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Abstract Leaf area measurements are commonly obtained by destructive and laborious practice. This paper5

shows how stereo and Time-of-Flight (ToF) images can be combined for non-destructive automatic leaf area6

measurements. We focus on some challenging plant images captured in a greenhouse environment, and show that7

even the state-of-the-art stereo methods produce unsatisfactory results. By transforming depth information in a8

ToF image to a localised search range for dense stereo, a global optimisation strategy is adopted for producing9

smooth results that preserve discontinuity. We also use edges of colour and disparity images for automatic leaf10

detection and develop a smoothing method necessary for accurately estimating surface area. In addition to11

show that combining stereo and ToF images gives superior qualitative and quantitative results, 149 automatic12

measurements on leaf area using our system in a validation trial have a correlation of 0.97 with true values13

and the root-mean-square error is 10.97 cm2, which is 9.3% of the average leaf area.. Our approach could14

potentially be applied for combining other modalities of images with large difference in image resolutions and15

camera positions.16

Keywords Dense Stereo · Time-of-Flight · Leaf Detection · Surface Reconstruction · 3D Measurements17

1 Introduction18

In our post-genomic world, where we are deluged with genetic information, the bottleneck to scientific progress19

is often phenotyping, i.e. measuring the observable characteristics of plants and animals. For example, surface20
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area of a leaf is a powerful diagnostic of plant productivity. Current common practice, also known as direct21

measurement, requires each plant leaf to be manually stripped and fed through a dedicated measuring machine,22

which is destructive, laborious and time-consuming [23]. Owing to these difficulties, leaf area measurements23

during the plant growth period as in [46] are often not possible and they have been empirically simulated in24

plant growth analysis [21,32].25

Image analysis has the potential to overcome these problems. The aim is to develop an automated procedure26

for extracting each leaf individually from an image, followed by reconstruction and measurement of extracted27

leaves in 3D. Automatic interpretation of plant images remains very difficult. Fig. 1 shows a stereo pair of images28

of pepper plants captured using the setup shown in Fig. 2, using flash lighting both to cancel the variable effects29

of natural illumination and permit a fast shutter speed which minimises blur while the camera rig is in motion.30

Our aim is to recover dense depth information and estimate leaf area in 3D along with other plant characteristics31

such as stem length or fruit size. This is a challenging task, as surfaces are of complex shape, and there are32

multiple depths, linear features, occlusions and inconsistent shadows between images. Stereo vision is usually33

seemingly-effortless for the human eye and brain, but unfortunately still not so for computers.34

Recently the use of low-resolution range cameras based on the Time-of-Flight (ToF) principle has received35

increasing attention, with Kolb et. al. [25] providing an overview on techniques and potential applications.36

The state-of-the-art stereo vision algorithms are known for underperforming in low-textured areas (usually at37

object centres) and preserving edge discontinuity, which can be complemented by the use of a ToF camera.38

Augmenting stereo pairs with ToF images can therefore be used for applications aimed of improving recovery of39

depth information. However, as in Fig. 1, the ToF camera has different field-of-view and position to the colour40

camera, and the difference in resolution between the colour image and the ToF image is enormous.41

These images were collected as part of an EU-funded FP7 project, SPICY (Smart tools for Prediction and42

Improvement of Crop Yield). The plant breeding industry has contributed greatly to the increased quality and43

yield of plant products over recent decades. However, to sustain and accelerate this progress, the relationship44

between genotype and phenotype needs to be better understood. For example, yield is a result of the interaction45

of many genetic factors, and is also subject to large, extraneous variation. The approach taken in SPICY is to46

use crop growth models to predict the phenotypic response, with genotype encapsulated in model parameters47
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[2,20]. Our task in the project is the development of image analysis tools to replace hand measurements for48

phenotyping over a large range of genotypes in a practical environment.49

Fig. 3 shows the main processes of our approach for leaf area estimation. The first step is to recover dense50

depth information from image pairs, since leaves appear in different sizes in an image at different depths. Without51

depth estimation, we can only calculate projected area of leaves as in [38]. Leaf detection enables extracting52

each individual leaf from images, and together with depth estimates, three-dimensional surface of each leaf can53

then be reconstructed and measured. In effect, we aim to identify individual leaves and then measure them,54

which is analogous to the manual measurement process.55

In Fig. 1, the ratio of pixels between colour and ToF images is 200 : 1. With the development of ToF camera56

such as a more recent camera used in [1] 1 , image registration[7] in principle could become a possible solution57

but cluttered scenes as in Fig. 1 are difficult. In this paper, we used a rigid setup allowing projecting a partial58

and coarse-resolution ToF image into a corresponding colour image as an aid to stereo vision.59

Part of our work has been described in [37,42,20]. [37] first described the imaging setup we built, and [42]60

described the general idea of our work. [20] discussed the practical imaging applications using our methods and61

how they can be used for quantifying plant characteristics. This paper presents details on camera calibration62

for combining stereo and ToF images, and a smoothing technique for surface reconstruction. We also describe63

a edge-based segmention method using the 3D geometry to extract individual leaves from images.64

