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Abstract 

Background: Precision agriculture is an emerging research field that relies on monitoring and managing field vari-

ability in phenotypic traits. An important phenotypic trait is biomass, a comprehensive indicator that can reflect crop 

yields. However, non-destructive biomass estimation at fine levels is unknown and challenging due to the lack of 

accurate and high-throughput phenotypic data and algorithms.

Results: In this study, we evaluated the capability of terrestrial light detection and ranging (lidar) data in estimating 

field maize biomass at the plot, individual plant, leaf group, and individual organ (i.e., individual leaf or stem) levels. 

The terrestrial lidar data of 59 maize plots with more than 1000 maize plants were collected and used to calculate 

phenotypes through a deep learning-based pipeline, which were then used to predict maize biomass through simple 

regression (SR), stepwise multiple regression (SMR), artificial neural network (ANN), and random forest (RF). The results 

showed that terrestrial lidar data were useful for estimating maize biomass at all levels (at each level,  R2 was greater 

than 0.80), and biomass estimation at leaf group level was the most precise  (R2 = 0.97, RMSE = 2.22 g) among all four 

levels. All four regression techniques performed similarly at all levels. However, considering the transferability and 

interpretability of the model itself, SR is the suggested method for estimating maize biomass from terrestrial lidar-

derived phenotypes. Moreover, height-related variables showed to be the most important and robust variables for 

predicting maize biomass from terrestrial lidar at all levels, and some two-dimensional variables (e.g., leaf area) and 

three-dimensional variables (e.g., volume) showed great potential as well.

Conclusion: We believe that this study is a unique effort on evaluating the capability of terrestrial lidar on estimating 

maize biomass at difference levels, and can provide a useful resource for the selection of the phenotypes and models 

required to estimate maize biomass in precision agriculture practices.
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Background
�e world population is estimated to surpass 9 billion 

by the year 2050, creating an unprecedented pressure 

on food security and sustainable development of human 

societies [1, 2]. Precision agriculture is an emerging 

research field for improving food productivity, which 

requires accurate and high-throughput screening of phe-

notypic traits [3]. Among them, biomass is a comprehen-

sive indicator of crop yield, which is critical for improving 

crop breeding and mitigating food security challenges 

[4–6]. Maize is one of the three major crops supply-

ing more than half of the cereal foods around the world. 

�erefore, studying the biomass estimation of maize is of 
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great importance for the advancement of precision agri-

culture and food security.

Traditional biomass estimation methods mainly rely on 

field measurements and destructive sampling [7], which 

are labor-intensive, time-consuming, and unrepeatable. 

With the development of remote sensing, biomass esti-

mation has entered a repeatable and high-throughput 

era. For example, Osborne et al. [8] estimated in-season 

biomass of corn using field hyperspectral data. Wang 

et al. [5] estimated maize biomass at plot level using air-

borne hyperspectral data. �ese methods are easy to be 

implemented by building regression models between 

field-measured biomass and remotely-sensed vegetation 

indexes (e.g., normalized difference vegetation index, 

NDVI) [9]. However, biomass estimation from vegeta-

tion index-based methods usually suffers from saturation 

effects at high biomass value [6, 10] and is sensitive to 

light conditions, background reflectance (e.g., soil) [11], 

and plant structure [6, 12].

Light detection and ranging (lidar) is an active remote 

sensing technology, which can acquire highly accurate 

three-dimensional (3D) data of a target by recording 

the distance of the sensor to the target according to the 

flight time of the pulsed laser beam [13, 14]. Due to its 

strong penetration ability and insensitivity to light condi-

tions, lidar has been shown to have better accuracy than 

other remote sensing techniques in estimating biomass 

[15–17]. Terrestrial lidar is a ground-based lidar technol-

ogy and is the main tool for field lidar data acquisition 

at small scales due to its portability and highly accurate 

data quality [13, 18]. However, current studies using ter-

restrial lidar mainly focus on forests [19, 20]. For crop 

biomass estimation, there are a few studies. For exam-

ple, Wang et  al. [5], Eitel et  al. [21], and Tilly et  al. [22] 

