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In this paper, a new non data aided estimator of the modulation index of continuous phase modulated

(CPM) signals is proposed. It is based on the observation that the inverse of the index is the smallest

positive real number a CPM signal should be raised to in order to generate a sinusoid of period 2T , where
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I. Introduction

Blind estimation of technical parameters characterizing the modulation used by a par-

tially unknown transmitter is useful in certain civil or military applications. Spectrum

monitoring is a typical civil application for which the values of the parameters of the

active transmitters should be controlled. Passive listening is the most obvious military

application which requires blind estimation procedures. Indeed, certain modulation pa-

rameters should be estimated in order to be able to extract the transmitted information

and to recognize the type of transmitter.

Continuous phase modulation (CPM) is a widespread scheme thanks to its attractive

spectral efficiency and its constant modulus property. In particular, it is used in the Eu-

ropean second generation mobile system GSM, in the professional mobile communications

system Tetrapol, as well as in a number of military systems. Non data aided estimation

of CPM technical parameters is thus a problem of current interest.

A number of works have been devoted to the non data aided estimation of timing,

phase and frequency offset of CPM signals (see e.g. [8], [9]). However, blind estimation of

the modulation index of a CPM signal is comparatively less popular. This problem does

not seem to have been investigated thoroughly in the literature except in [5] and [6] : in

these works, estimators based on higher order statistics of the received signal are presented.

However, these estimation methods work only in case of full response CPM signals, i.e.

when the support of the shaping filter used at the transmitter side coincides with [0, T ],

where T is the symbol period. We also mention that the use of such methods requires the

prior knowledge of the symbol period, the time delay of arrival and the frequency offset.

In this paper, we propose a novel non data aided approach to estimate the modulation

index and we analyze the performance of this estimator. As this contribution is moti-

vated by applications to passive listening, the estimation procedure is expected to perform

without any a priori information on the class of CPM signal used by the transmitter.

Therefore, we assume that both the data sequence and the shaping filter are unknown at

the receiver side. In this paper, the symbol period and the carrier frequency are supposed

to be available for the sake of simplicity. However, the approach that is going to be in-

troduced in the sequel can be adapted in order to estimate jointly the index, the symbol
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rate and if needed, the carrier frequency of the CPM signal. As the performance analysis

of the joint estimate is far from being a direct generalization of the results presented in

the present work, this joint estimation problem is not addressed in details here due to the

lack of space. However, subsection IV-C briefly indicates how the joint estimation of the

unknown parameters can be achieved in this case.

The present paper is organized as follows. Section II describes the signal model and the

basic notations. In order to motivate the use of our estimate, we first review the existing

approaches in section III. We discuss in subsection III-A on the maximum likelihood

estimation of the modulation index. As the shaping filter of the modulation is unknown,

the joint estimation of the modulation index and of a sequence of coefficients related to the

shaping filter is required. The expectation maximization (EM) algorithm ([12], [13]) can

be used to this end. However, each iteration of the algorithm leads to the maximization of

a multi-dimensional non convex function. Therefore, the EM algorithm must be properly

initialized. Moreover, as we shall see below, the computational cost of each iteration of

the EM algorithm is proportional to N2, where N is the number of symbols of the sample

set. Of course, this makes this algorithm difficult to implement in practice. It is thus quite

relevant to propose sub-optimum estimators. We therefore present briefly in subsection

III-B the estimator proposed in [5], which makes sense only in the full response case.

Section IV introduces the proposed estimator. It is based on the observation that the

inverse of the index is the smallest positive real number a CPM signal should be raised to

in order to generate a sinusoid of period 2T , where T is the symbol period. This property

is a direct consequence of the exhaustive study [4] of the cyclic properties of CPM signals.

We also briefly indicate how this property can be used in order to estimate jointly the

modulation index, the carrier frequency and the symbol period.

In section V, we study the asymptotic performance of the proposed index estimate.

The mean square error of the estimation is shown to be asymptotically proportional to

1/N2, where N is the number of symbols of the sample set. In particular, this claim implies

that the rate of convergence of the estimator is higher than in many standard problems.

Furthermore, the asymptotic behavior of the proposed estimate is rather unconventional:

the estimation error converges in distribution toward a non Gaussian random variable
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constructed from certain Brownian motions. It is worth noting that the practical imple-

mentation of the estimate requires to raise the received signal to non integer powers. Thus,

the phase of the received signal must be unwrapped by a procedure which can produce

some errors in teh noisy case. These errors are unfortunately difficult to take into account

in the asymptotic analysis of the performance. While the asymptotic results remains exact

in the noiseless case, the study of the noisy case requires to neglect the influence of the

phase unwrapping errors.

Section VI compares the theoretical asymptotic distributions with the empirical ones.

Two different classes of CPM signals (LREC and LRC) are considered in the simulations.

We study the values of the signal to noise ratio (SNR) for which our theoretical results

allow to predict the behavior of the estimate. We finally compare the performance of

the proposed estimator to the performance of the estimator of [5] based on higher-order

statistics in case of full response CPM signals.

II. Signal model

The complex envelope sa(t) of a CPM signal can be expressed as follows:

sa(t) = exp iψa(t) , (1)

where the phase ψa(t) is given by:

ψa(t) = πh

∫ t

−∞

∑

j∈Z
aj ga(u− jT )du

= πh
∑

j∈Z
aj φa(t− jT ) . (2)

(an)n∈Z represents the symbol sequence. It is assumed that for each n, an is equally likely

±1 and that the sequence is independent identically distributed (i.i.d.). T is the symbol

period, and function ga(t), classically called the shaping filter, is positive and non zero

on the interval [0, LT ], and is zero outside [0, LT ], where L is a positive integer. ga(t)

is normalized in such a way that
∫ LT

0
ga(t)dt = 1. Therefore, function φa(t) defined by

φa(t) = 0 if t < 0 and φa(t) =
∫ t

0
ga(s)ds satisfies φa(t) = 1 for t ≥ LT . The key parameter

h, called the modulation index, is therefore characterized by the fact that the phase

variation induced by a symbol is equal to ±πh. It is quite useful to mention that if
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nT ≤ t ≤ (n + 1)T , sa(t) can be written as

sa(t) = exp

(
iπh

[
n−L∑

k=−∞
ak +

L−1∑

k=0

φa(t− kT )an−k

])
. (3)

Expression (3) is extensively used in the sequel.

As mentioned previously, our work is motivated by the passive listening context. There-

fore, both the data sequence (an)n∈N and the shaping filter are supposed to be unknown

at the receiver side. However, for the sake of simplicity, we assume in the following that

the symbol period T and the carrier frequency are known. This assumption is motivated

by the observation that these parameters can be estimated prior to the modulation index

h. In any case, we briefly show in section IV that our approach also allows to estimate

jointly the index, the carrier frequency and the symbol period.

We recall that the carrier frequency is supposed to be known. Therefore, it can be

assumed that it has been correctly compensated at the receiver side. Consequently, the

complex envelope ya(t) of the received signal is a scaled and delayed version of the trans-

mitted CPM signal corrupted by a complex additive Gaussian noise ba(t) of variance σ2.

The noise is assumed to be white in the bandwidth of the reception filter. We denote by

N0 its constant spectral density. The received signal can be written as follows:

ya(t) = αsa(t− τ) + ba(t) . (4)

Parameter τ represents the time delay between the transmitter and the receiver and is

supposed to be unknown. Factor α is an unknown complex gain. Note that we implicitly

assume that the reception filter does not produce any distortion on the modulated signal.

The received signal is observed during N signaling intervals (i.e. for 0 ≤ t < NT ) and

is sampled at rate T/M , where M ∈ N. For convenience, we assume without restriction

that 0 ≤ T − τ < T
M

. For each k = 0, 1, 2, . . . , NM − 1, we denote by y(k), s(k), b(k)

the discrete-time signals defined by y(k) = ya(T + kT/M), s(k) = sa(kT/M + T − τ)

and b(k) = ba(T + kT/M) respectively. The discrete-time version of (4) can be written as

follows:

y(k) = αs(k) + b(k) . (5)

We also define sequence (ψ(k))k∈Z by ψ(k) = ψa(kT/M +T − τ). As nT ≤ nT +mT/M +

T − τ ≤ (n + 1)T for n ≥ 0 and 0 ≤ m ≤ M − 1, we obtain immediately from (3) that for
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each n ≥ 0 and for each m such as 0 ≤ m ≤ M − 1,

ψ(nM+ m) = πh

(
n−L∑

j=−∞
aj+

L−1∑
j=0

an−jφj,m

)
, (6)

where φj,m is defined by φj,m = φa(jT +mT/M +T − τ). The assumption 0 ≤ T − τ < T
M

is motivated by formula (6). If k0T
M
≤ T − τ < (k0+1)T

M
for 1 ≤ k0 ≤ (M − 1), ψ(nM + m)

has to be replaced in (6) by ψ(nM + m − k0). This would complicate the notations of

section 5 without modifying the results.