Our imaging setup and our approach in principle can be applied for combining many modalities of images65

with large difference in image resolutions and camera positions. For example, our imaging setup could have a66

thermal camera providing temperature information, and high dimensional data from multiple imaging modalities67

would lead to many practical applications.68

2 Relevant work69

Dense stereo produces a depth estimate for every pixel in an image, which is required in the first step of our70

system. One approach to dense stereo is via local descriptors such as SIFT [31], followed by methods such as71

DAISY [44] and SIFTflow [29], both of which deal with challenging stereo images. Discontinuity preserving72

results are highly desirable for our application, but no quantitative result addressing this issue was produced in73

1 In [1], the resolutions were 640 × 480 for colour images and 204 × 204 for ToF images, and their ratio of pixels is 7.38 : 1.
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[29,44]. Though global optimisation methods such as graph cuts [5] can produce edge-preserving results on the74

Middlebury stereo dataset[39], challenges in the Middlebury stereo dataset are different to these images in our75

work. Ogale and Aloimonos [34] proposed to use shape in establishing edge-preserving dense correspondence,76

but surfaces in our images are more complicated than theirs.77

Gudmundsson et. al. [17] transformed ToF points into colour images by rectification homographies, and then78

fed them into a hierarchical stereo matching algorithm. Hahne and Alexa [18] demonstrated the combined ToF79

and stereo method can enhance the depth estimation even without accurate extrinsic calibration. Zhu et. al. [47]80

developed a weighting method combining stereo and ToF data by fixed values, and then used belief propagation81

to optimise the data. Motivated by this research, we first present a geometric approach to transform points82

from ToF image coordinates to colour image coordinates, and then derive a localised search range for stereo83

matching. Despite the simplicity of the ToF transformation, we demonstrate that a global stereo strategy can84

then be applied and does improve results and preserve discontinuity. Compared with above works [17,18,47],85

difficult low-resolution ToF images 48 × 64 were used in this work. Beder et. al. [4] also developed a fusion86

scheme using ToF images in the same resolution as ours except that their images were planar surfaces.87

Current ToF and stereo fusion work (e.g. [4,17,18,27]) lack quantitative results on preserving depth discon-88

tinuity, with the exception of [47], which used another 3D scanner to produce pixel-by-pixel depth data in an89

indoor lab environment. In our greenhouse setting it is problemmatic to collect accurate pixel-by-pixel depth90

data, so we use an indirect method to evaluate the quality of depth estimation for competing methods, by91

quantifying how well depth-discontinuity is preserved.92

Foreground extraction of live video using ToF and colour cameras is proposed by Wang et. al. [45] in order to93

segment a person in foreground from the background. Their challenges are to track and segment the foreground94

person from a continuous video sequence, while our images have very limited views of foreground objects. Similar95

applications in this area have also been investigated in [8,16,40].96

Regarding leaf measurement, existing work [35,38,43] focuses on collecting images of individual plants that97

are separately transported from the greenhouse to a controlled imaging environment, or on imaging single leaves98

against a plain backround [26]. Instead of moving individual plants around the greenhouse, our methodology99

brings the imaging equipment to the plants. Transporting growing plants is undesirable, because of potential100

damage to plants that can highly disturb their growth. But more importantly, for many greenhouse crops like101
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pepper and tomato, the plants are simply too large to be transported. Our system measures plants in their own102

growing environment, and does not require transporting plants. However, by using our system, challenges arise103

from less controllable lighting conditions and a cluttered scene with large occlusions as shown in Fig. 1 and 2.104

3 Setup and Calibration105

Every pepper plant has a QR barcode for relating the manual measurements to the automatic measurements,106

and the plants grow in rows with heating pipes in-between. The maximum height of the plants is about three107

metres, while the space between rows is only one metre. Four camera rigs were therefore vertically stacked in a108

trolley known as Spy-See to cover the complete field of view, and [37,20] provided hardware details.109

Our camera rig consists of a colour camera and a ToF camera. The ToF camera is a radio-frequency modu-110

lated camera with phase shift detectors (IFM O3D201 PMD camera), with a resolution of 64× 48 pixels, while111

the colour camera has a resolution of 480 × 1280. The Spy-See setup moves in a straight line on top of rigid112

heating pipes in the greenhouse and captures overlapping images at a fixed interval (see Fig. 2). The baseline113

between images is 5 cm, and objects of interest (e.g. leaves) are located between 55 cm and 120 cm away from114

the camera.115

Once assembled, our imaging setup was rigid and fixed. The positions of the colour and ToF cameras were116

unchanged, so was the capture interval. We therefore performed depth calibration to find both cameras in 3D117

space relative to each other.118

A two-layer board shown in Fig. 4(a) was used for calibration of the colour camera at different distances119

from the camera. The front layer moved from 40 cm to 120 cm away from the camera in 5 cm steps. We used120

a simple pinhole camera model for the colour camera [19] as shown in Fig. 4(b). Let (x, y) be the position of a121

point in colour camera coordinate, and (xi, yi), i = 0, 1, 2 · · · represents the position in image i. Given a point122

in the world coordinate (X,Y, Z), (xi, yi) can be obtained as,123

xi = (X − s i) f /Z + xm (1)

yi = Y f /Z + ym (2)
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where s is the baseline between the two images, which was 5 cm for our setup, and f is the focal point of124

the colour camera. We set the principal point (xm, ym) as the image centre for simplicity, which only produced125

negligible errors. We only consider horizontal disparity since our imaging setup moved in the horizontal direction126

only. Given a point identified in two colour images x0 and x1, from (1),127

x0 = X f /Z + xm (3)

x1 = (X − s) f /Z + xm (4)

