constraints in IDF curve

estimation. In comparison to standard QRNN models, the ability of the MCQRNN model to incorporate these constraints,

in addition to non-crossing, leads to more robust and realistic estimates of extreme rainfall.

1 Introduction

Estimating regression quantiles—conditional quantiles of a

response variable that depend on covariates in some form

of regression equation—is a fundamental task in data-dri-

ven science. Focusing on the environmental sciences,

quantile regression methods have been used to provide

estimates of predictive uncertainty in forecast applications

(Cawley et al. 2007); construct growth curves for organ-

isms (Muggeo et al. 2013); relate soil moisture deficit with

summer hot extremes (Hirschi et al. 2010); provide flood

frequency estimates (Ouali et al. 2016); estimate rainfall

Intensity–Duration–Frequency (IDF) curves (Ouali and

Cannon 2018); determine the relation between rainfall

intensity and duration and landslide occurrence (Saito et al.

2010); estimate trends in climate, streamflow, and sea level

data (Koenker and Schorfheide 1994; Barbosa 2008;

Allamano et al. 2009; Roth et al. 2015); downscale atmo-

spheric model outputs (Friederichs and Hense 2007; Can-

non 2011; Ben Alaya et al. 2016); and determine scaling

relationships between temperature and extreme precipita-

tion (Wasko and Sharma 2014), among other applications.

Quantile regression equations can be linear or nonlinear.

In most variants, including the original linear model

(Koenker and Bassett 1978), conditional quantiles for

specified quantile probabilities are estimated separately by

different regression equations; together, these different

equations can be used to build up a piecewise estimate of
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the conditional response distribution. However, given finite

samples, this flexibility can lead to ‘‘quantile crossing’’

where, for some values of the covariates, quantile regres-

sion predictions do not increase with the specified quantile

probability s. For instance, the s1 ¼ 0:1-quantile (10th-

percentile) estimate may be greater in magnitude than the

s2 ¼ 0:2-quantile (20th-percentile) estimate, which vio-

lates the property that the conditional quantile function be

strictly monotonic. As Ouali et al. (2016) state, ‘‘crossing

quantile regression is a serious modeling problem that may

lead to an invalid response distribution’’.

Three main approaches have been used to solve the

quantile crossing problem: post-processing, stepwise esti-

mation, and simultaneous estimation. In post-processing,

non-crossing quantiles are enforced following model esti-

mation by rearranging predictions so that they increase with

increasing s (Chernozhukov et al. 2010). In stepwise esti-

mation, regression equations are constructed iteratively,

with constraints added so that each subsequent quantile

regression function does not cross the one estimated pre-

viously (Liu and Wu 2009; Muggeo et al. 2013). Finally, in

simultaneous estimation, quantile regression equations for

all desired values of s are estimated at the same time, with

additional constraints added to parameter optimization to

ensure non-crossing (Takeuchi et al. 2006; Bondell et al.

2010; Liu and Wu 2011; Bang et al. 2016). Unlike

sequential estimation, simultaneous estimation is attractive

because it does not depend on the order in which quantiles

are estimated. Furthermore, fitting for multiple values of s

simultaneously allows one to ‘‘borrow strength’’ across

regression quantiles and improve overall model perfor-

mance (Bang et al. 2016). This property is especially useful

for nonlinear quantile regression models, which are more

prone to overfitting and quantile crossing in the face of

small to moderate sample sizes (Muggeo et al. 2013).

Baldwin (2006), paraphrasing Persson (2001), states

‘‘...while there is only one way to be linear, there are an

uncountable infinity of ways to be nonlinear. One cannot

check them all’’. For a flexible nonlinear model like a neural

network, imposing extra constraints, for example as

informed by process knowledge, can be useful for narrowing

the overall search space of potential nonlinearities. As a

simple example, growth curves should increase monotoni-

cally with the age of the organism, which led Muggeo et al.

(2013) to introduce a monotonicity constraint in addition to

the non-crossing constraint. Similarly, Roth et al. (2015)

applied nonlinear monotone quantile regression to describe

non-decreasing trends in rainfall extremes. Takeuchi et al.

(2006) developed a nonparametric, kernelized version of

quantile regression with similarities to support vector

machines; both non-crossing and monotonicity constraints

are considered, with directions on the incorporation of other

constraints, such as positivity and additivity constraints, also

provided. However, standard implementations of the kernel

quantile regression model (e.g., Karatzoglou et al. 2004;

Hofmeister 2017) are computationally costly, with com-

plexity that is cubic in the number of samples, and do not

explicitly implement the proposed constraints.

As an alternative, this study introduces an efficient, flexible

nonlinear quantile regression model, the monotone composite

quantile regression neural network (MCQRNN), that: (1)

simultaneously estimates multiple non-crossing quantile

functions; (2) allows for optional monotonicity, positivity/non-

negativity, and additivity constraints, as well as fine-grained

control on the degree of non-additivity; and (3) can bemodified

to estimate standard least-squares regression and non-crossing

expectile regression functions. These features, which are

combined into a single, unified framework, are made possible

through a novel combination of elements drawn from the

standard QRNN model (White 1992; Taylor 2000; Cannon

2011), the monotone multi-layer perceptron (MMLP) (Zhang

and Zhang 1999; Lang 2005;Minin et al. 2010), the composite

QRNN (CQRNN) (Xu et al. 2017), the expectile regression

neural network (Jiang et al. 2017), and the generalized additive

neural network (Potts 1999). To the best of the author’s

knowledge, the MCQRNN model is the first neural network-

based implementation of quantile regression that guarantees

non-crossing of regression quantiles.

TheMCQRNNmodel is developed in Sect. 2, starting from

the MMLP model, leading to the MQRNN model, and then

finally to the full MCQRNN. Approaches to enforce mono-

tonicity, positivity/non-negativity, and generalized additive

model constraints, as well as to estimate uncertainty in the

conditional s-quantile functions, are also provided. In Sect. 3,

theMCQRNNmodel is compared via Monte Carlo simulation

to standard MLP, QRNN, and CQRNN models using combi-

nations of three functions and error distributions fromXu et al.

(2017). In Sect. 4, the MCQRNN model is applied to real-

world climate data by estimating IDF curves at ungauged

locations inCanada based on annualmaximum rainfall series at

neighbouring gauging stations. IDF curves, which are used in

the design of civil infrastructure such as culverts, storm sewers,

dams, and bridges, summarize the relationship between the

intensity and occurrence frequency of extreme rainfall over

averaging durations ranging from minutes to a day (Canadian

Standards Association 2012). The intensity of extreme rainfall,

a non-negative quantity, should increase monotonically as the

annual probability of occurrence decreases (e.g., from 1� s ¼

0:5 to 0.01 or, equivalently, a 2–100-year return period) and as
the storm duration decreases (e.g., from 24-h to 5-min).