III. Review of the existing approaches.

A. The Maximum Likelihood Estimate.

The maximization of the likelihood function p(y(0) . . . y(NM −1)/h) w.r.t. h seems to

be the most natural approach to estimate h. However, the use of the maximum likelihood

criterion in our particular context gives rise to practical difficulties.

It is worth keeping in mind that the aim of the present section is not so much to

investigate the maximum likelihood estimation of h in details than to point the problems

that it poses. Consequently, we can make the following assumptions in order to simplify

the notations. We assume in this section that the received signal is sampled at the symbol

rate T , i.e. that M = 1, and that b(k) = ba(kT ) is an i.i.d. sequence. Using (5) and (6),

the received samples can be written as follows for each n ≥ 0 :

y(n) = |α| exp i

(
πh

n−L∑

k=−L+1

ak + πh

L−1∑

k=0

φkan−k + Φ

)
+ b(n), (7)

where φk = φa(kT +T−τ) and where Φ represents the unknown phase Φ = πh
∑−L

j=−∞ aj+

Arg(α). In order to simplify what follows, the noise variance σ2 is supposed to be known.

We assume without further restriction that factor |α| is equal to one. As parameter Φ and

coefficients (φk)k=0,...,L−1 are unknown, the maximum likelihood estimation of h is equiv-

alent to the joint maximum likelihood estimation of h, Φ and coefficients (φk)k=0,...,L−1.

We thus consider θ = (h, Φ, φ0, . . . , φL−1)
T and denote by y the set of received samples

y = (y(0), . . . , y(N − 1))T which is often called the incomplete data. Function p(y/θ)

represents the likelihood.
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Since no information on the transmitted symbols is available, the computation of each

value taken by the function θ → p(y/θ) requires about 2N operations. The direct max-

imization of θ → p(y/θ) is thus impractical. The so-called Expectation Maximization

(EM) algorithm ([13]) seems therefore to be the best way to maximize p(y/θ) w.r.t. θ.

For a given θ, it can be seen on (7) that for each n, y(n) depends on random vector

z(n) = (z1(n), an−L+1, . . . , an)T , where z1(n) =
∑n−L

k=−L+1 ak. The hidden data refers to

the sequence Z = (z(0), . . . , z(N−1))T . The EM algorithm generates a sequence (θ(k))k≥1

which converges to a local maximum of the function θ → p(y/θ). At the step (k + 1), the

estimate θ(k+1) is defined as θ(k+1) = arg maxθ Q(θ,θ(k)), where

Q(θ,θ(k)) = E
(
log p(y,Z/θ)

/
y,θ(k)

)
. (8)

At each iteration, it is thus necessary to evaluate function θ → Q(θ,θ(k)) (so-called

Expectation step) and to maximize this function w.r.t. θ (Maximization step). In order

to analyze the complexity of this algorithm, a more convenient expression of (8) can be

provided by using the following remarks.

• For a given θ = (h, Φ, φ0, . . . , φL−1)
T , (7) can be written as y(n) = Fθ(z(n)) + b(n),

where Fθ(z(n)) is the mapping defined by

Fθ(z(n)) = exp i

(
πhz1(n) + πh

L−1∑

k=0

φkan−k + Φ

)
;

• For each n = 0 . . . N−1, the first component z1(n) of z(n) is such that −n ≤ z1(n) ≤
n. Moreover, z1(n) is even (resp. odd) if and only if n is even (resp. odd). As each of the

L other components (an−L+1, . . . , an) of z(n) coincides with ±1, vector z(n) belongs to a

set Zn which contains 2L(n + 1) values.

After some standard algebra, we obtain that θ(k+1) can as well be defined as the argument

of the minimum of the following function R(θ, θ(k)):

R(θ,θ(k)) =
N−1∑
n=0

∑

z∈Zn

|y(n)− Fθ(z)|2 p(z(n) = z/y,θ(k)) (9)

where z → p(z(n) = z/y,θ(k)) denotes the conditional probability distribution of z(n)

given y and the value of the parameter θ(k) obtained at step k. The Expectation step of

the EM algorithm requires to evaluate the conditional distribution of z(n) given y and
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θ(k) for each n = 0 . . . N − 1. To that end, the so-called forward-backward algorithm can

be employed ([13]). As Zn contains 2L(n + 1) values for each n, it can be shown that

its computation requires about 9N(N+1)
2

2L operations. As for the Maximization step, we

mention that function θ → R(θ, θ(k)) cannot be maximized in closed form. It is thus

necessary to use an iterative maximization method, which costs O(N2) operations at each

iteration. For example, the implementation of a gradient algorithm requires to evaluate

the gradient of θ → R(θ,θ(k)) at each iteration: each component of the gradient has

a form similar to (9), and its evaluation in each point thus requires about 2LN(N +

1)/2 operations. Furthermore, we stress that θ → R(θ,θ(k)) is not a convex function

of θ. Therefore, quite complicated algorithms have to be used in order to perform the

maximization step if no relevant initial estimate of θ is available.

The above remarks imply that the maximum likelihood estimate of h does not seem

to be appropriate for a practical implementation even if the EM algorithm is used. It is

thus necessary to propose sub-optimum estimates.

B. The estimator based on Higher-Order Statistics.

We now briefly present the estimator proposed in [5]. As mentioned in the introduction,

this approach can be used only in case of full response CPM signals. Therefore, we

assume that L = 1 in this subsection. Although the approach of [5] can be adapted to the

case where M > 1 (see e.g. [6]), we moreover assume that M = 1, i.e. that the received

signal is sampled at the symbol rate T . Keeping the notations of subsection III-A, the

received signal y(n) can be written as

y(n) = |α| exp i

(
πh

n−1∑

k=−1

ak + πhφ0an + Φ

)
+ b(n), (10)

where φ0 = φa(T − τ). It is worth noting that [5] assumes that the receiver is perfectly

synchronized. In this case, the delay τ is equal τ = T , and parameter φ0 coincides with

φa(T ) = 1. [5] is based on the simple observation that

cum(y(n + 1), y(n)∗, y(n), y(n)∗)
cum(y(n), y(n)∗, y(n), y(n)∗)

(11)

coincides with cos πh. Parameter h can therefore be estimated by 1
π
arccos(d̂) where d̂

represents an estimate of (11). The asymptotic performance of this estimate was studied
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in [5]. It was shown that the estimate is asymptotically Gaussian, that it converges at

rate 1√
N

, and that its variance converge to 0 if the noise variance converge to 0.

Although quite simple to implement, this estimate is irrelevant in the case L > 1.

However, parameter L is greater than 1 in a number of communication systems in order

to make the CPM modulation spectrally efficient. It is thus quite relevant to look for

alternative blind estimates of h.

IV. The proposed Estimate

A. A cyclic Property of CPM Signals

The proposed estimate is based on a cyclic property of CPM signals which has been

recently derived in [4].

Proposition 1: Let ra(t) be a CPM signal of modulation index f . Then,

• If f is non integer, then E(ra(t)) = 0 for each t.

• If f is a non zero even integer, the function t → E(ra(t)) is periodic of period T .

• If f is an odd integer, the function t → E(ra(t)) is periodic of period 2T .

We now consider a CPM signal sa(t) given by (1) and we denote by h its modulation

index. In the following, we need to define the signal sa(t)
g for any positive real number g.

This requires some care because when setting

sa(t)
g = |sa(t)|g exp(igArg(sa(t)))

one has to specify which particular determination of Arg(sa(t)) is chosen. Here, we choose

the determination

Arg(sa(t)) = ψa(t) ,

which can also be interpreted as the determination for which the function t → Arg(sa(t))

is continuous. Using the above definition, it is clear that sa(t)
g can be interpreted as a

CPM signal of index gh.

The following result is an immediate corollary of Proposition 1.

Proposition 2: A positive real number g satisfies

lim
S→∞

1

S

∫ S

0

sa(t)
ge−2iπ t

2T dt 6= 0 (12)
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only if g is an odd integer multiple of g0 = 1
h
.