Let d = x0 − x1 be the disparity,128

d = s f /Z (5)

During calibration, multiple depth measurements Z (e.g. 40 cm to 120 cm in this work) and correspondences129

in each view d are used to compute f̂ by applying the least squares fitting technique.130

f̂ = arg min
f

‖ d − s f /Z ‖2 (6)

The centre of the square seen in Fig. 4(a) is used to compute d, and Z is known for each image. The squares131

can be identified by linear discriminant analysis and connected-component labelling [13]. We manually labelled132

squares in two board images as training data, and linear discriminant analysis was subsequently used to segment133

squares for all the other board images. Since the centre of the square was required, morphological dilation was134

applied for refining the square shape before connected-component labelling. Fig. 4(c) presents the relationship135

in (5) and plots d against Z. Compared to a flat checkerboard used in [28], the two-layer board is also used for136

the ToF camera, to convert ToF measurements (x′, y′, z′) to world coordinate (X,Y, Z).137

Since the relative positions of colour and ToF cameras did not change, a transformation can be established138

for points in colour image and ToF image. A ToF image maps Z on z′ and a near-linear relationship between139

ToF depth measurements z′ and Z was observed as in [47]. As in (1) (2), the focal point f ′ is still needed for140

the transformation of X → x′ and Y → y′.141
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x′
i = (X − X0 − s i) f ′ /Z + x′

m (7)

y′
i = (Y − Y0) f ′ /Z + y′

m (8)

X0 and Y0 are the physical distance in cm between the colour camera and the ToF camera. Although the rela-142

tionship between the colour camera and the ToF camera is translational in this work, [19] provided information143

on the homogeneous affine transformation between two cameras.144

During ToF camera calibration, we used known Z as a cue to perform thresholding for identifying the centre145

of each square, and then compute d′ using two adjacent ToF images. The same procedure for f̂ as in (6) was used146

to obtain f̂ ′ for the ToF camera. Challenges and error sources in ToF camera calibration have been discussed147

in [25,28] ([28] also provided calibration software), and readers can review these works for further information.148

4 Combining stereo and Time-of-Flight images149

4.1 Dense stereo methods150

Dense stereo methods can estimate disparity d for every pixel given a pair of stereo images. However, the pixel151

consistency assumption is often made for building the correspondence between two images. In our application,152

we have found that pixel values were not reliable for matching due to changes of perspective, lighting, and noise.153

To address this issue, the SIFTflow [29] method was chosen, which uses pixel-wise SIFT features between two154

images instead of pixel values for matching. Complex image pairs across different scenes and object appearances155

have been shown robustly matched in [29].156

The pepper plant images shown in Fig. 1 have very sharp depth edges, and we have observed step changes157

over 50 pixels between neighbourhood pixels. Although Liu et. al. used a simple synthetic image in [29] to158

demonstrate that the dense SIFT features contain sharp edges with respect to the sharp edges in the original159

image, there is no close-up on complex scenes to prove that the SIFTflow method can preserve discontinuity.160

Ogale and Aloimonos [34] examined the implications of shape on the process of finding dense correspondence,161

and attempted to produce disparities in the form of a piecewise continuous function consistent with the stereo162

images. Using piecewise constant and piecewise linear shape models, they have presented results on images with163
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slanted planar surfaces as well as a pair of stereo images on some branches of a tree, but no results on curved164

or nonrigid surfaces common in the pepper plant images have been shown.165

Global optimisation methods such as graph cuts and belief propagation have been shown producing satisfac-166

tory discontinuity-preserving results on the Middlebury stereo dataset [39]. Since global stereo methods produce167

better results compared with local stereo methods for combining with ToF information [47], we chose the alpha168

expansion technique applied in a graph-based energy minimisation framework [5]. The energy cost E given a169

pixel disparity d is defined as:170

E(d) =
∑

D(d(x,y)) +
∑

q∈N

V (d(x,y), d(xq,yq)) (9)

where N denotes the first-order neighbourhood pixels. For the data term cost D,171

D(d(x,y)) = min

{

1

3

∑

c={R,G,B}

∣

∣

∣
I
(c)
(x,y) − I

′(c)
(x+d(x,y),y)

∣

∣

∣
, Td

}

(10)

where I and I ′ represent the intensity value in the pair of colour images. Td is a truncation constant, and172

D(d(x,y)) is computed for all the possible disparities. For the smoothness term cost V ,173

V (d(x,y), d(xq,yq)) = u(x,y,xq,yq) min

{

∣

∣d(x,y) − d(xq,yq)

∣

∣ , Tk

}

(11)

where parameter Tk is used to truncate the linear energy. (xq, yq) is one of the first-order 4-neighbourhood pixels174

around (x, y). u(x,y,xq,yq) represents static cues in Boykov et. al. [5], which was used as an indicator function in175

this work as:176

u(x,y,xq,yq) =















αv if
∑

c={R,G,B}

∣

∣

∣
I
(c)
(x,y) − I

(c)
(xq,yq)

∣

∣

∣
> Te

nv αv otherwise

(12)