Monotonicity and positivity/non-negativity constraints are thus

key features of an IDF curve. MCQRNN IDF curve estimates

are compared with those obtained by fitting separate QRNN

models for each return period and duration, as done previously

by Ouali and Cannon (2018). Finally, Sect. 5 provides closing

remarks and suggestions for future research.
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2 Modelling framework

2.1 Monotone multi-layer perceptron (MMLP)

The monotone composite quantile regression neural net-

work (MCQRNN) model starts with the multi-layer per-

ceptron (MLP) neural network with partial monotonicity

constraints (Zhang and Zhang 1999) as its basis. For a data

point with index t, the prediction ŷðtÞ from a monotone

MLP (MMLP) is obtained as follows. First, the V covari-

ates, each assumed to be standardized to zero mean and

unit standard deviation, are separated into two groups:

xm2MðtÞ and xi2IðtÞ with combined indices

fM [ I j 1; . . .;V ; V ¼ ð#M þ#IÞg, where M is the set of

indices for covariates with a monotone increasing rela-

tionship with the prediction, I is the corresponding set of

indices for covariates without monotonicity constraints,

and # denotes the number of set elements. Covariates are

transformed into j ¼ 1; . . .; J hidden layer outputs

hjðtÞ ¼ f
X

m2M

xmðtÞ exp W
ðhÞ
mj

� �

þ
X

i2I

xiðtÞW
ðhÞ
ij þ b

ðhÞ
j

 !

ð1Þ

where WðhÞ is a V � J parameter matrix, bðhÞ is a vector of

J intercept parameters, and f is a smooth non-decreasing

function, usually taken to be the hyperbolic tangent func-

tion. Finally, the model prediction is given as a weighted

combination of the J hidden layer outputs

ŷðtÞ ¼ g
X

J

j¼1

hjðtÞ exp wj

� �

þ b

 !

ð2Þ

where w is a vector of J parameters, b is an intercept term,

and g is a smooth non-decreasing inverse-link function.

Because both f and g are non-decreasing, partial mono-

tonicity constraints (i.e., oŷ

oxm
� 0 everywhere) can be

imposed by ensuring that all parameters leading from each

monotone-constrained covariate xm are positive (Zhang and

Zhang 1999), in this case by applying the exponential

function to the corresponding elements of WðhÞ and all ele-

ments of w. Decreasing relationships can be imposed by

multiplying covariates by � 1. Also, extra hidden layers of

positive parameters can be added to the model. As pointed

out by Lang (2005) and Minin et al. (2010), an additional

hidden layer is required for the MMLP to maintain its uni-

versal function approximation capabilities. While multiple

hidden layers are included in the software implementation by

Cannon (2017), for sake of simplicity, this study only con-

siders the single hidden layer architecture of Zhang and

Zhang (1999). In practice, simple functional relationships

can still be represented by a single hidden layer model.

If M is the empty set and the positivity constraint on the

w parameters is removed, this leads to the standard MLP

model. If f and g are the identity function, the MMLP

reduces to a linear model. If f is nonlinear, then the model

can represent nonlinear relationships, including those

involving interactions between covariates; the number of

hidden layer outputs J further controls the potential com-

plexity of the MLP mapping. All models in this study set

f to be the hyperbolic tangent function.

Adjustable parameters (WðhÞ; bðhÞ; w; b) in the MMLP

are set by minimizing the least squares (LS) error function

ELS ¼
1

N

X

N

t¼1

yðtÞ � ŷðtÞð Þ2 ð3Þ

over a training dataset with N data points

f xðtÞ; yðtÞð Þjt ¼ 1; . . .;Ng, where y(t) is the target value of

the response variable. While LS regression is most com-

mon, different error functions are appropriate for different

prediction tasks. Minimizing the LS error function is

equivalent to maximum likelihood estimation for the con-

ditional mean assuming a Gaussian error distribution with

constant variance (i.e., a traditional regression task), while

minimizing the least absolute error (LAE) function

ELAE ¼
1

N

X

N

t¼1

yðtÞ � ŷðtÞj j ð4Þ

leads to a regression estimate for the conditional median

(i.e., the s ¼ 0:5-quantile) (Koenker and Bassett 1978).

2.2 Monotone quantile regression neural
network (MQRNN)

The fundamental quantity of interest here is not just the

median, but rather predictions ŷsðtÞ of the conditional

quantile associated with the quantile probability s

(0\s\1). In this context, combining the MMLP archi-

tecture from Sect. 2.1, as given by Eqs. (1) and (2),

ŷsðtÞ ¼ g
X

J

j¼1

f
X

m2M

xmðtÞ exp W
ðhÞ
mj

� �

þ
X

i2I

xiðtÞW
ðhÞ
ij þ b

ðhÞ
j

 !"

� exp wj

� �

þ b

�

;

ð5Þ

with the quantile regression error function

Es ¼
1

N

X

N

t¼1

qs yðtÞ � ŷsðtÞð Þ ð6Þ

where

qsðeÞ ¼
s e e� 0

ðs� 1Þ e e\0

�

ð7Þ
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leads to estimates ŷs of the conditional s-quantile function

(Koenker and Bassett 1978). The resulting model is refer-

red to as the MQRNN. When s ¼ 0:5, Eq. (6) is, up to a

constant scaling factor, the same as the LAE function

(Eq. 4) that yields the conditional median; for s 6¼ 0:5, the

asymmetric absolute value function gives different weight

to positive/negative deviations. For example, fitting a

model with s ¼ 0:95 provides an estimate for the condi-

tional 95th-percentile, i.e., a covariate-dependent proba-

bility of exceedance of 5%. Relaxing the monotonicity

constraints gives the standard QRNN model as presented

by Cannon (2011).

Parameters can be estimated by a gradient-based non-

linear optimization algorithm, with calculation of the

gradient using backpropagation; given the simple rela-

tionship between Eqs. 4 and 6, the analytical expression

for the gradient of the quantile regression error function

follows from that of the LAE function (Hanson and Burr

1988). In this case, the derivative is undefined at the

origin, which means that a smooth approximation is

instead substituted for the exact quantile regression error

function. Following Chen (2007) and Cannon (2011), a

Huber-norm version of Eq. 7 replaces qsðeÞ in the quantile

regression error function. This approximation, denoted by

(A), is given by

qðAÞs ðeÞ ¼
s uðeÞ e� 0

ðs� 1ÞuðeÞ e\0

�

ð8Þ

where the Huber function

uðeÞ ¼

e2

2a
0� ej j � a

ej j �
a

2
ej j[ a

8

>

<

>

:

ð9Þ

is a hybrid of the absolute value and squared error func-

tions (Huber 1964).

TheHuber function transitions smoothly from the squared

error, which is applied around the origin (�a) to ensure

differentiability, and the absolute error. As a ! 0, the

approximate error function converges to the exact quantile

regression error function. It should be noted that a slightly

different approximation is used by Muggeo et al. (2012).

