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NON-DEGENERATE MIXED FUNCTIONS

Mutsuo Oka

Abstract

Mixed functions are analytic functions in variables z1; . . . ; zn and their conjugates

z1; . . . ; zn. We introduce the notion of Newton non-degeneracy for mixed functions and

develop a basic tool for the study of mixed hypersurface singularities. We show the

existence of a canonical resolution of the singularity, and the existence of the Milnor

fibration under the strong non-degeneracy condition.

1. Introduction

Let f ðzÞ be a holomorphic function of n-variables z1; . . . ; zn such that
f ð0Þ ¼ 0. As is well-known, J. Milnor proved that there exists a positive
number e0 such that the argument mapping f =j f j : S2n�1

e nKe ! S1 is a locally
trivial fibration for any positive e with ea e0 where Ke ¼ f �1ð0ÞVS2n�1

e ([12]).
In the same book, he proposed to study the links coming from a pair of real-
valued real analytic functions gðx; yÞ, hðx; yÞ where z ¼ xþ yi. Namely putting
f ðx; yÞ :¼ gðx; yÞ þ ihðx; yÞ : R2n ! C, he proposed to study the condition for

f =j f j : S2n�1
e nKe ! S1 to be a fibration. This is an interesting problem. In

fact, if one can find such a pair of analytic functions g, h, it may give an
interesting link variety Ke whose complement S2n�1

e nKe is fibered over S1 where
Ke cannot come from any complex analytic links. The di‰culty is that for an
arbitrary choice of g, h, it is usually not a fibration. A breakthrough is given by
the work of Ruas, Seade and Verjovsky [20]. After this work, many examples of
pairs fg; hg which give real Milnor fibrations have been investigated. However
in most papers, certain restricted types of functions are mainly considered ([5, 6,
22, 19, 11, 18, 3]).

The purpose of this paper is to propose a wide class of pairs fg; hg such that
the corresponding mapping f ¼ gþ ih defines a Milnor fibration. We consider
a complex valued analytic function f expanded in a convergent power series of
variables z ¼ ðz1; . . . ; znÞ and z ¼ ðz1; . . . ; znÞ

f ðz; zÞ ¼
X
n;m

cn;mz
nzm

1
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where zn ¼ zn11 � � � znnn for n ¼ ðn1; . . . ; nnÞ (respectively zm ¼ z
m1
1 � � � zmnn for m ¼

ðm1; . . . ; mnÞ) as usual. Here zj is the complex conjugate of zj. We call
f ðz; zÞ a mixed analytic function (or a mixed polynomial, if f ðz; zÞ is a polynomial)
of z1; . . . ; zn. We are interested in the topology of the hypersurface V ¼
fz A Cn j f ðz; zÞ ¼ 0g, which we call a mixed hypersurface. Here we use the
terminology hypersurface in order to point out the similarity with complex
analytic hypersurfaces. We will see later that codimR V ¼ 2 if V is non-
degenerate (Theorem 19). We denote the set of mixed functions of variables
z, z by Cfz; zg. This approach is equivalent to the original one. In fact, writing
z ¼ xþ iy with zj ¼ xj þ iyj j ¼ 1; . . . ; n, and using real variables x ¼ ðx1; . . . ; xnÞ
and y ¼ ðy1; . . . ; ynÞ, and dividing f ðz; zÞ in the real and the imaginary parts so
that f ðx; yÞ ¼ gðx; yÞ þ ihðx; yÞ where g :¼ < f , h :¼ = f , we can see that V is
defined by two real-valued analytic functions gðx; yÞ, hðx; yÞ of 2n-variables
x1; y1; . . . ; xn; yn. Conversely, for a given real analytic variety W ¼ fgðx; yÞ ¼
hðx; yÞ ¼ 0g which is defined by two real-valued analytic functions g, h, we can
consider W as a mixed hypersurface by introducing a mixed function f ðz; zÞ ¼ 0
where

f ðz; zÞ :¼ g
zþ z

2
;
z� z

2i

� �
þ ih

zþ z

2
;
z� z

2i

� �
:

The advantage of our view point is that we can use rich techniques of complex
hypersurface singularities. For complex hypersurfaces defined by holomorphic
functions, the notion of the non-degeneracy in the sense of the Newton boundary
plays an important role for the resolution of singularities and the determination
of the Milnor fibration ([10, 23, 14, 15, 16]). We will introduce the notion
of non-degeneracy for mixed functions or mixed polynomials and prove basic
properties in §2 and §3.

In §4, we will give a canonical resolution of mixed hypersurface singularities.
First we take an admissible toric modification p̂p : X ! Cn. This does not resolve
the singularities but it turns out that we only need a real modification or a polar
modification after the toric modification to complete the resolution (Theorem 24).

In §5, we consider the Milnor fibration of a given mixed function f ðz; zÞ. It
turns out that the non-degeneracy is not enough for the existence of the Milnor
fibration of f . We need the strong non-degeneracy of f ðz; zÞ which guarantees
the existence of the Milnor fibration (Theorem 33, Theorem 29). We show that
the Milnor fibrations of the first type and of the second type,

f =j f j : SenKe ! S1 and f : qEðr; dÞ� ! S1
d ;

are equivalent (Theorem 36). We also show that for a polar weighted homo-
geneous polynomial, the global fibration is equivalent to the above two fibrations
(Theorem 33).

In §6, we will see that the mixed singularities are much more complicated
than the complex singularities and that the topological equivalence class is not a
combinatorial invariant even in the easiest case of plane curves.
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In §7, we discuss Milnor fibrations for non-isolated mixed singularities under
the super strong non-degeneracy condition (Theorem 52).

In §8, we give an A’Campo type formula for the zeta function of the Milnor
fibration in the case of mixed curves (Theorem 60).

This paper is a continuation of the previous one [17] and we use the same
notations. This paper consists of the following sections. We hope this paper
provides a systematical method to study mixed singularities.

Contents

Section 1. Introduction
Section 2. Newton boundary and non-degeneracy of mixed functions
Section 3. Isolatedness of the singularities
Section 4. Resolution of the singularities
Section 5. Milnor fibration
Section 6. Curves defined by mixed functions
Section 7. Milnor fibration for mixed polynomials with non-isolated singularities
Section 8. Resolution of a polar type and the zeta function

Below are notations we use frequently in this paper:
S2n�1
r , Sr ¼ fz ¼ ðz1; . . . ; znÞ A Cn j kzk ¼ rg, (sphere of the radius r)

kzk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz1j2 þ � � � þ jznj2

q
B2n
r , Br ¼ fz ¼ ðz1; . . . ; znÞ A Cn j kzka rg (ball of the radius r)

CI ¼ fz ¼ ðz1; . . . ; znÞ j zj ¼ 0; j B Ig, BI
r ¼ fz A CI j kzka rg

C�I ¼ fz ¼ ðz1; . . . ; znÞ j zj ¼ 0 , j B Ig
C�n ¼ C�I , B�n ¼ B�I with I ¼ f1; . . . ; ng
Rþn ¼ fðx1; . . . ; xnÞ A Rn j xj b 0; j ¼ 1; . . . ; ng
ðz;wÞ ¼ z1w1 þ � � � þ znwn : hermitian inner product
<ðz;wÞ ¼ <ðz1w1 þ � � � þ znwnÞ : real Euclidean inner product
DðdÞ :¼ fh A C j jhja dg, DðdÞ� :¼ fh A C j 0 < jhja dg
S1
d :¼ fh A C j jhj ¼ dg.

2. Newton boundary and non-degeneracy of mixed functions

2.1. Polar weighted homogeneous polynomials

2.1.1. Radial degree and polar degree. Let M ¼ znzm be a mixed monomial
where n ¼ ðn1; . . . ; nnÞ, m ¼ ðm1; . . . ; mnÞ and let P ¼ tðp1; . . . ; pnÞ be a weight
vector. We define the radial degree of M, rdegP M and the polar degree of M,
pdegP M with respect to P by

rdegP M ¼
Xn
j¼1

pjðnj þ mjÞ; pdegP M ¼
Xn
j¼1

pjðnj � mjÞ:
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2.1.2. Weighted homogeneous polynomials. Recall that a polynomial hðzÞ
is called a weighted homogeneous polynomial with weights P ¼ tðp1; . . . ; pnÞ if
p1; . . . ; pn are integers and there exists a positive integer d so that

f ðtp1z1; . . . ; tpnznÞ ¼ td f ðzÞ; t A C:

The integer d is called the degree of f with respect to the weight vector P.
A mixed polynomial f ðz; zÞ ¼

Pl
i¼1 ciz

nizmi is called a radially weighted
homogeneous polynomial if there exist integers q1; . . . ; qn b 0 and dr > 0 such
that it satisfies the equality:

f ðtq1z1; . . . ; tqnzn; tq1z1; . . . ; tqnznÞ ¼ tdr f ðz; zÞ; t A R�:

Putting Q ¼ tðq1; . . . ; qnÞ, this is equivalent to rdegQ znizmi ¼ dr for i ¼ 1; . . . ; l
with ci 0 0. Write f ¼ gþ ih so that g, h are polynomials with real coe‰cients
of 2n-variables ðx1; y1; . . . ; xn; ynÞ. If f is a radially weighted homogeneous
polynomial of type ðq1; . . . ; qn; drÞ, gðx; yÞ and hðx; yÞ are weighted homogeneous
polynomials of type ðq1; q1; . . . ; qn; qn; drÞ (i.e., deg xj ¼ deg yj ¼ qj).

A polynomial f ðz; zÞ is called a polar weighted homogeneous polynomial if
there exists a weight vector ðp1; . . . ; pnÞ and a non-zero integer dp such that

f ðlp1z1; . . . ; l
pnzn; l

p1
z1; . . . ; l

pn
znÞ ¼ ldp f ðz; zÞ; l A C�; jlj ¼ 1

where gcdðp1; . . . ; pnÞ ¼ 1. Usually we assume that dp > 0. This is equivalent
to

pdegP znizmi ¼ dp; i ¼ 1; . . . ; l:

Here the weight pi can be zero or a negative integer. The weight vector
ðp1; . . . ; pnÞ is called the polar weights and dp is called the polar degree
respectively. This notion was first introduced by Ruas-Seade-Verjovsky [20]
and Cisneros-Molina [4]. In [17], we have assumed that a polar weighted
homogeneous polynomial is also a radially weighted homogeneous polynomial.
Although it is not necessary to be assumed, we will only consider such
polynomials in this paper.

Recall that the radial weights and polar weights define R�-action and S1-
action on Cn respectively by

t � z ¼ ðtq1z1; . . . ; tqnznÞ; t � z ¼ ðtq1z1; . . . ; tqnznÞ; t A R�

l � z ¼ ðlp1z1; . . . ; l
pnznÞ; l � z ¼ l � z; l A S1 HC

In other words, this is an R� � S1 action on Cn.

Lemma 1. Let f ðz; zÞ be a radially weighted homogeneous polynomial, V ¼
fz A Cn j f ðz; zÞ ¼ 0g and V � ¼ V VC�n. Assume that VnfOg (respectively V �) is
smooth and codimR V ¼ 2. If the radial weight vector is strictly positive, namely
qj > 0 for any j ¼ 1; . . . ; n, the sphere Sr intersects transversely with VnfOg (resp.
with V �) for any r > 0.
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We are mainly considering the case that VnfOg has no mixed singularity in
the sense of §3.1.

Proof. This is essentially the same with Proposition 4 in [17]. In Prop-
osition 4, we have assumed that f ðz; zÞ is polar weighted homogeneous but we
did not use this assumption in the proof. The radial action is enough as we will
see below. Assume that three vectors dg, dh, df are linearly dependent at
z0 ¼ ðx0; y0Þ A V �, where f ðz; zÞ ¼ gðx; yÞ þ ihðx; yÞ and fðx; yÞ ¼

Pn
j¼1ðx2

j þ y2j Þ.
As VnfOg (resp. V �) is non-singular, we can find real numbers a, b so
that dfðx0; y0Þ ¼ a dgðx0; y0Þ þ b dhðx0; y0Þ. Here df, dg, dh are the respective
gradient vectors of the functions f, g, h. For example, dgðx; yÞ ¼
qg

qx1
;
qg

qy1
. . . ;

qg

qxn
;
qg

qyn

� �
. Let lðtÞ ¼ ðt � x0; t � y0Þ, t A Rþ be the orbit of z0 by

the radial action. Let v be the tangent vector of the orbit. Then we have:

lðtÞ ¼ ðtq1x01; tq1y01; . . . ; tqnx0n; tqny0nÞ

d

dt
fðlðtÞÞjt¼1 ¼ <ðdfðx0; y0Þ; vÞ ¼ 2

Xn
i¼1

qiðx2
0i þ y20iÞ > 0:

On the other hand, we also have the equality:

d

dt
fðlðtÞÞjt¼1 ¼ a<ðdgðx0; y0Þ; vÞ þ b<ðdhðx0; y0Þ; vÞ

¼ a
dgðlðtÞÞ

dt

����
t¼1

þ b
dhðlðtÞÞ

dt

����
t¼1

¼ 0:

This is an obvious contradiction to the above inequality. r

2.2. Newton boundary of a mixed function. Suppose that we are given a
mixed analytic function f ðz; zÞ ¼

P
n;m cn;mz

nzm. We always assume that c0;0 ¼ 0
so that O A f �1ð0Þ. We call the variety V ¼ f �1ð0Þ the mixed hypersurface.
The radial Newton polygon Gþð f ; z; zÞ (at the origin) of a mixed function f ðz; zÞ
is defined by the convex hull of

6
cn; m00

ðnþ mÞ þ Rþn:

Hereafter we call Gþð f ; z; zÞ simply the Newton polygon of f ðz; zÞ. The Newton
boundary Gð f ; z; zÞ is defined by the union of compact faces of Gþð f Þ. Observe
that Gð f Þ is nothing but the ordinary Newton boundary if f is a complex
analytic function. For a given positive integer vector P ¼ ðp1; . . . ; pnÞ, we asso-
ciate a linear function lP on Gð f Þ defined by lPðnÞ ¼

Pn
j¼1 pjnj for n A Gð f Þ and

let DðP; f Þ ¼ DðPÞ be the face where lP takes its minimal value. In other words,
P gives radial weights for variables z1; . . . ; zn by rdegP zj ¼ rdegP zj ¼ pj and
rdegP znzm ¼

Pn
j¼1 pjðnj þ mjÞ. To distinguish the points on the Newton bound-

ary and weight vectors, we denote by N the set of integer weight vectors and

5non-degenerate mixed functions



denote a vector P A N by a column vectors. We denote by Nþ, Nþþ the
subset of positive or strictly positive weight vectors respectively. Thus P ¼
tðp1; . . . ; pnÞ A Nþþ (respectively P A Nþ) if and only if pi > 0 (resp. pi b 0) for
any i ¼ 1; . . . ; n. We denote the minimal value of lP by dðP; f Þ or simply dðPÞ.
Note that

dðP; f Þ ¼ minfrdegP znzm j cn;m 0 0g:
For a positive weight P, we define the face function fPðz; zÞ by

fPðz; zÞ ¼
X

nþm ADðPÞ
cn;mz

nzm:

Example 2. Consider a mixed function f :¼ z31z
2
1 þ z21z

2
2 þ z32z2. The New-

ton boundary Gð f ; z; zÞ has two faces D1, D2 which have weight vectors P :¼
tð2; 3Þ and Q :¼ tð1; 1Þ respectively. The corresponding invariants are

fPðz; zÞ ¼ z31z
2
1 þ z21z

2
2 ; dðP; f Þ ¼ 10

fQðz; zÞ ¼ z21z
2
2 þ z32z2; dðQ; f Þ ¼ 4:

It is sometimes important to consider the convex hull of vertices D̂DðPÞ in
Rn � Rn which is defined by

D̂DðPÞ ¼ convex hull of fðn; mÞ A Rn � Rn j cn;m 0 0; nþ m A DðPÞg
Let S : Rn � Rn ! Rn be the map defined by ðn; mÞ 7! nþ m. Then DðPÞ ¼
SðD̂DðPÞÞ by the definition. We call D̂DðPÞ the mixed face of Gð f Þ and DðPÞ the
radial face of Gð f Þ with respect to P respectively, when the distinction is
necessary.

2.3. Non-degenerate functions. Suppose that f ðz; zÞ is a given mixed func-
tion f ðz; zÞ. For P A Nþþ, the face function fPðz; zÞ is a radially weighted
homogeneous polynomial of type ðp1; . . . ; pn; dÞ with d ¼ dðP; f Þ.

Definition 3. Let P be a strictly positive weight vector. We say that
f ðz; zÞ is non-degenerate for P, if the fiber f �1

P ð0ÞVC�n contains no critical point

Figure 1. Gð f Þ
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of the mapping fP : C�n ! C. In particular, f �1
P ð0ÞVC�n is a smooth real

codimension 2 manifold or an empty set. We say that f ðz; zÞ is strongly non-
degenerate for P if the mapping fP : C�n ! C has no critical points. If
dim DðPÞb 1, we further assume that fP : C�n ! C is surjective onto C.

A mixed function f ðz; zÞ is called non-degenerate (respectively strongly non-
degenerate) if f is non-degenerate (resp. strongly non-degenerate) for any strictly
positive weight vector P.

Consider the function f ðz; zÞ ¼ z1z1 þ � � � þ znzn. Then V ¼ f �1ð0Þ is a
single point fOg. By the above definition, f is a non-degenerate mixed function.
To avoid such an unpleasant situation, we say that a mixed function gðz; zÞ is a
true non-degenerate function if it satisfies further the non-emptiness condition:

ðNEÞ: For any P A Nþþ with dim DðP; gÞb 1, the fiber g�1
P ð0ÞVC�n is non-

empty.

Remark 4. Assume that f ðzÞ is a holomorphic function. Then fPðzÞ is a
weighted homogeneous polynomial and we have the Euler equality:

dðP; f Þ fPðzÞ ¼
Xn
i¼1

pizi
qfP

qzi
ðzÞ:

Thus fP : C�n ! C has no critical point over C�. Thus f is non-degenerate for
P implies f is strongly non-degenerate for P. This is also the case if fPðz; zÞ is a
polar weighted homogeneous polynomial.

Example 5. I. Consider the mixed function f :¼ z31z
2
1 þ z21z

2
2 þ z32z2 which

we have considered in Example 2. Then f is strongly non-degenerate for each of
the weight vectors P ¼ tð2; 3Þ, Q ¼ tð1; 1Þ.

II. Consider a mixed function

gðz; zÞ ¼ z1z1 þ � � � þ zrzr � ðzrþ1zrþ1 þ � � � þ znznÞ; 1a ra n� 1:

Then V ¼ g�1ð0Þ is a smooth real codimension one variety and thus it is
degenerate for P ¼ tð1; 1; . . . ; 1Þ.

III. Consider a mixed function

f ðz; zÞ ¼ z21 þ az1z2 þ z22 ; a A C:

Then f is non-degenerate if and only if a0G2.
IV. Finally we give an example of a mixed function which is non-degenerate

but not strongly non-degenerate. Consider a mixed function

f ðz; zÞ ¼ 1=4z21 � 1=4z21 þ z1z1 � ð1þ iÞðz1 þ z2Þðz1 þ z2Þ
¼ gðx1; x2; y1; y2Þ þ ihðx1; x2; y1; y2Þ

where gðx1; x2; y1; y2Þ ¼ x2
1 þ y21 � ðx1 þ x2Þ2 � ðy1 þ y2Þ2

hðx1; x2; y1; y2Þ ¼ x1y1 � ðx1 þ x2Þ2 � ðy1 þ y2Þ2
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f is a radially homogeneous polynomial of degree 2 but it is not polar weighted
homogeneous. One can check that f is non-degenerate for the weight vector
P ¼ tð1; 1Þ but it is not strongly non-degenerate. In fact, it has two families of
critical points

t 7! ðx1; x2; y1; y2Þ ¼ ðt;�t;Gt;HtÞ; 0 < t

with the critical values ð2G iÞt2.

Proposition 6. Let gðz; zÞ be a radially weighted homogeneous polynomial
and let M :¼ zazb be a mixed monomial and put h :¼ Mgðz; zÞ. Then 0 is a
regular value of g : C�n ! C if and only if 0 is a regular value of h : C�n ! C.

The assertion is immediate from the definition because g�1ð0ÞVC�n ¼
h�1ð0ÞVC�n and the tangential map dhw : TwC

�n ! T0C is equal to M dgw for
any w A g�1ð0ÞVC�n.

Recall that for a subset I H f1; . . . ; ng, we use the notations CI ¼
fz A Cn j zj ¼ 0; j B Ig and f I ¼ f jC I .

Proposition 7. Assume that f ðz; zÞ is a non-degenerate (respectively strongly
non-degenerate) mixed function. Assume that f I is not constantly zero for some
I H f1; 2; . . . ; ng. Then f I is a non-degenerate (resp. strongly non-degenerate)
function as a function of variables fzi; zi; j i A Ig.

Proof. The proof is exactly parallel to that of Proposition 1.5, [16]. Take
a compact face D of Gð f I Þ. There is a strictly positive weight vector P ¼
tðpiÞi A I A NI such that D ¼ DðP; f I Þ. We consider a strictly positive weight
vector Q ¼ tðq1; . . . ; qnÞ such that qi ¼ pi for i A I and qi ¼ n for i B I . It is easy
to see that fQðz; zÞ ¼ f I

P ðzI ; zI Þ if n is su‰ciently large. Here f I
P ¼ ð f I ÞP. Now

by the assumption, 0 is not a critical value of fQ : C�n ! C (respectively
fQ : C�n ! C has no critical points). As fQ contains only variables zi, i A I ,
0 is not a critical value of f I

P : C�I ! C (resp. f I
P : C�I ! C has no critical

points). r

For a complex valued mixed function f ðz; zÞ, we use the notation ([17]):

df ðz; zÞ ¼ qf

qz1
; . . . ;

qf

qzn

� �
A Cn; df ðz; zÞ ¼ qf

qz1
; . . . ;

qf

qzn

� �
A Cn

We use freely the following convenient criterion for a given point to be a critical
point as a function to C in this paper.