demonstrated that lidar-derived height variables were 

good proxies for estimating biomass of maize, wheat, and 

paddy rice. Due to height variation is often unnoticeable 

among breeding lines, 3D variables derived from lidar 

have also been investigated to estimate crop biomass. For 

example, Eitel et al. [11] and Walter et al. [23] estimated 

wheat biomass with terrestrial lidar-derived vegetation 

volume. Jimenez-Berni et al. [24] estimated wheat above-

ground biomass with 3D profile index (3DPI) and 3D 

voxel index derived from terrestrial lidar data. However, 

these studies all focus on plot level, and do not allow to 

derive precise information at the individual plant or even 

finer level, which is needed to assist breeding and meet 

the requirements of precision agriculture. �erefore, the 

feasibility of biomass estimation using terrestrial lidar at 

fine levels (e.g., individual plant level, leaf group level, 

and individual organ level) is unknown.

�e main challenge in the use of lidar for biomass esti-

mation is how to extract phenotypic traits accurately at 

different levels, especially at the individual plant level 

and even finer levels. �e prerequisites of phenotypic 

traits from lidar data at fine levels are the ability of auto-

matically segmenting individual plants, stems and leaves, 

which has been long-standing challenges. Recent algo-

rithmic advancements that make use of deep learning 

have solved these bottlenecks [25, 26], making it feasible 

to estimate biomass. However, how to select phenotypic 

traits and models for biomass estimation at different fine 

levels is still unclear.

In this study, we aimed to explore which regression 

models and phenotypic traits derived from lidar data are 

best for estimating maize biomass (not biomass density) 

at four levels, including plot, individual plant, leaf group, 

and individual organ (i.e., individual leaf or stem) levels. 

We believe that this research can guide future biomass 

estimation efforts from terrestrial lidar data at fine levels, 

which may further contribute to yield estimation, preci-

sion agriculture, and food security.

Study area and data
Study area

�e study was conducted at the breeding base of the 

Institute of Botany, Chinese Academy of Sciences (39° 

59′ 10″ N, 116°1 2′ 21″ E), in Beijing, China (Fig. 1a). �e 

area of the maize field from which we took the measure-

ments is about 600  m2. �e mean annual precipitation 

at the site is 575.16 mm and the mean annual tempera-

ture is 12.78  °C. We planted 59 maize plots with the 

same variety (Zea mays L.) in three different periods. In 

April 2018, only 1 plot was planted, which was used to 

collect samples for biomass estimation at the individual 

leaf level. �e plot size was 10 m × 10 m, and the planting 

interval was 1 m in both intra-row and inter-row direc-

tions. In August 2018, 3 plots were planted, which were 

used for collecting samples for biomass estimation at 

the leaf group, stem, and individual leaf levels. �e plot 

size was 4 m × 4 m, and the planting interval was 0.5 m 

in both the intra-row and inter-row directions. In April 

2019, 55 plots were planted, which were used for col-

lecting samples for biomass estimation at the plot level. 

�e plot size was 3  m × 3  m, and the planting interval 

was 0.6 m in both the intra-row and inter-row directions 

(Table 1).

Destructive biomass measurements

To collect ground truth biomass at the individual leaf 

level, we manually sampled all individual leaf samples 

within the 10 m × 10 m plot on July 15, 2018 (Fig. 1b, f ). 

�ese individual leaf samples were first dried at 105  °C 

for 2 h, and then dried at 65  °C until the sample weight 

was constant when measured with an electronic scale 

with an accuracy of 0.01  g. To collect ground truth 
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Fig. 1 The study area and data collection. a Data collection in 2018 using a terrestrial lidar mounted on a tripod. b TLS data example collected 

on July 15, 2018. c TLS data example collected on August 31, 2018, September 16, 2018, and September 29, 2018. d Data collection in 2019 using 

terrestrial lidar integrated on a high-throughput phenotyping platform. e Terrestrial lidar data example at plot level. f Field sampling and biomass 

measurement at plot, individual plant, leaf group, stem, and individual leaf levels