Based on experimental results (not shown), both approxi-

mations ultimately provide models that are indistinguish-

able. However, the Huber function approximation is used

here for its added ability to emulate the LS cost function. For

sufficiently large a, all model deviations are squared and the

approximate error function instead becomes an asymmetric

version of the LS error function (Eq. 3). For s ¼ 0:5 and

large a, the error function is symmetric and is, up to a con-

stant scaling factor, equal to the LS error function. For

s 6¼ 0:5, the asymmetric LS error function results in an

estimate of the conditional expectile function (Newey and

Powell 1987; Yao and Tong 1996; Waltrup et al. 2015).

Hence, depending on values of a and s, minimizing the

approximate quantile regression error function can provide

regression estimates for the conditional mean (a � 0,

s ¼ 0:5), median (a ! 0, s ¼ 0:5), quantiles (a ! 0,

0\s\1), and expectiles (a � 0, 0\s\1) (Jiang et al.

2017). Unless noted otherwise, all subsequent references to

q
ðAÞ
s andE

ðAÞ
s will refer to the conditional quantile form of the

Huber function approximation.

Unlike linear regression, where the total number of

model parameters is limited by the number of covariates V,

the complexity of the MQRNN model also depends on the

number of hidden layer outputs J. Model complexity, and

hence J, should be set such that the model can generalize to

new data, which, in practice, usually means avoiding

overfitting to noise in the training dataset. Additionally,

regularization terms that penalize the magnitude of the

parameters, hence limiting the nonlinear modelling capa-

bility of the model, can be added to the error function

~EðAÞ
s ¼ EðAÞ

s þ kðhÞ
1

VJ

X

V

i¼1

X

J

j¼1

W
ðhÞ
ij

� �2

þk
1

J

X

J

j¼1

wj

� �2

ð10Þ

where kðhÞ � 0 and k� 0 are hyperparameters that control

the size of the penalty applied to the elements of WðhÞ and

w respectively. Values of J and, optionally, the kðhÞ and k

hyperparameters are typically set by minimizing out-of-

sample generalization error, for example as estimated via

cross-validation or modified versions of an information

criterion like the Akaike information criterion (QAIC)

(Koenker and Schorfheide 1994; Doksum and Koo 2000)

QAIC ¼ �2 log Esð Þ þ 2 p ð11Þ

where p is an estimate of the effective number of model

parameters.

2.3 Monotone composite quantile regression
neural network (MCQRNN)

The MQRNN model in Sect. 2.2 is specified for a single

s-quantile; no efforts are made to avoid quantile crossing

for multiple estimates. To date, the simultaneous esti-

mation of multiple s-quantiles with guaranteed non-

crossing has not been possible for QRNN models.

However, simultaneous estimates for multiple values of s

are used in the composite QRNN (CQRNN) model

proposed by Xu et al. (2017). CQRNN shares the same

goal as the linear composite quantile regression (CQR)

model (Zou and Yuan 2008), namely to borrow strength

across multiple regression quantiles to improve the esti-

mate of the true, unknown relationship between the
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covariates and the response. This is especially valuable

in situations where the error follows a heavy-tailed dis-

tribution. In CQR, the regression coefficients are shared

across the different quantile regression models. Similarly,

in CQRNN, the WðhÞ; bðhÞ; w; b parameters are shared

across the different QRNN models. Hence, the models

are not explicitly trying to describe the full conditional

response distribution, but rather a single s-independent

function that best describes the true covariate-response

relationship. Structurally, the CQRNN model is the same

as the QRNN model. The only difference is the quantile

regression error function, which is now summed over K

(usually equally spaced) values of s

E
ðAÞ
Cs ¼

1

KN

X

K

k¼1

X

N

t¼1

qðAÞsk
yðtÞ � ŷskðtÞ
� �

ð12Þ

where, for example, sk ¼
k

Kþ1
for k ¼ 1; 2; . . .;K. Penalty

terms can be added as in Eq. 10.

The MCQRNN model combines the MQRNN model

architecture given by Eq. 5 with the composite quantile

regression error function (Eq. 12) to simultaneously

estimate non-crossing regression quantiles. To show

how this is achieved, consider an N �#I matrix of

covariates X, a corresponding response vector y of

length N, and the goal of estimating non-crossing

quantile functions for s1\s2\ � � �\sK . First, create a

new #M ¼ 1 monotone covariate vector x
ðSÞ
m of length

S ¼ K N, where (S) denotes stacked data, by repeating

each of the K specified s values N times and stacking.

Next, stack K copies of X and concatenate with x
ðSÞ
m to

form a stacked covariate matrix XðSÞ of dimension

S� ð1þ#IÞ. Finally stack K copies of y to form yðSÞ.

Taken together, this gives the stacked dataset

XðSÞ ¼

s1 x1ð1Þ � � � x#Ið1Þ

..

. ..
. . .

. ..
.

s1 x1ðNÞ � � � x#IðNÞ

s2 x1ð1Þ � � � x#Ið1Þ

..

. ..
. . .

. ..
.

s2 x1ðNÞ � � � x#IðNÞ

..

. ..
. ..

. ..
.

sK x1ð1Þ � � � x#Ið1Þ

..

. ..
. . .

. ..
.

sK x1ðNÞ � � � x#IðNÞ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; yðSÞ ¼

yð1Þ

..

.

yðNÞ

yð1Þ

..

.

yðNÞ

..

.

yð1Þ

..

.

yðNÞ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð13Þ

which is used to fit the MQRNN model. By treating the s

values as a monotone covariate, predictions ŷ
ðSÞ
s from Eq. 5

for fixed values of the non-monotone covariates are

guaranteed to increase with s. Non-crossing is imposed by

construction. Defining sðsÞ ¼ x
ðSÞ
1 ðsÞ, the composite quan-

tile regression error function for the stacked data can be

written as

E
ðA;SÞ
Cs ¼

X

S

s¼1

xsðsÞq
ðAÞ
sðsÞ yðSÞðsÞ � ŷ

ðSÞ
sðsÞðsÞ

� �

ð14Þ

where xsðsÞ are weights that can be used to allow regression

quantiles for each sk to contribute different amounts to the

total error (Jiang et al. 2012; Sun et al. 2013); constant

weights xsðsÞ ¼ 1=S lead to the standard composite quan-

tile regression error function. Minimization of Eq. 14

results in the fitted MCQRNN model. (Note: non-crossing

expectile regression models can be obtained by adjusting

a � 0 in q
ðAÞ
s .) Following model estimation, conditional s-

quantile functions can be predicted for any value of

s1 � s� sK by entering the desired value of s into the

monotone covariate.