Proposition 8 (Proposition 1, [17]). The following two conditions are
equivalent. Let w A Cn.

(1) w is a critical point of f : Cn ! C.
(2) There exists a complex number a with jaj ¼ 1 such that df ðw;wÞ ¼

a df ðw;wÞ.
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Hereafter we use the simplified notation df ðw;wÞ for df ðw;wÞ.

Example 9. Let us consider the following mixed polynomials

f1 ¼ z1z1 � z22 ; f2 ¼ z1z1 � z2z2; f3 ¼ z21z1 � z22z2

and the corresponding mixed varieties Vi ¼ f �1
i ð0Þ, i ¼ 1; 2; 3. Each of them has

an isolated singularity at the origin. In fact, as real varieties, they are described
as follows.

V1 ¼ fðx; yÞ j x2
1 þ y22 ¼ x2

2 � y22 ; x2 y2 ¼ 0g

¼ fðx; yÞ j x2
1 þ y22 ¼ x2

2 ; y2 ¼ 0g

V2 ¼ fðx; yÞ j x2
1 þ y22 ¼ x2

2 þ y22g; dimR V2 ¼ 3

V3 ¼ fðz1; z2Þ j z1 ¼ r1 expðiy1Þ; z2 ¼ r2 expðiy2Þ; r1 ¼ r2; y1 ¼ y2g
¼ fðz1; z2Þ j z1 � z2 ¼ 0g:

V3 is a special case of polynomials which has been considered in [20]. f1, f3 are
non-degenerate but f2 is a degenerate mixed function as it is not surjective (onto
C) and dimR V2 ¼ 3. Note also that df2 ¼ df2 ¼ ðz1;�z2Þ. f1 is not a polar
weighted homogeneous polynomial (as the monomial z1z1 can not have a positive
degree) while f3 is a polar weighted polynomial of type ð1; 1; 1Þ.

2.4. Some useful functions. Let J be a subset of f1; . . . ; ng and consider
the J-conjugation map iJ : Cn ! Cn defined by:

iJ : ðz1; . . . ; znÞ 7! ðw1; . . . ;wnÞ; wj ¼
zj j B J

zj j A J:

�
Of course, we define iJðzjÞ ¼ iJðzjÞ.

Let f ðz; zÞ be a mixed function. We call that f ðz; zÞ is J-conjugate holomor-
phic if f is an analytic function of the variables fzj j j B Jg and fzk j k A Jg, or
equivalently f � iJðzÞ is a holomorphic function.

A mixed polynomial f ðz; zÞ is called a J-conjugate weighted homogeneous
polynomial if f � iJðzÞ is a weighted homogeneous polynomial. Let P ¼
ðp1; . . . ; pnÞ be the weight vector of f � iJðzÞ and let d be the degree. We
say that f ðz; zÞ is a J-conjugate weighted homogeneous polynomial of the weight
type ðp1; . . . ; pn; dÞ. The following is obvious by the definition.

Proposition 10. Assume that f ðz; zÞ is a J-conjugate weighted homogeneous
polynomial of the weight type ðp1; . . . ; pn; dÞ. Then f ðz; zÞ is a polar weighted
polynomial with the polar weight type ðiJP; dÞ where

iJP ¼ ðp 0
1; . . . ; p

0
nÞ; p 0

j ¼
�pj j A J

pj j B J

�
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Furthermore f ðz; zÞ is also a radially weighted homogeneous polynomial of the
radial weight type ðp1; . . . ; pn; dÞ.

Let M ¼ znzm be a mixed monomial and let gðz; zÞ ¼ M � f ðz; zÞ where
f ðz; zÞ is a J-conjugate weighted homogeneous polynomial. We say gðz; zÞ is
a pseudo J-conjugate weighted homogeneous polynomial if pdegP 0 g0 0 where
P 0 ¼ iJP is the polar weight vector of f ðz; zÞ. Note that g � iJðzÞ need not to be
holomorphic. Further, if J ¼ j, we say that g is a pseudo weighted homogeneous
polynomial. Then g takes the form M f ðzÞ where f a weighted homogeneous
polynomial and M is a mixed monomial.

Proposition 11. Assume that f ðz; zÞ is a J-conjugate weighted homogeneous
polynomial of the weight type ðp1; . . . ; pn; dÞ. Let M ¼ znzm be a monomial and
assume that gðz; zÞ ¼ Mf ðz; zÞ is a pseudo J-conjugate weighted homogeneous
polynomial, namely pdegP 0 M þ d0 0. Then g : C�n ! C has no critical points if
and only if f : C�n ! C has no critical points.

Proof. As gðz; zÞ is a polar weighted polynomial, the only possible singular
fiber is g�1ð0Þ. Thus the assertion is immediate as g�1ð0Þ ¼ f �1ð0Þ in C�n.

r

Example 12. Let f ðz; zÞ ¼ z21 þ � � � þ z2n�1 þ z3n . Then f is a J-conjugate
weighted homogeneous polynomial of the weight type ð3; . . . ; 3; 2; 6Þ with J ¼ fng.
A mixed polynomial gðz; zÞ ¼ znzmf ðz; zÞ is a pseudo J-conjugate weighted ho-
mogeneous polynomial if

3
Xn�1

j¼1

ðni � miÞ � 2ðnn � mnÞ þ 60 0:

Definition 13. Let f ðz; zÞ be a mixed function. We say that f is a
Newton pseudo conjugate weighted homogeneous polynomial if for any P A Nþþ,
there exists a subset JðPÞH f1; . . . ; ng such that the face function fPðz; zÞ is a
JðPÞ-pseudo conjugate weighted homogeneous polynomial. Here JðPÞ can di¤er
for each P. For a Newton pseudo conjugate weighted homogeneous function,
the non-degeneracy condition is easily checked by Proposition 11.

Example 14. I. Let f ðz; zÞ ¼ z51 þ z21z
2
2 þ zm2 z

2
2 with mb 2. Then the New-

ton boundary has two faces and the corresponding weights are P ¼ ð2; 3Þ and
Q ¼ ðm; 2Þ. The face functions are

fPðz; zÞ ¼ z21ðz31 þ z22Þ; fQðz; zÞ ¼ z22ðz21 þ zm2 Þ

and f is a Newton pseudo conjugate weighted homogeneous polynomial if
m0 2. Note that for m ¼ 2, the polar degree of fQðz; zÞ is 0. See also the next
example. We give a class of functions which can not be non-degenerate.
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II. Consider the radially weighted homogeneous polynomial

f ðz; zÞ ¼
Xn
i¼1

cjz
aj
j z

aj
j ; c1; . . . ; cn A C�:

where a1; . . . ; an are positive integers. This is very special as z
aj
j z

aj
j ¼ jzjj2aj b 0.

Let W :¼ f
Pn

j¼1 ajcj j aj > 0g be the open cone of the complex numbers C
generated by c1; . . . ; cn.

Proposition 15. Let f ðz; zÞ be as above. The image of f : C�n ! C is W
and f is a submersion on W.

Proof. As z
aj
j z

aj
j > 0 for zj 0 0, f ðC�nÞHW. For an h A W, write h as

h ¼
Pn

j¼1 ajcj with aj > 0. Take wj so that jwj j2aj ¼ aj. Then w ¼ ðw1; . . . ;wnÞ A
f �1ðhÞVC�n. Thus the image of f is onto W. We identify Tf ðwÞC with C by

a
q

qx
þ b

q

qy
$ aþ ib. Here the coordinates of C are xþ iy. Then it is easy

to see that the tangent vector of the j-th radial line rjðt;wÞ defined by
t 7! ðw1; . . . ; twj; . . . ;wnÞ is mapped by dw f to 2ajjwjj2aj cj. This implies that
f : C�n ! C is a submersion onto W. r

Corollary 16. Let f ðz; zÞ ¼
Pn

i¼1 cjz
aj
j z

aj
j ¼

Pn
i¼1 cjjzjj

2aj as in Proposition
15.

(1) If 0 A W, V ¼ f �1ð0ÞHC�n is smooth and non-empty.
(2) f ðz; zÞ is not a true non-degenerate mixed function.

Proof. The first assertion is immediate from Proposition 15. For the
second assertion, take any two dimensional subspace CI of Cn with I ¼ fi; jg,
the open cone Wðci; cjÞ generated by ci, cj cannot be the whole C. Considering
the weight vector S so that degS zk ¼ N, k0 i; j and degS zk ¼ 1 for k ¼ i; j,
we see that fSðz; zÞ ¼ cijzj2ai þ cj jzj j2aj , as long as N is su‰ciently large. If
dimR Wci ; cj ¼ 2, it is easy to see that 0 B Wci ; cj . Thus ð f I Þ�1ð0ÞVC�I ¼ j. If
dimR Wci ; cj ¼ 1, either 0 B Wci ; cj or 0 A Wci ; cj . If 0 B Wci ; cj , ð f I Þ�1ð0ÞVC�I ¼ j as
above. If 0 A Wci ; cj , arg ci þ arg cj ¼ 0 and the real dimension of ð f I Þ�1ð0ÞVC�2

is 3 and any point of ð f I Þ�1ð0Þ is a critical point. Thus in any case f I is not
true non-degenerate. r

Example 17. Consider

gðz; zÞ ¼
Xn
j¼1

jzj j2aj ; hðz; zÞ ¼
Xm
j¼1

jzjj2aj �
Xn

j¼mþ1

jzj j2aj

with 1 < m < n. Then the image of g and h are the strictly positive half real
line fxb 0g and the whole real line R respectively and g�1ð0ÞVC�n ¼ j and
dimR h�1ð0Þ ¼ 2n� 1.
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2.5. Pull-back of a polar weighted homogeneous polynomial. Let s ¼
ðpijÞ ¼ ðP1; . . . ;PnÞ be a unimodular matrix where Pj ¼ tðp1j; . . . ; pnjÞ is the j-
th column vector. Consider the toric morphism

cs : C
n ! Cn; w 7! z ¼ ðz1; . . . ; znÞ

zj ¼ w
pj1
1 � � �wpjn

n ; j ¼ 1; . . . ; n:

See §4.1 for more details. Let f ðz; zÞ ¼
Pm

j¼1 cm; nz
mjznj be a polar weighted

homogeneous polynomial of type ðp1; . . . ; pn; dpÞ and let ðq1; . . . ; qn; drÞ be the
radial weights. Then they satisfy the equality:

Xn
j¼1

ðmj � njÞpj ¼ dp;
Xn
j¼1

ðnj þ njÞqj ¼ dr; j ¼ 1; . . . ;m

where P ¼ tðp1; . . . ; pnÞ and Q ¼ tðq1; . . . ; qnÞ. Consider the pull-back

c�
s ð f Þðw;wÞ ¼

Xm
j¼1

cm; nc
�
s ðzmjznj Þ ¼

Xm
j¼1

cm; nw
m 0
jwn 0j

where m 0
j ¼ mjs, n 0j ¼ njs and mj, nj are considered raw vectors. We define

P 0 :¼ s�1P. Then we see that

ðm 0
j þ n 0j ÞQ 0 ¼ ðmj þ njÞss�1Q ¼ dr

ðm 0
j � n 0j ÞP 0 ¼ ðmj � njÞss�1P ¼ dp

for any j ¼ 1; . . . ;m. Thus

Lemma 18. Let f ðz; zÞ be a polar weighted mixed polynomial of the radial
weight type ðq1; . . . ; qn; drÞ and of the polar weight type ðp1; . . . ; pn; dpÞ. Then
gðw;wÞ :¼ c�

s f ðw;wÞ is also a polar weighted homogeneous polynomial. The
radial weight type and the polar weight type are ðq 0

1; . . . ; q
0
n; drÞ and ðp 0

1; . . . ; p
0
n; dpÞ

respectively where

q 0
1

..

.

q 0
n

0
BB@

1
CCA¼ s�1

q1

..

.

qn

0
BB@

1
CCA;

p 0
1

..

.

p 0
n

0
BB@

1
CCA¼ s�1

p1

..

.

pn

0
BB@

1
CCA:

Two fibrations are isomorphic by cs, using the following commutative diagram.

C�n ���!f C�x???cs

x???id

C�n ���!g C�

(The commutativity implies that cs is a fiber preserving di¤eomorphism.)
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3. Isolatedness of the singularities

Let f ðz; zÞ ¼
P

n;m cn;mz
nzm. As we are mainly interested in the topology of

a germ of a mixed hypersurface at the origin, we always assume that f does not
have the constant term so that O A f �1ð0Þ. Put V ¼ f �1ð0ÞHCn.

3.1. Mixed singular points. We say that w A V is a mixed singular point if
w is a critical point of the mapping f : Cn ! C. We say that V is mixed non-
singular if it has no mixed singular points. If V is mixed non-singular, V is
smooth variety of real codimension two. Note that a singular point of V (as
a point of a real algebraic variety) is a mixed singular point of V but the
converse is not necessarily true. For example, every point of the sphere S ¼
fz1z1 þ � � � þ znzn ¼ 1g is a mixed singular point.

3.2. Non-vanishing coordinate subspaces. For a subset JH f1; 2; . . . ; ng, we
consider the subspace CJ and the restriction f J :¼ f jC J . Consider the set

NVð f Þ ¼ fI H f1; . . . ; ng j f I 2 0g:

We call NVð f Þ the set of non-vanishing coordinate subspaces for f . Put

Va ¼ 6
I ANVð f Þ

V VC�I :

Theorem 19. Assume that f ðz; zÞ is a true non-degenerate mixed function.
Then there exists a positive number r0 such that the following properties are
satisfied.

(1) (Isolatedness of the singularity) The mixed hypersurface VaVBr0 is
mixed non-singular. In particular, codimR Va ¼ 2.

(2) (Transversality) The sphere Sr with 0 < ra r0 intersects Va transversely.

Proof. We prove that the origin is an isolated mixed singularity. Or
VaVBr0 has no mixed singularity, if r is su‰ciently small. Denote the mixed
singular locus of V by SmðVÞ. Assume the contrary. Using the Curve Selection
Lemma ([12, 7]), we can find a real analytic curve zðtÞ A Cn, 0a ta 1 so that
zðtÞ A SmðVÞVVa for t0 0 and zð0Þ ¼ O. Using Proposition 8 we can find a
real analytic family lðtÞ in S1 HC such that

df ðzðtÞ; zðtÞÞ ¼ lðtÞ df ðzðtÞ; zðtÞÞ:ð1Þ

Put I ¼ f j j zjðtÞ2 0g. As zðtÞ A Va, I A NVð f Þ, the restriction f I ¼ f jC I is
not constantly zero. We may assume that I ¼ f1; . . . ;mg and we consider f I

and the Taylor expansion of zðtÞ:

ziðtÞ ¼ bit
ai þ ðhigher termsÞ; bi 0 0 i ¼ 1; . . . ;m

lðtÞ ¼ l0 þ l1tþ ðhigher termsÞ; l0 A S1 HC:
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Put A ¼ ða1; . . . ; amÞ and we consider the face function f I
A of f I ðz; zÞ. Let

d ¼ dðA; f I Þ > 0 and b ¼ ðb1; . . . ; bmÞ A C�m. Then we have

qf

qzj
ðzðtÞ; zðtÞÞ ¼ qf I

A

qzj
ðb; bÞtd�aj þ ðhigher termsÞ; j ¼ 1; . . . ;m

qf

qzj
ðzðtÞ; zðtÞÞ ¼ qf I

A

qzj
ðb; bÞtd�aj þ ðhigher termsÞ j ¼ 1; . . . ;m:

Observe that by the equality (1), we have the following equality:

ordt
qf I

qzj
ðzðtÞ; zðtÞÞ ¼ ordt

qf I

qzj
ðzðtÞ; zðtÞÞ; j ¼ 1; . . . ;m:

Thus by (1), we get the equality:

df I
A ðb; bÞ ¼ l0 df

I
A ðb; bÞ:

On the other hand, the equality f I ðzðtÞÞ1 0 implies that f I
A ðb; bÞ ¼ 0. This

implies that b A C�I is a critical point of f I
A : C�I ! C, which is a contradiction to

the non-degeneracy of f I ðz; zÞ.
The second assertion is the result of a standard argument (Corollary 2.9,

[12]). r

We say that f is k-convenient if J A NVð f Þ for any JH f1; . . . ; ng with
jJj ¼ n� k. We say that f is convenient if f is ðn� 1Þ-convenient. Note that
Va ¼ VnfOg if f is convenient. For a given l with 0 < la n, we put WðlÞ ¼
fz A Cn j jIðzÞja lg where IðzÞ ¼ fi j zi ¼ 0g. Thus Wðn� 1Þ ¼ C�n. If f is l-
convenient, V VWðlÞHVa.

Corollary 20. Assume that f ðz; zÞ is a convenient true non-degenerate
mixed polynomial. Then V ¼ f �1ð0Þ has an isolated mixed singularity at the
origin.

Remark 21. The assumption ‘‘true’’ is to make sure that V � ¼ f �1ð0ÞVC�n

is non-empty.

4. Resolution of the singularities

We consider a mixed analytic function f ðz; zÞ and the corresponding mixed
hypersurface V ¼ f �1ð0Þ. We assume that O A V is an isolated mixed singu-
larity, unless otherwise stated.

If f is complex analytic, a ‘‘resolution of f ’’ is usually understood as a
proper holomorphic mapping j : X ! Cn so that

(i) E :¼ j�1ðOÞ is a union of smooth (complex analytic) divisors which
intersect transversely and j : X � E ! Cn � fOg is biholomorphic,

(ii) the divisor ðj�f Þ is a union of smooth divisors intersecting transversely
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and we can write ðj�f Þ ¼ V̂V UE where V̂V is the strict transform of V (¼ the
closure of j�1ðV � fOgÞ),

(iii) for any point P A E �
I V V̂V with I ¼ fi1; . . . ; isg, there exists an analytic

coordinate chart ðu1; . . . ; unÞ so that the pull-back of f is written as U � um1

1 � � � umj

j

where U is a unit in a neighborhood of P, Eik ¼ fuk ¼ 0g ðk ¼ 1; . . . ; s� 1Þ and
V̂V ¼ fus ¼ 0g. Here E �

I :¼ 7Ei A In6j B I Ej.

For a mixed hypersurface, a resolution of this type does not exist in general.
The main reason is that there is no complex structure in the tangent space of V .
Nevertheless we will show that a suitable toric modification partially resolves such
singularities.

4.1. Toric modification and resolution of complex analytic singularities. For
the reader’s convenience, we recall some basic facts about the toric modifications
at the origin. We use the notations and the terminologies of [14, 15, 16] and
§2.2.

4.1.1. Toric modification. Let A ¼ ðai; jÞ A GLðn;ZÞ with det A ¼G1. We
call such a matrix a unimodular matrix. We associate to A a birational morphism

cA : C�n ! C�n

which is defined by cAðzÞ ¼ ðza1; 11 � � � za1; nn ; . . . ; z
an; 1
1 � � � zan; nn Þ. If the coe‰cients

of A are non-negative, cA can be defined on Cn. Note that cA is a group
homomorphism of the algebraic group C�n and we have

c�1
A ¼ cA�1 ; cA � cB ¼ cAB:

We consider the space of integer weight vectors N and we denote weight
vectors by column vectors. Here the coordinates z ¼ ðz1; . . . ; znÞ is fixed. The
space of the weight vectors with coe‰cients in R is denoted by NR.

Now we consider the subspace of positive weight vectors Nþ
R . Let P1; . . . ;Pm

be vectors in Nþ
R . The polyhedral cone generated by P1; . . . ;Pm is defined by

ConeðP1; . . . ;PmÞ :¼ ft1P1 þ � � � þ tmPm A N j ti A R; ti b 0; i ¼ 1; . . . ;mg:

The interior of ConeðP1; . . . ;PmÞ is called an open cone and it is defined as

IntConeðP1; . . . ;PmÞ :¼ ft1P1 þ � � � þ tmPm A N j ti A R; ti > 0; i ¼ 1; . . . ;mg:

The cone ConeðP1; . . . ;PmÞ is called a simplicial cone if fP1; . . . ;Pmg are linearly
independent. We consider only the case where P1; . . . ;Pm are integer vectors.
We call P1; . . . ;Pm the vertices of the cone, if P1; . . . ;Pm are chosen to be
primitive integer vectors, by multiplications of rational numbers if necessary. It
is called a regular simplicial cone if fP1; . . . ;Pmg can be a part of Z-basis of
N. For a regular simplicial cone s ¼ ConeðP1; . . . ;PnÞ of dimension n with
vertices P1; . . . ;Pn, we associate a unimodular matrix A whose j-th column is
Pj. By an abuse of notation, we also denote A by s. Let E1; . . . ;En be the
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standard basis of N. (Ej ¼ tð0; . . . ; 1; 0; . . . ; 0Þ where 1 is at the j-coordinate.)
Then ConeðE1; . . . ;EnÞ is a regular simplicial cone and it is nothing but Nþ

R .
We consider a simplicial cone subdivision S� of the cone ConeðE1; . . . ;EnÞ

for which every cone is regular. Such a subdivision is called a regular fan.
Suppose that S� is a regular fan. Let S be the set of n-dimensional cones and
let Vþ be the set of strictly positive vertices. For simplicity, we assume that
the vertices of S� are the union of fE1; . . . ;Eng and Vþ. For each s A S,
we consider a copy of a complex Euclidean space Cn

s with coordinates us ¼
ðus1; . . . ; usnÞ and the morphism ps : C

n
s ! Cn defined by psðusÞ ¼ csðusÞ.