Table 1 Description of lidar data and �eld-measured biomass collected in this study

Planting date Number of plots Plot size Planting 
interval, 
m

Number 
of maize 
individuals

Lidar data acquisition 
time

Field biomass 
acquisition 
time

Data use

Apr. 10, 2018 1 plot 10 m × 10 m 1 100 Jul. 15, 2018 Jul. 15, 2018 Individual leaf biomass 
estimation

Aug. 3, 2018 3 plots 4 m × 4 m 0.5 138 Aug. 31, 2018, Sep. 16, 
2018, and Sep. 29, 
2018

Aug. 31, 2018, 
Sep. 16, 2018, 
and Sep. 29, 
2018

Leaf group, stem, and 
individual plant bio-
mass estimation

Apr. 1, 2019 55 plots 3 m × 3 m 0.6 858 Jul. 30, 2019 Jul. 30, 2019 Plot biomass estimation
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biomass at the stem, leaf group, and individual levels, 

we manually sampled 138 individual samples from three 

different plots at three growth stages, that is August 31, 

2018, September 16, 2018, and September 29, 2018. We 

manually separated the stem from the group of leaves of 

the three selected plots in the field (Fig. 1c), and weighted 

them using the abovementioned method in the labora-

tory. �e ground truth biomass at the individual plant 

level was measured by summing the stem and leaf group 

biomass of an individual plant.

By contrast, it is hard to dry the plot biomass in the 

laboratory because there were 858 individual plants. 

Biomass at the plot level was indirectly measured by 

converting fresh weight to dry weight according to estab-

lished relationships built from randomly selected samples 

[27]. Specifically, all individual maize plants within each 

plot were first harvested and weighted fresh in the field 

using an electronic scale with an accuracy of 1  g. After 

that, we randomly sampled three fresh individual plants 

of each plot, which were weighted dry at 105 °C for 2 h, 

and then dried at 65 °C until their weights were constant. 

According to the samples’ fresh weight and correspond-

ing dry weight, a conversion factor between dry and fresh 

weighs can be derived, which was further used to calcu-

late the dry weight of each plot.

Lidar data collection

In this study, lidar data were collected in the morning 

of the same day as field measurements to reduce the 

influence of wind. A FARO  Focus3D X 330 HDR terres-

trial laser scanner was used. �e sensor size is 240 mm 

× 200 mm × 100 mm and weighs 5.2 kg. �e pulse rate 

is 244 kHz, and the ranging error is approximately 2 mm 

(see full details in Table 2). However, the scanning mode 

and carrying platform were different in 2018 and 2019.

In 2018, the sensor was mounted on a tripod at the 

height approximate to the highest canopy height (Fig. 1a). 

High-reflectance targets were installed randomly within 

the field with an average distance of about 10  m. Scan-

ning sites were set at each corner of the plots. �e oper-

ating mode of the sensor was set as “Outdoor within 

10 m Scanning Profile” without color information, which 

is suitable for fixed platforms and can acquire detail 

information with high efficiency within a short distance 

(< 10 m). For the maize planted in April 2018, the terres-

trial lidar data were acquired for the 10  m × 10  m plot 

(Fig.  1b). �ese data were used to extract phenotypic 

traits for the estimation of biomass at the individual 

leaf level. For the maize planted in August 2018, the ter-

restrial lidar data were collected at three different sites 

(Fig. 1c). Some plants in the field were removed to facili-

tate the set-up of the instrument and obtain high-pre-

cision data during the scanning on September 16, 2018 

and September 29, 2018. �ese data were used to extract 

the phenotypic traits for biomass estimation at stem, leaf 

group, and individual plant levels.