To illustrate, Fig. 1 shows results from a MCQRNN

model (J ¼ 4, kðhÞ ¼ 0:00001, k ¼ 0, K ¼ 9,

s ¼ 0:1; 0:2; . . .; 0:9) fit to 500 samples of synthetic data

for the two functions from Bondell et al. (2010)

y1 ¼ 0:5þ 2xþ sinð2px� 0:5Þ þ e ð15Þ

and

y2 ¼ 3xþ 0:5þ 2xþ sinð2px� 0:5Þ½ 	e ð16Þ

where x is drawn from the standard uniform distribution

x
Uð0; 1Þ and e from the standard normal distribution

e
Nð0; 1Þ. All s are weighted equally in Eq. 14 (i.e.,

values of xsðsÞ are constant). Results are compared with

those from separate QRNN models (J ¼ 4 and

kðhÞ ¼ 0:00001) for each s-quantile. Quantile curves cross

for QRNN, especially at the boundaries of the training data,

whereas the MCQRNN model is able to simultaneously

estimate multiple non-crossing quantile functions that

correspond more closely to the true conditional quantile

functions. While quantile crossing in QRNN models can be

minimized by selecting and applying a suitable weight

penalty (Cannon 2011), non-crossing cannot be guaranteed,

whereas MCQRNN models impose this constraint by

construction.

2.4 Additional constraints and uncertainty
estimates

As mentioned above, constraints in addition to non-cross-

ing of quantile functions may be useful for some

MCQRNN modelling tasks. Partial monotonicity con-

straints for specified covariates can be imposed as descri-

bed in Sect. 2.1; positivity or non-negativity constraints

Stochastic Environmental Research and Risk Assessment (2018) 32:3207–3225 3211
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can be added by setting g in Eq. 2 to the exponential or

smooth ramp function (Cannon 2011), respectively; and

covariate interactions can be restricted by the approach

described in Appendix 1.

A form of the parametric bootstrap can be used to

estimate uncertainty in the conditional s-quantile functions.

While the MCQRNN model is explicitly optimized for K

specified values of s, the use of the quantile probability as a

monotone covariate means that conditional s-quantile

functions can be interpolated for any value of s1 � s� sK .

Proper distribution, probability density, and quantile

functions can then be constructed by assuming a parametric

form for the tails of the distribution (Quiñonero Candela

et al. 2006; Cannon 2011). The parametric bootstrap pro-

ceeds by drawing random samples from the resulting

conditional distribution, refitting the MCQRNN model,

making estimates of the conditional s-quantiles, and

repeating many times. Confidence intervals are estimated

from the bootstrapped conditional s-quantiles.

For illustration, examples of MCQRNN model outputs

with positivity and monotonicity constraints, as well as

confidence intervals obtained by the parametric bootstrap,

are shown in Fig. 2 for the two Bondell et al. (2010)

functions.

3 Monte Carlo simulation

Given the close relationship between the MCQRNN and

CQRNN models, performance is first assessed via Monte

Carlo simulation using the experimental setup adopted by

Xu et al. (2017) for CQRNN. The MCQRNN model is

compared with standard MLP, QRNN, and CQRNN

models on datasets generated for three example functions:

ðexample1Þ y ¼ sinð2x1Þ þ 2 exp �16x22
� �

þ 0:5e ð17Þ

where x1 
Nð0; 1Þ and x2 
Nð0; 1Þ;

ðexample2Þ y ¼ 1� xþ 2x2
� �

exp �0:5x2
� �

þ
ð1þ 0:2xÞ

5
e

ð18Þ

where x
Uð�4; 4Þ; and

ðexample3Þ y ¼

40 exp 8 ðx1 � 0:5Þ2 þ ðx2 � 0:5Þ2
h in o

=

exp 8 ðx1 � 0:2Þ2 þ ðx2 � 0:7Þ2
h in oh

þ exp 8 ðx1 � 0:7Þ2 þ ðx2 � 0:7Þ2
h in oi

þ e

ð19Þ

Fig. 1 Predictions from QRNN

(a, c) and MCQRNN (b, d)

models fit to synthetic data

(black points) generated by

Eq. 15 (a, b) and Eq. 16 (c, d)

are shown in rainbow colours.

Plots of the true conditional

quantile functions are shown by

solid grey lines. The nine curves

from bottom to top represent

s ¼ 0:1; 0:2; . . .; 0:9
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where x1 
Uð0; 1Þ and x2 
Uð0; 1Þ. For each of the three

functions, random errors are generated from three different

distributions: the normal distribution e
Nð0; 0:25Þ, Stu-

dent’s t distribution with three degrees of freedom e
 tð3Þ,
and the chi-squared distribution with three degrees of

freedom e
 v2ð3Þ. Monte Carlo simulations are performed

for the nine resulting datasets.

To evaluate the benefit of adding MCQRNN’s non-

crossing constraint to the simultaneous estimation of mul-

tiple regression quantiles, a second variant of CQRNN,

referred to as CQRNN*, is included in the comparison. The

CQRNN* model takes the same structure as MCQRNN,

i.e., with s values included as an extra input variable

(Eq. 13). However, partial monotonicity constraints are

removed from the s-covariate; the exponential function is

no longer applied to the relevant elements in WðhÞ and all

elements of w. The resulting model provides estimates of

multiple regression quantiles, but crossing can now occur.

This differs from the CQRNN model of Xu et al. (2017),

which estimates a single regression equation using the

composite QR cost function, and MCQRNN, which addi-

tionally guarantees non-crossing of the multiple regression

quantiles. Differences between the three models are

illustrated in Fig. 3 on the example 2 dataset with e
 v2ð3Þ

distributed noise.

For each example and error distribution in the Monte

Carlo simulations, 400 samples are generated and split

randomly into 200 training and 200 testing samples.

Results for QRNN, MLP, CQRNN, CQRNN*, and

MCQRNN models are compared by fitting to the training

samples and evaluating on the testing samples. Simulations

are repeated 1000 times. Following Xu et al. (2017), the

number of hidden layer outputs in all models is set to J ¼ 4

for example 1 and J ¼ 5 for examples 2 and 3; for sake of

simplicity, no weight penalty terms are added when fitting

any of the models. (When comparing results with those

reported by Xu et al. (2017), note that omitting weight

penalty regularization here leads to smaller inter-model

differences in performance within both the training and

testing samples, which suggests potential instability in

hyperparameter selection in the previous study.) The goal

is to estimate the true functional relationship specified by

Eqs. 17–19. The QRNN model is fit for s ¼ 0:5, whereas

CQRNN, CQRNN*, and MCQRNN models use K ¼ 19

equally spaced values of s. In the case of CQRNN* and

MCQRNN, evaluations are based on an estimate of the

conditional mean function obtained by taking the mean

Fig. 2 As in Fig. 1b, d, but for

MCQRNN models with

additional a positivity

constraints and b positivity and

monotonicity constraints,

respectively. c, d Estimates of

95% confidence intervals, based

on 500 parametric bootstrap

datasets, for the

s ¼ 0:1; 0:5; 0:9-quantile
regression curves shown in

Fig. 1b, d
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over predictions for the K ¼ 19 s-quantiles. Performance is

measured by the root mean squared error (RMSE) between

model predictions for the test samples and the actual values

of y. For reference, training RMSE is also reported. Results

are shown in Fig. 4.

As expected, the MLP model, which is fit using the LS

error function and hence is optimal for normally distributed

errors with constant variance, tends to perform best for the

three examples when e
Nð0; 0:25Þ. Difference are,

however, small for both training and testing datasets.