αv is the smoothness cost for intensity edges produced by the thresholding value Te, and nv αv is the smoothness177

cost for surfaces. Both αv and nv αv should be set according to the data cost values in (10). (12) gives more178

smoothness if there is no intensity edge, and therefore achieves edge-preservation by encouraging changes at179

edges at a cost of αv and limiting changes on the surface by nv αv.180
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4.2 Localised search range from ToF image181

Given the complexity associated with the pepper plant images for dense stereo methods, a localised search range182

[dmin, dmax] derived from the corresponding ToF depth image should improve the estimation accuracy.183

Since the ToF image is much coarser in resolution compared to the colour image, the transformation from184

ToF image coordinates to colour image coordinates alone would only give isolated point depth measurements in185

the colour image. We therefore treat each ToF pixel as a patch centring around the pixel, and then transform186

all points in the patch to the colour image (see ToF in Fig. 9 for an example). In effect, this transformation is187

one of the up-scaling techniques as discussed by Lindner et. al. [27] and they provided a biquadratic scheme for188

this purpose.189

Due to different viewing positions of ToF and RGB cameras, there are n ToF measurements for Z (n ≥ 0)190

at location (x, y). If multiple depths were found at (x, y), the minimum value would be chosen, which represents191

the closest point to the camera. If no measurement of Z is available for (x, y), this would be treated as a missing192

value. To produce a localised search range [dmin, dmax] for stereo matching, we used a patch centring around193

every pixel in the colour image to compute the minimum and maximum depth values. Denote (x, y, Z) as Z(x,y)194

and the patch as Z(m,n),195

|m − x| ≤ r, |n − y| ≤ r (13)

In effect, this allows mis-alignment up to r pixels when transforming the ToF image to the colour image. The196

maximum and minimum depths are then converted into disparities as,197

dmin(x,y) = s f/max{Z(m,n)} − k (14)

dmax(x,y) = s f/min{Z(m,n)} + k (15)

The search range is expanded by k pixels (normally 0 ≤ k ≤ 3) at each direction to allow for the noise in the198

ToF estimates. Given a localised search range [dmin, dmax] for every pixel, a stereo method can then be used199

to find correspondences between images. In this work, for the data term cost D in (10), if d(x,y) is outside200
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the search range [dmin, dmax] or d(x,y) is linked to a pixel outside the image, D(d(x,y)) is set to the maximum201

pixel difference value Td. If the localised search range [dmin, dmax] is missing, D(d(x,y)) is computed for all the202

possible disparities same as a dense stereo method.203

It should also be noted that the search range is small at the object centre due to small depth variation and ToF204

measurements contribute more to the results, while the opposite can be observed at the depth discontinuities.205

4.3 Quality score206

Since pixel-by-pixel depth data are unavailable as ground truth for our images and many other applications,207

we propose a quantitative method accounting for the surface smoothness and the edge sharpness to evaluate208

estimation results. Leaf has depth edges along its boundary as seen in Fig. 5 and we can label depth edges to209

quantify how well the result has preserved them. Leaf boundaries shown in Fig. 5 were obtained manually. We210

only performed this manual edge labelling at this evaluation stage to produce ground truth for depth edges,211

and neither the ToF transformation nor the stereo method required any intervention after calibration. The area212

within the leaf boundaries is considered a leaf surface, and the final output consists of two binary images, a213

surface and an edge image. We applied the Canny edge filter [13] with non-maximum suppression to compute214

the smoothness of the surface and sharpness of the depth edges. Surface smoothness penalty Ps was calculated215

for the surface image as,216

Ps = M(d)(xs,ys) (16)

where M represents the Canny edge filter using a Gaussian that has a standard deviation of 1 and a radius of217

1.5 for non-maximum suppression. (xs, ys) are surface pixels. Edge sharpness score Se was calculated for the218

edge image as,219

Se = (g ∗ M(d))(xe,ye) (17)

where ∗ is the 2-dimensional convolution operation [13] and g denotes a Gaussian filter in order to deal with220

thin and sharp depth edges. In this work, we set the neighbourhood size of the Gaussian filter to 15 and the221
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Table 1 Steps for automatically detecting frontal leaves.

1. Select the disparity plane nearest to the camera max{d}.
2. Select a point (xc, yc) from max{d} that has the minimum value of combined edge magnitude M(I, d, γ).
3. Use (xc, yc) as the seed point, perform region growing method to segment a leaf (xl, yl).
4. Set d(xl,yl) to the furthest to the camera min{d}.
5. Repeat 1 - 4 for the next leaf.

standard deviation to 5. The effects of (16) and (17) can be seen in Fig. 5. A quality score S accounting for the222

surface smoothness Ps and the edge sharpness Se was computed as below,223

S = Se − Ps (18)

The score S penalises displacement between defined depth edges and depth edges by a dense method while224

requiring the surface to be smooth. S is a relative score that becomes meaningful when comparing two dense225

methods. Given S calculated for two methods, the stereo result with the lower S score has more blurry depth226

edges (smaller Se), more noise on surface (larger Ps), or both. Consequently, for our application in this paper,227

a dense method with a higher S score is preferred over one with a lower S score.228

It should be noted that Sobel edge magnitude can also be used for M to calculate Ps and Se as in [42].229

However, automatic leaf detection described in section 5 uses the same Canny edge filter.230