Sketch of the proof. We first observe that in order to show (12), it is sufficient to

restrict to the case where S = 2NT where N ∈ N is supposed to converge to +∞. One

can write
1

2NT

∫ 2NT

0

(sa(t)
g − E(sa(t)

g)) e−2iπ t
2T dt =

1

N

N−1∑
n=0

ξn, (13)

where (ξn)n∈N is the sequence defined by ξn = 1
2T

∫ 2T

0
(sa(t+2nT )g−E(sa(t+2nT )g))e−2iπ t

2T dt

for each n. It can be shown that (ξn)n∈N is a zero mean stationary sequence which verifies

the strong law of large numbers: in other words, the sum SN defined by SN = 1
N

∑N−1
n=0 ξn

converges to E(ξ0) = 0. In order to briefly justify the latter claim, it can be shown that

E(|SN |4) = O( 1
N2 ). By the Borel-Cantelli lemma, this condition implies that SN converges

to zero almost surely. In other words, 1
S

∫ S

0
sa(t)

ge−2iπ t
2T dt converges almost surely to

limS→∞ 1
S

∫ S

0
E(sa(t)

g)e−2iπ t
2T dt if S tends to infinity. Now we recall that for each g, sa(t)

g

coincides with a CPM signal of index gh. Therefore, Proposition 1 implies that

lim
S→∞

1

S

∫ S

0

E(sa(t)
g)e−2iπ t

2T dt 6= 0

only if g is an odd integer multiple of g0 = 1
h
.

B. Presentation of the Sub-optimum Estimate

In this paragraph, we show how to use Proposition 2 in order to estimate g0 = 1
h

from

the discrete-time received signal (y(k))k=0,...,MN−1 defined by (5). Using Propositions 1

and 2, we obtain immediately that g0 is the smallest positive real number for which:

lim
N→∞

1

NM

MN−1∑

k=0

s(kT )g0e−iπ k
M 6= 0 , (14)

where we recall that discrete-time signal s(k) is defined by s(k) = sa(kT/M + T − τ). As

y is a scaled and noisy version of s(k)k∈Z, this property suggests to estimate g0 = 1
h

as

follows. For each g > 0, let rN(g) be defined by

rN(g) =
1

NM

NM−1∑

k=0

(
y(k)

|y(k)|
)g

e−iπ k
M . (15)
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In the noiseless case, rN(g) converges to 0 if g is not an odd integer multiple of g0.

Therefore, we propose to estimate g0 by maximizing

JN(g) = |rN(g)|2 (16)

w.r.t. g over an interval [gmin, gmax]. The corresponding estimate of g0 is denoted by ĝN ,

and the index h is of course estimated by ĥN = 1
ĝN

. In order to avoid ambiguities, search

interval [gmin, gmax] should be chosen so that 1
h
∈ [gmin, gmax] and 3

h
> gmax. This restric-

tion is motivated by the observation that if N tends to infinity, the maximum of function

JN(g) is reached when g coincides with an odd integer multiple of 1
h
: ambiguities may thus

occur if the search interval contains an odd integer multiple of 1
h
. Of course, defining inter-

val [gmin, gmax] so that the previous property holds does not seem so easy at the receiver

side because the modulation index h is unknown. However, it is reasonable to assume

that an a priori information on the possible values of h is available and that it allows to

determine an acceptable search interval. Assume for example that h is known to belong to

an interval [hmin, hmax], where hmax < 3hmin. Then every element h of [hmin, hmax] is such

that 1
h
∈ [ 1

hmax
, 1

hmin
] and 3

h
> 1

hmin
. Therefore, interval [ 1

hmax
, 1

hmin
] does not contain any

odd integer multiple of the modulation index. The interval [hmin, hmax] = [0.3, 0.9] which

contains the most often encountered values of the modulation indices of CPM modulations

satisfies the above condition.

Remark 1: Motivation for the use of sequence
(

y(k)
|y(k)|

)
in (15).

One could also replace y(k)
|y(k)| by y(k) in (15). In the noiseless case, ratio y(k)

|y(k)| is of course

equal to sample y(k) up to a constant term. But in the presence of noise, the use of

(15) cancels in some sense the contribution of the noise to the modulus of the received

signal, and provides better experimental results. This observation could be confirmed

theoretically by comparing the asymptotic behaviors of the estimators derived from both

possible definitions of function rN(g). Due to the lack of space, this point is not developed

in the sequel.

Remark 2: Practical implementation.

Function g → JN(g) is not convex. Therefore, we propose to compute the values taken by

JN on a discrete grid of the search interval (coarse search), and then to initialize a Newton
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maximization algorithm with the argument of the maximum of JN(g) on the grid in order

to refine the estimate (fine search).

Remark 3: On the computation of sequence (y(k)g).

The main problem of the present estimate comes from the computation of sequence

(y(k)g)k=0,...,MN−1 for each g of the search interval. This crucial step requires indeed to

unwrap the phase of y adequately. In other words, for each k = 0, . . . , MN − 1, a relevant

determination of Arg(y(k)) should be chosen to compute y(k)g = |y(k)| exp(igArg(y(k))).

We first address the noiseless case. Then, y(k) coincides with αs(k). In order to ob-

tain a consistent estimate of g0, one has to select for each k the determination defined

by Arg(y(k)) = Arg(α) + ψ(k). In the absence of noise, this particular determination of

Arg(y(k)) can always be selected among every possible ones. Indeed, using equation (6)

and the fact that coefficients (φj,m)j,m belong to the interval [0, 1], we obtain that the phase

variation ψ(k)−ψ(k−1) between two consecutive samples is so that ψ(k)−ψ(k−1) < πh

for each k. If as usual h satisfies h < 1, then ψ(k)− ψ(k − 1) is also strictly less than π.

Thanks to this remark, one can easily check that the following recursive procedure allows

to extract the correct determination Arg(y(k)) = Arg(α)+ψ(k) for each k: assuming that

the correct determination Arg(y(k − 1)) has been identified at time k − 1, Arg(y(k)) is

defined as the determination for which |Arg(y(k)) − Arg(y(k − 1))| is minimum. In the

less usual case h > 1, the inequality ψ(k)−ψ(k−1) < π holds as long as the oversampling

factor M is large enough. Therefore, the correct determination of Arg(y(k)) can still be

selected thanks to the same procedure. In the noisy case, this unwrapping procedure is

still used. However, the influence of the additive noise b(k) on the associated determina-

tion Arg(y(k)) may produce some phase unwrapping errors. Numerical results of section

VI illustrate the effect of such errors on the performance of the estimator.

Remark 4: Computational cost.

The evaluation of JN(g) = |rN(g)|2 requires about N operations for each g. The unwrap-

ping step requires about N operations. But since this procedure only depends on sequence

(y(k))k∈Z, it does not have to be applied for each value of g. The computational cost of the

coarse search is thus equal to NgN + N where Ng represents the number of points of the

grid over which JN is evaluated. In our simulations, we have chosen Ng = N/10: about N2

10
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operations are therefore necessary to the coarse search. The complexity of the fine search

depends on the number of iterations of the Newton algorithm. In our experiments, the

number of iterations is set to 10. The corresponding number of operations is about 10N ,

and can thus be neglected w.r.t. the cost of the coarse search. Although our procedure

is of course computationally more expensive than the estimate of [5], it is less demanding

than the Expectation/ Maximization algorithm. Indeed, we recall that the Expectation

step requires about 4.5N22L operations at each iteration, while the complexity of the max-

imization step depends on the algorithm used to implement the minimization of function

R defined by (9) ; in any case, this step also requires a multiple of N2 operations. It is

therefore clear that the complexity of our new sub-optimum estimate is significantly lower

than the complexity of the maximum likelihood estimate.

C. The case where the symbol period and the carrier frequency are unknown.

We now briefly indicate how it is possible to estimate h when T and a possible residual

carrier frequency f0 are unknown. If f0 6= 0, the received signal ya(t) can be written as:

ya(t) = αsa(t− τ)e2iπf0t + ba(t) .

Assume for the sake of simplicity that the additive noise ba(t) is zero or negligible. Using

Propositions 1 and 2, it is easy to check that

lim
S→∞

1

S

∫ S

0

ya(t)
ge−2iπαtdt 6= 0

if and only if

• g is an odd integer multiple of 1
h

and α = n 1
2T

+ gf0 for some integer n ∈ Z.

or

• g is an even integer multiple of 1
h

and α = n 1
T

+ gf0 for some integer n ∈ Z.