In 2019, lidar data were collected at mature stage in a 

more efficient way because of the large planted area by 

mounting lidar sensor on a high-throughput field crop 

phenotyping system, named Crop3D (Fig.  1d). �e sys-

tem was placed on tracks and moved in x, y, and z direc-

tions to cover the field. �e lengths of the tracks were 

30  m in the north–south (NS) direction, 20  m in the 

east–west (EW) direction, and 4 m in the vertical direc-

tion. �e sensor was the same as the one used in 2018 

but operated in “Helical Mode”. �is mode uses the scan-

ner movement information (i.e., scanner speed and direc-

tion) to register lidar points from mobile lidar systems, 

enabling a higher data collection speed. �e sensor was 

mounted at the height of 0.5 m above the highest canopy. 

�e system moved in EW direction at a speed of 0.05 m/s 

to collect data along a row of plants. �en it moved for-

ward at a distance of 3 m in the NS direction to another 

row to collect new data. �ese data were used to extract 

phenotypic traits for biomass estimation at plot level 

(Fig. 1e).

Methods
Terrestrial lidar data preprocessing

Terrestrial lidar data preprocessing consisted of five pro-

cedures: registration, clipping, denoising, filtering, and 

normalization. First, the data collected in 2018 using a ter-

restrial lidar mounted on a tripod were registered based 

on high-reflectance targets; we used the FARO SCENE 6.0 

software to get the complete point cloud data of the field. 

�e data collected in 2019 using the Crop3D platform were 

Table 2 The speci�cations of the lidar scanner used in this 

study

FARO  Focus3D X 330 HDR Speci�cation

Laser wavelength, nm 1550

Laser beam divergence, mrad 0.19

Pulse rate, kHz 244

Maximum scanning rate, Hz 97

Distance accuracy 2 mm @10 m @ 90% reflectance

Field of view, ° Horizontal: 360°; Vertical: 300°

Angular resolution, ° Horizontal: 0.009°; Vertical: 0.009°

Detection range, m 0.6–130 m indoor or outdoor with 
upright incidence to a 90% reflective 
surface

Scanner weight, kg 5.2

Dimensions, mm 240 × 200 × 100

Beam diameter at exit, mm 2.25

Laser class Laser class 1
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registered using the system recorded relative location. �e 

registration accuracies for both systems were higher than 

2 mm. �e data of the target area were then clipped using 

the Green Valley  International® LiDAR360 software. Next, 

the clipped points were denoised using a statistical outlier 

removal method included in the LiDAR360 software. �e 

denoised points were filtered into vegetation points and 

ground points through a local minimum filtering algorithm 

integrated in the LiDAR360 software. Specifically, this algo-

rithm first uses a moving window to find local minima in 

height, and interpolates a digital terrain model (DTM) from 

the local minima. Points above the DTM within a user-

defined height threshold are classified as ground points 

and the other points are classified as vegetation points. In 

this study, the size of moving windows was set as 0.2 m and 

the height threshold was set as 0.1 m. Finally, the filtered 

lidar points were normalized by subtracting the height of 

each point with the height of its nearest ground point in the 

horizontal direction. Phenotypic traits were extracted from 

the normalized lidar point cloud and matched with field 

measurements.

Phenotypic trait extraction

In this study, lidar data collected at different levels were 

used to extract various phenotypic traits (Table 3), includ-

ing 1D traits (e.g., height), 2D traits (e.g., canopy cover), 

and 3D traits (e.g., volume) (Table 3). �e types and extrac-

tion methods of phenotypic traits at different levels are 

introduced as follows.

Phenotypic trait extraction at plot level

At plot level (Figs. 1e, 2a), data were clipped into 55 indi-

vidual plots. At each plot, we extracted 27 phenotypic traits 

(Table 3), including maximum height  (Hmax), mean height 

 (Hmean), height quantiles (from 99% quantile height/H99 to 

80% quantile height/H80 with an interval of 1%), canopy 

cover, projected leaf area (PLA), plant area index (PAI), 

3DPI, and volume.  Hmax is defined as the maximum z value 

of all normalized points.  Hmean is the mean value of all nor-

malized points. Canopy cover is the proportion of canopy 

per unit area. PLA is the absolute projected leaf area. In 

this study, vegetation points were projected into the X–Y 

plane. �e projected points were rasterized with a resolu-

tion of 1.5 times of the average point distance by referring 

to [28]. �en, the canopy cover and PLA were calculated 

as:

(1)Canopy cover =

nl

np

(2)PLA = �x × �y ×

nl

np

where nl and np are the number of pixels contain-

ing points and the number of all pixels, respectively; 

�x and �y are the length of the target bounding box of 

the projected points in x and y directions.