Median RMSE values for each of the models fall within

10% of MLP in all cases and the 90% inter-percentile

ranges are typically comparable. For the two non-normal

error distributions, e
 tð3Þ and e
 v2ð3Þ, CQRNN* and

MCQRNN models tend to outperform the other models on

the testing datasets. Again, differences in median testing

RMSE are small, especially among the QRNN-based

models. In general, however, MLP performs worst, fol-

lowed by QRNN and CQRNN, with CQRNN* and

MCQRNN offering slight improvements. In terms of

robustness, as measured by the 5th and 95th percentiles of

testing RMSE, MLP is clearly least robust, while

MCQRNN tends to perform best, especially for example 3.

For this example and the two non-normal error distribu-

tions, MCQRNN also outperforms CQRNN*, which points

to added value of the non-crossing constraint. Overall, the

MCQRNN model performs well on the synthetic data from

Xu et al. (2017). In the next section, the modelling

framework is applied to real-world climate data. As a proof

of concept, rainfall IDF curves are estimated by MCQRNN

at ungauged locations in Canada and, following Ouali and

Cannon (2018), results are compared against those

obtained from QRNN models.

4 Rainfall IDF curves

4.1 Data

The design of some civil infrastructure—hydraulic,

hydrological, and water resource structures—is based on

the design flood, which is the flood hydrograph associated

with a specified frequency of occurrence or return period.

In the absence of gauged discharge data, rainfall data are

instead used to generate a design storm, which can then be

transformed into synthetic peak streamflows for the return

period of interest. The design storm provides the temporal

distribution of rainfall intensities associated with a speci-

fied return period and duration. The necessary information

on the frequency of occurrence, duration, and intensity of

rainstorms is compactly summarized in an IDF curve, and

hence IDF curves are key sources of information for

engineering design applications. IDF curves provided by

Environment and Climate Change Canada (ECCC) sum-

marize the relationship between annual maximum rainfall

intensity for specified frequencies of occurrence (2-, 5-,

10-, 25-, 50- and 100-year return periods, i.e.,

s ¼ 0:5; 0:8; 0:9; 0:96; 0:98; 0:99-quantiles) and durations
(D ¼ 5-, 10-, 15-, 30- and 60-min, 2-, 6-, 12- and 24-h) at

locations in Canada with long records of short-duration

rainfall rate observations. Annual maximum rainfall rate

data for durations from 5-min to 24-h are archived by

ECCC as part of the Engineering Climate Datasets (Envi-

ronment and Climate Change Canada 2014). The rainfall

rate dataset is based on tipping bucket rain gauge obser-

vations at 565 stations across Canada (Fig. 5). Record

lengths range from 10 to 81-year, with a median length of

25-year. Information on the observing program, quality

Fig. 3 Predictions from a CQRNN, CQRNN*, and b MCQRNN

models on the example 2 dataset (Eq. 18) with e
 v2ð3Þ distributed
noise. Black dots show the synthetic training data and the thick black

line indicates the true underlying function. Predictions of the

conditional mean by CQRNN, CQRNN*, and MCQRNN are shown

by the blue line in (a), the red line in (a), and the red line in (b),

respectively. For the CQRNN* and MCQRNN models, these values

are obtained by taking the mean over predictions of the K ¼ 19s-

quantiles shown in grey. Places where CQRNN* quantiles cross are

indicated by vertical grey dashed lines
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control, and quality assurance methods is provided in detail

by Shephard et al. (2014).

Official ECCC IDF curves are constructed by first fitting

the parametric Gumbel distribution to annual maximum

rainfall rate series at each site for each duration. At the

majority of stations, the actual curves are then based on

best fit linear interpolation equations between log-trans-

formed duration and log-transformed Gumbel quantiles for

each of the specified return periods. For reference, IDF

curves for Victoria Intl A, a station on the southwest coast

of British Columbia, Canada, are shown in Fig. 6. Points

indicate return values of rainfall intensity obtained from the

fitted Gumbel distribution for each combination of return

period and duration; the IDF curves for each return period

are based on log–log interpolating equations through these

points, and hence plot as straight lines.

Naturally, the ECCC approach cannot provide quantile

estimates for locations where short-duration rainfall

observations are not recorded or available. Parametric

extreme value distributions, fit in conjunction with

regionalization or regional regression models, have been

used to estimate IDF curves at ungauged locations in

Canada by Alila (1999, 2000), Kuo et al. (2012) and

Mailhot et al. (2013). As a non-parametric alternative to

standard parametric approaches, Ouali and Cannon (2018)

recently evaluated regional QRNN models for IDF curves

at ungauged locations. While results suggest that the

QRNN model can outperform standard parametric

methods, further improvements are still possible. In par-

ticular, Ouali and Cannon (2018) fit separate QRNN

models for each s-quantile and duration, which means that

quantile crossing is possible; further, rainfall intensities

may not increase as storm duration decreases. Instead, use

of the MCQRNN is proposed to ensure non-crossing

quantiles and a monotone decreasing relationship with

Fig. 4 Distribution of RMSE values over the 1000 Monte Carlo

simulations for MLP (black), QRNN (green), CQRNN (blue),

CQRNN* (orange) and MCQRNN (red) models in the a training

and b testing datasets for examples 1, 2, and 3 from Xu et al. (2017)

with Nð0; 0:25Þ (rnorm25), t(3) (rt3), and v2ð3Þ (rchisq3) distributed
noise. The central dot indicates the median RMSE and the lower and

upper bars the 5th and 95th percentiles, respectively

Fig. 5 Points (black circle) show locations of ECCC IDF curve

stations; point size is proportional to station elevation. Shading

indicates the climatological summer total precipitation (1971–2000)
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increasing storm duration. Estimation at ungauged sites

typically relies on pooling gauged data from a homoge-

neous region around the site of interest, whether in geo-

graphic space or some derived hydroclimatological space

(Ouarda et al. 2001), and then fitting a regression model

linking spatial covariates with the short-duration rainfall

rate response. As the focus of this study is on methods for

conditional quantile estimation, and not the delineation of

homogeneous regions, regionalizations here are based on a

simple geographic region-of-influence (Burn 1990) in

which data from the 80 nearest gauged sites are pooled

together to form the training dataset for the site of interest.

Following Aziz et al. (2014), this emphasizes the use of

data from a large number of sites rather than the most

homogeneous sites; it is then up to the regression model to

infer relevant covariate-response relationships from within

this larger pool of data. In areas with low station density,

however, it is questionable whether any statistical regional

frequency analysis technique can be used to reliably esti-

mate rainfall extremes. Performance in sparsely monitored

regions will be explored as part of the subsequent model

evaluation.