This property potentially allows to estimate h by a joint search w.r.t. (g, α). However,

some a priori knowledge about the range of values taken by the 3 parameters (h, f0, T )

is required in order to avoid ambiguities. More precisely, this a priori information should

provide search intervals Ig for g and Iα for α such that

lim
S→∞

1

S

∫ S

0

ya(t)
ge−2iπαtdt 6= 0
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for g ∈ Ig and α ∈ Iα if and only if

g = g0 = 1
h

and α = α0 = 1
2T

+ f0

h
.

In this case, one can jointly estimate g0, α0, and thus parameter h itself. In practice, such

intervals Ig and Iα can be defined from initial estimates of f0 and T . Such initial estimates

can be obtained as follows. T can be estimated by noticing that 1
T

is the smallest cyclic

frequency of the instantaneous frequency of ya(t)
1. Similarly, a coarse estimate of f0 can

be obtained by observing that f0 coincides with the average of the instantaneous frequency

of ya(t).

Because f0 and T may in practice be unknown in the context of passive listening, we

should study in detail the performance of this joint estimation procedure of (g0, α0). Due

to the lack of space, we rather focus on the case where f0 and T are known, and will be

address the general case in a forthcoming paper. Note that the results on the asymptotic

behavior of the joint estimate of (g0, α0) cannot be directly deduced from the content of

the present paper.

V. Asymptotic Analysis of the proposed Estimate

In this section, we assume without restriction that parameter α is equal to 1 in order

to simplify the notations. We moreover suppose that exp(iπh
∑−1

−∞ aj) = 1, so that

sequence ψ(nM + m) defined by (6) is equal to πh
(∑n−L

j=0 aj+
∑L−1

j=0 an−jφj,m

)
modulo

2π if n ≥ (L− 1). It is worth noting that this assumption does not imply any restriction

to the asymptotic analysis which follows. Indeed, πh
∑−1

j=−∞ aj can be considered as a

random initial phase which does not have any influence on cost function JN(g) (and a

fortiori on the asymptotic behavior of the estimate). This claim can be shown by noticing

that for each g, JN(g) can also be written as JN(g) =
∣∣∣exp

(
−iπhg

∑−1
j=−∞ aj

)
rN(g)

∣∣∣
2

:

plugging (15) and (6) into the previous equation, we conclude that JN(g) does actually

not depend on the initial phase.

1 1
T

is also the smallest strictly positive cyclic frequency of signal ya(t) itself, but due to bandwidth constraints,

the second order cyclic statistics of ya(t) at 1
T

are close to zero, and thus provide estimates of T which are more

sensitive to the presence of noise.
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A. The Noiseless Case

We first study the asymptotic distribution of the estimate ĝN of g0 in the noiseless

case, and deduce from this the distribution of ĥN .

Before presenting the main results of this section, we first study the behavior of rN(g0) in

order to get some insights on the parameters which may influence the performance of the

estimate. Using (15) and (33), and noticing that:

e−2iπ nM+m
2M = (−1)ne−iπ m

M ,

rN(g) has the following form:

rN(g) =
1

NM

N−1∑
n=0

M−1∑
m=0

exp [igψ(nM + m)] (−1)ne−iπ m
M . (17)

We now use the above expression to evaluate (17) at the point g0. We note that exp
[
iπ

∑n−L
j=0 aj

]

coincides with ±(−1)n, and assume that it is equal to (−1)n. As g0h = 1, exp[ig0ψ(nM +

m)] can be written as

exp[ig0ψ(nM + m)] = (−1)n

L−1∏
j=0

exp [iπan−jφj,m] ,

= (−1)n

L−1∏
j=0

(cos(πφj,m) + ian−j sin(πφj,m)) . (18)

Expanding the right-hand side of (18), it is clear that (−1)n exp ig0ψ(nM + m) coincides

with the sum (
∏L−1

j=0 cos(πφj,m)) + ε(nM + m), where ε(nM + m) represents a zero mean

random variable which only depends on data symbols an, an−1, . . . , an−L+1 and on coef-

ficients (φj,m)j=0,...,L−1. Now, plugging the above expression of (−1)n exp ig0ψ(nM + m)

into (17) leads to rewrite rN(g0) as

rN(g0) = λ +
1

N

N−1∑
n=0

ε̃(n) (19)

where ε̃(n) represents the random process defined by ε̃(n) = 1
M

∑M−1
m=0 ε(nM + m)e−iπ m

M

and where λ is the deterministic constant defined by

λ =
1

M

M−1∑
m=0

L−1∏
j=0

cos(πφj,m)e−iπ m
M . (20)
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(ε̃(n))n∈Z is a zero mean stationary sequence for which the strong law of large numbers

holds, i.e. 1
N

∑N−1
n=0 ε̃(n) converges almost surely toward zero as N tends to infinity. Thus,

using (19), rN(g0) converges toward λ. In other words, |λ|2 can be interpreted as the

asymptotic magnitude of the cost function JN at g0. The above result gives us already

the insight that the modulus |λ| of λ has a crucial influence on the performance of the

proposed estimate.

In the sequel, we define ρ = |λ| and θ = Arg(λ). We also need to introduce the random

process ε(n) = 1
ρ
i(λε̃(n)∗ − λ∗ε̃(n)).

In order to study the asymptotic behavior ĝN , we first note that J ′N(ĝN) is equal to zero.

Using the Taylor expansion of J ′N(ĝN) around g0, we conjecture as usual that N(ĝN − g0)

and − J ′N (g0)

J ′′N (g0)/N
have the same asymptotic behavior. Thus, the asymptotic study of the

estimate requires the separate study of J ′N(g0) and J ′′N(g0)/N .

The asymptotic behaviors of J ′N(g0) and J ′′N(g0) are given by the following results which

are proved in the appendix :

Lemma 1: The first derivative J ′N(g0) of JN at point g0 can be written as

J ′N(g0) = πhρ

(
µ + (

N−1∑
n=0

(
∑n−L

j=0 aj)

N3/2
)(

∑N−1
n=0 ε(n)

N1/2
)− 1

N

N−1∑
n=0

(
n−L∑
j=0

aj)ε(n))

)
+ OP (

1

N1/2
)

(21)

where notation OP stands for bounded in probability and where µ is the deterministic

term defined by

µ = − 2

M

M−1∑
m=0




L−1∑
j=0

φj,m sin(πφj,m)
L−1∏
k=0
k 6=j

cos(πφk,m)


 cos(

πm

M
+ θ). (22)

Lemma 2: −J ′′N (g0)

N
can be written as

−J ′′N(g0)

N
= 2ρ2(πh)2

(
1

N2

N−1∑
n=0

(
n−L∑
j=0

aj)
2 − 1

N3
(
N−1∑
n=0

n−L∑
j=0

aj)
2

)
+ OP (

1

N1/2
). (23)
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The asymptotic behavior of N(ĝN−g0) can be characterized by using the so-called func-

tional central limit theorem ([1]). In order to introduce the main result of this paragraph,

we define on [0, 1] the two following stochastic processes

W
(N)
1 (t) =

1

N1/2

[Nt]∑
n=0

an−L , (24)

W
(N)
2 (t) =

1

N1/2

[Nt]∑
n=0

ε(n) , (25)

where [x] denotes the greatest integer less than or equal to x. We also define the 2-

dimensional stochastic process W(N)(t) = (W
(N)
1 (t),W

(N)
2 (t))T . The standard central

limit theorem asserts that the sequence of random vectors (W(N)(1))N∈Z converges in

distribution towards a 2-dimensional Gaussian distribution whose covariance matrix Γ is

given by

Γ =
∑

k∈Z
E





 an+k−L

ε(n + k)


 [an−L ε(n)]


 . (26)

The functional central limit theorem is a much more powerful result stating that the

probability distribution of the stochastic process (W(N)(t))t∈[0,1] converges toward the

probability distribution of a 2-dimensional Brownian motion (W(t))t∈[0,1] of covariance

matrix Γ as N tend to infinity. We recall that a Brownian motion (W(t))t∈[0,1] of covariance

matrix Γ is a Gaussian stochastic process such that for each t and each s in the interval

[0, 1],

• E(W(t)) = 0 ,

• E(W(t)W(s)T ) = Γ min(t, s) .