PAD, PAI, 3DPI, and volume were calculated using a 

voxel-based method [29, 30]. All the 3D points were vox-

elized with a voxel size of 1.5 times of the average point 

distance [28]. In each horizontal layer ( i ) with a height 

( �H ) equal to the voxel size, PAD was computed using 

Eq. 3.

where θc is the laser incident angle; G(θc) is the extinction 

coefficient; i is a given vertical layer; mh and mh + �H 

are the bottom and upper voxel vertical coordinates of 

layer i; nl(i)andnp(i) are the number of voxels located 

with points and the number of all voxels, respectively; n 

is the number of vertical layers.

PAI was equal to the sum of PAD in the horizontal lay-

ers (Eq. 4).

Similarly, 3DPI was calculated using Eq. 5:

where n is the number of vertical layers; pi is the number 

of points located in layer i,pt is the total number of points 

in all layers; pcs is the sum of points above layer i; k is a 

given parameter, which is set as 1 according to Jimenez-

Berni et al. [24].

Volume was calculated using Eq. 6:

where �x,�y, and �z are the length of bounding box of 

points in x, y, and z directions. nl and np are the number 

of voxels located with points and the number of all vox-

els, respectively.

Phenotypic trait extraction at individual plant level

At the individual plant level (Figs.  1c, 2b), each plot 

was first segmented into individual maize plants using 

a faster RCNN-based deep learning method (FRCNN) 

[25]. �e segmented results were visually checked and 

refined with the LiDAR 360 software to ensure the 

accuracy of the following phenotypic trait extraction. 

(3)PAD =
cosθc

G(θc)
×

1

�H
×

i=mh+�H∑

i=mh

nl(i)

np(i)

(4)PAI =

i=n∑

i=0

PAD × �H

(5)3DPI =

i=n
∑

i=0

(

pi

pt

)

e
k
pcs
pt

(6)Volume = �x × �y × �z ×

nl

np
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Finally, 138 individual plants were segmented and used 

to extract phenotypic traits, including maximum indi-

vidual height (height), crown size, ratio of crown size to 

height (CHR), canopy cover, PLA, PAI, 3DPI, and vol-

ume. Crown size was defined as the maximum length 

of the crown in all directions; CHR was calculated by 

dividing crown size by height; the other phenotypic 

traits were calculated with the same formulas used at 

plot level.

Phenotypic trait extraction at leaf group level

At leaf group level (Figs.  1c, 2c), the above-segmented 

138 individual plants were further segmented into 138 

leaf groups and 138 stems using a voxel-based convo-

lution neural network (VCNN) method [26]. �e 138 

Table 3 Phenotypic traits extracted at di�erent levels and their statistical information