Based on this experimental design, observed short-du-

ration rainfall rate data iD for multiple durations D are used

as the response variable in the MCQRNN model and spa-

tial variables available over the domain—including at the

ungauged location—are used as covariates in the regres-

sion equations. In this study, five covariates (#I ¼ 5),

including latitude (lat), longitude (lon), elevation (elev),

and climatological total winter (DJF) and summer precip-

itation (JJA) (Fig. 5) (McKenney et al. 2011), are used

alongside the two (#M ¼ 2) monotone covariates [s and

� logðDÞ]. As an abbreviated example, stacked data

matrices for a single site (s1), two quantiles (s1and s2), and

two durations (D1 and D2), for N years of short-duration

rainfall observations would take the form:

Fig. 6 Example ECCC IDF data for Victoria Intl A (station 1018621)

in British Columbia, Canada. Points (�) show quantiles associated

with 2-, 5-, 10-, 25-, 50- and 100-year (from bottom to top) return

period intensities estimated by fitting the Gumbel distribution by the

method of moments to annual maximum rainfall rate data for 5-, 10-,

15-, 30- and 60-min, 2-, 6-, 12- and 24-h durations (left to right).

Lines are from best fit linear interpolation equations between log-

transformed duration and log-transformed Gumbel quantiles for each

return period
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For a given site of interest, the full stacked training dataset

is expanded to include data from the 80 nearest gauged

sites, 6 values of s (0:5; 0:8; 0:9; 0:96; 0:98; 0:99), and 9

durations (5-, 10-, 15-, 30- and 60-min, 2-, 6-, 12- and

24-h).

4.2 Cross-validation results

Regional MCQRNN and QRNN models for IDF curves are

evaluated via leave-one-out cross-validation. Each of the

565 observing sites is treated, in turn, as being ‘‘un-

gauged’’, i.e., data from nearest 80 sites to each left-out site

are used to fit the models, model predictions are made at

the left-out site, and model performance statistics are cal-

culated based on the left-out data. Following Ouali and

Cannon (2018), 54 separate QRNN models are fit for each

site, one for each combination of the 9 durations (D ¼ 5-

min to 24-h) and 6 s-quantiles (s ¼ 0:5–0.99) reported in

ECCC IDF curves. Each MCQRNN model combines data

for all 9 values of D and fits non-crossing quantile curves

for the 6 s-quantiles simultaneously.

Non-negativity constraints are imposed in both QRNN

and MCQRNN models by setting g to the smooth ramp

function (Cannon 2011). Monotonicity constraints—in-

creasing with s and decreasing with D—are imposed in the

MCQRNN model by adopting the MMLP architecture with
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additional monotone covariates [s and � logðDÞ]. The

optimum level of complexity for each kind of model is

selected based on values of QAIC, here based on the

composite QR error function (e.g., Xu et al. 2017), aver-

aged over all sites, from candidates with J ¼ 1; 2; . . .; 5

(Koenker and Schorfheide 1994; Doksum and Koo 2000;

Xu et al. 2017). The number of hidden nodes J is fixed to

the same value for all sites in the study domain. QAIC is

minimized for QRNN models with J ¼ 1 and MCQRNN

models with J ¼ 3.

Cross-validation results comparing the MCQRNN ðJ ¼

3Þ and QRNN ðJ ¼ 1Þ models are reported in terms of

relative differences in leave-one-out estimates of the

quantile regression error function

RDs ¼ 100
E
ðMCQRNNÞ
s � E

ðQRNNÞ
s

E
ðQRNNÞ
s

 !

ð21Þ

summed over all stations for each return period and dura-

tion. Values are shown in Table 1a. Because the underlying

model architecture is, aside from different values of J and

inclusion of monotonicity constraints, fundamentally the

same for the QRNN and MCQRNN models, it is not sur-

prising that the two perform similarly well. MCQRNN and

QRNN errors fall within 5% of one another for nearly all

combinations of return period and duration, although

MCQRNN tends to perform slightly better for short dura-

tions (D ¼ 5-min to 2-h) and QRNN for longer durations

(D ¼ 6–24-h). Poorer performance of the MCQRNN

model in these cases is partly attributable to the smaller

rainfall intensities that are associated with long duration

storms being weighted less in the CQR cost function

(Eq. 14) than the larger intensities that accompany short

duration storms. This can be remedied by setting xsðsÞ /

logðDÞ in Eq. 14. Results for the MCQRNN model with

weighting are shown in Table 1b. Weighting improves

performance for longer durations, while having minimal

impact on shorter durations. Further results will be reported

for the weighted MCQRNN model.

Despite the similar levels of quantile error, the addi-

tional MCQRNN monotonicity constraints on s and

D leads to IDF curves that are guaranteed to increase as

occurrence frequency and storm duration decrease, prop-

erties that need not be present for QRNN predictions. This

is evident for Victoria Intl A (Fig. 7), where quantile

crossing and non-monotone increasing behaviour with

decreasing storm duration is noted for the 100-year QRNN

model predictions (cf. Fig. 6).

Each of the QRNN (J ¼ 1) models for the 54 combi-

nations of s and D contain J ð#I þ 1Þ þ J þ 1 ¼ 1 ð5þ

1Þ þ 1þ 1 ¼ 8 parameters or 432 parameters in total.

Because it borrows strength over s and D (#M ¼ 2), the

MCQRNN (J ¼ 3) model requires just J ð#I þ#M þ

1Þ þ J þ 1 ¼ 3 ð5þ 2þ 1Þ þ 3þ 1 ¼ 28 shared parame-

ters for the same task. Given that the two models show

similar levels of performance, parameters in the separate

QRNN equations must be largely redundant. If model

complexity is increased, for example to J ¼ 5, the total

number of estimated parameters is 1944 for QRNN (36 for

each combination of s and D) versus 46 for MCQRNN. By

way of comparison, the at-site (rather than ungauged)

ECCC IDF curves require estimation of 30 parameters (18

Gumbel distribution and 12 interpolation equation

parameters).

Table 1 Summary of cross-

validated relative differences

RDs (%) in quantile regression

error stratified by duration D,

for all stations, for MCQRNN

models (a) without weighting

and (b) with weighting

proportional to logðDÞ

Return period/duration 5-min 10-min 15-min 30-min 60-min 2-h 6-h 12-h 24-h

(a) Unweighted

2 � 0.1 � 0.2 0 ? 0.1 � 0.1 ? 0.4 ? 1.5 ? 2.7 ? 4.8

5 � 0.1 ? 0.2 ? 0.3 � 0.6 � 0.4 � 0.3 ? 1.0 ? 0.5 ? 1.9

10 ? 0.2 ? 0.1 ? 0.2 � 0.8 � 0.6 � 0.8 ? 0.7 ? 1.8 ? 1.7

25 ? 0.2 � 1.0 � 1.4 � 1.1 � 1.6 � 1.4 ? 1.1 ? 0.3 ? 0.6

50 � 2.1 � 3.5 � 3.9 � 1.9 � 1.1 � 6.7 ? 0.9 ? 0.8 ? 2.9

100 � 4.0 � 2.4 � 4.6 � 4.7 ? 1.6 ? 0.9 ? 2.8 ? 4.3 ? 5.6

(b) logðDÞ weighting

2 ? 0.3 � 0.3 � 0.1 0 � 0.3 � 0.3 ? 0.2 ? 1.3 ? 2.9

5 ? 0.2 ? 0.2 ? 0.3 � 0.7 � 0.6 � 0.7 ? 0.1 � 0.2 ? 1.1

10 0 � 0.1 ? 0.1 � 0.9 � 0.8 � 1.0 � 0.1 ? 1.0 ? 0.9

25 ? 0.1 � 1.0 � 1.6 � 1.3 � 1.5 � 1.6 ? 0.3 � 0.8 � 0.8

50 � 2.1 � 3.6 � 4.1 � 2.4 � 1.4 � 7.0 ? 0.1 � 0.8 ? 0.7

100 � 3.3 � 2.5 � 5.0 � 5.6 ? 0.6 ? 0.3 ? 1.6 ? 1.7 ? 1.9

In both cases, QRNN IDF curve predictions serve as the reference model. Bold values indicate combi-