In particular, this implies that if f is a functional defined on a certain space of functions

defined on [0, 1] (see [1] for details), then the random variable f(W(N)) converges in

distribution toward the random variable f(W). In order to illustrate this, we mention the

following corollaries of the functional central limit theorem:

∫ 1

0

W(N)(t)dt =
1

N3/2




∑N−1
n=0

∑n
j=0 aj−L

∑N−1
n=0

∑n
j=0 ε(j)
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converges in distribution toward the Gaussian random vector
∫ 1

0
W(t)dt. Moreover,

∫ 1

0

(W
(N)
1 (t))2dt =

1

N2

N−1∑
n=0

(
n∑

j=0

aj−L)2

converges in distribution toward the random variable
∫ 1

0
(W1(t))

2dt. Finally, using more

involved arguments,

∫ 1

0

W
(N)
1 (t)dW

(N)
2 (t) =

1

N

N−1∑
n=0

(
n∑

j=0

aj−L)ε(n)

converges in distribution toward the stochastic integral (in the Ito’s sense)
∫ 1

0
W1(t)dW2(t).

Using in an appropriate way these ideas, it is straightforward to show the following theo-

rem.

Theorem 1: Denote by ζ the random variable defined by

ζ =
1

2π

[
µ + (

∫ 1

0
W1(t)dt)W2(1)− ∫ 1

0
W1(t)dW2(t)

(
∫ 1

0
W1(t)2dt)− (

∫ 1

0
W1(t)dt)2

]
. (27)

Then, N(ĝN − g0) converges in distribution toward the random variable 1
hρ

ζ ¥

As ĥN = 1
ĝN

, the transfer theorem ([2]) implies that N(ĥN − h) and − 1
g2
0
N(ĝN − g0) =

−h2N(ĝN − g0) have the same asymptotic distribution. We immediately deduce from this

the following theorem:

Theorem 2: N(ĥN − h) converges in distribution toward the random variable −h
ρ
ζ ¥

¨ General comments.

• We first observe that the convergence rate of ĥN to h is equal to 1
N

in the sense

that ĥN = h + OP ( 1
N

). This is in contrast with more standard estimation problems in

which the convergence rate is equal to 1
N1/2 . We mention in particular that the estimation

procedures presented in [5] and [6] have a convergence rate equal to 1
N1/2 .

• The asymptotic mean square error of ĥN increases with h2. Therefore, the smaller

the modulation index, the better the performance of the estimate.

• The asymptotic mean square error of ĥN increases with 1
ρ2 . As expected, this shows

that the performance of the estimate depends crucially on the value of ρ.
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• By the Jensen inequality ([7]),
∫ 1

0
W1(t)

2dt− (
∫ 1

0
W1(t)dt)2 is almost surely positive.

It is thus reasonable to conjecture that E(ζ) is in general non zero, and that its sign is

equal to the sign of

E

(
µ + (

∫ 1

0

W1(t)dt)W2(1)−
∫ 1

0

W1(t)dW2(t)

)
. (28)

We now give a more informative expression of (28). We first note that E(W1(t)W2(1)) =

Γ1,2|1− t|, where Γ1,2 denotes the non-diagonal coefficient of matrix Γ (i.e. the correlation

coefficient between processes W1 and W2). Thus, we get that E(
∫ 1

0
W1(t)dt)W2(1)) = Γ1,2

2
.

Now it can be shown that
∫ 1

0
W1(t)dW2(t) is a random term of zero mean. Putting all the

pieces together, we conclude that the expectation given by (28) is equal to µ + Γ1,2

2
. This

remark shows that ĥN is biased, and that it is positively (resp. negatively) biased if and

only if µ + Γ1,2

2
< 0 (resp. µ + Γ1,2

2
> 0).

¨ The case L = 1.

In order to get more insights on the significance of Theorem 2, we now study further

the case L = 1 for which more informative expressions of the various parameters can be

obtained. We also assume that the shaping filter satisfies the following condition:

ga(t) = ga(T − t)

for t ∈ [0, T ]. This condition is equivalent to

φa(T − t) = 1− φa(t) (29)

for 0 ≤ t ≤ T . Substituting 1 for L in (18), we obtain immediately that for each n =

0 . . . N − 1 and for each m = 0 . . . M − 1, ε(nM + m) = i sin(πφm)an. Therefore, sequence

ε(n) is given by

ε(n) = [
2

M

M−1∑
m=0

sin(πφm) cos(θ +
πm

M
)] an. (30)

The above relation implies that the second component W2(t) of W(t) coincides with

[ 2
M

∑M−1
m=0 sin(πφm) cos(θ + πm

M
)] W1(t). Thus, the limit distribution of ĥN depends only on

the single unit-variance Brownian motion W1(t).
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In order to discuss on the influence of the oversampling factor M , we first consider the

case M = 1.

Proposition 3: Assume that M = 1. If φ0 denotes φ0 = φa(T − τ), and if we assume

that τ > T
2
, then, N(ĥN − h) converges in distribution toward the random variable

h sin πφ0

π cos πφ0

[
φ0 +

∫ 1

0
W1(t)dW1(t)− (

∫ 1

0
W1(t)dt)W1(1)

(
∫ 1

0
W1(t)2dt)− (

∫ 1

0
W1(t)dt)2

]
. (31)

Proof. It is easy to check that parameter λ coincides with cos πφ0, and is thus real.

Recalling that function φa(t) is increasing and that φa(T/2) = 1
2

by (29), it is clear that

0 ≤ φa(t) ≤ 1
2

on [0, T
2
]. Hence, 0 ≤ φ0 ≤ π

2
and λ ≥ 0. The argument θ of λ is equal to 0,

and µ reduces to µ = −2φ0 sin πφ0. This yields immediately (31).

Remark 5: As φ0 = φa(T − τ), the above expression shows that the performance of the

estimator depends in a crucial way of the (unknown) time delay τ . If τ is close to T
2
, then

cos πφ0 is close to zero, and the asymptotic variance of the proposed estimate increases.

That is one of the reasons why it is beneficial to oversample the received signal: this

allows to make the parameters characterizing the asymptotic distribution ĥN − h nearly

independent of τ .

In order to show the latter claim, we now assume that M tends to infinity.

Proposition 4: If M tends to infinity, random variable ζ is such that

ζ → T

π

[∫ T/2

0
(1− 2φa(t)) sin πφa(t) cos πt/T dt

]

(
∫ 1

0
W1(t)2dt)− (

∫ 1

0
W1(t)dt)2

. (32)

Proof. It is easy to check that

λ → 1

T

∫ T

0

cos πφa(t)e
−iπt/T dt .

Using property (29), it can be shown that 2
T

∫ T

0
sin πφa(t) cos(πt/T )dt = 0. Therefore, λ

converges a strictly positive real number given by

λ → 1

T

∫ T

0

cos πφa(t) cos πt/T dt .

Thus, θ tends to zero. Moreover, it is easy to check that

µ → 2

T

∫ T/2

0

(1− 2φa(t)) sin πφa(t) cos πt/T dt .
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Finally, ε(n) →
[

2
T

∫ T

0
sin πφa(t) cos(πt/T )dt

]
an = 0. This implies that the second com-

ponent W2(t) of Brownian process W(t) is actually equal to zero when the oversampling

factor M tends to infinity. This remark leads immediately to (32).

Remarks

• As expected, these calculations show that the parameters characterizing the asymp-

totic distribution of the estimate do not depend on the timing. It is therefore quite useful

in practice to oversample the received signal.

• As φa(t) ≤ 1
2

on [0, T
2
], µ converges toward a strictly positive limit. As (

∫ 1

0
W1(t)

2dt)−
(
∫ 1

0
W1(t)dt)2 is almost surely positive, the estimation error ĥN−h is almost surely negative

as M tends to infinity.

• We finally remark that the critical parameter ρ = λ is maximum if and only if φa(t)

coincides with t
T

on [0, T ] (this can be shown by using the Schwartz inequality). This

shows that if L = 1, then the performance of the estimator is optimum if the shaping filter

coincides with the rectangular window on [0, T ].