4.4 Parameter tuning231

One way of using the quality score in (18) is tuning parameters. Let θ be a set of parameters that is required232

by a method (e.g. our method combining stereo and ToF or other stereo methods), and the sum of score
∑

S233

on some objects with manually labelled depth edges is used as a quality measure. In this work, we manually234

labelled three leaves in calibration images. The set of parameters θ that maximises
∑

S is considered as the235

tuned parameter set. Since θ has one or more parameters, we sequentially optimise all possible values in each236

parameter leading to a local optimisation θ̂. Several iterations defined by the number of parameters in θ are237

then used to refine θ̂, and the order of parameters is randomised in each iteration.238
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5 Leaf Detection239

Given a colour image I and its corresponding disparity image d, this section describes a general approach for240

automatically extracting leaf boundaries from images. Let M represent a filter that produces edge magnitude,241

and M(I) and M(d) are the edge magnitude on the colour image I and the disparity image d respectively. It is242

possible to use either M(I) or M(d) alone for boundary detection. However, both M(I) and M(d) are compli-243

cated and noisy as shown in Fig. 6, which is hard to produce reasonable boundary detection. A combination of244

M(I) and M(d) can simplify the problem, which is obtained as follows,245

M(I, d, γ) = γ M(I) + (1 − γ)M(d) (19)

where γ is a weighting coefficient and 0 ≤ γ ≤ 1. The idea is based on the fact that object boundaries could be246

enhanced by blending edges existing in the colour and disparity images, despite one of them could be weak in247

edge magnitude.248

We assumed that some leaves are in foreground closer to the camera than other objects like stems, since249

leaves have to reach out for maximising light interception. Based on this assumption and the combined edge250

magnitude M(I, d, γ), an automated procedure was then developed to detect the nearest frontal leaf. A summary251

of steps in the procedure is shown in Table 1. The second step attempts to select a point on a leaf surface as the252

seed point, which should have a small value of combined edge magnitude M(I, d, γ). We used a region growing253

method [15] on edge magnitude produced by the filter M to extract regions, since the method is well-understood254

and performs well with respect to noise. The criterion we used was to compare edge magnitude of the adjacent255

pixels near the region borders to the region’s mean value. A thresholding parameter Tc acting as a similarity256

threshold value was used to determine the terminal condition. There are also a number of other alternatives for257

foreground extraction using ToF and colour cameras [45,8,16,40].258

In this paper, we have found that the Canny edge filter with non-maximum suppression described in section259

4.3 can be used for the filter M . The Canny edge filter was configured to use a Gaussian that has a standard260

deviation of 1 and a radius of 1.5 for non-maximum suppression. For calculating edge magnitude on colour261

image M(I), I is transformed from RGB to CIELAB colour space, and the edge magnitude by the Canny filter262
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is separately calculated for each component and is subsequently summed up. There are other choices of M that263

can be used (e.g. [3]), and more methods can be found in the Berkeley segmentation benchmark [33].264

Fig. 6(e) shows the output of (19) using the Canny filter, and M(I, d, γ) emphasises edges found in both265

M(I) and M(d) that corresponds to the boundary of our interest. Fig. 7 shows automatic leaf detection using266

our method.267

6 Surface Reconstruction268

Given an identified leaf (xl, yl) in an image with colour and disparity data d, it is possible to reconstruct and269

measure the leaf shape in 3D by a triangular mesh representation. Vertices in the mesh correspond to pixels270

in the image which is (xl, yl, d(xl,yl)), and the edges in the mesh are built by connecting nearest neighbouring271

vertices. The use of a triangular mesh representation allows calculating the surface area in 3D analogous to272

manual measurement. (xl, yl, d(xl,yl)) is transformed to the world coordinate (Xl, Yl, Zl) as shown in section 3,273

and areas of all triangles are then summed up.274

An immediate problem of the triangular mesh representation is the ‘rice terrace’ effect as shown in Fig. 8(a).275

This aliasing effect was caused by discretisation in the depth estimates at such a small scale. In this work,276

baseline s is small for stereo matching and disparity estimates are integers, which cannot cope with the demand277

for an accurate reconstruction. In addition to the inaccurate visual reconstruction, the ‘rice terrace’ effect would278

over-estimate the surface area that is not desirable.279

One approach is to develop sub-pixel accuracy stereo as described by [39], but in this work we propose a280

method to smooth the depth data Zl at the reconstruction stage after extracting leaves by combining stereo281

and ToF. We decided to use local regression (LOESS) [6,30], and it is based on the idea that any function can282

be well approximated in a small neighbourhood by a low-order polynomial and that simple models can easily be283

fit to data. A linear LOESS model was used in this work, and it requires a specific smoothing parameter β that284

is a percentage of the total number of data points. The effect of LOESS smoothing increases with increasing β285

as shown in Fig. 8. Fig. 8(d) and 8(e) also show the histogram of the residual image to illustrate the effect of286

smoothing.287

β can be defined empirically or by Generalised Cross Validation (GCV) [14]. However, we prefer a smooth288

surface which would have larger residual on the flat planes of the ‘rice terraces’ rather than no or small residual,289
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and GCV is not built for correlated errors. An ad-hoc procedure to determine the smoothing parameter β290

is therefore developed. Since we would like to eliminate the aliasing effects, the residuals would not have a291

pronounced peak at 0 in histogram as in Fig. 8(d). Denote the histogram count as hc with bin width b. The292

number of residuals at 0 is hc(0), and its two adjacent bins of the histogram are hc(−b) and hc(b) respectively.293