nations of return period and duration for which MCQRNN performs better (i.e., lower errors) than QRNN;

combinations with worse performance are underlined
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Do the non-crossing/monotonicity constraints and abil-

ity to borrow strength provide a guard against overfitting if

MCQRNN model complexity is misspecified? Fig. 8 shows

relative differences RDs in cross-validated quantile

regression error for MCQRNN and QRNN models with

J ¼ 1; 2; . . .; 5; in both cases, the optimal QRNN ðJ ¼ 1Þ

model serves as the reference. Consistent with results from

QAIC model selection, cross-validated QRNN errors

increase when J[ 1. When using more than the recom-

mended number of hidden nodes, the QRNN performs

poorly, especially for long return period estimates. How-

ever, for MCQRNN, in the absence of underfitting (i.e.,

J ¼ 1), there is little penalty for specifying an overly

complex model. Performance of the optimal MCQRNN

ðJ ¼ 3Þ model recommended by QAIC model selection is

nearly identical to that of the misspecified J ¼ 5 model.

The non-crossing constraint provides strong regularization

and resistance to overfitting.

Results reported so far have compared leave-one-out

cross-validation performance of the MCQRNN and QRNN

models. This does not provide any indication of how well

the ungauged predictions compare with those estimated by

the at-site ECCC IDF curve procedure, i.e., by fitting the

Gumbel distribution and log linear interpolating equations

to observed annual maxima at each station. Following

Ouali and Cannon (2018), the ability of the MCQRNN to

replicate the at-site ECCC IDF curves is measured by the

quantile regression error ratio

Rs ¼
E
0ðECCCÞ
s

E
ðMCQRNNÞ
s

ð22Þ

where E
0ðECCCÞ
s is the in-sample, at-site quantile regression

error of the ECCC IDF curve interpolating equations. A

value of 1 means that ungauged MCQRNN predictions

reach the same level of error as the at-site ECCC IDF

curves. Note: even though the ECCC IDF curves are cal-

culated from observations at each station, it is possible for

Rs to exceed 1 as the annual maximum rainfall data may

deviate from the assumed Gumbel distribution and log

linear form of the interpolating equations. Results are

summarized in Table 2. Values of Rs greater than 0.9—

based on the 10% relative error threshold recommended by

Mishra et al. (2012) for acceptable model simulations of

urban rainfall extremes—are found for 41 of the 54

Fig. 7 Leave-one-out predictions of IDF curves for 2-, 5-, 10-, 25-,

50- and 100-year (in rainbow colours from bottom to top) return

period intensities for Victoria Intl A (station 1018621) from a QRNN

models and b MCQRNN model (cf. Fig. 6). Points (black square)

show observed annual maximum rainfall rate data for 5-, 10-, 15-, 30-

and 60-min, 2-, 6-, 12- and 24-h durations

Fig. 8 Cross-validated relative differences RDs (%) in quantile

regression error between MCQRNN and QRNN IDF curve predic-

tions for J ¼ 1; 2; . . .; 5 using QRNN ðJ ¼ 1Þ as the reference model.

Results are shown for 2-, 5-, 10-, 25-, 50- and 100-year return periods
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combinations of of D and s, including all return periods

from 2 to 10-year. More broadly, values exceed 0.7 for all

combinations of D and s.

As shown in Fig. 5, stations are not evenly distributed

across Canada; northern latitudes, in particular, are very

sparsely gauged. Does MCQRNN performance depend on

station density? Values of Rs, stratified by the median

distance of each ungauged station to its 80 neighbours, are

shown in Fig. 9. As expected, errors are nearly equivalent

(Rs[ 0:975) to the at-site estimates in areas of high station

density (median distances\100 km). Modest performance

declines are noted (Rs[ 0:875) with increasing median

distance up to 500 km, beyond which performance

degrades more substantially, especially for the longest

return periods (Rs¼0:99\0:8). The viability of ungauged

estimation should be evaluated carefully in areas of low

station density.

5 Conclusion

This study introduces a novel form of quantile regression

that can be used to simultaneously estimate multiple non-

crossing, nonlinear quantile regression functions.

MCQRNN is the first neural network-based quantile

regression model that guarantees non-crossing of regres-

sion quantiles. The model architecture, which is based on

the standard MLP neural network, also allows optional

monotonicity, positivity/non-negativity, and generalized

additive model constraints to be imposed in a straightfor-

ward manner. As an extension, a simple way to control the

strength of non-additive relationships is also provided. The

Huber function approximation to the QR error function

means that standard least-squares regression and non-

crossing expectile regression functions can be estimated

using the same model architecture.

Given its close relationship to composite QR models,

MCQRNN is first evaluated using the Monte Carlo simu-

lation experiments adopted by Xu et al. (2017) to demon-

strate the CQRNN model. In comparison to MLP, QRNN,

and CQRNN models, MCQRNN is more robust than the

benchmark models, especially for non-normal error

distributions. Next, the MCQRNN model is evaluated on

real-world climate data by estimating rainfall IDF curves in

Canada. Cross-validation results suggest that the

MCQRNN effectively borrows strength across different

storm durations and return periods, which results in a

model that is robust against overfitting. In comparison to

standard QRNN, the ability of the MCQRNN model to

incorporate monotonicity constraints—rainfall intensity

should increase monotonically as the occurrence frequency

and storm duration decrease—leads to more realistic esti-

mates of extreme rainfall at ungauged sites. While

promising, use of the MCQRNN for IDF curve estimation

is presented here as a proof of concept. Other avenues of

research include a more principled consideration of

regionalization (Ouarda et al. 2001), other covariates

(Madsen et al. 2017), and comparison against a wider

range of nonlinear methods (Ouali et al. 2017). The

MCQRNN model architecture is extremely flexible and

many of its features are also not explored in this study. For

example, the use of different weights for each s in the

composite QR error function (Jiang et al. 2012; Sun et al.