B. The Noisy Case

Here we assume that the received samples are corrupted by an additive noise: y(k) =

αs(k) + b(k), and assume without restriction that parameter α is equal to α = 1 in

order to simplify the notations. We first distinguish between the contribution of the

noise to the phase and its contribution to the modulus of the received signal: for each

k = 0 . . . NM − 1, y(k) = exp [iψ(k)]
(
1 + b̃(k)

)
, where b̃(k) = e−iψ(k)b(k). As b(k) is

assumed to be a complex Gaussian random variable which is independent of eiψ(k), b̃(k) is

still a Gaussian random variable which is independent of eiψ(k). We set 1+ b̃(k) = r(k)eiδ(k)

where δ(k) ∈]− π, π]. (δ(k))k∈Z is a stationary zero mean sequence. The received samples

can finally be written as follows:

y(k) = r(k) exp i [ψ(k) + δ(k)] . (33)

As mentioned in subsection IV-B, the calculation of y(k)g requires to unwrap the phase

of y(k). The additive noise can of course produce some phase unwrapping errors which

are unfortunately very difficult to take into account. A rigorous extension of the above
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asymptotic analysis seems therefore difficult. However, the results of subsection V-A may

be extended if phase unwrapping errors are neglected, i.e. if it is assumed that the un-

wrapped phase of y(k) coincides with ψ(k) + δ(k) for each k. Under this assumption, we

establish in this subsection that N(ĥN − h) converges in distribution towards a certain

non Gaussian random variable. In section VI, we compare our theoretical predictions with

empirical estimates of the probability density of the ĥN , and conclude on the domain of

validity of our hypotheses.

Using some algebra and the functional central limit theorem, it is possible to show the

following result. In the sequel, notation no stands for the noisy case.

Theorem 3: Denote by ζno the random variable defined by

ζno =
1

2π

[
µno + (

∫ 1

0
W1(t)dt)W2,no(1)− ∫ 1

0
W1(t)dW2,no(t)

(
∫ 1

0
W1(t)2dt)− (

∫ 1

0
W1(t)dt)2

]
, (34)

where µno denotes the deterministic term defined by:

µno = µ− 2
E(δ sin(g0δ))

E(cos(g0δ))
. (35)

and where W1(t) is the same Brownian motion as in the noiseless case. W2,no(t) is such

that Wno(t) = (W1(t),W2,no(t))
T is a 2-dimensional Brownian motion whose covariance

matrix Γno verifies Γ1,2,no = Γ1,2, where Γ1,2 denotes the non-diagonal coefficient of matrix

Γ in the noiseless case. Finally,

• N(ĝN − g0) converges in distribution toward the random variable 1
hρ

ζno.

• N(ĥN − h) converges in distribution toward the random variable −h
ρ
ζno ¥

We first note that the form of expression (34) is quite similar to the form of the limit

distribution in the noiseless case, which is given by Theorem 1. However, the additive noise

has of course an influence on the bias and on the variance of the estimate ĥN . Indeed, it

can be shown that the variance of the second Brownian motion W2,no(t) increases in the

presence of noise. It is therefore reasonable to conjecture that the variance of variable ζno

is also modified. Moreover, it can be shown as in the previous subsection that the estimate

ĥN is biased, and that it is positively (resp. negatively) biased if and only if µno + Γ1,2

2
< 0
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(resp. µno + Γ1,2

2
> 0). As E(δ sin(g0δ)) is a positive number, we note that the term

1

2π

[
−2 E(δ sin(g0δ))/E(cos(g0δ))

(
∫ 1

0
W1(t)2dt)− (

∫ 1

0
W1(t)dt)2

]
(36)

corresponds to an almost surely negative additional term which is specifically due to the

additive noise. If ζ represents the random variable defined by (27) in the noiseless case,

this implies that E(ζno) − E(ζ) < 0. Recalling that N(ĥN − h) converges in distribution

toward the random variable −h
ρ
ζno, we deduce from the previous claim that the additive

noise produces an additional positive bias.

We finally stress that the previous result rests on the assumption that no error occurs

during the unwrapping step. Consequently, theorem 3 allows to predict the asymptotic

behavior of the practical estimator only when the signal to noise ratio (SNR) is large

enough so that the unwrapping procedure performs well. The question of which level of

SNR is required so that our theoretical results fit to the experimental ones is addressed in

the next section.

VI. Performances and simulations

A. Comparison to empirical results

Here, we compare our theoretical predictions with empirical results. We first give

the parameters used for the simulations. The number N of signaling intervals is set to

N = 1000. The time delay τ is equal to τ = 0.21 T . The additive noise is assumed to

be white in the frequency interval [− 1
T
, 1

T
], so that its variance σ2 is given by σ2 = 2

T
N0.

Results presented in the sequel are obtained by using either 1REC modulated signals

(i.e. the shaping filter ga(t) is given by ga(t) = 1
T

on [0, T [ and ga(t) = 0 elsewhere)

of modulation index h = 0.5 or 3RC modulated signals (i.e. the shaping filter is the

raised-cosine of order L = 3, given by ga(t) = 1
LT

(1− cos 2πt
LT

)I0≤t≤LT ) of modulation index

h = 0.7. Finally, the oversampling factor M is equal to M = 4 unless otherwise stated.

As mentioned above, function JN is first evaluated on a discrete grid, and the argument

of the maximum is used to initialize a Newton algorithm. The search interval is equal to

[0.3, 0.9] and the number of points of the grid is set to 120. 10 iterations of the Newton

algorithm are used. Previous theorems assert that the mean square error of ĥN is propor-
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tional to h2/N2 as N tends to infinity. Therefore, we present in the sequel the distribution

of the normalized random variable N(ĥN − h)/h, so that it is possible to compare the

results obtained in both simulation contexts (i.e. 1REC modulation of index h = 0.5 and

3RC modulation of index h = 0.7). In each case, the empirical distribution is represented

by an histogram based on 104 realizations of the random variable N(ĥN − h)/h. The

corresponding theoretical probability density function (pdf) is approximated thanks to an

histogram based on 105 realizations of the limit random variable −h
ρ
ζno/h. Figures 1 and

2 represent the empirical and theoretical distributions respectively for 1REC and 3RC

signals for Eb

N0
= 25dB and Eb

N0
= 15dB, were Eb represents the signal energy per bit.
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Fig. 1. Normalized histogram of N(ĥN − h)/h and limit pdf in case of 1REC signals - τ = 0.21T
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(b) Eb/N0 = 15dB

Fig. 2. Normalized histogram of N(ĥN − h)/h and limit pdf in case of 3RC signals - τ = 0.21T

We observe that the histogram of the limit distribution −h
ρ
ζno/h fits to the empirical

histogram of N(ĥN−h)/h. The performance is better when a 1REC signal is transmitted.

However, in case of a 3RC modulation, the performance obtained either at Eb

N0
= 25dB

or at Eb

N0
= 15dB is almost the same ; in case of 1REC signals, it seems to be slightly
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more sensitive to the noise level. In the previous section, we have shown that in case of a

1REC modulation and in the absence of noise, the estimation error ĥN−h is almost surely

negative when the oversampling factor M tends to infinity. Figure 1a sustains this claim:

when the ratio Eb

N0
is large enough, almost every realizations of ĥN − h are negative. The

above theoretical claim seems therefore to hold whereas the oversampling factor M is just

equal to M = 4. Furthermore, Figure 2a allows to conjecture that this remark still holds

in case of 3RC signals. On the opposite, when Eb

N0
is equal to 15dB, one can see on Figures

1b and 2b that a significant number of realizations are such that ĥN − h is positive. This

illustrates the fact that the additive noise produces an additional positive bias.

We now consider less favorable signal to noise ratios. In Figure 3, Eb

N0
is equal to

10dB and the transmitted signal corresponds to a 3RC modulation. In this case, the

approximations that were required in order to derive the limit distribution are no longer

valid because of a significant number of phase unwrapping errors. Therefore, theoretical

predictions do not fit to the empirical results.
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Fig. 3. Normalized histogram of N(ĥN − h)/h and limit pdf in case of 3RC signals - τ = 0.21T

B. Asymptotic performances

Here, we study the behavior of the theoretical limit distribution of ĥN as the number

N of signaling intervals tends to infinity. Realizations of random variable −h
ρ
ζno/h are

computed using theorem 3. In order to evaluate the asymptotic performances, we compute

∆∞ = limN→∞ NE(ĥN/h−1) and σ2
∞ = limN→∞ N2E(((ĥN−E(ĥN))/h)2). Note that ∆∞

and σ∞ do not depend on the value of the modulation index. Since the limit distribution of

the random variable N(ĥN−h)/h is not Gaussian, ∆∞ and σ∞ do not provide an exhaustive
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information on the asymptotic behavior of the estimate. However, these values provide a

satisfying illustration of the limit distribution. 105 realizations of random variable−h
ρ
ζno/h

have been computed in order to estimate ∆∞ and σ∞.

1REC (h = 0.5) and 3RC (h = 0.7) signals are considered in the following simulations.