Taking the disjoint sum
‘

s AS Cn
s , we glue together

‘
s AS Cn

s under the following
equivalence relation:

us @ ut if ct�1s is well-defined at us and ct�1sðusÞ ¼ ut:

We denote the quotient space
‘

s AS Cn
s=@ by XS� . Then XS� is a complex

manifold of dimension n and the morphisms ps : C
n
s ! Cn, s A S are compatible

with the identification and thus they define a birational proper holomorphic
mapping

p̂p : XS� ! Cn:

The restriction p̂p to XS�np̂p�1ð0Þ is a biholomorphic onto CnnfOg. We call
p̂p : XS� ! Cn the toric modification associated with the regular fan S� [14, 16].
The irreducible exceptional divisors correspond bijectively to the vertices P A Vþ

and we denote it by ÊEðPÞ. Then p̂p�1ðOÞ ¼ 6
P AVþ ÊEðPÞ.

The easiest non-trivial case is when Vþ ¼ fP ¼ tð1; . . . ; 1Þg. In this case,
XS� is nothing but the ordinary blowing-up at the origin of Cn.

4.1.2. Dual Newton diagram and admissible toric modifications. Let
f ðz; zÞ ¼

P
n;m cn;mz

nzm be a germ of mixed function in n variables z1; . . . ; zn.
We introduce an equivalence relation in Nþ

R by

P@Q; P;Q A Nþ
R , DðP; f Þ ¼ DðQ; f Þ:

The set of equivalence classes gives an open polyhedral cone subdivision of Nþ
R

and we denote it as G�ð f ; zÞ and we call it the dual Newton diagram. Let S� be
a regular fan which is a regular simplicial cone subdivision of G�ð f Þ. If S� is a
regular simplicial cone subdivision of G�ð f Þ, the toric modification p̂p : XS� ! Cn

is called admissible for f ðz; zÞ. The basic fact for non-degenerate holomorphic
functions is:

Theorem 22 ([14, 15, 16]). Assume that f ðzÞ be a non-degenerate convenient
analytic function with an isolated singularity at the origin. Let p̂p : XS� ! Cn be
an admissible toric modification. Then it is a good resolution of the mapping
f : Cn ! C at the origin.

This is a starting observation of the present paper.
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4.2. Blowing up examples. We consider some examples.

Example 23. A. Let C1 ¼ fðz1; z2Þ A C2 j z21 � z22 ¼ 0gg, V1 ¼ fðz1; z2Þ A C2 j
f1ðz; zÞ ¼ 0g and V2 ¼ fðz1; z2Þ A C2 j f2ðz; zÞ ¼ 0g where f1ðz; zÞ ¼ z21 � z22 and
f2ðz; zÞ ¼ z1z1 � z22 . C1 is a union of two smooth complex line, V1 is a union of
two smooth real planes, z1 G z2 ¼ 0 and V2 is an irreducible variety. Consider

p̂p1 : X1 ! C2

where p̂p1 : X1 ! C2 is the toric modification associated with the regular fan
generated by vertices

S�
1 ¼ E1 ¼

1

0

� �
;P ¼ 1

1

� �
;E2 ¼

0

1

� �� �
:

Geometrically, p̂p1 is an ordinary blowing up. Note that for the complex curve
C1, the two components are separated by a single blowing up p̂p1. We will see
what happens to the two other mixed curves V1, V2. In the toric coordinate C2

s

with s ¼ ConeðP;E2Þ and the toric coordinates ðu1; u2Þ, the strict transform V̂V1,
V̂V2 of V1, V2 are defined in the torus C�2

s as

ĈC1 VC�2
s ¼ fðu1; u2Þ A C�2

s j u21 � u21u
2
2 ¼ u21ð1� u22Þ ¼ 0g

V̂V1 VC�2
s ¼ fðu1; u2Þ A C�2

s j u21 � u21u
2
2 ¼ 0g;

V̂V2 VC�2
s ¼ fðu1; u2Þ A C�2

s j u1ðu1 � u1u
2
2Þ ¼ 0g:

The first expression shows that ĈC1 is already smooth and separated into two
peaces. Unlike the case of holomorphic functions, we observe that

fðu1; u2Þ A C2
s j u21 � u21u

2
2 ¼ 0gX V̂V1; fðu1; u2Þ A C2

s j u1 � u1u
2
2 ¼ 0gX V̂V2

as ÊEðPÞ ¼ fu1 ¼ 0gQ V̂Vi, i ¼ 1; 2. In both cases, we see that the 1-sphere ju2j ¼ 1
appears as their intersection with the exceptional divisor ÊEðPÞ. It is easy to see
that for V̂V1, both irreducible components L�

G ¼ fðu1; u2Þ A C�2
s j u1 G u1u2 ¼ 0g

satisfy the limit equality L̂L�
e V ÊEðPÞ ¼ fð0; u2Þ j ju2j ¼ 1g with e ¼G. Thus L̂Lþ V L̂L�

is the 1-sphere ju2j ¼ 1 and the ordinary blowing up does not separate the two
smooth components. For V̂V2, we will see later that it has two link components.
See §6 for the definition of the link components. This illustrates the complexity
of the limit set of the tangent lines in the mixed varieties.

B. We consider an ordinary cusp (complex analytic) C2 ¼ fz22 � z31 ¼ 0g and
a mixed curve V3 ¼ fz22 � z21z1 ¼ 0g with the same Newton boundary and an
admissible toric blowing up p̂p : X2 ! C2 which is associated with the regular
simplicial fan:

S�
2 ¼ E1;P ¼ 1

1

� �
;Q ¼ 2

3

� �
;R ¼ 1

2

� �
;E2

� �
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Let ðu1; u2Þ be the toric coordinate of C2
s with s ¼ ðQ;RÞ ¼ 2 1

3 2

� �
. Then the

pull back of the defining polynomials are defined in this coordinate chart as

ĈC2 VC�2
s ¼ fðu1; u2Þ A C�2

s j u61u32ðu2 � 1Þ ¼ 0g

V̂V3 VC�2
s ¼ fðu1; u2Þ A C�2

s j u41u22ðu21u22 � u21u2Þ ¼ 0g:
Observe that ĈC2 is smooth and transverse to the exceptional divisor ÊEðQÞ ¼
fu1 ¼ 0g. The strict transform V̂V3 is defined by u21u

2
2 � u21u2 ¼ 0 in C�2

s . We
see again that for ~VV3, a sphere ju2j ¼ 1 appears as the intersection with the

exceptional divisor. We observe that V̂V3 V ÊEðQÞ ¼ fð0; u2Þ j ju2j ¼ 1g.
The above examples show that the toric modification does not resolve the

singularities of non-degenerate mixed hypersurfaces. To get a good resolution of
a mixed hypersurface singularity, we need to compose a toric modification with
a normal real blowing up or a normal polar modification which we introduce
below.

4.3. Normal real blowing up and normal polar blowing up of C. Consider
the complex plane with two coordinate systems z ¼ xþ iy and z ¼ r expðiyÞ.
We can consider the following two modifications.

(I) Let iR : CnfOg ! C� RP1 defined by z ¼ xþ iy 7! ðz; ½x : y�Þ and let
RC be the closure of the image of iR. This is called the real blowing up. RC
is a real two dimensional manifold which has two coordinate charts ðU0; ð~xx; tÞÞ
and ðU1; ðs; ~yyÞÞ. These coordinates are defined by ~xx ¼ x, t ¼ y=x and ~yy ¼ y,
s ¼ x=y. The canonical projection oR : RC ! C is given as oRð~xx; tÞ ¼ ~xxð1þ itÞ
and oRðs; ~yyÞ ¼ ~yyðsþ iÞ. Note that o�1

R ðOÞ ¼ RP1 and oR : RCnfOg � RP1 !
CnfOg is di¤eomorphism.

(II) Consider the polar embedding ip : CnfOg ! Rþ � S1 which is defined
by ipðr expðyiÞÞ ¼ ðr; expðyiÞÞ. Here Rþ ¼ fx A R j xb 0g. Let PC ¼ Rþ � S1

and op : PC ! C be the projection defined by opðr; expðyiÞÞ ¼ r expðyiÞ. We

can see easily that o�1
p ðOÞ ¼ f0g � S1 and op : PCnf0g � S1 ! CnfOg is a di¤eo-

morphism. Note that PC is a manifold with boundary.

4.3.1. Canonical factorization. There exists a canonical mapping
c : PX ! RC which is defined by

cðr; expðyiÞÞ ¼ ð~xx; tÞ ¼ ðr cos y; tan yÞ; y0G
p

2
ðs; ~yyÞ ¼ ðcot y; r sin yÞ; y0 0; p

8<
:

It is obvious that c gives the commutative diagram

PC ���!c RC???yop

???yoR

C C
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Note that the restriction of c over the exceptional sets is a 2 : 1 map:

c : fOg � S1 ! fOg � RP1; expðyiÞ 7! ½cosðyÞ : sinðyÞ�

4.4. Resolution of a mixed function. Let f ðz; zÞ be a mixed function and
let V ¼ f �1ð0Þ and we assume that V has an isolated mixed singularity at the
origin and the real codimension of V is two. (Note that if V is non-degenerate,
it has a real codimension two by the definition of non-degeneracy and Theorem
19.) Let Y be a real analytic manifold of dimension 2n and let F : Y ! Cn be a
proper real analytic mapping. We say that F : Y ! Cn is a resolution of a real
type (respectively a resolution of a polar type) of the mixed function f if

(1) Let E ¼ F�1ðOÞ and let E ¼ E1 U � � �UEr be the irreducible components.
Each Ej is a real codimension one smooth subvariety.

(2) Y is a real analytic manifold of dimension 2n. For a resolution of a
real type, Y has no boundary while for a resolution of a polar type Y is
a real analytic manifold with boundary and qY ¼ E.

(3) The restriction F : Y � E ! CnnfOg is a real analytic di¤eomorphism.
(4) Let ~VV be the strict transform of V (¼ the closure of F�1ðVnfOgÞ).

Then ~VV is a smooth manifold of real codimension 2 in an open neigh-
borhood of E.

(5) For I ¼ fi1; . . . ; itg, put E �
I :¼ 7 t

k¼1
Eikn6j B I Ej. For P A E �

I V ~VV , there
exists a local real analytic coordinate system ðU ; ðu1; . . . ; u2nÞÞ centered at
P such that

F�f ðuÞ ¼ um1

1 � � � umt
t ðutþ1 þ iutþ2Þ

so that U VEij ¼ fuj ¼ 0g for j ¼ 1; . . . ; t and U V ~VV ¼ futþ1 þ iutþ2 ¼ 0g.
In the case of a resolution of a polar type, we assume also that Y VU ¼
fu1 b 0; . . . ; ut b 0g.

For example, assume that t ¼ 1 for simplicity. Then the condition (5) says the
following. If we are considering a resolution of a real type,

U GR2n or B2n; Ei1 ¼ fu1 ¼ 0g; F�f ðuÞ ¼ um1

1 ðu2 þ iu3Þ;

if we are considering a resolution of polar type,

U GR2n V fu1 b 0g; Ei1 ¼ fu1 ¼ 0g; F�f ðuÞ ¼ um1

1 ðu2 þ iu3Þ:

See the next section for more details.

4.4.1. Normal real blowing up. Let X be a complex manifold of dimension
n with a finite number of smooth complex divisors E1; . . . ;El such that the
union of divisors E ¼ 6l

i¼1
Ei has at most normal crossing singularities. Then

we can consider the composite of real modifications for the normal complex 1-
dimensional subspaces along the divisor E1; . . . ;El. Put it as oR : RX ! X and
we call it the normal real blowing up along E. It is immediate from the definition
that
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(1) RX is a di¤erentiable manifold and oR : RXno�1
R ðEÞ ! YnE is a di¤eo-

morphism.
(2) Inverse image ~EEj :¼ o�1

R ðEjÞ of Ej is a real codimension 1 variety which

is fibered over E 0
j with a fiber S1. Here E 0

j is the normal real blowing

up of Ej along 6
i0j

Ei VEj . Putting E �
I :¼ 7

i A I Ein6j B I Ej, ~EE �
I :¼

o�1
R ðE �

I Þ is fibered over E �
I with fiber ðS1Þk where k ¼ jI j.

Take a point P A E �
I and choose a local coordinate ðW ; ðu1; . . . ; unÞÞ so that

I ¼ f1; . . . ;mg and Ej ¼ fuj ¼ 0g, j ¼ 1; . . . ;m. Then o�1
R ðWÞ is isomorphic to

ðRCÞm � Cn�m covered by 2m coordinates We1;...; em ¼ Ue1 � � � � �Uem � Cn�m

where ej ¼ 0 or 1. For example, W1;0;...;0 has the coordinates (as a real analytic
manifold) ðs1; ~yy1; ~xx2; t2; . . . ; ~xxm; tm; umþ1; . . . ; unÞ so that the projection to the coor-
dinate chart u A W is given by

u1 ¼ ~yy1ðs1 þ iÞ; u2 ¼ ~xx2ð1þ it2Þ; . . . ; um ¼ ~xxmð1þ itmÞ:

In this coordinate chart, the exceptional real divisor ~EEj, jam is defined by
~EE1 ¼ f~yy1 ¼ 0g and ~EEj ¼ f~xxj ¼ 0g for 2a jam.

4.4.2. Normal polar blowing up. We can also consider the composite of the
polar blowing ups along exceptional divisors, which we denote as op : PX ! X .
In the same coordinate chart ðW ; uÞ, u ¼ ðu1; . . . ; unÞ as in the previous discus-
sion, o�1

p ðWÞ is written as

o�1
p ðWÞ ¼ ðRþ � S1Þ � � � � � ðRþ � S1Þ � Cn�m

with coordinates ðr1; expðiy1Þ; . . . ; rm; expðiymÞ; umþ1; . . . ; unÞ and the projection is
given by

ðr1; expðiy1Þ; . . . ; rm; expðiymÞ; umþ1; . . . ; unÞ 7! ðu1; . . . ; unÞ;
uj ¼ rj expðiyjÞ; j ¼ 1; . . . ;m:

Note that PX is a manifold with boundary and o�1
p ðEjÞ is the boundary com-

ponent which is given by frj ¼ 0g.

4.5. A resolution of a real type and a resolution of a polar type. Now we
can state our main result for the resolution of non-degenerate mixed singularities.
Assume that f ðz; zÞ ¼

P
n;m cn;mz

nzm is a non-degenerate convenient mixed func-
tion and consider the mixed hypersurface V ¼ f �1ð0Þ. Let Gð f Þ be the Newton
boundary and let G�ð f Þ be the dual Newton diagram. Take a regular simplicial
cone subdivision in the sense of [16] and let p̂p : X ! Cn be the associated toric
modification. Let Vþ be the set of strictly positive vertices of S� and let ÊEðPÞ,
P A Vþ be the exceptional divisors. We may assume that the vertices which are
not strictly positive are the canonical bases fE1; . . . ;Eng of N by the convenience
assumption where Ej ¼ tð0; . . . ; 1; . . . ; 0Þ. Put ÊE ¼ 6

P AP ÊEðPÞ. Then we take
the normal real blowing-ups oR : RX ! X along the exceptional divisors of ÊE.
Then we consider the composite
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F :¼ p̂p � oR : RX !oR
X !p̂p Cn; x 7! p̂pðoRðxÞÞ:

Put ~EEðPÞ :¼ o�1
R ðÊEðPÞÞ with P A Vþ.

Theorem 24. F : RX ! Cn gives a good resolution of a real type of f at the
origin and the exceptional divisors are ~EEðPÞ for P A Vþ. The multiplicity of ~EEðPÞ
of the function F�f along ~EEðPÞ is dðP; f Þ.

Let f ðz; zÞ ¼ gðx; yÞ þ ihðx; yÞ be the decomposition of f into the real and
the imaginary part. Then the above assertion for the multiplicity is equivalent
to: the mutiplicities of F�g, F�h along ~EEðPÞ are the same and equal to dðP; f Þ.

Proof. We use the same notations as those in [14, 15, 16]. Let ~VV , V̂V be the
strict transforms of V into RX and X respectively.

F : RX ���!oR
X ���!p̂p Cn

U U U
~VV ���!oR

V̂V ���!p̂p V

Take any point ~xx A ~VV VF�1ðOÞ and consider x̂x ¼ Fð~xxÞ A V̂V . Assume that x̂x
is in a toric coordinate chart Cn

s with s ¼ ðP1;P2; . . . ;PnÞ which is a uni-

modular matrix. Assume that x̂x A ÊEðP1;P2; . . . ;PsÞ� where ÊEðP1;P2; . . . ;PsÞ� ¼
7s

i¼1
ÊEðPiÞn6j>s

ÊEðPjÞ. For simplicity, we assume that s ¼ 1 and x̂x A ÊEðP1Þ�,
leaving the other cases to the reader, as the argument is exactly the same. We
denote the coordinates in this chart as ðus1; . . . ; usnÞ and us; j ¼ xsj þ iysj. For
simplicity, we write simply uj , xj, yj for usj, xsj, ysj respectively. By the
assumption, x̂x ¼ ð0; x2; . . . ; xnÞ with xj 0 0, jb 2 in the toric coordinate space

Cn
s . We may assume that ~xx A ðCn

sÞ0. The coordinates of ðCn
sÞ0 are given by

ð~xx1; t1; u2; . . . ; unÞ. The divisor ~EEðP1Þ is given by f~xx1 ¼ 0g and the projection
oR j ðCn

sÞ0 ! Cn
s is given as

ð~xx1; t1; u2; . . . ; unÞ 7! ðu1; . . . ; unÞ; u1 ¼ ~xx1ð1þ it1Þ:

Let D ¼ DðP1Þ. Take an arbitrary monomial znzm. Then we observe that

p�
sðznzmÞ ¼ u

P1ðnÞ
1 � � � uPnðnÞ

n � u
P1ðmÞ
1 � � � uPnðmÞ

n and

o�
Rp

�
sðznzmÞ ¼ ~xx

P1ðnþmÞ
1 ð1þ it1ÞP1ðnÞð1� it1ÞP1ðmÞ

Yn
j¼2

u
PjðnÞ
j u

PjðmÞ
j :

Here we recall that P1ðnÞ ¼
Pn

j¼1 pj1nj. By the definition of dðP1Þ, for any
monomial znzm which appears in f ðz; zÞ, we have

P1ðnÞ þ P1ðmÞb dðP1Þ; and

P1ðnÞ þ P1ðmÞ ¼ dðP1Þ , nþ m A DðP1Þ:
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Thus we can write the pull-back function as

F�f ð~xx1; t1; u 0
sÞ ¼ ~xx

dðP1Þ
1 � f̂fsð~xx1; t1; u 0

sÞ

F�fDð~xx1; t1; u 0
sÞ ¼ ~xx

dðP1Þ
1 � f̂fD;sðt1; u 0

sÞ

f̂fsð~xx1; t1; u 0
sÞ1 f̂fD;sðt1; u 0

sÞ modulo ð~xx1Þ:

where u 0
s ¼ ðu2; . . . ; unÞ. The important point here is that f̂fD;s does not contain

the variable ~xx1. In the above notation, the strict transform ~VV is defined by
f̂fsð~xx1; t1; u 0

sÞ ¼ 0 in ðCn
sÞ0. Let ~xx ¼ ð0; t1; x2; . . . ; xnÞ in the coordinates ð~xx1; t1; u 0

sÞ.
Using the expression f ðz; zÞ ¼ gðx; yÞ þ ihðx; yÞ and fDðz; zÞ ¼ gDðx; yÞ þ ihDðx; yÞ,
we write these functions f̂fs, f̂fD;s as the sum of real-valued functions:

f̂fsð~xx1; t1; x 0
s; y

0
sÞ ¼ ĝgsð~xx1; t1; x 0

s; y
0
sÞ þ iĥhsð~xx1; t1; x 0

s; y
0
sÞ

f̂fD;sðt1; x 0
s; y

0
sÞ ¼ ĝgD;sðt1; x 0

s; y
0
sÞ þ iĥhD;sðt1; x 0

s; y
0
sÞ;

where x 0
s ¼ ðx2; . . . ; xnÞ; y 0

s ¼ ðy2; . . . ; ynÞ:
The main assertion in Theorem 24 is that the rank of the Jacobian matrix of the
functions ~xx1, ĝgs, ĥhs:

J :¼ qð~xx1; ĝgs; ĥhsÞ
qð~xx1; t1; x 0

s; y
0
sÞ
ð~xxÞ ¼

1 0

� qðĝgs; ĥhsÞ
qðt1; x 0

s; y
0
sÞ
ð~xxÞ

0
B@

1
CA

is 3, which is equivalent to

rank
qðĝgs; ĥhsÞ

qðt1; x 0
s; y

0
sÞ
ð~xxÞ

 !
¼ 2:

Note that gD;sð~xxÞ ¼ hD;sð~xxÞ ¼ 0 and

gs � gD;s 1 0; hs � hD;s 1 0 modulo ð~xx1Þ
therefore

qðgs; hsÞ
qðt1; x 0

s; y
0
sÞ
ð~xxÞ ¼ qðgD;s; hD;sÞ

qðt1; x 0
s; y

0
sÞ

ð~xxÞ:ð2Þ

Now recall that gD;s, hD;s does not contain the variable ~xx1. Define a modified
point ~xx 0 A ðCn

sÞ0 by ~xx 0 ¼ ð1; t1; x2; . . . ; xnÞ and put x̂x 0 ¼ oRð~xx 0Þ A C�n
s and w0 ¼

psðx̂x 0Þ A C�n. Put w0 ¼ x0 þ iy0. (Recall that ps : C
n
s ! Cn is the projection of

the toric modification in this chart.) Then as gD;sðx̂x 0Þ ¼ gD;sð~xx 0Þ ¼ 0, we have

rank
qðgD;s; hD;sÞ
qðt1; x 0

s; y
0
sÞ

ð~xxÞ
� �

¼ rank
qðgD;s; hD;sÞ
qðt1; x 0

s; y
0
sÞ

ð~xx 0Þ
� �

¼ rank
qðgD;s; hD;sÞ

qð~xx1; t1; x 0
s; y

0
sÞ
ð~xx 0Þ

� �
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Now we consider the hypersurface

V �
D :¼ fz A C�n j fDðzÞ ¼ 0g
¼ fxþ iy A C�n j gDðx; yÞ ¼ hDðx; yÞ ¼ 0g

where zj ¼ xj þ iyj, j ¼ 1; . . . ; n and x ¼ ðx1; . . . ; xnÞ, y ¼ ðy1; . . . ; ynÞ. Note that
w0 A V �

D . As fDðw0Þ ¼ 0 and F ¼ p̂p � oR : F�1ðC�nÞ ! C�n is a di¤eomorphism,
we see that

rank
qðgD;s; hD;sÞ

qð~xx1; t1; x 0
s; y

0
sÞ
ð~xx 0Þ

� �
¼ rank

qð~xxdðP1Þ
1 gD;s; ~xx

dðP1Þ
1 hD;sÞ

qð~xx1; t1; x 0
s; y

0
sÞ

ð~xx 0Þ
 !