2013), multiple hidden layers, and the ability to estimate

Table 2 Summary of quantile

regression error ratio Rs

stratified by duration D between

at-site ECCC IDF curves and

ungauged MCQRNN

predictions for all stations

Return period/duration 5-min 10-min 15-min 30-min 60-min 2-h 6-h 12-h 24-h

2 1.05 0.97 0.98 0.99 0.99 0.98 0.95 0.94 0.97

5 1.06 0.96 0.97 0.99 0.99 0.98 0.94 0.93 0.95

10 1.05 0.94 0.95 0.99 0.99 0.97 0.92 0.90 0.93

25 1.03 0.91 0.91 0.99 0.98 0.97 0.89 0.85 0.88

50 1.02 0.90 0.89 0.95 0.97 0.95 0.86 0.79 0.84

100 0.99 0.87 0.85 0.89 0.94 0.91 0.78 0.74 0.78

Values � 0:9 are shown in bold

Fig. 9 Mean quantile regression error ratio Rs between at-site ECCC

IDF curves and leave-one-out cross-validated MCQRNN predictions;

values of Rs are stratified according to the median distance between

the left-out station and its 80 neighbouring stations. Each of the 10

distance groupings contains an approximately equal numbers of

stations (56 or 57)
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non-crossing, nonlinear expectile regression functions

(Jiang et al. 2017) are left for future research.

Finally, code implementing the MCQRNN model is

freely available from the Comprehensive R Archive Net-

work as part of the qrnn package.
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Appendix 1: Additive MLP models
and control over non-additivity

As shown by Potts (1999), the MLP architecture used by

the MCQRNN model can represent generalized additive

relationships, i.e., where the model output depends on

linear combinations of unknown smooth functions applied

to each covariate in turn. Each covariate is associated with

its own MLP, separate from those for the other covariates

(Fig. 10a), which means that interactions between covari-

ates are neglected. The resulting model is easy to interpret,

as contributions from covariates can be analyzed in

isolation.

From Sect. 2.1—removing partial monotonicity con-

straints for sake of simplicity—this is equivalent to repre-

senting the hidden layer outputs in the form

hjðtÞ ¼ f
X

i2I

xiðtÞA
ðhÞ
ij W

ðhÞ
ij þ b

ðhÞ
j

 !

ð23Þ

where AðhÞ is an appropriate binary mask. For example, for

a model with #I ¼ 4 covariates and J ¼ 3 ð#IÞ ¼ 12

hidden layer outputs, as shown in Fig. 10, the mask that

enforces additive relationships is given by

AðhÞ ¼

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

2

6

6

6

4

3

7

7

7

5

ð24Þ

Each of the covariates xi is passed through a smooth

function defined, in this example, by a linear combination

Fig. 10 Schematic

representations of a the

generalized additive neural

network architecture from Potts

(1999) and b additivity

constraints applied to a fully-

connected MLP via a binary

mask AðhÞ applied to elements

of WðhÞ. Parameters that have

been set to zero by AðhÞ are

represented by dashed grey

lines. Nonzero WðhÞ; w
parameters are represented by

solid coloured lines, bðhÞ

parameters by dashed coloured

lines, and b by dashed black

lines

Stochastic Environmental Research and Risk Assessment (2018) 32:3207–3225 3221

123

https://CRAN.R-project.org/package=qrnn
https://CRAN.R-project.org/package=qrnn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


of 3 hidden layer outputs. For a given covariate, the other

hidden layer outputs, and hence covariates, do not con-

tribute to the output because the additive mask multiplies

the corresponding elements of WðhÞ by zero (Fig. 10b).

A means of controlling non-additivity in a Gaussian

process model was presented by Plate (1999). It was shown

that control over interactions in a flexible nonlinear

model—allowing for models that range from being fully

additive to those that do not constrain covariate interac-

tions—can be beneficial for modelling tasks where inter-

pretability and prediction performance are both important.

Similar fine-grained control can be added to models based

Fig. 11 Modified generalized additive model plots (Plate 1999) shows partial effects for covariates x1, x2, x3, and x4 from MLP models

(kðhÞ ¼ 0; 0:2; 1; 100) fit to synthetic data generated by Eq. 27
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on the MLP architecture by removing AðhÞ from Eq. 23 and

instead modifying the error function

~EðAÞ
s ¼ EðAÞ

s þ kðhÞ
1

VJ

X

V

i¼1

X

J

j¼1

L
ðhÞ
ij W

ðhÞ
ij

� �2

þk
1

J

X

J

j¼1

wj

� �2

ð25Þ

where

LðhÞ ¼

0 0 0 1 1 1 1 1 1 1 1 1

1 1 1 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0

2

6

6

6

4

3

7

7

7

5

ð26Þ

contains the logical negation of elements in the AðhÞ matrix

that would be applied in a fully-additive model. In effect,

the first penalty term now applies only to elements of WðhÞ

responsible for controlling interactions between covariates;

larger values of kðhÞ will therefore suppress non-additive

relationships.

To demonstrate, consider MLP models fit using the

modified cost function (Eq. 25) to synthetic data generated

by the function from Plate (1999)

y ¼ 0:925/ðx1; x2Þ þ 2:248ðx2 þ x3 � 1Þ3 þ e ð27Þ

where

/ðx1; x2Þ ¼1:3356 1:5 1� x1ð Þ þ exp 2x1 � 1ð Þ sin 3p x1 � 0:6ð Þ2
h in

þ exp 3 x2 � 0:5ð Þ½ 	 sin 4p x2 � 0:9ð Þ2
h io

ð28Þ

Covariate x1 has a purely additive and nonlinear relation-

ship with the response, while covariates x2 and x3 have an

interactive, nonlinear relationship. A fourth covariate x4,

which is irrelevant and does not contribute to the response,

is also included. Two datasets are created: training data

with 300 samples and testing data with 100,000 samples.

Each of the four covariates is drawn from a uniform dis-

tribution Uð0; 1Þ and e
Nð0; 0:5Þ.
Figure 11 shows generalized additive model plots—

modified following Plate (1999) so that non-additive rela-

tionships are indicated by vertical spread in points—for

MLP models with kðhÞ ¼ 0; 0:2; 1; 100. Values of kðhÞ ¼
0; 0:2 lead to spurious interactions for x1 and x4, whereas

kðhÞ ¼ 100 suppresses the true interactions between x2 and

x3. kðhÞ ¼ 1 appears to strike the appropriate balance,

leading to a MLP model with a nonlinear additive rela-

tionship for x1, interactions for x2 and x3, and no rela-

tionship between x4 and the response. These results are

Fig. 12 a Interaction strength for covariates x1, x2, x3, and x4 (Plate 1999), b training and testing RMSE, and c absolute magnitudes of WðhÞ

elements (cf. Eq. 26) associated with different values of kðhÞ
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reflected in the measure of interaction strength, training

and testing RMSE, and magnitudes of WðhÞ elements

shown in Fig. 12. The MLP with kðhÞ ¼ 1 gives the lowest

testing RMSE. This model has strong measured interac-

tions for covariates x2 and x3, which are associated with

nonzero elements of WðhÞ.
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