Figures 4 and 5 illustrate the influence of time delay τ on ∆∞ and σ∞ in the noiseless

case.
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Fig. 4. ∆∞ and σ∞ as functions of τ - 1REC signals - noiseless case
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Fig. 5. ∆∞ and σ∞ as functions of τ - 3RC signals - noiseless case

As above, we first remark that 1REC signals provide better performances than 3RC

signals as long as the oversampling factor is large enough. When the oversampling factor

M is equal to M = 1, the bias and the variance crucially depend on time delay τ . In

particular, Figures 4 and 5 confirm that if M = 1 and if τ is close to T
2
, the asymptotic

normalized standard deviation σ∞ tends to infinity. As mentioned in the previous section,

the largest the oversampling factor M , the less the influence of τ on the performances.

Oversampling at rate M = 4 seems to be sufficient to make the bias and the variance of

the estimator nearly independent of the time delay τ .
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We now study the influence of the additive noise on the asymptotic performances. The

oversampling factor is set to M = 4, so that the next results are nearly independent of time

delay. As in the previous subsection, the time delay τ is set to τ = 0.21T and the noise

ba(t) is white in the frequency interval [− 1
T
, 1

T
]. Figures 6a and 6b represent the behavior

of the normalized bias ∆∞ and the normalized standard deviation σ∞ respectively, as the

signal to noise ratio is varying. We also compare the theoretical and empirical biases and

standard deviations.

�

���������	

������	


���

����

�����

����

����

��

����

����

����

����

�

��� �� �� �� �� �� �� �� �� ��

�

(a) Normalized bias

�

���

����

���	
�����
����
���

�����

���

���

���

���

���

���

�

���

���

�� 

�� �� �� �� �� �� �� �� ��

�

(b) Normalized standard deviation

Fig. 6. Theoretical and empirical performance as a function of Eb/N0

We first note the good fit between the theoretical and empirical results as long as

Eb

N0
≥ 10dB in case of a 1REC modulation, Eb

N0
≥ 12dB in case of a 3RC modulation.

We also remark that noise level variations seem to have only a slight influence on the

performance, specially in case of 3RC signals.

C. Comparison to the estimator based on higher-order statistics (HOS)

We finally compare the performance of the proposed estimator to the performance of

the estimator based on higher-order statistics which has been briefly presented in subsec-

tion III-B. We recall that the latter estimation method can be applied only when the

transmitted signal is a full response CPM signal (i.e. L = 1) and when the time delay τ

has been correctly compensated (i.e. τ = 0). We denote by ĥF
N the corresponding (HOS)

estimate and we recall that ĥF
N has been shown to converge toward h at rate 1

N1/2 . In the

sequel, we still consider 1REC and 3RC signals. We assume as in [5] that the oversampling
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factor M is equal to 1. The modulation index is equal to h = 0.7. The number of received

samples is set to N = 1000 unless otherwise stated.

In order to evaluate the performance, we first compare the Mean Square Errors (MSE)

of both estimators for different values of Eb/N0. Mean Square Errors are estimated thanks

to 5000 realizations of ĥN and ĥF
N .
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Fig. 7. Mean Square Errors as a function of Eb/N0 - N = 1000, h = 0.7, M = 1.

Figures 7a and 7b illustrate i) the effect of the additive noise on the performance, ii)

the effect of a possible slightly defective synchronization on the performance. When the

time delay is equal to zero and a 1REC signal is transmitted, Figure 7a shows that the

MSE of both estimators tend to zero as the SNR tends to infinity. This remark confirms

previous claims. In the present simulation context, the proposed method outperforms

the method based on higher-order statistics as long as the SNR is greater than about

12dB. Nevertheless, methods based on higher-order statistics do not suffer from phase

unwrapping errors: if the time delay has been perfectly compensated (i.e. τ = 0), the

HOS estimate outperforms the proposed method at low SNR. On the other hand, it can

be seen on Figure 7a that the proposed estimator is not significantly influenced by a

possible slight residual time delay, whereas the MSE of the estimator based on fourth-

order cumulants increases. The practical performance of the latter method is therefore

crucially influenced by the accuracy of the prior time synchronization.

Figure 7b represents the MSE when a 3RC signal is transmitted. It can be seen that

the HOS estimator yields a very poor performance. This remark confirms that the HOS
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estimator is not appropriate in case of partial response CPM signals i.e. when L > 1.
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Fig. 8. Mean Square Error as a function of N - Eb/N0 = 15dB, h = 0.7, M = 1.

Figure 8 illustrates the influence of the number N of received samples on the Mean

Square Error (MSE) when Eb/N0 is set to 15dB. As expected, the gap between the per-

formances of both approaches increases with the number of received samples at least for

a sufficiently large SNR.

VII. Conclusion

In this paper, the non data aided estimation of the modulation index of a CPM signal

has been addressed. A new estimate has been proposed, and its statistical performance

has been studied thoroughly using the functional central limit theorem. In contrast with

existing estimators whose convergence rate corresponds to 1√
N

, the rate of convergence of

the proposed estimate is equal to 1
N

. It should however be mentioned that the practical

implementation of the proposed estimate requires to unwrap the phase of the received

signal, a difficult task when the signal to noise ratio is low. This study has been undertaken

if the carrier frequency and the symbol period of the CPM are known. Although it has

been briefly indicated how to adapt the present approach in this context, the study of the

corresponding estimators will be presented in a forthcoming paper.
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Appendices

I. Proof of Lemma 1

As Jn(g0) = |rN(g0)|2, J ′N(g0) can be written as follows:

J ′N(g0) = r′N(g0)rN(g0)
∗ + r′N(g0)

∗rN(g0). (37)

In order to obtain a more convenient expression of r′N(g0), we need to rewrite exp[ig0ψ(nM+

m)], for each n = 0 . . . N − 1 and m = 0 . . .M − 1. Expanding the right-hand side of (18),

we remark that (−1)n exp[ig0ψ(nM + m)] can be written as

(−1)n exp[ig0ψ(nM + m)] = λ(m) + ε(nM + m) (38)

where λ(m) is the deterministic constant defined by λ(m) =
∏L−1

j=0 cos(πφj,m) and where

ε(nM + m) represents a random variable of zero mean which is defined as follows:

ε(nM + m) =
L∑

p=1

ip
∑

νp∈Np

β(νp,m)
∏
j∈νp

an−j, (39)

where for each p ≥ 1, Np denotes the set

Np =
{

(j1, . . . , jp) ∈ {0, . . . , L− 1}p
/

j1 < j2 < . . . < jp

}
,

and where coefficients β(νp, m) are defined for each νp ∈ Np and for each m = 0 . . .M − 1

by

β(νp,m) =
∏
j∈νp

sin(πφj,m)
∏

j∈{0,...,L−1}\νp

cos(πφj,m). (40)

As (an)n∈Z is a zero mean i.i.d. sequence, ε is a zero mean periodically correlated sequence

of period M . In order to evaluate r′N at the point g0, we note that (17) leads to

r′N(g) =
i

NM

N−1∑
n=0

M−1∑
m=0

ψ(nM + m) exp [igψ(nM + m)] (−1)ne−iπ m
M . (41)
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Noticing that e−2iπ nM+m
2M coincides with (−1)ne−iπ m

M and using (6) and (38), one can rewrite

(41) as

r′N(g0) =
iπh

NM

N−1∑
n=0

M−1∑
m=0

(
n−L∑
j=0

aj

)
(λ(m) + ε(nM + m)) e−iπ m

M

+
iπh

NM

N−1∑
n=0

M−1∑
m=0

(
L−1∑
j=0

an−jφj,m

)
λ(m)e−iπ m

M

+
iπh

NM

N−1∑
n=0

M−1∑
m=0

(
L−1∑
j=0

an−jφj,m

)
ε(nM + m)e−iπ m

M . (42)

We first study the asymptotic behavior of the third term of the right-hand side of (42).