¼ rank
qðgD; hDÞ
qðx; yÞ ðx0; y0Þ

� �
¼ 2

where w0 ¼ x0 þ iy0. The first equality is the result of gDsð~xx 0Þ ¼ hDsð~xx 0Þ ¼ 0.
The last equality follows from the non-degeneracy condition which assumes that
fD : C�n ! C has 0 as a regular value. r

We can also use the normal polar blowing-up op : PX ! X along ÊEðPÞ,
P A Vþ and the composite Fp : PX ! Cn. Put ~EEðPÞ :¼ F�1

p ðÊEðPÞÞ, P A Vþ.

Theorem 25. Under the same assumption as in Theorem 24, Fp : PX ! X
gives a good resolution of a polar type of f ðz; zÞ where Fp is the composite

Fp : PX !
op

X !p̂p Cn:

The multiplicity of ~EEðPÞ of the function F�
p f along ~EEðPÞ is dðP; f Þ. There is

a canonical factorization h : PX ! RX so that op ¼ oR � h and Fp ¼ F � h.

Proof. The proof is almost the same as that of Theorem 24. For an
arbitrary monomial znzm. Then we observe that

p�
sðznzmÞ ¼ u

P1ðnÞ
1 � � � uPnðnÞ

n � u
P1ðmÞ
1 � � � uPnðmÞ

n and

o�
pp

�
sðznzmÞ ¼ r

P1ðnþmÞ
1 expðP1ðn� mÞy1iÞ

Yn
j¼2

u
PjðnÞ
j u

PjðmÞ
j :

Thus we simply replace ð~xx1; t1; u 0
sÞ by ðr1; y1; u 0

sÞ with us1 ¼ r1 expðiy1Þ ¼ ~xx1ð1þ it1Þ
in the previous calculation. The factorization follows from §4.3.1. r

Remark 26. The assertion of Theorem 24 and Theorem 25 says that the
strict transform ~VV is a ‘‘Cartier divisor’’ in the sense that it is locally defined by a
single complex-valued real analytic function in RX , although V̂V is not a Cartier
divisor in X . Note also that the pull-back of g and h are real-valued functions

which have the same multiplicity dðPÞ along ~EEðPÞ, P A Vþ.
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Example 27. We consider two modifications:

p̂p1 : X1 ! C2; p̂p2 : X2 ! C2

where p̂pj : Xj ! C2 is the toric modification associated with the regular fan S�
j

ð j ¼ 1; 2Þ which are defined by the vertices as follows.

S�
1 ¼ E1 ¼

1

0

� �
;P ¼ 1

1

� �
;E2 ¼

0

1

� �� �
;

S�
2 ¼ E1;P ¼ 1

1

� �
;Q ¼ 2

3

� �
;R ¼ 1

2

� �
;E2

� �
1. Let V1 ¼ f ðz; zÞ ¼ z21 � z22 ¼ 0. This is a union of two smooth real planes

z2 G z1 ¼ 0. In the toric coordinate chart C2
s with s ¼ ConeðP;E2Þ, the strict

transform ~VV1 of V1 is defined in C�2
s by

V̂V1 : u
2
1 � u21u

2
2 ¼ 0:

We have seen that V̂V1 V ÊEðPÞ ¼ fu1 ¼ 0 j ju2j ¼ 1g. Now take the normal real
blowing up along ÊEðPÞ, oR : RX ! X . The strict transform is defined in ðC2

sÞe
as

V̂V1 ¼ fð~xx1; t1; u2Þ A R2 � C j ð1� it1Þ2 � ð1þ it1Þ2u22 ¼ 0g

¼ fð~yy1; s1; u2Þ A R2 � C j ðs1 � iÞ2 � ðs1 þ iÞ2u22 ¼ 0g

Note these equations give two smooth components Le, e ¼G1 which are disjoint:

fð~xx1; t1; u2Þ A R2 � C j ð1� it1ÞG ð1þ it1Þu2 ¼ 0g:
This expression shows that the strict transform is embedded in the cylinder
ju2j ¼ 1. Let us see this in a normal polar modification op : PX ! X . Now
PX is locally di¤eomorphic to the product of S1 � Rþ � C and the strict
transform is now defined in a simple equation

~VV1 ¼ fðr1; expðyiÞ; u2Þ j u2 ¼Hexpð�2yiÞg
and it has two link components. This shows that the strict transform is a
product (it does not depend on r1) and for a fixed r1, they are parallel torus knots
in S1 � S1 ¼ S1 � fju2j ¼ 1g. Observe that the direction of twisting is opposite
in the first and the second S1’s with respect to the canonical orientation of S1.

2. Let us consider another mixed curve:

V2 : fz1z1 � z22 ¼ 0g
Equivalently V2 is defined by

fðx1; y1; x2; y2Þ A R4 j x2
1 þ y21 ¼ x2

2 � y22 ; x2 y2 ¼ 0g:
This can be defined as

V2 ¼ fðx1; y1; x2; y2Þ A R4 j y2 ¼ 0; x2
2 ¼ x2

1 þ y21g:
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This curve is real analytically (or real algebraically) irreducible at the origin (see
[2] for the definition) but we can see that V2nfOg has two connected components
z2 ¼ jz1j and z2 ¼ �jz1j. Thus for the geometrical study of real analytic varieties,
especially for the study of real analytic curves, it is better to see the connected
components of f �1ð0ÞnfOg. We apply the same toric modification p̂p1 and we
consider its strict transform on the toric chart ConeðP;E2Þ where we use the same
notation as in Example 27.

V̂V2 : u1 � u1u
2
2 ¼ 0:

Again we see that V̂V2 V ÊEðPÞ ¼ fð0; u2Þ j ju2j ¼ 1g. Take the normal real blowing
up along ÊEðPÞ. The strict transform is defined in ðC2

sÞe as

~VV2 ¼ fð~xx1; t1; u2Þ A R2 � C j ð1� it1Þ � ð1þ it1Þu22 ¼ 0g

¼ fð~yy1; s1; u2Þ A R2 � C j ðs1 � iÞ � ðs1 þ iÞu22 ¼ 0g

which is non-singular. They have two real analytic components:

fð~xx1; t1; u2Þ A R2 � C j u2 G ð1� it1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t21

q
¼ 0g or

fð~yy1; s1; u2Þ A R2 � C j u2 G ðs1 � iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ 1

q
¼ 0g

Note that
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t21

q
is a real analytic function, although

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ y21

q
is not an

analytic function at O. The above expression says that ~VV2 is a product

fðt1; u2Þ j
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t21

q
u2 G ð1� it1Þ ¼ 0g � R

where the second factor is the line with coordinate ~xx1. Using the resolution of a
polar type, ~VV2 is simply written as

~VV2 ¼ fðr1; y1; u2Þ A Rþ � S1 � C j u2 G expð�y1iÞ ¼ 0g:

Again we observe that it is a product of torus knots and Rþ.
3. Next we consider V3 ¼ fz22 þ z21z1 ¼ 0g. The Newton boundary is the

same with that of the cusp singularity z22 þ z31 ¼ 0. Thus we use the toric mod-
ification p̂p2 : X2 ! C2. Let ðu1; u2Þ be the toric coordinate of the chart s ¼

ðQ;RÞ ¼ 2 1

3 2

� �
. Then the pull back of f is defined in this coordinate chart as

f̂f ðu1; u2Þ ¼ ðu31u22Þ
2 þ ðu21u2Þ

2ðu21u2Þ ¼ u41u
2
2ðu21u22 þ u21u2Þ

Thus the strict transform can be written as u21u
2
2 þ u21u2 ¼ 0. Thus again we see

that V̂V3 V ÊEðQÞ ¼ fð0; u2Þ j ju2j ¼ 1g and S1 appears as the limit of V̂V3 V ÊEðQÞ
where ÊEðQÞ is the exceptional divisor corresponding to Q. We take a normal
polar modification op : PX2 ! X2 and consider this in the coordinate chart
o�1

p ðC2
sÞ with coordinates ðr1; expðy1iÞ; r2; expðy2iÞÞ with u1 ¼ r1 expðy1iÞ, u2 ¼

r2 expðy2iÞ. Then ~VV3 is defined by

~VV3 ¼ fr2 expð3y2iÞ þ expð�4y1iÞ ¼ 0g
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which implies that r2 ¼ 1 and 3y2 1�4y1 mod 2p. We see that ~VV3 V ~EEðQÞ is a
torus knot but the orientations for y1 and y2 are reversed.

In the resolution of a real type, the equation is apparently a little compli-

cated. In the chart Cs;0;0, ~VV3 V ~EEðQÞ is given by gðt1; s2; ~xx2Þ ¼ hðt1; s2; ~xx2Þ ¼ 0
where

gðt1; s2; ~xx2Þ ¼ ~xx2 � ~xx2s
2
2 � 4~xx2t1s2 � ~xx2t

2
1 þ ~xx2t

2
1s

2
2 þ 1� 2t1s2 � t21

hðt1; s2; ~xx2Þ ¼ �2~xx2s2 � 2~xx2t1 þ 2~xx2t1s
2
2 þ 2~xx2t

2
1s2 þ s2 þ 2t1 � t21s2:

Taking the resultant of gðt1; s2; ~xx2Þ and hðt1; s2; ~xx2Þ in t1, we see that s22 ~xx
2
2 þ s22 ¼ 1

which corresponds to r2 ¼ 1 in the polar resolution.

4.5.1. Pseudo weighted homogeneous hypersurface. Suppose that f ðz; zÞ is
a convenient non-degenerate mixed function, let p̂p : X ! Cn be an admissible
toric modification and let oR : RX ! X be a real modification along the
exceptional divisors as in Theorem 24. Suppose that for a strictly positive
weight P, fPðz; zÞ is a pseudo weighted homogeneous polynomial. Write it as
fPðz; zÞ ¼ MhðzÞ where M is a mixed monomial and hðzÞ is a weighted homo-
geneous polynomial with h�1ð0ÞVC�n being smooth. Take a toric coordinate
chart s ¼ ðP1; . . . ;PnÞ with P ¼ P1. Put dM ¼ rdegP M and dh ¼ rdegP h. Then
rdegP f ¼ dM þ dh. Then the strict transform V̂V in the toric coordinates Cn

s is
already non-singular. Using the same notation as in the proof of Theorem 24,
we have

p̂p�fPðus; usÞ ¼ p̂p�ðMÞp̂p�hðusÞ ¼ M 0udh
1
~hhðu 0

sÞ
where M 0 is a mixed monomial and hðu 0Þ is a polynomial of us2; . . . ; usn. Let
EðP1Þ ¼ fu 0 A Cn�1

s j ~hhðu 0
sÞ ¼ 0g be the exceptional divisor. Then V̂V is di¤eo-

morphic to the product C� EðP1Þ. Now we take the normal real modification.
The defining equation of the strict transform ~VV in ðCsÞ0 is given as f̂fsð~xx1; ts; u 0

sÞ ¼ 0
where

f̂fsð~xx1; ts; u 0
sÞ1 f̂fP;sð~xx1; ts; u 0

sÞ modulo ð~xx1Þ

F�fPð~xx1; ts; u 0
sÞ ¼ ~xx

dðP1Þ
1 f̂fP;sð~xx1; ts; u 0

sÞ

f̂fP;sð~xx1; ts; u 0
sÞ ¼ ð1þ t1iÞað1� t1iÞb~hhðus2; . . . ; usnÞ:

Thus we see that ~VV is a product RC� EðP1Þ. The modification op : PX ! X is
simply the polar modification of the trivial factor C.

5. Milnor fibration

In this section, we study the Milnor fibration, assuming that f ðz; zÞ is a
strongly non-degenerate convenient mixed function. We have seen in Theorem
19 that there exists a positive number r0 such that V ¼ f �1ð0Þ is mixed non-
singular except at the origin in the ball B2n

r0
and the sphere S2n�1

r intersects
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transversely with V for any 0 < ra r0. The following is a key assertion for
which we need the strong non-degeneracy.

Lemma 28. Assume that f ðz; zÞ is a strongly non-degenerate convenient
mixed function. For any fixed positive number r1 with r1 a r0, there exists positive
numbers d0 f r1 such that for any h0 0, jhja d0 and r with r1 a ra r0, (a) the
fiber Vh :¼ f �1ðhÞ has no mixed singularity inside the ball B2n

r0
and (b) the

intersection Vh VS2n�1
r is transverse and smooth.

Proof. As the assertion (b) follows from the compactness argument, we
show the assertion (a) by contradiction. We assume that (a) does not hold.
Then using the Curve Selection Lemma ([12, 7]), we can find an analytic path
zðtÞ, 0a ta 1 such that zð0Þ ¼ O and f ðzðtÞ; zðtÞÞ0 0 for t0 0 and zðtÞ is a
critical point of the function f : Cn ! C. The proof is similar to that of Theorem
19 as we will see below. Using Proposition 8, we can find a real analytic family
lðtÞ in S1 HC such that

df ðzðtÞ; zðtÞÞ ¼ lðtÞ df ðzðtÞ; zðtÞÞ:ð3Þ
Put I ¼ f j j zjðtÞ2 0g. We may assume that I ¼ f1; . . . ;mg and we consider f I .
As f ðzðtÞ; zðtÞÞ ¼ f I ðzðtÞ; zðtÞÞ2 0, we see that f I 0 0. Consider the Taylor ex-
pansions of zðtÞ and lðtÞ:

ziðtÞ ¼ bit
ai þ ðhigher termsÞ; bi 0 0 i ¼ 1; . . . ;m

lðtÞ ¼ l0 þ l1tþ ðhigher termsÞ; l0 A S1 HC:

Let A ¼ ða1; . . . ; amÞ, b ¼ ðb1; . . . ; bmÞ and we consider the face function f I
A of

f I ðz; zÞ. Then we have

qf

qzj
ðzðtÞ; zðtÞÞ ¼ qf I

A

qzj
ðbÞtd�aj þ ðhigher termsÞ;

qf

qzj
ðzðtÞ; zðtÞÞ ¼ qf I

A

qzj
ðbÞtd�aj þ ðhigher termsÞ; d ¼ dðA; f I Þ:

Observe that we have the following equality for any j by the equality (3):

ordt
qf I

qzj
ðzðtÞ; zðtÞÞ ¼ ordt

qf I

qzj
ðzðtÞ; zðtÞÞ:

Thus by (3), we get the equality: df I
A ðb; bÞ ¼ l0 df

I
A ðb; bÞ and b A C�n. This

implies that b is a critical point of f I
A : C�I ! C, which is a contradiction to the

strong non-degeneracy of f I ðz; zÞ. r

5.1. Milnor fibration, the second description. Put

Dðd0Þ� ¼ fh A C j 0 < jhja d0g; S1
d0
¼ qDðd0Þ� ¼ fh A C j jhj ¼ d0g

Eðr; d0Þ� ¼ f �1ðDðd0Þ�ÞVB2n
r ; qEðr; d0Þ� ¼ f �1ðS1

d0
ÞVB2n

r :
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By Lemma 28 and the theorem of Ehresman ([24]), we obtain the following
description of the Milnor fibration of the second type ([8]).

Theorem 29 (The second description of the Milnor fibration). Assume that
f ðz; zÞ is a convenient, strongly non-degenerate mixed function. Take positive
numbers r0, r1 and d0 such that ra r0 and d0 f r1 as in Lemma 28. Then
f : Eðr; d0Þ� ! Dðd0Þ� and f : qEðr; d0Þ� ! S1

d0
are locally trivial fibrations and the

topological isomorphism class does not depend on the choice of d0 and r.

5.2. Milnor fibration, the first description. We consider now the original
Milnor fibration on the sphere, which is defined as follows:

j : S2n�1
r nKr ! S1; z 7! jðzÞ ¼ f ðz; zÞ=j f ðz; zÞj

where Kr ¼ V VS2n�1
r . The fibrations of this type for mixed functions and

related topics have been studied by many authors ([20, 21, 5, 22, 19, 3]). But
most of the works treat rather special classes of functions. The mapping j can
be identified with jðzÞ ¼ �<ði log f ðzÞÞ, taking the argument y as a local

coordinate of the circle S1. We use the basis
q

qzj
;
q

qzj

���� j ¼ 1; . . . ; n

� �
of the

tangent space TzC
n nC. For a mixed function gðz; zÞ, we use two complex

‘‘gradient vectors’’ defined by

dg ¼ qg

qz1
; . . . ;

qg

qzn

� �
; dg ¼ qg

qz1
; . . . ;

qg

qzn

� �
:

Take a smooth path zðtÞ, �1a ta 1 with zð0Þ ¼ w A CnnV and put v ¼
dz

dt
ð0Þ A TwC

n. Then we have

�d

dt
ð<ði log f ðzðtÞ; zðtÞÞÞt¼0

¼ �<
Xn
i¼1

i
qf

qzj
ðw;wÞ dzj

dt
ð0Þ þ qf

qzj
ðw;wÞ dzj

dt
ð0Þ

� ��
f ðw;wÞ

 !

¼ <ðv; id log f ðw;wÞÞ þ <ðv; id log f ðw;wÞÞ

¼ <ðv; id log f ðw;wÞÞ þ <ðv;�id log f ðw;wÞÞ

¼ <ðv; iðd log f � d log f Þðw;wÞÞ:

Namely we have

�d

dt
ð<ði log f ðzðtÞ; zðtÞÞÞt¼0 ¼ <ðv; iðd log f � d log f Þðw;wÞÞ:ð4Þ

Thus by the same argument as in Milnor [12], we get
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Lemma 30. A point z A S2n�1
r nKr is a critical point of j if and only if the two

complex vectors iðd log f ðz; zÞ � d log f ðz; zÞÞ and z are linearly dependent over R.

The key assertion is the following.

Lemma 31. Assume that f ðz; zÞ is a strongly non-degenerate mixed function.
Then there exists a positive number r0 such that the two complex vectors
iðd log f ðz; zÞ � d log f ðz; zÞÞ and z A SrnKr are linearly independent over R for
any r with 0 < ra r0.

Proof. We do not assume the convenience of f ðz; zÞ for this lemma. We
proceed as the proof of Lemma 4.3 [12]. Assuming the contrary, we can find an
analytic path zðtÞ, 0a ta 1 such that

(a) zð0Þ ¼ O and zðtÞ A CnnV for t > 0.

(b) iðd log f � d log f ÞðzðtÞ; zðtÞÞ ¼ lðtÞzðtÞ for some lðtÞ such that lðtÞ is a
real number.

As d log f � d log f does not vanish outside of f �1ð0Þ near the origin by
Lemma 28 and Proposition 8, we see that lðtÞ2 0. Consider the subset I ¼
f j j zjðtÞ2 0gH f1; . . . ; ng. For simplicity, we may assume that I ¼ f1; . . . ;mg.
Consider the Taylor expansions:

zjðtÞ ¼ ajt
pj þ ðhigher termsÞ; aj 0 0; pj > 0; j A I :

Put P ¼ tðp1; . . . ; pmÞ, a ¼ ða1; . . . ; amÞ A C�I and d ¼ dðP; f I Þ. Then we con-
sider the expansions:

f ðzðtÞ; zðtÞÞ ¼ f I ðzðtÞ; zðtÞÞ ¼ atq þ ðhigher termsÞ; qb d; a0 0

qf I

qzj
ðzðtÞ; zðtÞÞ ¼ qf I

P

qzj
ða; aÞtd�pj þ ðhigher termsÞ; 1a jam

qf I

qzj
ðzðtÞ; zðtÞÞÞ ¼ qf I

P

qzj
ða; aÞtd�pj þ ðhigher termsÞ; 1a jam

lðtÞ ¼ l0t
s þ ðhigher termsÞ; l0 A R�:

The assumption (b) implies that for 1a jam,

i
qf I

P

qzj
ða; aÞ=a� qf I

P

qzj
ða; aÞ=a

 !
¼

0 d � pj � q < sþ pj

l0aj; d � pj � q ¼ sþ pj:

�
Define JH f1; . . . ;mg by J :¼ f j j d � pj � q ¼ sþ pjg. Assume that J ¼ j.
Then we have the equality

df I
P ða; aÞ ¼

a

a
� df I ða; aÞ; jam

which implies f I
P : C�I ! C has a critical point at z ¼ a by Proposition 8. This

is a contradiction to the strong non-degeneracy. Thus we have shown that
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J0j. We consider the di¤erential:

d

dt
f I ðzðtÞ; zðtÞÞ ¼

Xm
j¼1

qf I

qzj
ðzðtÞ; zðtÞÞ dzjðtÞ

dt
þ
Xm
j¼1

qf I

qzj
ðzðtÞ; zðtÞÞ dzjðtÞ

dt

¼ qatq�1 þ ðhigher termsÞ:

The two terms of the right side of the first row can be written as follows.

dzðtÞ
dt

; df I ðzðtÞ; zðtÞÞ
� �

¼ ðPa; df I
P ða; aÞÞtd�1 þ ðhigher termsÞ;

dzðtÞ
dt

; df I ðzðtÞ; zðtÞ
� �

¼ ðPa; df I
P ða; aÞÞtd�1 þ ðhigher termsÞ

where Pa ¼ ðp1a1; . . . ; pmamÞ and Pa ¼ ðp1a1; . . . ; pmamÞ. Thus we get

qatq�1 þ ðhigher termsÞ ¼ ððPa; df I
P ða; aÞÞ þ ðPa; df I

P ða; aÞÞÞtd�1 þ ðhigher termsÞ:
Observe that

< Pa; i
df I

P ða; aÞ
a

 !
þ < Pa; i

df I
P ða; aÞ
a

 !