Levels Number of samples Phenotypic traits Statistics

Max Mean Min

Plot level 55 plots Hmax, m 2.894 2.463 1.886

Hmean, m 1.314 0.999 0.642

Height quantiles (H99, H98,…, H80), m 2.463 1.899 1.229

Canopy cover 0.628 0.320 0.132

PLA 6.654 4.571 2.249

Plant area index/PAI 4.174 1.683 0.516

3DPI 1.717 1.715 1.712

Volume,  m3 0.201 0.103 0.010

Individual plant level 138 individual plants Height, m 2.135 1.089 0.266

Crown size, m 1.322 0.887 0.178

CHR 1.562 0.944 0.439

Canopy cover 0.309 0.173 0.076

Projected leaf area/PLA,  m2 0.164 0.076 0.005

PAI 2.688 0.961 0.301

3DPI 1.718 1.716 1.710

Volume,  10−4  m3 11.521 4.457 0.286

Leaf group level 138 leaf groups Leaf height, m 2.135 1.077 0.263

Crown size, m 1.269 0.882 0.179

CHR 1.731 0.943 0.439

Canopy cover 0.308 0.171 0.074

PLA 0.162 0.075 0.005

PAI 2.396 0.878 0.303

3DPI 1.718 1.716 1.710

Volume,10−4  m3 10.409 4.039 0.269

Organ level 138 stems Stem height, m 1.536 0.563 0.080

Stem diameter, cm 3.174 1.898 0.797

PAI 30.266 10.716 1.901

3DPI 1.717 1.712 1.695

Volume,  10−4  m3 10.049 3.928 0.085

59 individual leaf samples Leaf length 1.022 0.701 0.320

Leaf width 0.200 0.102 0.039

Leaf area 0.133 0.060 0.012

PLL 0.852 0.463 0.092

PLA 0.063 0.029 0.002

PAI 6.137 1.901 0.290

3DPI 1.714 1.707 1.669

Volume,  10−4  m3 7.900 2.729 0.418
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separated leaf groups were used to extract phenotypic 

traits, including height, crown size, CHR, canopy cov-

erage, PLA, PAI, 3DPI, and volume of leaves using the 

abovementioned methods.

Phenotypic trait extraction at organ level

At the stem level (Figs. 1c, 2c), the 138 stems were used 

to extract stem height, diameter, PAI, 3DPI, and volume. 

Stem height, PAI, 3DPI, and volume were calculated 

using the abovementioned methods. Stem diameter was 

calculated using a circle fitting method. �e stem points 

were sliced into 3 equal horizontal layers. In each layer, 

points were projected into the X–Y plane and fitted with 

a circle using the least-squares method, which returned 

the diameter of the circle. �e diameters extracted for the 

three layers were averaged to derive the stem diameter. 

Based on the stem diameter and stem height, stem vol-

ume was calculated using the cylindrical volume formula.

At the individual leaf level (Figs.  1b, 2d), the scanned 

plot was segmented into individual plants using FRCNN, 

which were then segmented into individual leaf samples 

using VCNN and refined with the LiDAR360 software 

Fig. 2 Workflow of the aboveground biomass estimation and selection of the best model and phenotypic trait at different levels. a Phenotypic trait 

extraction and biomass estimation at plot level. b Individual maize segmentation, phenotypic trait extraction, and biomass estimation at individual 

plant level. c Stem-leaf segmentation from individual plant, phenotypic trait extraction, and biomass estimation at leaf group level. d Individual leaf 

segmentation, phenotypic trait extraction, and biomass estimation at organ levels, including stem level and individual leaf level
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[31]. Leaf length, leaf mean width, leaf area, projected leaf 

length (PLL), PLA, PAI, 3DPI, and volume were calculated 

for each individual leaf sample. Among them, leaf length, 

leaf mean width, leaf area were calculated using a skeleton-

based method [31]. PLL and PAL were the leaf length and 

leaf area calculated with the projection points at the X–Y 

projection plane. �e other phenotypic traits were cal-

culated using the same methods as used at plot level. All 

methods were implemented using Python 3.6 software 

according to the definitions/formulas.

�e extracted phenotypic traits were matched with 

field measurements for model building at plot, individual 

plant, leaf group, stem, and individual leaf levels. �e 

matched sample size at plot, individual plant, leaf group, 

and stem are 55, 138, 138, and 138, respectively (Table 3). 

At the individual leaf level, it was a very time-consuming 

and difficult task to match all individual leaf measure-

ments with lidar measurements, and scenarios of broken 

leaves or too small leaves may even make the matching 

process of certain leaves become an impossible task. In 

this study, we selected 59 individual leaf samples instead 

of all leaves, and matched them with lidar data for indi-

vidual leaf level biomass estimation. �ese leaf samples 

covered a leaf length from 0.320 m to 1.022 m and a leaf 

width from 0.039  m to 0.200  m (Table  3), ensuring the 

representativeness of the selected samples.