For each j = 0 . . . L− 1 and for each m = 0 . . . M − 1, (39) yields

1

N

N−1∑
n=0

an−jε(nM + m) = iβ({j},m) +
L∑

p=1

ip
∑

νp∈Np\{j}
β(νp,m)

1

N

N−1∑
n=0

an−j

∏

k∈νp

an−k. (43)

Given a set νp ∈ Np, we obtain easily that E(an−j

∏
k∈νp

an−k) = 0 as long as νp is different

from the singleton set {j}. In this case, the classical central limit theorem implies that the

random variable 1
N1/2

∑N−1
n=0 an−j

∏
k∈νp

an−k converges in distribution toward a zero mean

Gaussian variable. Thus, (43) can also be written as:

1

N

N−1∑
n=0

an−jε(nM + m) = iβ({j},m) + OP (
1

N1/2
). (44)

We now consider the second term of the right-hand side of (42). The central limit theorem

can be used again to assert that for each j = 0 . . . L− 1 and for each m = 0 . . .M − 1:

1

N

N−1∑
n=0

an−jλ(m)e−iπ m
M = OP (

1

N1/2
). (45)

Thus the second term of (42) corresponds also to OP ( 1
N1/2 ). A more convenient expression

of r′N(g0) can be obtained by considering sequence ε̃(n) = 1
M

∑
ε(nM + m)e−iπ m

M and by

using constant λ which is defined by (20) as the mean w.r.t. m of coefficients λ(m)e−iπ m
M .

Using the previous remarks, we obtain finally:

r′N(g0) =
iπhλ

N

N−1∑
n=0

n−L∑
j=0

aj +
iπh

N

N−1∑
n=0

(
n−L∑
j=0

aj

)
ε̃(n)− γ + OP (

1

N1/2
), (46)
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where

γ =
πh

M

M−1∑
m=0

L−1∑
j=0

β({j},m)φj,me−iπ m
M .

It can be shown that the behavior of the second term of the right-hand side of (46) is such

as:
iπh

N

N−1∑
n=0

(
n−L∑
j=0

aj

)
ε̃(n) = OP (1).

Now we plug the final expressions of rN(g0) and r′N(g0) (given by (19) and (46)) into (37).

Noticing that

1

N

N−1∑
n=0

ε̃(n) = OP (
1

N1/2
),

we obtain the following result:

J ′N(g0) = 2Re

[
λ

(
−iπh

N

N−1∑
n=0

(
n−L∑
j=0

aj

)
ε̃(n)∗

)

− λγ∗ +

(
1

N

N−1∑
n=0

ε̃(n)

)(
−iπhλ∗

N

N−1∑
n=0

n−L∑
j=0

aj

)]
+ OP (

1

N1/2
). (47)

Considering sequence ε(n) = 1
ρ
i(λε̃(n)∗−λ∗ε̃(n)) and writing λ in the polar form λ = ρeiθ,

J ′N(g0) can finally be written as

J ′N(g0) = −πhρ

N

N−1∑
n=0

(
n−L∑
j=0

aj

)
ε(n) + πhρµ

+

(
πhρ

N

N−1∑
n=0

ε(n)

) (
1

N

N−1∑
n=0

n−L∑
j=0

aj

)
+ OP (

1

N1/2
),

where µ is defined by (22).

II. Proof of Lemma 2

We first note that:

J ′′N(g0) = r′′N(g0)rN(g0)
∗ + r′′N(g0)

∗rN(g0) + 2r′N(g0)r
′
N(g0)

∗. (48)

Using (41), r′′N(g) can be written as follows:

r′′N(g) =
−1

NM

N−1∑
n=0

M−1∑
m=0

ψ(nM + m)2 exp [igψ(nM + m)] (−1)ne−iπ m
M . (49)
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We now evaluate r′′N(g0)/N by plugging (6) into (49):

r′′N(g0)

N
=

r′′N,1(g0)

N
+

r′′N,2(g0)

N
+

r′′N,3(g0)

N
, (50)

where

r′′N,1(g0)

N
=

−π2h2

N2M

N−1∑
n=0

M−1∑
m=0

(
n−L∑
j=0

aj

)2

eig0ψ(nM+m)(−1)ne−iπ m
M , (51)

r′′N,2(g0)

N
=

−2π2h2

N2M

N−1∑
n=0

M−1∑
m=0

(
n−L∑
j=0

aj

)(
L−1∑
j=0

an−jφj,m

)
eig0ψ(nM+m)(−1)ne−iπ m

M (52)

r′′N,3(g0)

N
=

−π2h2

N2M

N−1∑
n=0

M−1∑
m=0

(
L−1∑
j=0

an−jφj,m

)2

eig0ψ(nM+m)(−1)ne−iπ m
M . (53)

r′′N(g0)/N has actually the same asymptotic behavior than r′′N,1(g0)/N . In order to prove

this claim, we study the asymptotic behavior of r′′N,k(g0)/N for each k = 1, 2, 3. We

first consider the third term r′′N,3(g0)/N . As |r′′N,3(g0)/N | ≤ π2h2L2

N
, r′′N,3(g0)/N converges

toward zero as N tends to infinity. In order to study the asymptotic behavior of the

second term r′′N,2(g0)/N , we need to consider the following stochastic process: we define

W
(N)
1 (t) = 1

N1/2

∑[Nt]
j=0 aj−L for each t ∈ [0, 1]. The functional central limit theorem states

that W
(N)
1 (t) converges in distribution toward a Brownian motion, say W1(t). Therefore,

the random variable
1

N3/2

N−1∑
n=0

∣∣∣∣∣
n−L∑
j=0

aj

∣∣∣∣∣ =

∫ 1

0

|W (N)
1 (t)|dt

converges in distribution toward
∫ 1

0
|W1(t)|dt. Since

∣∣∣∣
r′′N,2(g0)

N

∣∣∣∣ ≤
2π2h2L2

N2

N−1∑
n=0

∣∣∣∣∣
n−L∑
j=0

aj

∣∣∣∣∣ ,

we obtain that r′′N,2(g0)/N = oP (1). We finally study the asymptotic behavior of r′′N,1(g0)/N .

Plugging (38) into (51) leads to write r′′N,1(g0)/N as a sum of two terms, say r′′N,11(g0)/N

and r′′N,12(g0)/N , which are given by:

r′′N,11(g0)

N
=

−π2h2

N2M

N−1∑
n=0

M−1∑
m=0

(
n−L∑
j=0

aj

)2

ε(nM + m)e−iπ m
M

r′′N,12(g0)

N
=

−π2h2

N2M

N−1∑
n=0

M−1∑
m=0

(
n−L∑
j=0

aj

)2

λ(m)e−iπ m
M

November 19, 2003 SUBMITTED VERSION



34

We now show that r′′N,11(g0)/N converges toward zero in probability as N tends to in-

finity. To that end, we use the functional central limit theorem in order to prove that

r′′N,11(g0) converges in distribution toward a certain random variable: this implies indeed

that r′′N,11(g0) = OP (1) and thus, that r′′N,11(g0)/N converges toward zero in probability.

First, we note that:

r′′N,11(g0)

N
=
−π2h2

M

M−1∑
m=0

L∑
p=1

ip
∑

νp∈Np

β(νp,m)e−iπ m
M


 1

N2

N−1∑
n=0

(
n−L∑
j=0

aj

)2 ∏

k∈νp

an−k


 ,

and we define for each p = 1 . . . L and for each set νp ∈ Np,

W (N)
νp

(t) =
1

N1/2

[Nt]∑
n=0

∏

k∈νp

an−k−1.

The functional central limit theorem asserts that the 2-dimensional stochastic process

(W (N)(t),W
(N)
νp (t))T converges toward the 2-dimensional Brownian motion [W (t),Wνp(t)]

T .

Thus, the following random variable

1

N3/2

N−1∑
n=0

(
n−L∑
j=0

aj

)2 ∏

k∈νp

an−k =

∫ 1

0

(
W (N)(t)

)2
dW (N)

νp
(t)

converges in distribution toward
∫ 1

0
W (t)2dWνp(t). Therefore, r′′N,11(g0)/N converges to-

ward zero in probability as N tends to infinity. Therefore, r′′N(g0) reduces to

r′′N(g0)

N
=
−λπ2h2

N2M

N−1∑
n=0

M−1∑
m=0

(
n−L∑
j=0

aj

)2

+ oP (1). (54)

Note that rN(g0) can be written in the following form:

rN(g0) = λ + oP (1), (55)

and that (46) can be rewritten as:

r′N(g0)

N1/2
=

iπhλ

N3/2

N−1∑
n=0

n−L∑
j=0

aj + oP (1). (56)

Plugging (54), (55) and (56) into (48) we obtain the final result:

J ′′N(g0)

N
= 2ρ2(πh)2

(
1

N2

N−1∑
n=0

(
n−L∑
j=0

aj)
2 − 1

N3
(
N−1∑
n=0

n−L∑
j=0

aj)
2

)
+ oP (1).
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