¼ < Pa; i
df I

P ða; aÞ
a

� i
df I

P ða; aÞ
a

 !

¼ <
X
j A J

l0jajj2 pj

 !
¼ l0

X
j A J

jajj2pj 0 0

as J0j. Thus we see that

ðPa; df I
P ða; aÞÞ þ ðPa; df I

P ða; aÞÞ

¼ ai Pa; i
df I

P ða; aÞ
a

 !
þ Pa; i

df I
P ðPa; aÞ

a

 ! !
0 0:

This implies that q ¼ d (namely f I
P ða; aÞ0 0) and

qa ¼ ðPa; df I
P ða; aÞÞ þ ðPa; df I

P ða; aÞÞ; or

qi ¼ Pa; i
df I

P ða; aÞ
a

 !
þ Pa; i

df I
P ða; aÞ
a

 !
:

Taking the real part of the last equality, we get an obvious contradiction:

0 ¼ <
X
j A J

l0jajj2 pj

 !
¼
X
j A J

l0jajj2 pj 0 0: r
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Observation 32. Let w A f �1ðhÞ, h0 0 be a smooth point. Then the
tangent space Tw f

�1ðhÞ is the real subspace of Cn whose vectors are orthogonal
in R2n to the two vectors

iðd log f � d log f Þðw;wÞ; ðd log f þ d log f Þðw;wÞ:

Proof. Assume that zðtÞ, �ea ta e is a smooth curve in f �1ðhÞ with
zð0Þ ¼ w and VðwÞ ¼ v A Tw f

�1ðhÞ. The assertion follows from the next cal-
culation.

d

dt
log f ðzðtÞ; zðtÞÞ ¼ < log f ðzðtÞ; zðtÞÞ

dt

����
t¼0

� d

dt
ð<ði log f ðzðtÞ; zðtÞÞÞt¼0

¼ <ðv; ðd log f þ d log f Þðw;wÞÞ

þ <ðv; iðd log f � d log f Þðw;wÞÞ: r

Now we are ready to prove the existence of the Milnor fibration of the first
description.

Theorem 33 (Milnor fibration, the first description). Let f ðz; zÞ be a strongly
non-degenerate convenient mixed function. There exists a positive number r0 such
that

j ¼ f =j f j : S2n�1
r nKr ! S1

is a locally trivial fibration for any r with 0 < ra r0.

Proof. Taking r0, r1, d0 su‰ciently small so that f �1ðhÞ and S2n�1
r intersect

transversely for any h A C� with jhja d0 and r1 a ra r0 by Lemma 28. Com-
bining with Observation 32, the transversality implies that the three vectors

z; iðd log f � d log f Þðz; zÞ; ðd log f þ d log f Þðz; zÞ

are linearly independent over R on fz A Sr j 0 < j f ðz; zÞja d0g. Therefore we can
construct a horizontal vector field V for j on S2n�1

r nKr so that
(1) <ðVðzÞ; iðd log f � d log f Þðz; zÞÞ ¼ 1 and <ðVðzÞ; zÞ ¼ 0 for any z A

S2n�1
r � Kr, and moreover

(2) <ðVðzÞ; ðd log f þ d log f Þðz; zÞÞ ¼ 0 for z A Sr with j0 < j f ðz; zÞja d0.
We show that the integral curve of V does not approach to Kr. In fact, assume
that zðtÞ, �ea ta e be an integral curve with zð0Þ ¼ w, VðwÞ ¼ v. As we have
seen in Observation 32,

d

dt
logj f ðzðtÞ; zðtÞÞj ¼ <ðv; ðd log f þ d log f Þðw;wÞÞ:ð5Þ

Therefore the condition (2) guarantees that VðzÞ is tangent to the level real
hypersurface of real codimension 1, j f jz :¼ fw A Cn j j f ðwÞj ¼ j f ðzÞjg. Thus it
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is obvious that V is integrable for any finite time interval and we get the local
triviality by the integration of V. r

5.3. Equivalence of two Milnor fibrations. Take positive numbers r, d0 with
d0 f r as in Theorem 29. We compare the two fibrations

f : qEðr; d0Þ ! S1
d0
; j : S2n�1

r nKr ! S1

and we will show that they are isomorphic. However the proof is much more
complicated compared with the case of holomorphic functions. The reason is
that we have to take care of the two vectors

iðd log f � d log f Þ; d log f þ d log f

which are not perpendicular. (In the holomorphic case, the proof is easy as
the two vectors reduce to the perpendicular vectors id log f ; d log f .) Consider

a smooth curve zðtÞ, �1a ta 1, with zð0Þ ¼ w A B2n
r nV and v ¼ dzðtÞ

dt
ð0Þ. Put

v ¼ ðv1; . . . ; vnÞ. First from (4) and (5), we observe that

log f ðzðtÞ; zðtÞÞ
dt

����
t¼0

¼
Xn
j¼1

vj
q log f

qzj
ðw;wÞ þ vj

q log f

qzj
ðw;wÞ

� �

¼ <ðv; ðd log f þ d log f Þðw;wÞÞ

þ i<ðv; iðd log f � d log f Þðw;wÞÞ:

Define two vectors on Cn � V :

v1ðz; zÞ ¼ d log f ðz; zÞ þ d log f ðz; zÞ

v2ðz; zÞ ¼ iðd log f ðz; zÞ � d log f ðz; zÞÞ

The above equality is translated as

log f ðzðtÞ; zðtÞÞ
dt

����
t¼0

¼ <ðv; v1ðw;wÞÞ þ i<ðv; v2ðw;wÞÞ:ð6Þ

The following will play the key role for the equivalence of two fibrations:

Lemma 34. Under the same assumption as in Theorem 33, there exists a
positive number r0 so that for any z with kzka r0 and f ðz; zÞ0 0, the three vectors

z; v1ðz; zÞ; v2ðz; zÞ

are either (i) linearly independent over R or (ii) they are linearly dependent over R
and the relation can be written as

z ¼ av1ðz; zÞ þ bv2ðz; zÞ; a; b A R:ð7Þ

and the coe‰cient a is positive.
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Proof. First observe that the pairs

P1 ¼ fv1ðz; zÞ; v2ðz; zÞg; P2 ¼ fz; v2ðz; zÞg

are respectively linearly independent over R by Lemma 28, Lemma 31 and the
above equality. Assume that the assertion does not hold. Consider the real
analytic variety W where the three vectors are linearly dependent over R. Let us
consider the open set U ¼ CnnV . Then W VU has a finite number of connected
components. The sign of the coe‰cient a in (7) is constant on each component,
as long as they are near enough to the origin. This is the result of the linear
independence of z, v2ðz; zÞ. We will show that this sign is positive. We use the
Curve Selection Lemma ([12, 7]) to find an analytic curve zðtÞ, 0a ta 1, such
that zð0Þ ¼ O and zðtÞ B V for t0 0 and there exist real valued functions lðtÞ,
mðtÞ so that

zðtÞ ¼ lðtÞv1ðz; zÞ þ mðtÞv2ðz; zÞ:

Let I ¼ f j j zjðtÞ2 0g. We may assume that I ¼ f1; . . . ;mg and we do the

argument in CI . We consider the Taylor expansions of zðtÞ and f ðzðtÞ; zðtÞÞ,
and the Laurent expansions of lðtÞ and mðtÞ:

zjðtÞ ¼ ajt
pj þ ðhigher termsÞ; aj A C�; pj A N; 1a jam;

f ðzðtÞ; zðtÞÞ ¼ atl þ ðhigher termsÞ; a A C�; l A N

lðtÞ ¼ l0t
n1 þ ðhigher termsÞ; l0 A R�; n1 A Z

mðtÞ ¼ m0t
n2 þ ðhigher termsÞ; m0 A R�; n2 A Z:

First we consider the equality:

zjðtÞ ¼ lðtÞ qf

qzj

�
f þ qf

qzj

�
f

� �
ðzðtÞ; zðtÞÞð8Þ

þ mðtÞi qf

qzj

�
f � qf

qzj

�
f

� �
ðzðtÞ; zðtÞÞ; j ¼ 1; . . . ;m:

Put P ¼ ðp1; . . . ; pmÞ, a ¼ ða1; . . . ; amÞ and d ¼ dðP; f I Þ. Then we observe that

qf

qzj
ðzðtÞ; zðtÞÞ=f ðzðtÞ; zðtÞÞ ¼ qf I

P

qzj
ða; aÞ=a

 !
td�pj�l þ ðhigher termsÞ;

qf

qzj
ðzðtÞ; zðtÞÞÞ=f ðzðtÞ; zðtÞÞ ¼ qf I

P

qzj
ða; aÞ=a

� �
td�pj�l þ ðhigher termsÞ

Thus comparing the equality (8), we see that

pj bminfn1 þ d � pj � l; n2 þ d � pj � lg:

33non-degenerate mixed functions



To avoid the repetition of the similar argument and to treat the cases n2 ¼ n1,
n2 < n1 and n2 > n1 simultaneously, we put n0 ¼ minðn1; n2Þ and we rewrite the
expansions as lðtÞ, mðtÞ as

lðtÞ ¼ r0t
n0 þ � � � ; r0 A R

mðtÞ ¼ m0t
n1 þ � � � ; m0 A R:

Here we have r0 ¼ 0 or r0 ¼ l0 (respectively m0 ¼ 0 or m0 ¼ m0) according to
n1 > n0 or n1 ¼ n0 (resp. n2 > n0 or n2 ¼ n0). By (8), we get

l0
qf I

P

qzj
ða; aÞ=aþ qf I

P

qzj
ða; aÞ=a

 !
þ im0

qf I
P

qzj
ða; aÞ=a� qf I

P

qzj
ða; aÞ=a

 !

¼
aj pj ¼ d � pj þ n0 � l

0 pj > d � pj þ n0 � l:

�

More precisely we assert

Assertion 35. Put pmin ¼ minfpi j i A Ig and K ¼ fi A I j pi ¼ pming. Then
we have

l0
qf I

P

qzj
ða; aÞ=aþ qf I

P

qzj
ða; aÞ=a

 !
þm0i

qf I
P

qzj
ða; aÞ=a� qf I

P

qzj
ða; aÞ=a

 !
ð9Þ

¼
aj j A K

0 j B K :

�

Proof. We examine the equality (8). The order of kzðtÞk is pmin. On the
other hand, the order of j-th component of the right side of (8) is greater than or
equal to d � pj þ n0 � l and the coe‰cient of td�pjþn0�l is given by the left side
of (9). If there is an index j B K such that this coe‰cient is non-zero, then the
order of the right side of (8) is strictly smaller than d � pmin þ n0 � l and the limit
of the normalized vector of the right side has 0 coe‰cient on any j A K and we
have the contradiction to ð8Þ. r

Thus we have proved (9). Now we examine the next equality more
carefully:

df ðzðtÞ; zðtÞÞ
dt

¼
Xn
j¼1

qf ðzðtÞ; zðtÞÞ
qzj

dzjðtÞ
dt

þ qf ðzðtÞ; zðtÞÞ
qzj

dzjðtÞ
dt

� �
:ð10Þ

The left hand side is simply

df ðzðtÞ; zðtÞÞ
dt

¼ altl�1 þ ðhigher termsÞ:
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We introduce the complex vectors:

v ¼ ðv1; . . . ; vmÞ; vj ¼
ffiffiffiffiffi
pj

p
fj ;

w ¼ ðw1; . . . ;wmÞ;wj ¼
ffiffiffiffiffi
pj

p
fj

(

where fj ¼
qf I

P

qzj
ða; aÞ; fj ¼

qf I
P

qzj
ða; aÞ; 1a jam:

The order of the right hand side of (10) is greater than or equal to d � 1. Let R
be the coe‰cient of td�1 of the right side. By an easy calculation, we have

R ¼
Xm
j¼1

aj pj fj þ
Xm
j¼1

aj pj fj

¼
Xm
j¼1

pj fj l0
fj

a
þ

fj

a

� �
þ im0

fj

a
�

fj

a

� �� �

þ
Xm
j¼1

pj fj l0
fj

a
þ

fj

a

 !
� im0

fj

a
�

fj

a

 !( )

¼ a
Xm
j¼1

ðpjj fjj2 þ pj j fjj
2Þ l0

jaj2
þ im0

jaj2

 !
þ a

Xm
j¼1

2pj fj fj
l0

a2
� im0

a2

� �

¼ aðkvk2 þ kwk2Þ l0

jaj2
þ im0

jaj2

 !
þ 2aðw; vÞ l0

a2
� im0

a2

� �

Consider two complex numbers:

b :¼ ðkvk2 þ kwk2Þ l0

jaj2
þ i

m0

jaj2

 !
; g :¼ 2ðw; vÞ l0

a2
� i

m0

a2

� �

Using the Schwartz inequality, we see that

jgj ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 þm2

0

q
jaj2

jðw; vÞja 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 þm2

0

q
jaj2

kvk kwk

and by comparing with jbj, we get

jbj � jgjb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 þm2

0

q
jaj2

�����ðkvk � kwkÞ2 b 0:

For the equality jbj ¼ jgj, it is necessary that kvk ¼ kwk and jðw; vÞj ¼ kvk � kwk,
or

w ¼ uv; bu A S1 HC:

35non-degenerate mixed functions



Note that this is equivalent to ð f1; . . . ; fmÞ ¼ uð f1; . . . ; fmÞ which implies
df ða; aÞ ¼ u df ða; aÞ. This is a contradiction to the non-degeneracy assumption
for f I ðz; zÞ. Thus we conclude that jb j > jgj and R0 0.

Now the equality (10) says, l� 1 ¼ d � 1 and

la ¼ ab þ ag; or

l ¼ ðkvk2 þ kwk2Þ l0

jaj2
þ i

m0

jaj2

 !
þ 2ðw; vÞ l0

a2
� i

m0

a2

� �
We now assert that l0 > 0. Assume l0 a 0. Then <ðbÞa 0 and to get the
equality l ¼ b þ g, we must have jg j > jbj. This is impossible as we have seen
that jb j > jgj. See Figure 2. r

Now we are ready to prove the isomorphism theorem:

Theorem 36. Under the same assumption as in Theorem 33, the two
fibrations

f : qEðr; d0Þ ! S1
d0
; j : S2n�1

r nKr ! S1

are topologically isomorphic.

Proof. The proof is done as in the case of Milnor fibrations of a holomor-
phic function ([16]). We will construct a vector field V on

Ecðr; d0Þ :¼ BrnIntðEðr; d0ÞÞ ¼ fz A Br j j f ðz; zÞjb d0g
so that

<ðVðzÞ; v2ðz; zÞÞ ¼ 0;

<ðVðzÞ; v1ðz; zÞÞ > 0;

<ðVðzÞ; zÞ > 0:

8><
>:ð11Þ

Assume for a moment that we have constructed such a vector field. Along the
integral curve hðt;wÞ of V with hð0;wÞ ¼ w, the argument of f ðhðt;wÞ; hðt;wÞÞ is

Figure 2. If l0 a 0, jbj < jgj
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constant and the absolute value j f ðhðt;wÞÞj and the norm khðt;wÞk are monotone
increasing. The integral curve is well-defined as long as hðt;wÞ is inside Ecðr; d0Þ.
For each w A Ecðr; d0Þ, there exists a unique tðwÞ such that khðtðwÞÞk ¼ r. Thus
this gives a topological isomorphism c : qEðr; d0Þ ! S2n�1

r nNr which is defined by
cðwÞ ¼ hðtðwÞ;wÞ

qEðr; d0Þ ���!f S1
d0???yc

???y1=d0

S2n�1
r nInt Nr ���!j S1

where Nr ¼ S2n�1
r V fz j j f ðzÞja d0g. As Nr GDðd0Þ� � Kr with Dðd0Þ� ¼ fh A C j

0 < jhja dg, the restriction j : S2n�1
r nNr ! S1 is isomorphic to the Milnor

fibration j : S2n�1
r nKr ! S1.

For the construction of V, we use Lemma 34. Take a point w A Ecðr; d0Þ.
If the three vectors v1ðw;wÞ, v2ðw;wÞ, w are linearly independent over R, it is
also linearly independent over a small open neighborhood UðwÞ. It is easy to
construct locally V on UðwÞ, satisfying the above property (11). If the three
vectors are linearly dependent over R, consider the expression:

w ¼ av1ðw;wÞ þ bv2ðw;wÞ; a; b A R;

with a > 0, we construct V on a neighborhood UðwÞ of w so that

<ðVðzÞ; v2ðz; zÞÞ ¼ 0; <ðVðzÞ; v1ðz; zÞÞ > 0:

on UðwÞ. Note that

<ðw;VðwÞÞ ¼ a<ðv1ðw;wÞ;VðwÞÞ > 0

If UðwÞ is su‰ciently small, this inequality holds on UðwÞ. Consider the open
covering U ¼ fUðwÞ jw A Ecðr; d0Þg. Taking a locally finite refinement U 0 of this
covering, we glue together vector fields constructed locally on each open set in U 0

using a partition of unity as usual. r

5.4. Polar weighted homogeneous polynomial and its Milnor fibration.
Consider a mixed polynomial f ðz; zÞ which is a radially weighted homogeneous
polynomial of type ðq1; . . . ; qn; drÞ and a polar weighted homogeneous polynomial
of type ðp1; . . . ; pn; dpÞ. Put V ¼ f �1ð0Þ as before. Then f : CnnV ! C� is a
locally trivial fibration [17]. We call it the global fibration. On the other hand,
the Milnor fibration of the first type:

j :¼ f =j f j : SrnKr ! S1; Kr ¼ f �1ð0ÞVSr

always exists for any r > 0 and the isomorphism class does not depend on the
choice of r. This can be shown easily, using the polar action. We simply use
the polar action to show the local triviality:

c : j�1ðyÞ � ðy� p; yþ pÞ ! j�1ððy� p; yþ pÞÞ
cðz; yþ hÞ :¼ ðz1 expði p1h=dpÞ; . . . ; zn expði pnh=dpÞÞ
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Now we have the following assertion which is a generalization of the same
assertion for weighted homogeneous polynomials.

Theorem 37. Let f ðz; zÞ be a polar weighted polynomial as above. We
assume that the radial weight vector tðq1; . . . ; qnÞ is strictly positive. Then the two
fibrations

f : f �1ðS1
d Þ ! S1

d ; j ¼ f =j f j : S2n�1
r � Kr ! S1;

are isomorphic for any r > 0 and d > 0.

Proof. First, observe that the isomorphism class of the global fibration

f : f �1ðS1
d Þ ! S1

d

does not depend on d > 0. This follows from the commutative diagram:

f �1ð1Þ ���!fd
f �1ðdÞ???y f

???y f

S1 ���!d S1
d

; fd : ðz; zÞ 7!
ffiffiffi
d

d
p

� ðz; zÞ

where d ¼ rdeg f and � denotes the R� action by the radial weights. Now
the global fibration f : f �1ðS1

d Þ ! S1
d is isomorphic to the second fibration

j : S2n�1
r nKr ! S1 as follows. For any z A f �1ðS1

d Þ, consider the orbit of the
radial action t 7! t � z ¼ ðtq1z1; . . . ; tqnznÞ, t > 0. There exists a unique positive
real number t ¼ tðzÞ so that ktðzÞ � zk ¼ r by the strict positivity assumption
of Q. Put c : f �1ðS1

d Þ ! S2n�1
r nKr by cðzÞ ¼ tðzÞ � z and x : Sd ! S1 by

xðhÞ ¼ h=d. Then we have a canonical commutative diagram which gives an
isomorphism of two fibrations.

f �1ðS1
d Þ ���!f S1

d???yc

???yx

S2n�1
r nKr ���!j S1 r

The following is an important criterion for the connectivity of the Milnor
fiber of a polar weighted mixed polynomial.

Proposition 38. Let f ðz; zÞ be a polar weighted mixed polynomial of n
variables z ¼ ðz1; . . . ; znÞ. We assume that f �1ð0Þ has at least one mixed smooth
point. Then the fiber F :¼ f �1ð1ÞHCn is connected.

Proof. Put V ¼ f �1ð0Þ. Take two points P;Q A F . Connect P, Q by a
path l in CnnV . Then faðlÞ is a closed path in C� based at 1 A C� and let s
be the rotation number of faðlÞ around the origin. Take a smooth point R in V
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and take a small lasso o around V in the normal plane at R. Connect o to P in
CnnV to get a closed path o 0 at P. The image of o 0 by f is a closed loop with
the rotation number 1 around the origin. Take a new path l 0 ¼ o 0�s � l. Then
the image of l 0 has 0 rotation number around the origin and thus it is homotopic
to the constant loop at 1 A C� by a homotopy kt : f � o 0 F c1, where c1 is the
constant path at 1. Now lift this homotopy by the radial and the polar actions
to get a path ~kk1 from P to Q. Obviously f � ~kk1 is the constant path c1. Thus
~kk1 is a path in the fiber F which connects P and Q. (For a holomorphic case,
this assertion follows from the Kato-Matsumoto theorem, [9]). r

6. Curves defined by mixed functions

In this section, we focus our study to mixed plane curves ðn ¼ 2Þ.