The stopping criterion for increasing the smoothing parameter is,294

min

{

h(0) − h(−b), h(0) − h(b)

}

1

h(0)
< Th (20)

where Th is a parameter in percentage that controls the difference of histogram counts between the residual at295

0 and its two adjacent bins.296

7 Results297

7.1 Depth estimation298

We compare three dense stereo algorithms with our method on some challenging pepper plant images. Images299

used for parameter tuning are calibration images, and the others are used as validation images. Once parameter300

tuning has been performed on calibration images as in section 4.4, none of the methods require intervention in301

the validation step.302

We present results on three sets of images capturing well-developed plants (Plant 1 - 3). Plant 1 acts as the303

calibration image, and Plant 2 and 3 are validation images. Let SIFTflow, Shape and GC represent methods by304

Liu et. al. [29], Ogale and Aloimonos [34] and Boykov et. al. [5] respectively. GC refers to the graph cut method305

without using ToF, and GC+ToF is our method. By parameter tuning described in section 4.4, SIFTflow was306

configured with a 5-level pyramid, 5 × 5 window, α = 1 and γ = 0.001. The α in the Shape method was set307

to 2. Parameters Te, Td, Tk, αv, nv for GC were set as 25, 20, 6, 4, 4. For GC+ToF, the same parameters for GC308

were used for dense stereo and ToF parameters r and k were set to 10 and 1 respectively. Since these methods309

are established, readers can see the effects of these parameters by following [29,34,5] for SIFTflow, Shape and310

GC respectively.311

Fig. 9 shows qualitative stereo results produced by the four methods on Plant 1. Methods GC and GC+ToF312

produced results with leaves recognisable from the background. SIFTflow produced smooth results but did not313
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Table 2 Numerical summary of quality evaluation for Leaf 1, Leaf 2 and Leaf 3. Se refers to edge sharpness, Ps refers to surface
smoothness and S is the quality score. For our application in this paper, we would like to find a method giving the highest S score.

Leaf 1 Leaf 2 Leaf 3
Se Ps S Se Ps S Se Ps S

SIFTflow 0.22 0.10 0.12 0.11 0.01 0.10 0.04 0.02 0.02
Shape 0.70 0.44 0.26 0.74 0.20 0.54 0.27 0.10 0.18

GC 0.49 0.20 0.29 0.87 0.04 0.83 0.20 0.04 0.16
GC+ToF 1.34 0.18 1.15 1.31 0.05 1.26 0.36 0.06 0.30

Table 3 Quantitative summary of quality scores for both calibration and validation images. Figures shown here are total quality
scores for three leaves in a image,

P

S.

Calibration Validation
Plant 1 Plant 2 Plant 3

SIFTflow 0.24 0.18 0.36
Shape 0.98 1.32 0.45

GC 1.28 1.29 0.51
GC+ToF 2.71 2.04 0.63

preserve discontinuity, while Shape showed the opposite effect. This can be further examined in Fig. 10, which314

shows a closer view of three leaves. The edge was weak for SIFTflow, although the surface was the most smooth.315

Method Shape suffered from noises on the surface, and GC failed to produce some depth edges. In comparison,316

GC+ToF produced the best qualitative results among the four methods.317

A summary of quantitative results (Se, Ps, S) for all three leaves is shown in Table 2. Similar to the findings318

in the qualitative results above, we see that GC+ToF produced sharp depth edges represented by a high Se319

score especially for Leaf 1 and Leaf 2. The ranking of methods produced by the score S is also consistent with320

the qualitative results for the two leaves. Leaf 3 is in front of another leaf, and the magnitude of depth edges is321

therefore not as strong as those in Leaf 1 and Leaf 2. GC+ToF produced the best scores Se and S among the322

four methods.323

This section has shown results on the calibration image (Plant 1) to illustrate the behaviour of the four324

methods. Furthermore, two sets of results on validation images (Plant 2 - 3) have been produced. Table 3325

presents
∑

S for Plant 1 - 3. By using ToF as a localised search range, the estimation results were improved by326

at least 23% measured by the score
∑

S.327

It should be noted that the leaf boundary was manually selected here for comparison purposes, since auto-328

matic leaf detection can be difficult for estimates in Fig. 9. The next section will present the results of automatic329

leaf detection using our method.330
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7.2 Leaf detection and area measurements331

A validation trial using 44 experimental plants (11 plots of 11 genotypes, each plot also has four border plants)332

was carried out to provide a set of validation images. The 44 experimental plants grew in a standard double-333

row arrangement, with 22 of them visible from each side of the row by our setup. The validation images were334

collected first, and four leaves in the foreground of images were then manually detached from every genotype335

giving 88 leaves in total. The positions of these leaves were annotated on the validation images in order to relate336

to manual measurements as the ground truth. There were over 600 colour images to annotate, and these 88337

leaves were identified in 244 images as 248 separate measurements. We ignored these leaves spanning across two338

images (i.e. partial view of a complete leaf). Finally, the manual measurements of these 88 leaves were obtained339

by removing each leaf from its plant and scanning using an industry-precision LI-COR 3100 leaf area meter.340