Methods for estimating biomass from terrestrial lidar data

To systematically answer which method and which phe-

notypic trait are best for biomass estimation, we used 

all phenotypic traits to build regression models, includ-

ing simple regression (SR), stepwise multiple regression 

(SMR), artificial neural network (ANN), and random for-

est (RF). Two forms of SR were implemented. One was 

the simple linear regression (SLR) based on the raw pre-

diction variables and an independent variable, the other 

was the log-transformed simple regression (LSR) based 

on log transformed dependent and log transformed inde-

pendent variables.

SR method

�e SR method was selected due to its simple procedure 

and strong fitting ability, which usually contains only 

one independent variable. In this study, both SLR and 

LSR were used to predict maize biomass at different lev-

els. Models with the highest coefficient of determination 

were treated as the best models, and their corresponding 

independent variables were selected as the best traits. 

�e SLR (Eq. 7) and LSR (Eq. 8) formulas are defined as:

(7)B = α × V + β

(8)ln(B) = α × Ln(V ) + β

where B is the predicted biomass (g), V is the phenotypic 

trait extracted from terrestrial lidar data, α and β are 

regression parameters.

SMR model

SMR is a multiple linear regression method that can 

automatically select strong correlated independent vari-

ables according to their influence on dependent variables. 

�e influence of the variables can be evaluated with cri-

teria such as the Akaike information criterion (AIC) 

and F-tests. �e SMR has three different approaches, 

i.e., forward elimination, backward elimination, and 

bidirectional elimination. In this study, the backward 

elimination approach according to the AIC criterion 

was selected, which means that all variables were used 

in the first step and a variable was eliminated if it could 

not reduce the AIC value [32]. �e SMR model was con-

structed and validated using the ‘stepwise’ package in R 

software.

ANN regression model

ANN, inspired by biological neural networks, is a multi-

layer fully connected structure for nonlinear feature 

learning, which consists of an input layer, one or more 

hidden layers, and an output layer. In this study, the num-

ber of hidden layers was set to 1, because one hidden 

layer is sufficient for solving biomass regressions in most 

cases [33, 34]. In addition to the number of hidden lay-

ers, the number of neurons in each layer is also an impor-

tant parameter. �e number of neurons in the input 

layer and output layer are determined by the number of 

independent variables and dependent variable, respec-

tively. However, the number of neurons in the hidden 

layer is uncertain though important. To find an optimal 

number of neurons in the hidden layer, a trial-and-error 

method [35] was used to find the best ANN model with 

hidden neuron numbers from 1 to 20 with an interval of 

1. During the construction of the ANN model, all vari-

ables needed to be normalized. After we selected the best 

model, parameter importance was analyzed using the 

connection weight analysis method [36]. Both the model 

construction and importance analysis were implemented 

using the R ‘NeuralNet’ package.

RF regression model

RF is an ensemble learning method used for classifica-

tion and regression. RF constructs multiple decision trees 

during the training phase and outputs the mode class 

and mean value of the trained trees for classification and 

regression, respectively. �ere are two important param-

eters, ntree and mtry, that influence the performance of 

a RF model [37]. �e parameter ntree is referred as the 

number of trees to grow in the RF model, which should 
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be set large when the sample size is large. �e parame-

ter mtry represents the number of variables selected for 

splitting at each node, which should be set smaller than 

the total number of independent variables [38]. Due 

to their uncertain influence, we used a grid searching 

method to find an optimal combination of ntree and mtry 

to maximize the model accuracy. In this study, ntree was 

varied from 100 to 1000 with an interval of 100, mtry was 

set from 1 to the maximum number of variables with an 

interval of 1. Each ntree was combined with each mtry to 

run the RF models. �e model that had the best predic-

tion accuracy was selected to determine the best ntree 

and mtry. In addition, parameter importance was ana-

lyzed using the percentage increase in the mean-squared 

error (%IncMSE). A larger  %IncMSE denotes that a vari-

able is more important [39]. Both the model construction 

and importance analysis were implemented using the R 

‘randomForest’ package.