6.1. Holomorphic plane curves. Assume that C is a germ of a complex
analytic curve defined by a convenient non-degenerate holomorphic function
f ðz1; z2Þ and let Dj , j ¼ 1; . . . ; r be the 1-dimensional faces and M0;M1; . . . ;
Mr�1;Mr be the vertices of Gð f Þ such that Dj ¼ Mj�1Mj and M0, Mr are on the
coordinate axes. Then each face function fDj

can be factorized as

fDj
ðz1; z2Þ ¼ cjz

aj
1 z

bj
2

Ynj
i¼1

ðzpj1 þ aj; iz
qj
2 Þ; gcdðpj; qjÞ ¼ 1

where aj;1; . . . ; aj; nj are mutually distinct. Then any toric modification with
respect to a regular simplicial cone subdivision S� of the dual Newton diagram
G�ð f Þ gives a good resolution of f : ðC2;OÞ ! ðC; 0Þ. Let Pj be the weight
vector of the face Dj. Each vertex P of S� gives an exceptional divisor ÊEðPÞ and
the strict transform ~CC intersects with ÊEðPÞ if and only if P ¼ Pj for some

j ¼ 1; . . . ; r. In the case P ¼ Pj, ÊEðPjÞV ~CC is nj point which corresponds to
irreducible components associated with fDj

. The vertices M1; . . . ;Mr�1 do not
contribute to the irreducible components. The number of irreducible compo-
nents of ðC;OÞ is given by

Pr
i¼1 ni. Note that 1þ

Pr
i¼1 ni is the number of

integral points on Gð f Þ ([16]). The situation for mixed polynomials is more
complicated as we will see later.

6.2. Mixed curves. Now we consider curves defined by a mixed function
with the same Newton boundary as in the previous subsection. Let f ðz; zÞ be a
non-degenerate convenient mixed function with two variables z ¼ ðz1; z2Þ and let
C ¼ f �1ð0Þ. Let

j : Y !o X !p̂p C2

(Y ¼ RX , o ¼ oR or PX and o ¼ op) be the resolution map, described in
Theorem 24 and Theorem 25. Let ~EEðPÞ ¼ o�1ðÊEðPÞÞ for a vertex P of S�.
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6.2.1. Simple vertices. A vertex M ¼ ða; bÞ A Gð f Þ is called simple if fM
contains only a single monomial za11 zb12 za21 zb22 such that a ¼ a1 þ a2, b ¼ b1 þ b2.
Otherwise we say M is a multiple vertex of Gð f Þ.

Example 39. Let f ðz; zÞ ¼ z31 þ tz21z1 þ z22 . Then Gð f Þ has one face with
edge vertices M1 ¼ ð3; 0Þ and M2 ¼ ð0; 2Þ. f ðz; zÞ is a radially weighted homo-
geneous polynomial of type ð2; 3; 6Þ. The vertex M1 is a multiple vertex as
fM1

ðz; zÞ ¼ z31 þ tz21z1.

Lemma 40. Suppose M ¼ ðn; 0Þ and let fMðz1; z1Þ ¼
Pn

j¼0 cjz
j
1z

n�j
1 . Con-

sider the factorization fMðz1; z1Þ ¼ c
Qn

j¼1ðz1 � ajz1Þ. Then V � :¼ fz1 A C� j
fMðz1; z1Þ ¼ 0g is empty if and only if jaj j0 1 for any j ¼ 1; . . . ; n.

Proof. Let V �
j :¼ fz1 A C� j z1 ¼ ajz1g. Then V � ¼ 6n

j¼1
V �
j . It is easy to

see that V �
j is not empty if and only if jajj ¼ 1. r

Note that fMðz1; z1Þ is non-degenerate if and only if V � ¼ j. For an inside
vertex Mj (namely, Mj is not on the axis), the criterion for non-degeneracy of the
function fMj

ðz; zÞ is not so simple.

Example 41. Consider

C :¼ fz A C2 j fMðz; zÞ ¼ tz1z2 þ z1z2 þ z1z2g:

We assert that

Assertion 42. f �1
M ð0ÞHC�2 is non-empty if and only if jtja 2. fM is non-

degenerate if and only if jtj > 2 or 0 < jtj < 2.

Proof. Put

z1 ¼ r1 expðyiÞ; z2 ¼ r2 expðhiÞ; t ¼ x expðaiÞ:

Then we see that C is radially homogeneous and it is defined by

C : 2 cosð�yþ hÞ þ xeiðaþyþhÞ ¼ 0:

For the existence of non-trivial solutions, we need to have:

x ¼ jtja 2;
aþ yþ h ¼ mp; bm A Z

2 cosð�yþ hÞ þ xð�1Þm ¼ 0

�
ð12Þ

or x ¼ 0; cosð�yþ hÞ ¼ 0ð13Þ

Assume that t0 0, jtj < 2. The equation (12) has 8 solutions with 0a y; h < 2p
for x < 2 and 4 solutions for x ¼ 2 or 0. We can show that V ¼ f �1

M ð0Þ is non-

singular for 00 x < 2, using Proposition 8. In fact, assume that df ðzÞ ¼ l df ðzÞ
with jlj ¼ 1. Then we have
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tz2 þ z2 ¼ lz2; tz1 þ z1 ¼ lz1; tz1z2 þ ðz1z2 þ z1z2Þ ¼ 0

This implies that l2 ¼G1 and jtj ¼ 0 or jtj ¼ 2. r

6.2.2. Link components. Let f ðz; zÞ be a mixed function with two variables
z ¼ ðz1; z2Þ and let C ¼ f �1ð0Þ. The link components at the origin are the compo-
nents of S3

e VC for a su‰ciently small e. We are interested in finding out how to
compute the number of the link components of C at the origin. Let us denote
this number by lknðC;OÞ and we call lknðC;OÞ the link component number. Let
us denote the number of components which are not the coordinate axes z1 ¼ 0 or
z2 ¼ 0 by lkn�ðC; 0Þ. In the case of f being a holomorphic function, lknðC;OÞ
is equal to the number of irreducible components of ðC;OÞ, which is a com-
binatorial invariant, provided f is Newton non-degenerate, as we have seen in the
previous section §6.1. However for a generic mixed function, lknðC;OÞ might be
strictly greater than the number of irreducible components (see Example 27 for
example).

Theorem 43. Assume that f ðz; zÞ is a convenient non-degenerate mixed
polynomial of two variables z ¼ ðz1; z2Þ and let C ¼ f �1ð0Þ. Let F be the set
of 1-faces of Gð f Þ. Assume that the vertices of Gð f Þ are simple. Then the
number of the link components lknðC;OÞ is given be the formula:

lknðC;OÞ ¼
X
D AF

lkn�ð f �1
D ð0Þ;OÞ:

Proof. Let F : RX ! C2 be the resolution of f by the composite of a toric
modification p̂p : X ! C2 and the normal real blowing-up o : RX ! X . The
simplicity of the vertices implies that F�1ðÊEðPÞÞV ~CC ¼ j for any P for which
DðPÞ a vertex of Gð f Þ. Thus by Theorem 24, it is immediate that there is
one link component of ðC;OÞ for every connected component of ~EEðPÞ ¼
F�1ðÊEðPÞÞV ~CC with DðPÞ A F. The assertion follows from this observation.

r

Now our interest is finding out how we can compute lkn�ð f �1
D ð0Þ;OÞ. In

general, it is not so easy to compute this number but there is a class for which the
link number is easily computed.

6.2.3. Good Newton polar boundary. Suppose that f ðz; zÞ is a mixed
function of two variables and let D be a face of the Newton boundary. Suppose
that fDðz; zÞ is also a polar weighted homogeneous polynomial. Let Q ¼ tðq1; q2Þ
and P ¼ tðp1; p2Þ be the radial and the polar weight vectors and dr, dp be the
respective degree. In general, the mixed face D̂DðQÞ is two-dimensional as the
possible monomial zn11 zn22 z

m1
1 z

m2
2 satisfies two linear equations

ðn1 þ m1Þq1 þ ðn2 þ m2Þq2 ¼ dr; ðn1 � m1Þp1 þ ðn2 � m2Þp2 ¼ dp:
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We say that fDðz; zÞ is a good polar weighted polynomial if dim D̂D ¼ 1 and fDðz; zÞ
factors as

fDðz; zÞ ¼ czmzn
Yk
j¼1

ðza2za
0

2 � ljz
b
1z

b 0

1 Þmjð14Þ

with a0 a 0, b0 b 0 and gcdða; a 0; b; b 0Þ ¼ 1. Note that in this case, p1ðb� b 0Þ ¼
p2ða� a 0Þ and non-zero. We say that f ðz; zÞ has a good Newton polar boundary
if for every face D of Gð f Þ, fDðz; zÞ is a good polar weighted polynomial.

Lemma 44. Assume that fDðz; zÞ is a good polar weighted polynomial and
assume that a factorization of fDðz; zÞ is given as (14). Then fDðz; zÞ is non-
degenerate if and only if m1 ¼ � � � ¼ mk ¼ 1.

Proof. Assume that mj b 2 for some j. Then it is easy to see that

df ðz; zÞ ¼ df ðz; zÞ ¼ 0 on zb1z
b 0

1 � ljz
a
2z

a 0

2 ¼ 0. Thus it is degenerate. Assume
that mj ¼ 1 for any j. As fD is polar weighted, we only need to show that
f �1
D ð0ÞVC�2 is mixed non-singular. Take a point w A f �1

D ð0ÞVC�2 such that

wa
2w

a 0

2 � l1w
b
1w

b 0

1 ¼ 0 for example. Then we have

df ðw;wÞ ¼ cwnwm
Yk
j¼2

ðwa
2w

a 0

2 � ljw
b
1w

b 0

1 Þ � ð�bl1w
b�1
1 wb 0

1 ; awa�1
2 wa 0

2 Þ

df ðw;wÞ ¼ cwnwm
Yk
j¼2

ðwa
2w

a 0

2 � ljw
b
1w

b 0

1 Þ � ð�b 0l1w
b
1w

b 0�1
1 ; a 0wa

2w
a 0�1
2 Þ

Suppose that df ðw;wÞ ¼ u df ðw;wÞ for some u with juj ¼ 1. This implies that
b ¼ b 0, a ¼ a 0. This does not happen as we have assumed that a0 a 0, b0 b 0.

r

Example 45. Let f ðz; zÞ ¼ z51 þ z1z2ðz21 � z22Þ þ z52 . Then Gð f Þ has three 1-
faces and the corresponding face functions are

z21z1ðz31z�1
1 þ z2Þ; z1z2ðz21 � z22Þ; z2z

2
2ð�z1 þ z�1

2 z32Þ:

Thus f has a good Newton polar boundary.

6.2.4. Good binomial polar weighted polynomial. A polynomial f ðz; zÞ ¼
za2z

a 0

2 � lzb1z
b 0

1 with a0 a 0, b0 b 0, l0 0 and gcdða; a 0; b; b 0Þ ¼ 1 is called an
irreducible binomial polar weighted homogeneous polynomial. It is irreducible as
a mixed polynomial. By Lemma 44, this is a basic polar weighted polynomial
for our purpose. Put c1 ¼ b� b 0 and c2 ¼ a� a 0. Then the associated Laurent
polynomial in the sense of [17] is

gðz1; z2Þ ¼ zc22 � lzc11 :
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Let C ¼ f f ¼ 0g and C 0 ¼ fg ¼ 0g. Note that c1; c2 0 0 by the polar weighted-
ness.

Lemma 46. We have the equality:

lkn�ðC;OÞ ¼ gcdðc1; c2Þ ¼aðC 0Þ
where aðC 0Þ is the number if irreducible components of C 0.

Proof. It is easy to see that the number of irreducible components of C 0

in C�2 is gcdðc1; c2Þ. We know that C VC�2 and C 0 VC�2 are homeomorphic
by the same argument as in [17]. We will show that lkn�ðC; 0Þ ¼ gcdðc1; c2Þ
without using this isomorphism. We consider components of C in C�2. For
this purpose, we use the polar modification. So we put z1 ¼ r1 expðy1iÞ and
z2 ¼ r2 expðy2iÞ. Considering the conjugation di¤eomorphism, we may assume
that c1; c2 > 0. For brevity we put r1 ¼ sc21 and l ¼ rc2 expðhiÞ for some s1,
r > 0. Thus

f ðz; zÞ ¼ rc22 expðc2y2iÞ � lrc11 expðc1y1iÞ
¼ rc22 expðc2y2iÞ � rc2ðsc11 Þc2 expððc1y1 þ hÞiÞ

Thus we have r2 ¼ rsc11 and

expðc2y2iÞ � expððc1y1 þ hÞiÞ ¼ 0:

Put c0 ¼ gcdðc1; c2Þ and write ci ¼ c0c
0
i for i ¼ 1; 2. The above equation is solved

as follows.
r2 ¼ sc11 r; c2y2 1 c1y1 þ h modulo 2p:

The last equality can be solved so that the component Cj of C is given as

Cj :¼ fðsc11 r expðy1iÞ; sc2c11 expðy2iÞÞ j y2 ¼ fkðy1Þ; 0a y1 a 2c 02pg
where fkðy1Þ :¼ c 01y1=c

0
2 � h=c2 þ 2kp=c2 for k ¼ 0; 1; . . . ; c2 � 1. For kb c0,

write k ¼ c0k1 þ k0, 0a k0 < c0. Then fkðy1Þ ¼ fk0ðy1 þ 2k1pÞ and Ck ¼ Ck0

as we have

Ck ¼ fðr1 expðy1iÞ; r2 expðfkðy1ÞiÞ j 0a y1 a 2c 02pg
¼ fðr1 expðy1iÞ; r2 expðfkðy1ÞiÞÞ j 2k1pa y1 a 2c 02pþ 2k1pg
¼ fðr1 expððy1 þ 2k0pÞiÞ; r2 expðfk0ðy1 þ 2k0pÞiÞ j 0a y2 a 2c 02pg

¼ Ck0 :

Thus we get lkn�ðC;OÞ ¼ c0. r

Corollary 47. Let fDðz; zÞ be a good polar weighted polynomial which is
factored as

fDðz; zÞ ¼ cznzm
Yk
j¼1

ðza2za
0

2 � ljz
b
1z

b 0

1 Þ
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with gcdða; a 0; b; b 0Þ ¼ 1, a0 a 0, b0 b 0 as in Lemma 44 and let C ¼ f �1
D ð0Þ.

Then lkn�ðCÞ ¼ k gcdða� a 0; b� b 0Þ.

6.2.5. Newton pseudo conjugate weighted homogeneous function. Assume
that f ðz; zÞ is a non-degenerate Newton pseudo conjugate weighted homogeneous
function. Then for any face D, we can write

fDðz; zÞ ¼ Mhðz; zÞ
where M is a mixed monomial and h is a J-conjugate weighted homogeneous
polynomial for some JH f1; 2g. Thus we can factorize h as

i�J hðz; zÞ ¼ c
Yk
j¼1

ðzp12 � ljz
p2
1 Þ; c0 0

with gcdðp1; p2Þ ¼ 1. In this case, it is easy to see that

lkn�ð f �1
D ð0ÞÞ ¼ k:

Thus we obtain a similar formula:

Proposition 48. Assume that f ðz; zÞ is a non-degenerate convenient Newton
pseudo conjugate weighted homogeneous function. Then

lknð f �1ð0ÞÞ þ 1 ¼ number of integral points on Gð f Þ:

6.2.6. Example of a radially weighted homogeneous polynomial with a non-
simple vertex. The link number for a radially weighted homogeneous polynomial
with a non-simple vertex is more complicated, as is seen by the next example.
Consider the radially weighted homogeneous polynomial

f ðz; zÞ ¼ z31 þ cz1z
2
1 � z32

and put C ¼ f �1ð0Þ. Then Gð f Þ consists of a single face with vertices ð3; 0Þ,
ð0; 3Þ. It is easy to see that f is non-degenerate if and only if jcj0 1. The
vertex ð3; 0Þ is not simple. For jcj < 1, we have

z2 ¼ z1o
jð1þ c expð�4yiÞÞ1=3; j ¼ 0; 1; 2

where o ¼ expð2pi=3Þ, z1 ¼ r expðyiÞ and lknðC;OÞ ¼ 3. The function

ð1þ c expð�4yiÞÞ1=3 is a well-defined single-valued function of c, z1 with jcj < 1
so that it takes value 1 for c ¼ 0. Considering the family f ðz; z; tÞ ¼
z31 þ ctz1z

2
1 � z32 for 0a ta 1, we see that this curve is topologically the same

as z31 þ z32 ¼ 0.
Assume that jcj > 1. Then ð1þ c expð�4yiÞÞ1=3 is not a single valued

function as a function of 0a ya 2p. However we have a better expression.
Put z1 ¼ r expðyiÞ and c ¼ s expðhiÞ.

z2 ¼ s1=3ro j exp i
�yþ h

3

� �
1þ expð4yiÞ

c

� �1=3
; j ¼ 1; 2; 3

44 mutsuo oka



where 0a ya 2p. Note that f �1ð0ÞnfOg is a 3-sheeted covering over fz1 0 0g
and three points over y ¼ 0 are cyclically permuted by the monodromy y : 0 ! 2p.
Thus this expression shows that lknðC;OÞ ¼ 1. It is also easy to see that this

knot is topologically the same with z1jz1j2 � z32 ¼ 0. Thus we observe that the
topology of a mixed singularities is not a combinatorial invariant of Gð f Þ.

7. Milnor fibration for mixed polynomials with non-isolated singularities

We consider a true strongly non-degenerate mixed polynomial f ðz; zÞ which is
not necessarily convenient. Take a positive weight vector P ¼ tðp1; . . . ; pjÞ A Nþ

which is not strictly positive and we put

IðPÞ ¼ f j j pj ¼ 0g; JðPÞ ¼ f j j pj 0 0g:

We consider the face function fPðz; zÞ as a mixed polynomial in variables
fzj j j A JðPÞg and we consider the other variables fzi j i A IðPÞg are fixed non-
zero complex numbers. Thus it defines a family of mixed polynomial functions
parameterized by zIðPÞ ¼ ðziÞi A IðPÞ:

fP : CJðPÞðwIðPÞÞ ! C; zJðPÞ 7! fPðz; zÞ:
Here

C�JðPÞðwIðPÞÞ ¼ fz A C�n j zIðPÞ ¼ wIðPÞ : fixedgGC�JðPÞ:

Thus we are considering fP as a family of mixed polynomials in zJðPÞ with
coe‰cients in CfzIðPÞ; zIðPÞg. If dðP; f Þ ¼ 0, then fP A CfzIðPÞ; zIðPÞg.

Definition 49. We say that f is super strongly non-degenerate if the
following condition (SSND) is satisfied.

(SSND): for any subset P A Nþ, either
(a) dðP; f Þ ¼ 0 i.e., fP A CfzIðPÞ; zIðPÞg or

(b) dðP; f Þ > 0 and fP : C�JðPÞðwIðPÞÞ ! C� has no critical points for any
wIðPÞ A C�IðPÞ.

The following is an immediate consequence of the definition.

Proposition 50. (1) If f ðz; zÞ is a convenient strongly non-degenerate mixed
function, then f ðz; zÞ is super strongly non-degenerate.

(2) Assume that f ðz; zÞ is super strongly non-degenerate and I A NVð f Þ.
Then f I is also super strongly non-degenerate.

The assertion (2) can be proved in the exact same way as the proof of
Proposition 7. r

The following key lemma is a mixed polynomial version of Lemma (2.1.4) of
Hamm-Lê [8].

45non-degenerate mixed functions



Lemma 51. Assume that f ðz; zÞ is a true super strongly non-degenerate mixed
function and consider the mixed hypersurface V and its open subset Va. Take
a positive number r0 so that VaVBr0 is mixed non-singular and any sphere Sr

intersects transversely with Va for any 0 < ra r0. Then for any fixed 0 < ra r0,
there exists a su‰ciently small positive number d such that for any h A C with
0 < jhja d, the fiber f �1ðhÞVBr0 is smooth and any sphere Ss intersects trans-
versely with f �1ðhÞ for any ra sa r0 and h with 0 < jhja d.