Calibration images for parameter tuning were collected in a different trial. The parameters determined in341

section 7.1 were used for our GC+ToF method. Based on qualitative results of calibration images, parameters Tc342

and γ in leaf detection were set to 0.5 and 0.4, and three leaves were automatically detected in every calibration343

image. Parameters b and Th in surface reconstruction were empirically set to 0.2 and 0.1.344

Our methods successfully extracted three leaves in each image producing 732 separate measurements from345

244 images, but only 149 separate measurements on 59 leaves could be linked with the ground truth. This was346

because the ground truth data were created first, and our methods were fully automated for analysing validation347

images without accessing any manual annotation. Fig. 11 presents 15 examples randomly selected from the 149348

boundary results.349

Fig. 12 and Table 4 show the validation results of the 149 automatic measurements against 59 manual350

measurements with average area of 102.0cm2. If no smoothing was applied, a lower correlation score and a351

considerable larger RMSE value were obtained, which is due to the ‘rice terrace’ effect as expected. Using our352

proposed smoothing method, the correlation between automatic and manual measurements is 0.97 and the353

RMSE value is 10.97 cm2.354

By averaging the 149 measurements for 59 leaves from different views, the correlation score has increased355

to 0.98, and the RMSE value is reduced to 9.50 cm2, i.e. 9.3% of the average leaf area. These estimates have356
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Table 4 Correlation and Root-Mean-Square-Error (RMSE) results of 149 automatic leaf area measurements in validation data.
Pearson correlation coefficient is used in this paper.

Correlation RMSE (cm2)
No Smoothing 0.72 129.45

With Smoothing 0.97 10.97

been found to be of sufficient accuracy for plant breeding by identifying QTLs: positions on chromosomes which357

correlate significantly with measurements [20].358

8 Discussion359

Current practice is to measure leaf areas manually by destroying plants, which is also very costly in human time.360

Our method is non-destructive, and took about 3 minutes to record all images in a single row of plants. Then,361

average CPU times were 61sec/image for depth estimation, 1sec/image for leaf detection and 44sec/image for362

leaf area estimation. However, as images were processed off-line this is not critical, and could be speeded up by363

using more sophisticated or approximate algorithms or parallel processing.364

The proposed 3D approach allows automatic measurement of the sizes of pepper leaves in a greenhouse.365

The setup could be extended to measure leaf sizes of other greenhouse crops such as cucumber or tomato, and366

in other situations, such as pot plants on a conveyer belt system. Similar approaches could be developed to367

measure size, orientation and shape of other components of plants, e.g. flowers, fruits, stems, and to exploit368

other multisensor systems [10,12,36].369

Using stereo vision alone to extract individual leaves in scenes of plant structures with many leaves is clearly370

not sufficient. For occlusions and areas affected by unpredictable illumination, the data term in a global stereo371

framework (i.e. D in (10)) produces inaccurate energy costs since corresponding pixels are either unavailable372

or difficult to match. The minimised energy therefore does not represent the desirable results. Using ToF in373

these situations provides an estimate and reduces ambiguities. Another advantage is that dense stereo can be374

a super resolution technique for ToF images as discussed by [11,22,41]. Even using the latest ToF camera, the375

resolution of a ToF camera (320× 240) is low compared with a colour camera, and this leads to errors at depth376

discontinuities. On the other hand, stereo vision is known for underperforming in low-textured areas usually377

at the object centres, but it can preserve discontinuity as we have presented in this paper (e.g. Fig. 10). Since378
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stereo and ToF complement each other, our methods to combine them can therefore be used for applications379

aiming to improve the accuracy of measurement.380

For our application, edge-preserving disparity result is very important. Since there are many leaves in an381

image (Fig. 9) and they have the similar appearance as well as large intra-class variation in visual images, it is382

impossible to extract one leaf from the rest without combining disparity estimation into the colour image (see383

Fig. 11). As shown in Fig. 11 and 12, our methods were fully automated for the validation images without any384

manual input (e.g. annotation), and were therefore proven to be effective for extracting reasonable foreground385

boundaries.386

Our current assumption that leaves are in the foreground limits our methods to find only frontal leaves. We387

successfully collected 732 separate leaf measurements for 11 different genotypes of plants, and [20] presented388

further results using our methods for 151 genotypes. This was the first viable approach to collect a large number389

of leaf measurements in a non-destructive manner. In our work, foreground objects near to the cameras were390

all leaves. In a more general framework, a detection verification procedure, using classification methods such as391

support vector machine [9], could be developed for detecting target objects that are not in foreground.392