Proof. Assume that the assertion is not true. Using the Curve Selection
Lemma ([12, 7]), we can find a real analytic curve zðtÞ, 0a ta 1 such that

ra kzðtÞka r0; f ðzðtÞ; zðtÞÞ2 0; zð0Þ A f �1ð0Þ
and the fiber f �1ðaðtÞÞ and the sphere of radius kzðtÞk is not transverse at zðtÞ
where aðtÞ ¼ f ðzðtÞ; zðtÞÞ. Recall that we have defined two special vectors:

v1ðz; zÞ ¼ d log f ðz; zÞ þ d log f ðz; zÞ

v2ðz; zÞ ¼ iðd log f ðz; zÞ � d log f ðz; zÞÞ

Recall that the tangent space of the fiber Tz f
�1ðhÞ is spanned by the vectors

which are perpendicular to v1ðz; zÞ and v2ðz; zÞ. Thus under the assumption there
exist real-valued analytic functions lðtÞ, mðtÞ so that

zðtÞ ¼ lðtÞv1ðz; zÞÞ þ mðtÞv2ðz; zÞÞ;

as in the proof of Lemma 34. Let I ¼ f j j zjðtÞ2 0g. Then I A NVð f Þ. We
may assume that I ¼ f1; . . . ;mg and we do the same argument in CI as in the
proof of Lemma 34. We consider the Taylor expansions of zðtÞ, f ðzðtÞ; zðtÞÞ and
the Laurent expansions of lðtÞ and mðtÞ:

zjðtÞ ¼ ajt
pj þ ðhigher termsÞ; aj A C�; pj b 0; 1a jam;

f ðzðtÞ; zðtÞÞ ¼ atl þ ðhigher termsÞ; a A C�; l A N

lðtÞ ¼ l0t
n1 þ ðhigher termsÞ; l0 A R�; n1 A Z

mðtÞ ¼ m0t
n2 þ ðhigher termsÞ; m0 A R:

Here we understand n1 ¼ y or n2 ¼ y if lðtÞ1 0 or mðtÞ1 0 respectively. We
put n0 ¼ minfn1; m1g and we write for simplicity as follows.

lðtÞ ¼ l̂l0t
n0 þ ðhigher termsÞ; l0 A R�; n1 A Z

mðtÞ ¼ m̂m0t
n0 þ ðhigher termsÞ; m0 A R

where l̂l0 ¼
l0 if n1 ¼ n0

0 if n1 > n0

�
;

m̂m0 ¼
m0 if n2 ¼ n0

0 if n2 > n0

�
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Note that n0 < y and ðl̂l0; m̂m0Þ0 ð0; 0Þ anyway. Consider the equality:

zjðtÞ ¼ lðtÞ qf

qzj

�
f þ qf

qzj

�
f

� �
ðzðtÞ; zðtÞÞ

þ mðtÞi qf

qzj

�
f � qf

qzj

�
f

� �
ðzðtÞ; zðtÞÞ; j ¼ 1; . . . ;m:

Put P ¼ ðp1; . . . ; pmÞ, IðPÞ ¼ f j j pj ¼ 0g, JðPÞ ¼ f j j pj 0 0g, a ¼ ða1; . . . ; amÞ
and d ¼ dðP; f I Þ. Note that zð0Þ A C�IðPÞ. Assume that IðPÞ A NVð f Þ. Then
zð0Þ A Va and it is a smooth point. Thus by the assumption, the sphere Skzð0Þk
intersects transversely with Va. Thus the same is true for SkzðtÞk and f �1ðaðtÞÞ
for any su‰ciently small t which is a contradiction to the assumption. Thus
we may assume that zð0Þ A VnVa and therefore IðPÞ B NVð f I Þ (, IðPÞU I B
NVð f Þ). Then we observe that

qf

qzj
ðzðtÞ; zðtÞÞ=f ðzðtÞ; zðtÞÞ ¼ qf I

P

qzj
ða; aÞ=a

 !
td�pj�l þ ðhigher termsÞ;

qf

qzj
ðzðtÞ; zðtÞÞ=f ðzðtÞ; zðtÞÞ ¼ qf I

P

qzj
ða; aÞ=a

� �
td�pj�l þ ðhigher termsÞ

By Assertion 35, we have

l̂l0
qf I

P

qzj
ða; aÞ=aþ qf I

P

qzj
ða; aÞ=a

 !
þ m̂m0i

qf I
P

qzj
ða; aÞ=a� qf I

P

qzj
ða; aÞ=a

 !
¼ 0; j A JðPÞ:

This implies that aJðPÞ is a critical point of the mixed polynomial

f I
P : C�JðPÞðaIðPÞÞ ! C and f I

P ða; aÞ0 0 with zIðPÞ ¼ aIðPÞ fixed. This is a con-

tradiction to the super strong non-degeneracy of f I . r

7.1. Milnor fibration for non-isolated singularities. Now, by Lemma 51 and
Lemma 31, we have the following non-isolated version of the Milnor fibration.
Note that j ¼ f =j f j : S2n�1

r nKr ! S1 is a fibration using a j f j-level preserving
vector field near Kr by the transversality of f �1ðhÞ and Sr for h, jhjf d.

Theorem 52. Assume that f ðz; zÞ is a super strongly non-degenerate mixed
function. Then there exists a stable radius r0 > 0 so that for any r with 0 < ra r0
and a su‰ciently small number d (compared with r), we have two equivalent
fibrations:

f : qEðr; dÞ� ! S1
d

j ¼ f =j f j : S2n�1
r nKr ! S1

where Kr ¼ f �1ð0ÞVS2n�1
r . Moreover, if f is a polar weighted polynomial, the

global fibration f : f �1ðS1
d Þ ! S1

d is also equivalent to the above fibration.
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Example 53. I. A monomial z
m1
1 zn11 z

m2
2 zn22 is called an inside monomial if

m1 þ n1; m2 þ n2 > 0. An inside monomial z
m1
1 zn11 z

m2
2 zn22 is called polar admissible

if m1 0 n1 and m2 0 n2. Let gðz; zÞ be a strongly non-degenerate polar weighted
mixed function of two variables z ¼ ðz1; z2Þ with two simple end vertices A, B of
GðgÞ. We assume that

A ¼ ðm1; n1Þ; B ¼ ðm2; n2Þ; m1 < m2; n1 > n2

which come from the mixed monomials z
m1
1 zn11 z

m2
2 zn22 and z

m 0
1

1 z
n 0
1

1 z
m 0
2

2 z
n 0
2

2 . Here

m1 ¼ m1 þ n1; n1 ¼ m2 þ n2; m2 ¼ m 0
1 þ n 01; n2 ¼ m 0

2 þ n 02:

Consider P ¼ tð1; 0Þ for example. Then gPðz; zÞ ¼ czmzn with some non-zero
constant c. Assume that m1 > 0. To check if gP : C� ! C� has a critical point
or not as a function of z1 variable, we can use log gP instead of gP. Now we
have

dz1 log gPðz; zÞ ¼
m1
z1

; dz1 log gPðz; zÞ ¼
n1

z1
:

If z1 A C� is a critical point of gP for some fixed z2 A C�, we must have u A S1

such that
m1
z1

¼ u
n1

z1
. This is only possible if n1 ¼ m1. By a similar discussion for

Q ¼ tð0; 1Þ, we have shown the following.

Lemma 54. Assume that gðz; zÞ is a non-degenerate polar weighted mixed

polynomial whose two end monomials are z
m1
1 zn11 z

m2
2 zn22 and z

m 0
1

1 z
n 0
1

1 z
m 0
2

2 z
n 0
2

2 with
m1 þ n1 < m2 þ n2. Then gðz; zÞ is super strongly non-degenerate if and only if
the following conditions are satisfied.

(1) Either m1 ¼ n1 ¼ 0 or z
m1
1 zn11 z

m2
2 zn22 is polar admissible.

(2) Either m 0
2 ¼ n 02 ¼ 0 or z

m 0
1

1 z
n 0
1

1 z
m 0
2

2 z
n 0
2

2 is polar admissible.

II. Let f ðz; zÞ ¼ za11 zb12 þ za22 zb23 þ � � � þ zann zbn1 be a simplicial polar weighted
homogeneous mixed polynomial. We assume that aj > bj�1 b 1 for j ¼ 1; . . . ; n
with b0 ¼ bn. We assert that f is super strongly non-degenerate.

Proof. Consider f I
P for some I A NVð f Þ and P A Nþ and let IðPÞ, JðPÞ be

as in the proof of Lemma 51. We assume that dðP; f Þ > 0. Suppose that za11 zb12
is in f I

P . Then f1; 2gV JðPÞ0j. Assume that 2 A JðPÞ for example. Then
qfP

qz2
0 0. If f I

P has a critical point as a mapping f I
P : C�JðPÞ ! C�, we need a

non-zero
qf I

P

qz2
by Proposition 7, which implies za22 zb23 must be in f I

P . As a2 > b1

by the assumption and p1a1 þ p2b1 ¼ p2a2 þ p3b2, this implies that 1 A JðPÞ i.e.,

p1 0 0. This implies again that
qf I

P

qz1
0 0 and therefore zann zbn1 must be in f I

P . By

the same reasoning, a1 > bn implies that pn > 0 and n A JðPÞ. Then we consider
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qf I
P

qzn
and we see that n� 1 A JðPÞ and zan�1

n�1 z
bn�1
n is in f I

P . Continuing the same

discussion, we conclude f I
P ¼ f i.e., I ¼ f1; . . . ; ng. However, f ðz; zÞ is polar

weighted and it has no critical point over C�. Thus f is super strongly non-
degenerate. r

8. Resolution of a polar type and the zeta function

In this section, we will study the relation between a resolution of a polar type
and the Milnor fibration of the second type. We expect a similar formula like
the formula of A’Campo ([1]) or the formula of Varchenko [23]. We will restrict
ourselves to the case of mixed curves.

8.1. Polar weighted case. Let f ðz; zÞ be a mixed polynomial of n variables
z1; . . . ; zn and let ðq1; . . . ; qn; drÞ and ðp1; . . . ; pn; dpÞ be the radial and polar weight
types. We assume that dp > 0. Then f : C�n � f �1ð0Þ ! C� is a fibration.
Put F �

s ¼ f �1ðsÞVC�n for s A C�. Then the monodromy map h : F �
s ! F �

s is
given by the polar action as

hðz1; . . . ; znÞ ¼ ðz1op1 ; . . . ; zno
pnÞ; o ¼ exp

2pi

dp

� �
Put F � ¼ F �

1 and let wðF �Þ be the Euler characteristic of F �. Then the mono-
dromy has the period dp and the set of the fixed points of h j : F � ! F � is empty
if j2 0 modulo dp, where h j ¼ h � � � � � h ( j-times). Thus using the formula of
the zeta function for a periodic mapping ([12]), we get

Lemma 55. Under the above assumption, the zeta-function of h : F � ! F � is
given as

zðtÞ ¼ ð1� tdpÞ�wðF �Þ=dp :

The zeta function of the global fibration f : Cnn f �1ð0Þ ! C� can be
obtained by patching the data for each torus stratum.

Let us do this for curves ðn ¼ 2Þ. Let f ðzÞ be a non-degenerate polar
weighted homogeneous polynomial of type ðp1; p2; dpÞ. The signs of p1, p2 are
chosen so that dp > 0. Suppose that the two edge vertices of Gð f Þ are simple.
Assume that the two end monomials are

z
m1
1 zn11 z

m2
2 zn22 ; z

m 0
1

1 z
n 0
1

1 z
m 0
2

2 z
n 0
2

2

with m1 þ n1 < m 0
1 þ n 01 and m2 þ n2 > m 0

2 þ n 02.
Assume that m1 ¼ n1 ¼ 0 and m 0

2 ¼ n 02 ¼ 0 i.e., f ðz; zÞ is convenient. In this

case the two monomials reduces to z
m2�n2
2 jz2j2n2 , z

m 0
1
�n 0

1

1 jz1j2n
0
1 . Let F ¼ f �1ð1ÞH

C2, Fz1 ¼ F V fz2 ¼ 0g and Fz2 ¼ F V fz1 ¼ 0g. Note that

Fz1 ¼ fðz1; 0Þ j z
m 0
1
�n 0

1

1 ¼ 1g; Fz2 ¼ fð0; z2Þ j zm2�n2
2 ¼ 1g:
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The monodromy map is defined by

h : F ! F ; ðz1; z2Þ 7! ðz1op1 ; z2o
p2Þ; o ¼ exp

2pi

dp

� �
Note that p1ðm 0

1 � n 01Þ ¼ p2ðm2 � n2Þ ¼ dp. Therefore the fixed points set Fixðh jÞ
of h j is non-empty only for j ¼ jm 0

1 � n 01j, jm2 � n2j, or dp and their multiples.
Thus using the calculation through exp zðtÞ as in [12], we get

Lemma 56. Let f ðz; zÞ be a polar weighted convenient polynomial as above.

Let z
m 0
1

1 z
n 0
1

1 , z
m2
2 zn22 be the end monomials and let dp be the polar degree. Then

the Euler-Poincaré characteristic wðF Þ and the zeta function of the monodromy
h : F ! F are given as

wðF Þ ¼ wðF �Þ þ jm 0
1 � n 01j þ jm2 � n2j; m ¼ 1� wðF Þ

zðtÞ ¼ ð1� tdpÞ�wðF �Þ=dp

ð1� tjm
0
1
�n 0

1
jÞð1� tjm2�n2jÞ

Remark 57. By a similar consideration, if f ðz; zÞ is a polar weighted
polynomial which is not convenient, the assertion is true under the following
modification. Put e1 ¼ 1 or 0 according to m 0

2 þ n 02 ¼ 0 or m 0
2 þ n 02 > 0. Similarly

e2 ¼ 1 or 0 according to m1 þ n1 ¼ 0 or m1 þ n1 > 0. Then

wðFÞ ¼ wðF �Þ þ e1jm 0
1 � n 01j þ e2jm2 � n2j; m ¼ 1� wðFÞ

zðtÞ ¼ ð1� tdpÞ�wðF �Þ=dp

ð1� tjm
0
1
�n 0

1
jÞe1ð1� tjm2�n2jÞe2

8.1.1. Simplicial polar weighted polynomial. Let f ðz; zÞ ¼
Pm

j¼1 cjz
mjznj .

The associated Laurent polynomial gðzÞ is defined by

gðzÞ ¼
Xm
j¼1

cjz
mj�nj :

Recall that f ðz; zÞ is called simplicial polar weighted homogeneous if m ¼ n and
the two matrices have a non-zero determinant [17]:

M ¼
m11 þ n11 � � � m1n þ n1n

..

.
� � � ..

.

mn1 þ nn1 � � � mnn þ nnn

0
B@

1
CA; N ¼

m11 � n11 � � � m1n � n1n

..

.
� � � ..

.

mn1 � nn1 � � � mnn � nnn

0
B@

1
CA

where mj ¼ ðmj1; . . . ; mjnÞ and nj ¼ ðnj1; . . . ; njnÞ, j ¼ 1; . . . ; n respectively. If f is a
simplicial polar weighted homogeneous polynomial, we have shown that the two
fibrations defined by f ðz; zÞ and gðwÞ:

f : C�nn f �1ð0Þ ! C�; g : C�nng�1ð0Þ ! C�
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are equivalent ([17]). Thus the topology of the Milnor fibration is determined by
the mixed face D̂D where D is the unique face of Gð f Þ. In particular, the zeta

function of h : F � ! F � is given as zðtÞ ¼ ð1� tdpÞð�1Þ nd=dp where d ¼ jdetðNÞj
([17]). On the other hand, if f is not simplicial, the topology is not even
a combinatorial invariant of D̂D (§6.2.6). Therefore there does not exist any
direct connection with the topology of the associated Laurent polynomial gðzÞ.
However here is a useful lemma.

Lemma 58. Suppose that ftðz; zÞ, 0a ta 1 is a family of convenient, non-
degenerate polar weighted homogeneous polynomials with the same radial and
the polar weights, and assume that Gð ftÞ is constant. Then the Milnor fibration
ft : C

nn f �1
t ð0Þ ! C� and its restriction C�nn f �1

t ð0ÞÞ ! C� are homotopically equiv-
alent to f0 : C

nn f �1
0 ð0Þ ! C� and f0 : C

�nn f �1
0 ð0Þ ! C� respectively.

Proof. Consider the unit sphere S2n�1 ¼ S2n�1
1 . For each I H f1; . . . ; ng,

jI j0j, the intersection ð f I
t Þ

�1ð0ÞVSI is transverse and smooth for any t where
SI ¼ fz I A CI j kzk ¼ 1g. Thus by the compactness argument, there exists a
common positive number d such that the intersection ð f I

t Þ
�1ðhÞVSI ; is trans-

verse and smooth for any t, 0a ta 1 and h with jhja d. This implies by the
Ehresmann fibration theorem ([24]) that the fibrations

f I
t : EI

t ð1; dÞ
� ! DðdÞ�

are equivalent for each t, where

EI
t ð1; dÞ ¼ ð f I

t Þ
�1ðDðdÞ�ÞVBI ; BI ¼ fz I A CI j kzIka 1g:

Thus we can construct characteristic di¤eomorphisms

hy : f
�1
t ðdÞVB2n ! f �1

t ðd expðyiÞÞVB2n

for 0a ya 2p which preserve the stratification f �1ðdÞVBI , I H f1; . . . ; ng.
Now the assertion follows from Theorem 37. r

Example 59. Consider the family of polar weighted mixed polynomials in
two variables:

ftðz; zÞ ¼ �2z21z1 þ z22z2 þ tz21z2; t A C

and let Ct ¼ f �1
t ð0Þ. The radial and polar weight types are ð1; 1; 3Þ and ð1; 1; 1Þ

respectively. Thus the critical points of ft : C
2 ! C are the solutions of

jaj ¼ 1;

�4z1z1 þ 2tz1z2 ¼ �2az21
2z2z2 ¼ aðz22 þ tz21Þ
�2z21z1 þ z22z2 þ tz21z2 ¼ 0:

8><
>:ð15Þ

First it is easy to see that for a solution ðz; aÞ of ð16Þ, either z ¼ ð0; 0Þ or
z A C�2. Secondly the equations are homogeneous in z1, z2. Thus we may as-
sume that jz2j ¼ 1. By (15), we get 2z2z

2
2 ¼ 2az21z1. Thus jz1j ¼ 1. Put z1=z2 ¼

expðyiÞ. Then we can solve as
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t ¼ �expð�2yiÞ þ 2 expð�yiÞ; z1 ¼ z2 expðyiÞ; a ¼ 2

z22 þ tz21
:

Put X :¼ f�expð�2yiÞ þ 2 expð�yiÞ j 0a ya 2pg. X is the locus where ft is
degenerate. The complement CnX has two components, U1, U2 where U1 is
the bounded region with boundary X. See Figure 3. By further calculation,
we can see that lknðCtÞ ¼ 1, wðFÞ ¼ 1, wðF �Þ ¼ �1 for t A U1 and lknðCtÞ ¼ 3,
wðF Þ ¼ �1, wðF �Þ ¼ �3 for t A U2. (See Appendix for the calculation.) The
associated Laurent polynomial is gtðzÞ ¼ �2z1 þ z2 þ tz21z

�1
2 which is non-

degenerate for t0 1; 0. Thus we see that wðG �
t Þ ¼ �2 for t0 0; 1 where G�

t ¼
g�1
t ð1ÞVC�2 (see [16]). This example shows that Theorem 10 of [17] does not

hold for non-simplicial polar weighted polynomials.

8.2. Zeta function of non-degenerate mixed curves. Let f ðz; zÞ be a con-
venient non-degenerate mixed polynomial and let D1; . . . ;Ds be the faces of Gð f Þ.
Let Qj ¼ tðqj1; qj2Þ be the weight vector of Dj for j ¼ 1; . . . ; s. Assume that each
face function fDj

is also polar weighted and the inside monomials correspond-
ing to the vertices Mj ¼ Dj VDjþ1, j ¼ 1; . . . ; s� 1 are polar admissible. Let
ða1 þ 2b1; 0Þ, ð0; a2 þ 2b2Þ be the vertices of Gð f Þ on the coordinate axes which

come from the monomials za11 jz1j2b1 and za22 jz2j2b2 respectively. We call a1, a2 the
polar sections of Gð f Þ on the respective coordinate axes z2 ¼ 0 and z1 ¼ 0. Let
fDi

ðz; zÞ be the face function of Di and assume that ðpi1; pi2;miÞ is the polar
weight type of fDi

ðz; zÞ. Let F �
i ¼ fz A C�2 j fDi

ðz; zÞ ¼ 1g. Then we have the
following.

Theorem 60. Assume that f ðz; zÞ is a non-degenerate convenient mixed
polynomial such that its face functions fDj

ðz; zÞ, j ¼ 1; . . . ; s are polar weighted

Figure 3. Degeneration locus X
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polynomials. Then the Euler-Poincaré characteristic of the Milnor fiber F of f
and the zeta function of the monodromy h : F ! F are given as follows.

wðFÞ ¼
Xs
i¼1

wðF �
i Þ þ ja1j þ ja2j

zðtÞ ¼
Qs

i¼1ð1� tmiÞ�wðF �
i Þ=mi

ð1� tja1jÞð1� tja2jÞ
where a1, a2 are the respective polar sections and mj is the polar degree of the face
function fDi

ðz; zÞ, j ¼ 1; . . . ; s as above ðmj > 0Þ.

Remark 61. The assertion is true for non-degenerate mixed polynomials
with polar weighted face functions in two variables which may not be conve-
nient. For example, if Gð f ÞV fz2 ¼ 0g ¼ j, we eliminate ja1j and ð1� tja1jÞ from
the formula.

The proof occupies the rest of the section. For the proof, we use the follow-
ing multiplicative property of the zeta function. Consider an excision pair fA;Bg
in the Milnor fiber F . We say fA;Bg is stable for the monodromy map h if
hðAÞHA and hðBÞHB.

Proposition 62 (Proposition 2.8, [16]). Suppose that F decomposes into h
stable excision couple A, B so that F ¼ AUB. Put C ¼ AVB. Then let zðtÞ,
zAðtÞ, zBðtÞ and zCðtÞ be the zeta functions of h : F ! F and hA :¼ hjA : A ! A,
hB :¼ hjB : B ! B and hC :¼ hjC : C ! C respectively. Then

zðtÞ ¼ zAðtÞzBðtÞ
zCðtÞ

:

8.2.1. Resolution of a polar type and the Milnor fibration. Let us consider
an admissible toric modification p̂p : X ! C2 with respect to the regular fan S�

with vertices fP0;P1; . . . ;Plþ1g and we assume that Qj ¼ Pnj , j ¼ 1; . . . ; s and
P0 ¼ E1 ¼ tð1; 0Þ and Plþ1 ¼ E2 ¼ tð0; 1Þ. Then we take the polar modification
op : PX ! X along ÊEðP1Þ; . . . ; ÊEðPlÞ. Put Fp : PX ! C2 be the composite with
p̂p : X ! C2. Consider the second Milnor fibration

f �Fp : F
�1
p ðEðr; dÞ�Þ ! DðdÞ�

on the resolution space PX . Take Pj for 1a ja l. There are two toric coor-
dinate charts of X which contain the vertex Pj:

sj�1 ¼ ConeðPj�1;PjÞ gives the coordinate chart ðUj�1; ðuj�1; vj�1ÞÞ
sj ¼ ConeðPj;Pjþ1Þ gives the coordinate chart ðUj; ðuj; vjÞÞ:

Put M ¼ ðPj ;Pjþ1Þ�1ðPj�1;PjÞ. It takes the form:

M ¼ gj 1

�1 0

� �
:
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Then the two coordinate systems are connected by the relation

uj ¼ u
gj
j�1vj�1; vj ¼ u�1

j�1:ð16Þ
Put Pj ¼ tðcj; djÞ, j ¼ 1; . . . ; l. The inverse image ~UUj :¼ o�1

p ðUjÞ has the polar
coordinates ðrj; yj; sj; hjÞ which corresponds to ðuj; vjÞ with uj ¼ rj expðiyjÞ and
vj ¼ sj expðihjÞ. The relation (16) says that

sj ¼ r�1
j�1; hj ¼ �yj�1:ð17Þ

We do not take a normal polar modification along the two non-compact divisors

u0 ¼ 0 and vl ¼ 0. Thus the coordinates of ~UU0 and ~UUl are ðu0; s0; h0Þ and
ðrl; yl; vlÞ respectively. Recall that the exceptional divisor ~EEðPjÞ is defined by
rj ¼ 0 in ~UUj and by sj�1 ¼ 0 in ~UUj�1 for 1a ja l. Note that u0 ¼ 0 in U0

corresponds bijectively to the axis z1 ¼ 0 in the base space C2 and

ðP0;P1Þ ¼
1 c1

0 1

� �
; d1 ¼ 1; z1 ¼ u0v

c1
0 ; z2 ¼ v0:

Similarly on ~UUl, vl ¼ 0 corresponds to z2 ¼ 0 and

z1 ¼ ul; z2 ¼ udl
l vl; cl ¼ 1:

8.3. Decomposition of the fiber. Recall that

Eðr; dÞ� ¼ fðz1; z2Þ j 0 < j f ðz1; z2; z1; z2Þja d; kðz1; z2Þka rg

fðzÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz1j2 þ jz2j2

q
; ~BBr ¼ f�1ðBrÞ

Fd ¼ fðz1; z2Þ j f ðz1; z2; z1; z2Þ ¼ d; ðz1; z2Þ A Brg : Milnor fiber:

We denote the pull-back of a function h on C2 to PX by ~hh for simplicity. On
PX , we consider the subsets

Wjðr; rÞ ¼ f~xx ¼ ðrj; yj; sj; hjÞ A ~UUj j 1=rb sj b rg

Tj�1ðrÞ ¼ fðrj�1; yj�1; sj�1; hj�1Þ A ~UUj�1 j rj�1 a r; sj�1 a rg

WTjðrÞ ¼ fðrj; yj ; sj; hjÞ A ~UUj j sj ¼ r; rj a rg

TWjðrÞ ¼ fðrj�1; yj�1; sj�1; hj�1Þ A ~UUj�1 j rj�1 ¼ r; sj�1 a rg

Figure 4. Regular fan S�
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and

T0ðrÞ :¼ fðu0; s0; h0Þ A ~UU0 j ju0ja r; s0 a rg

W0ðr; rÞ :¼ fðu0; s0; h0Þ A ~UU0 j ~ffðu0; s0; h0Þa r; ju0jb r; s0 b rg

TlðrÞ :¼ fðrl; yl; vlÞ A ~UUl j rl a r; jvlja rg

Wlðr; rÞ :¼ fðrl; yl; vlÞ A ~UUl j rl b r; jvljb r; ~ffðrl; yl; vlÞa rg

Note that

~ffðu0; s0; h0Þ ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ju0j2s2c1�2

0

q
¼ s0 þ oðs0Þ

~ffðrl; yl; vlÞ ¼ rl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jvljr2dl�2

l

q
¼ rl þ oðrlÞ

Here oðs0Þ implies oðs0Þ=s0 ! 0 when s0 ! 0. Put

Aðr; rÞ ¼ 6
lþ1

j¼0

Wjðr; rÞU 6
l

j¼0

TjðrÞ:

Put ~EEðr; dÞ� ¼ F�1
p ðEðr; dÞ�Þ with df r and Aðr; r; dÞ� ¼ Aðr; rÞV ~ff �1ðD�

d Þ with
df r; r. It is easy to see that Aðr; r; dÞ� ¼ ~EEðr; dÞ� as long as rf r and df r; r.
We see that the choice of r does not give any e¤ect on Aðr; r; dÞ�, as long as
df rf r. Thus we can use Aðr; r; dÞ� as the total space of the Milnor fibration:
~ff : Aðr; r; dÞ� ! D�

d . We decompose Aðr; r; dÞ� into monodromy invariant sub-
spaces as follows.

Aðr; r; dÞ� VWjðr; rÞ; Aðr; r; dÞ� VTjðrÞ
Aðr; r; dÞ� VTWjðrÞ; Aðr; r; dÞ� VWTjðrÞ; j ¼ 0; . . . ; l:

8.3.1. Transversality. Assume that DðPjÞ ¼ Dt VDtþ1 ¼ fMtg and that Mt

comes from the monomial zat11 jz1j2bt1zat22 jz2j2bt2 . By the definition we can write

Figure 5. Decomposition of PX
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~ff ðrj; yj; sj ; hjÞ1 r
dðPjÞ
j s

dðPjþ1Þ
j expððat1cj þ at2djÞyj iÞ

� expððat1cjþ1 þ at2djþ1Þhj iÞ þOðrdðPjÞþ1
j Þ:

Thus it is easy to see that ~ff �1ðxÞ, jxj ¼ d intersects transversely with WTjðrÞ if
d is su‰ciently small and df r; r. Similarly ~ff �1ðxÞ intersects transversely with
TWjðrÞ under the same assumptions.

Fix such r, d, r. Under the above decomposition of Aðr; r; dÞ�, the Milnor
fiber ~FFd :¼ ~ff �1ðdÞV ~BB decomposes into the following strata:

~FFd VWjðr; rÞ; ~FFd VTjðrÞ; ~FFd VWTjðrÞ; ~FFd VTWjðrÞ; j ¼ 0; . . . ; l:

By the above transversality, we see that (after choosing a suitable vector field to
define the characteristic di¤eomorphisms) ~FFd VWjðr; rÞ, ~FFd VTjðrÞ, ~FFd VTWjðrÞ
and ~FFd VWTjðrÞ are invariant by the monodromy h : ~FFd ! ~FFd. Now the proof
of Theorem 60 follows from the following observations.

(1) The zeta functions of h restricted on ~FFd VTjðrÞ are trivial for 1a
ja l� 1.

(2) The zeta functions of h restricted on ~FFd VWjðr; rÞ with j0 n1; . . . ; ns are
trivial.

(3) The zeta functions of h restricted on ~FFd VWTjðrÞ and ~FFd VTWjðrÞ are
trivial.

(4) The zeta functions of h on ~FFd VT0ðrÞ and ~FFd VTlðrÞ are respectively
given by

1

ð1� tja2jÞ ;
1

ð1� tja1jÞ :

(5) (Face contribution) The zeta function of h : ~FFd VWnj ðrÞ is ð1� tmj Þ�wðF �
j Þ=mj

where F �
j ¼ f �1

Dj
ð1ÞVC�2 and mj is the polar degree of fDj

.

8.4. Outline of the proof of the assertions (1) to (5).
(1) Consider ~FFd VTjðrÞ. Assume that DðPjÞ ¼ Dt VDtþ1 ¼ fMjg and that

Mj comes from the monomial zat11 jz1j2bt1zat22 jz2j2bt2 as above. Then

~FFd VTjðrÞ ¼ fðrj ; yj; sj; hjÞ j rj ; sj a r; ~ff ðrj ; yj; sj; hjÞ ¼ dg:
~ff ðrj ; yj; sj; hjÞ takes the form

~ff ðrj; yj; sj; hjÞ1 cMt
r
dðPjÞ
j s

dðPjþ1Þ
j expððat1cj þ at2djÞyj iÞ

� expððat1cjþ1 þ at2djþ1Þhj iÞ þOðrdðPjÞþ1
j s

dðPjþ1Þþ1
j Þ

(cMt
is a non-zero constant) and the homotopy type of this part of the Milnor

fiber is given by

fðyj; hjÞ A S1 � S1 j cMt
expðððat1cj þ at2djÞyj þ ðat1cjþ1at2djþ1ÞhjÞiÞ ¼ 1g

which is a finite union of copies of S1 by the following.
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Observation 63. Let a, b be integers with ða; bÞ0 ð0; 0Þ and let

F ¼ fðexpðyiÞ; expðhiÞÞ A S1 � S1 j expððayþ bhÞiÞ ¼ 1g:

Then F is a disjoint union of copies of S1 and the number of S1 is gcdða; bÞ.

The monodromy acts as the permutation of the components and we see that
the characteristic polynomials on the 0-th homology and the 1-th homology is the
same. Thus the zeta function is trivial. The assertion (3) can be shown in the
same way.

Let us see the assertion (2). By the same argument,

~FFd VWjðrÞ ¼ f ~ff ðrj ; yj; sj; hjÞ ¼ d; 1=rb sj b rg

and by throwing away higher terms, we may consider that ~ff is again homotopi-
cally defined by

cMt
expððat1cj þ at2djÞyj i þ ðat1cjþ1 þ at2djþ1Þhj iÞ

Again we see that the Milnor fiber is fibered over the interval fra sj a 1=rg ¼
½r; 1=r� with fiber being a finite union of S1’s. Thus the zeta function is again
trivial. (Recall that rj�1 ¼ 1=sj.)

(4) Let us consider the fibration restricted on T0ðrÞ. The situation is di¤er-
ent from that of (3). Let M0 ¼ Gð f ÞV fz1 ¼ 0g and assume it comes from the

monomial za22 jz2j2b2 . The pull back function takes the form:

~ff ðu0; s0; h0Þ ¼ cM0
sa2þ2b2
0 expða2h0iÞ þOðsa2þ2b2þ1

0 Þ

and throwing away the higher term and putting cM0
¼ t0 expðxiÞ, we see that

~FFd VT0ðrÞ consists of a2-contractible components:

~FFd VT0ðrÞ ¼ fðu0; s0; h0Þ j t0sa2þ2b2
0 ¼ d; xþ a2h0 1 0 modulo 2pg:

More precisely, ‘throwing away’ implies the following standard discussion.
Consider the family of functions

~fftðu0; s0; h0Þ :¼ cM0
sa2þ2b2
0 expða2h0iÞ þ tOðsa2þ2b2þ1

0 Þ; 0a ta 1:

In the level of the original function f , this corresponds to the family ft ¼
cM0

zM0 þ tð f ðz; zÞ � cM0
zM0Þ. Consider the strata of the respective Milnor fibers

restricted in this neighborhood T0ðrÞ and their union:

~FFd; t ¼ fðu0; s0; h0Þ j ~fftðu0; s0; h0Þ ¼ d; ðu0; s0; h0Þ A T0ðrÞg
~FFd ¼ fðu0; s0; h0; tÞ j ~fftðu0; s0; h0Þ ¼ d; ðu0; s0; h0; tÞ A T0ðrÞ � ½0; 1�g:

Taking d su‰ciently small, we may assume that ~FFd; t is smooth and intersects
transversely with the boundary of T0ðrÞ for any 0a ta 1. Now we apply the
Ehresmann fibering theorem ([24]) to the projection p : ~FFd ! ½0; 1� and we con-
clude that the Milnor fibers ~FFd; t, 0a ta 1 are di¤eomorphic to ~FFd;0. (We apply
this argument to each case (1) to (5).)
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Thus using the Milnor fiber ~FFd;0, we see that each component is homeo-
morphic to a disk fu0 j ju0ja rg, as the above equation has a2 solutions for h0.
The monodromy is acting cyclically among these components. Thus the zeta
function of this restriction is 1=ð1� tja2jÞ.

We see also that ~FFd VW0ðrÞ ¼ j if df r.
The other edge TlðrÞ gives the term 1=ð1� tja1jÞ.
(5) Now we consider the restriction of Wnj ðrÞ. Then the principal part

takes the form

~ff ðrj; yj; sj ; hjÞ ¼ ~ffDj
ðrj; yj; sj ; hjÞ þOðrdðPnj

Þþ1Þ
where ordrj fDj

ðrj; yj; sj; hjÞ ¼ dðPnj Þ and the Milnor fibering restricted on this

stratum Wnj ðrÞ is determined by the principal part ~ffDj
ðrj; yj; sj; hjÞ. The last work

for us is to determine this contribution.
Consider the curve Cj ¼ f fDj

ðz; zÞ ¼ 0g and its polar type resolution by

the same mapping Fp : PX ! C2. By the polar admissibility assumption of the
inside vertices, the Milnor fibration of the second description exists and it is
equivalent to the Milnor fibration of the first description by Theorem 52. Then
combining the assertions (1) to (4) applied for Cj, we see that the above contribu-
tion is nothing but the zeta function of the monodromy of fDj

: C�2n f �1
Dj

ð0Þ ! C�,
which is given by ð1� tmj Þ�wðF �

j Þ=mj as we have seen in Lemma 55 and Theorem

52. Note that ~FFd VW0ðrÞ ¼ j and ~FFd VWlþ1ðrÞ ¼ j. This completes the proof
of Theorem 60.

8.5. Topology of a polar weighted polynomial and Kouchnirenko type formula.
We consider a non-degenerate polar weighted mixed polynomial fDðz1; z2; z1; z2Þ
with D ¼ AB where A, B are polar admissible simple vertices. Let ðp1; p2;mDÞ
be the polar weight type. Let FD ¼ f �1

D ð1Þ be the fiber of the global fibration,

F �
D ¼ FD VC�2 and let KD ¼ f �1

D ð0ÞVS3. Note that FD is di¤eomorphic to the
fiber of the Milnor fibration fD=j fDj : S3nKD ! S1 or fD : qEðr; dÞ� ! S1

d , as fD is
super strongly non-degenerate by Theorem 52. The Milnor fiber is connected by
Proposition 38. Let PiðtÞ be the characteristic polynomial of the monodromy at
the i-th homology for i ¼ 0; 1. Then P1ðtÞ ¼ zðtÞð1� tÞ as P0ðtÞ ¼ ð1� tÞ. We
consider the Wang sequence of the Milnor fibration:

0 ��! H2ðS3 � KDÞ ��! H1ðFDÞ ��!h��id
H1ðFDÞ ��! H1ðS3 � KDÞ ��! Z ��! 0:

Put r�D ¼ lkn�ð f �1
D ð0ÞÞ. Thus H0ðKDÞ ¼ Zr�

D
þeðDÞ where eðDÞ is the number of

coordinate axes which are a subset of f �1
D ð0Þ. Thus eðDÞ ¼ 0; 1; 2 according to

the two vertices A, B are either on the axis or not. Let mD and m 0
D be the

multiplicities of the factor ðt� 1Þ in P1ðtÞ and zðtÞ respectively. Then by the
equality P1ðtÞ ¼ zðtÞð1� tÞ and Lemma 56 and Remark 57,

mD ¼ m 0
D þ 1; m 0

D ¼ �wðF �
D Þ=mD � 2þ eðDÞ:

On the other hand by the Alexander duality, we have the isomorphism:

H2ðS3 � KDÞGH 1ðS3;KDÞG ~HH 0ðKDÞ:
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As the monodromy map h� is periodic, we have

r�D þ eðDÞ � 1 ¼ dim Kerfh� � id : H1ðFDÞ ! H1ðFDÞg ¼ mD:

Thus we obtain

Lemma 64. The Euler-Poincaré characteristic and the link component number
satisfy the following equality:

r�D ¼ �wðF �
D Þ=mD:

Usually it is easier to compute r�D and we can compute wðF �
D Þ by Lemma 64.

Now we can state our Kouchnirenko type formula:

Theorem 65. Let f ðz; zÞ be a non-degenerate convenient mixed polynomial
as in Theorem 60. Let D1; . . . ;Ds be faces of Gð f Þ and we assume that fDj

ðz; zÞ
is a polar weighted homogeneous polynomial with polar degree mj. Let rj ¼
lkn�ð f �1

Dj
ð0ÞÞ for j ¼ 1; . . . ; s. Then the Milnor number mðFÞ ¼ b1ðFÞ is given by

the formula:

mðF Þ ¼
Xs
j¼1

rjmj � ja1j � ja2j þ 1:

Here mj is the polar degree of fDj
and we assume that mj > 0. a1, a2 are the polar

sections of Gð f Þ on the respective coordinate axes.

As a special case, the following is a formula for a good polar weighted
mixed polynomial (see §6.2.3 for the definition) which corresponds to the Orlik-
Milnor formula [13] for a weighted homogeneous isolated singularity.

Corollary 66. Assume that f ðz; zÞ is a good polar weighted polynomial
which is factored as

f ðz; zÞ ¼ c
Yk
j¼1

ðza2 jz2j
2a 0

� ljz
b
1 jz1j

2b 0
Þ; c0 0ð18Þ

with a0 0, b0 0. Let r ¼ gcdðjaj; jbjÞ. The polar weight is given by P ¼
tðp1e1; p2e2Þ where p1 ¼ jaj=r, p2 ¼ jbj=r, e1 ¼ b=jbj, e2 ¼ a=jaj and the polar
degree dp is given as dp ¼ jaj jbjk=r, lknð f �1ð0ÞÞ ¼ rk and

m ¼ jaj jbjk2 � kðjaj þ jbjÞ þ 1 ¼ ðkjaj � 1Þðkjbj � 1Þ and

zðtÞ ¼ ð1� tdpÞrk

ð1� tjajÞð1� tjbjÞ :

8.6. Appendix: Calculation of Example 8.1.2. We give the detail of the
calculation for Example 8.1.2. Let
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ftðz; zÞ ¼ �2z21z1 þ z22z2 þ tz21z2; t A C

V �
t :¼ fðz1; z2Þ A C�2 j ftðz; zÞ ¼ 0g

F �
t :¼ fðz1; z2Þ A C�2 j ftðz; zÞ ¼ 1g:

and we compute link components. As ft is radially weighted, we may assume
that jz2j ¼ 1. Thus we compute the section with jz2j ¼ 1. We put

z1 ¼ x1 þ y1i; z2 ¼ x2 þ y2i; x2 ¼ cosðaÞ; y2 ¼ sinðyÞ;
Then ftðz; zÞ ¼ 0 can be rewritten as f1 ¼ f2 ¼ 0 where

f1 ¼ �2x3
1 � 2x1 y

2
1 þ ðcosðaÞÞ3 þ cosðaÞðsinðaÞÞ2 þ tx2

1 cosðaÞ

þ 2tx1 y1 sinðaÞ � ty21 cosðaÞ

f2 ¼ �2x2
1 y1 � 2y31 þ ðcosðaÞÞ2 sinðaÞ þ ðsinðaÞÞ3 � tx2

1 sinðaÞ

þ 2tx1 y1 cosðaÞ þ ty21 sinðaÞ

The resultant R of f1 and f2 in y1 takes the form R ¼ g1g2 where

g1 ¼ 2x3
1 � ðcosðaÞÞ3 � tx2

1 cosðaÞ

g2 ¼ t4x2
1 � t3ðsinðaÞÞ2 � 2 cosðaÞx1t2 þ ðcosðaÞÞ2 þ ðsinðaÞÞ2

U1: Assume that t ¼ 0. Then g2 1 1. The equation g1 ¼ 0, f1 ¼ f2 ¼ 0
has a unique solution

x1 ¼ 1
2 2

2=3 cosðaÞ
y1 ¼ 1

2 2
2=3 sinðaÞ

x2 ¼ cosðaÞ; y2 ¼ sinðaÞ;

8><
>: 0a aa 2p:

This can be also observed by [20].
U2: Consider the case t ¼ 3 as a model of Vt, t A U3. First, g1, g2 takes the

following form.

g1 ¼ 2x3
1 � ðcosðaÞÞ3 � 3x2

1 cosðaÞ

g2 ¼ 81x2
1 � 26ðsinðaÞÞ2 � 18 cosðaÞx1 þ ðcosðaÞÞ2

Over g1 ¼ 0, we have one component parametrized as

x1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
2

p3

q
þ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
2

p
3
p þ 1

2

 !
cosðaÞ

y1 ¼ � sinðaÞ
ð3þ 2

ffiffiffi
2

p
Þ2=3 � ð3þ 2

ffiffiffi
2

p
Þ2=3

ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
2

p
3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
2

p
3
p ffiffiffi

2
p

0a aa 2p:
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Over g2 ¼ 0, we have two components parametrized as

x1 ¼
1

9
cosðaÞG 1

9

ffiffiffiffiffi
26

p
sinðaÞ

y1 ¼
1

234
ð
ffiffiffiffiffi
26

p
sinðaÞG 26 cosðaÞÞ

ffiffiffiffiffi
26

p
; 0a aa 2p:

Thus we have shown that lknðV0Þ ¼ 1 and lknðV3Þ ¼ 3.
It is my pleasure to thank to the referee for the careful checking of the first

draft and a nice suggestion to make our paper more understandable.

References

[ 1 ] N. A’Campo, La fonction zeta d’une monodromie, Comm. Math. Helv. 50 (1975), 539–580.

[ 2 ] R. Benedetti and J.-J. Risler, Real algebraic and semi-algebraic sets, Actualités Mathéma-
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