Fig. 12 and Table 4 demonstrate the consequence of the ‘rice terrace’ effect, and highlight the importance393

of surface smoothing when calculating surface area. Although we presented our method for one pair of stereo394

images and one ToF image, it is in principle rather straightforward to apply it to multiple colour images and395

one ToF image, or even to multiple colour and ToF images. Both the correlation score and the RMSE value can396

be improved by averaging over multiple views, and the use of two or more views should be adopted in practice397

to reduce occlusions. We hope to build on the work in this paper for combining multiple colour and ToF images,398

and Kim et. al. [24] have shown some promising results on this subject.399

9 Conclusions400

This paper has presented an automatic approach for non-destructively measuring leaf surface area. Agreement401

with the ground truth of manually measured leaf areas, shown in Fig. 12, is good, and sufficient for plant breeding402

purposes [20]. Unlike most existing methods requiring individual plants to be transported to a controlled imaging403

environment, our work collects measurements from plants in their own growing environment. Three frontal404
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leaves in an image (twelve from four images) were automatically measured, and they produced an estimate of405

the average leaf area that can be used in plant growth analysis[20].406

We have demonstrated that combining stereo and ToF images leads to discontinuity-preserving results,407

which enable algorithms like Canny filter and region growing segmentation to extract individual leaves from a408

cluttered scene. We have also highlighted the importance of surface smoothing for calculating surface area, and409

proposed an adaptive way to choose the smoothing parameter.410

Our approach has produced promising results on 149 automatic leaf area measurements in the validation411

data, which had a correlation score of 0.97 and a RMSE value of 10.97 cm2 against the manual measurements.412

By using multiple views for the 59 leaves, the RMSE value reduced to 9.50 cm2, with a correlation of 0.98.413

The idea of combining stereo and ToF images has been proven useful for 3D measurements, and our approach414

could potentially be applied for combining other modalities of images with large difference in image resolutions415

and camera positions. Moreover, our automated approach is a major step forward in relation to the current416

destructive and laborious practice for measuring leaf area.417
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Colour (L) Colour (R) ToF

Fig. 1 Pepper plant images. Colour (L) and Colour (R) are a stereo pair of images of pepper plants, and Colour (R) is the base
image. ToF is the depth image in cm matching the base image. The colour images are 480 × 1280 in size, while ToF image is only
64 × 48. The ratio of pixels between colour and ToF images is 200 : 1.
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(a) (b)

Fig. 2 Our system has four camera rigs vertically stacked to capture pepper plants, and each one has colour and ToF cameras and
a flash light as seen in (a). Our system also moves around in a greenhouse that is exposed to unpredictable lighting including the
sun and reflection as in (b).
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Image Collection

Automatic Leaf Detection

Surface Reconstruction
and Area Measurements

Depth Estimation
by Stereo and ToF

Fig. 3 Overview of main processes of our system for measuring leaf area.
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(a) (b) (c)

Fig. 4 Camera calibration: (a) diagram of calibration board; (b) diagram illustrating the transformation of a point between colour
images and world coordinate. Dashed line represents the optical axis going through the principal point (xm, ym). yi and Y represent
axis perpendicular to the page with the same projective properties. (c) plot of the relationship between depth Z in cm and disparities
d in pixels for colour camera. Blue dots were disparity measurements d for each Z, and the red line was the fit by (6).
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Fig. 5 Examples to illustrate quality scores on two disparity results. The colour image with depth edges plotted in red is shown
on the left. The grey values in each panel represent the disparity (left), Se (middle) and Ps (right) respectively. The disparity maps
use a grey value scale of 20-90 pixels black-white. The Se and Ps images also use a common scale.
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(a) I (b) d

(c) M(I) (d) M(d) (e) M(I, d, γ)

Fig. 6 Edge magnitude of colour and disparity images. (a) and (b) show the colour I and estimated disparity d images respectively.
(c) and (d) show edge magnitudes by the Canny filter M(I) and M(d), and (e) shows the combined Canny edge magnitude. For
this example, the weight coefficient γ is set to 0.4.
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Fig. 7 Comparison between automatic leaf detection and manual selection. Yellow boundaries represent automatic leaf detection
by our method and red boundaries represent manual selection.
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(a) No smoothing (b) Smoothing, β = 1% (c) Smoothing, β = 10%

(d) Histogram on residuals β = 1%

(e) Histogram on residuals β = 10%

Fig. 8 Reconstruction of a leaf surface with smoothing parameter β. (a) shows reconstruction without smoothing and the ‘rice
terrace’ effect is clear. (b) shows little LOESS smoothing with β = 1%, which is also clear from histogram on residuals in (d). (c)
shows LOESS smoothing with β = 10%. (e) shows histogram on residuals with β = 10%, and there is a pattern of changes in the
three bins near 0 in red colour compared with (d).
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SIFTflow Shape GC ToF GC+ToF

Fig. 9 Disparity results on the ‘Plant 1’. SIFTflow, Shape and GC represent methods by Liu et. al. [29], Ogale and Aloimonos
[34] and Boykov et. al. [5] respectively. ToF shows transformed points in colour image coordinates and the black pixels indicate
missing ToF information. GC+ToF is our method combining stereo and ToF images.
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Leaf 1

Leaf 2

Leaf 3

SIFTflow Shape GC GC+ToF

Fig. 10 Results for three leaves from top to bottom in Plant 1. Depth edges are plotted in red.
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Fig. 11 Results on 15 examples of automatic leaf detection by our method. The yellow boundary outlines an automatically identified
leaf. The 15 examples were randomly selected from the possible 149 leaves automatically detected in the validation images.



34 Song et. al.

Fig. 12 Plots of 149 automatic leaf area measurements automatically obtained using our system against manual measurements on
the validation images. The x-axis is manual measurements in cm2, and the y-axis is automatic measurements in cm2. The red line
is the 1 : 1 reference line, and the red circles show the 29 leaves that could not be automatically detected.