Accuracy assessment

To evaluate the performance of different models, data 

were split into 70% training/fitting data and 30% testing 

data. �e training data were used to train/fit the above-

mentioned models. Testing data were used to evaluate 

model accuracy by comparing the model predicted and 

field-measured biomass at different levels based on the 

determination coefficient  (R2) and root-mean-squared 

error (RMSE).

where n is the number of testing samples; Bi represents 

the field-measured biomass; B̂i represents the predicted 

biomass by a regression model; Bi is the average value of 

all Bi.

To analyze the best model and phenotypic traits at dif-

ferent levels, we built SR models using all available phe-

notypic traits at each level. However, only the best height 

quantile trait that had the highest correlation with the 

field biomass according to the SR models was kept for 

building the multivariable models (i.e., SMR, RF, ANN) 

with other traits. According to the highest prediction 

accuracy  (R2), the best models were selected. Moreover, 

variables importance was analyzed for different models. 

�e most important variables were selected according to 

the best SR model. Common important variables in the 

(9)R
2

= 1 −

∑
n

i=1

(
Bi − B̂i

)2

∑
n

i=1

(
Bi − Bi

)2

(10)RMSE =

√√√√1

n

n∑

i=1

(
Bi − B̂i

)2

multivariable models (SMR, ANN, and RF) were also 

selected.

Results
Biomass estimation at plot level

At plot level, the SR models, including SLR and LSR, 

were fitted to predict plot biomass using each extracted 

phenotypic trait. All SR models built with height-related 

variables were highly significant (p < 0.01) and the model 

built with 3DPI was significant (p < 0.05), while other 

variables resulted in non-statistically significant models 

(Table 4). In most cases, the LSR model slightly outper-

formed SLR. �e best LSR model and SLR model were 

Table 4 Coe�cients of  determination  (R2) and  root mean 

square errors (RMSE) between  the  predicted and  �eld-

measured biomass at  plot level using simple regression 

methods

Italic values indicate the most important variable and the corresponding 

prediction accuracy (i.e., R2 and RMSE) of simple regression models (i.e., SLR and 

LSR)

* p < 0.05; ** p < 0.01

Variable Simple linear regression Log transformed 
simple regression

R2 RMSE, g R2 RMSE, g

Hmax 0.45** 540.88 0.45** 534.22

Hmean 0.59** 478.53 0.59** 461.92

H99 0.59** 487.22 0.60** 478.55

H98 0.65** 463.21 0.66** 452.51

H97 0.67** 450.19 0.68** 438.69

H96 0.69** 435.83 0.70** 423.29

H95 0.70** 424.75 0.71** 411.57

H94 0.71** 418.13 0.72** 404.22

H93 0.72** 409.72 0.74** 394.65

H92 0.74** 400.38 0.75** 383.87

H91 0.75** 392.48 0.76** 374.88

H90 0.76** 387.18 0.77** 368.72

H89 0.76** 384.09 0.78** 364.9

H88 0.77** 383.10 0.78** 363.52

H87 0.77** 381.70 0.78** 361.71

H86 0.78** 377.77 0.79** 357.07

H85 0.78** 374.82 0.80** 353.16

H84 0.79** 374.59 0.80** 352.12

H83 0.79** 376.32 0.8** 353.34

H82 0.78** 379.15 0.8** 356.11

H81 0.78** 382.18 0.79** 359.13

H80 0.78** 384.22 0.79** 361.04

Canopy cover 0.01 697.11 0.01 706.48

PLA 0 718.57 0 733.73

Volume 0.01 725.22 0.02 730.90

PAI 0.01 697.10 0 718.56

3DPI 0.24* 615.58 0.24* 626.41
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both built with variable H84, which had  R2 of 0.79 and 

0.80, respectively. SMR, ANN, and RF models were fitted 

with the phenotypic trait that showed the best  R2 in SR 

models (i.e., H84) and other phenotypic traits. �e hid-

den size of ANN was 17, and the ntree and mtry of RF 

were 200 and 2, respectively. �e  R2 (RMSE) of SMR, 

ANN, and RF were similar to the ones obtained by the 

SR models, and were 0.80 (179.77 g), 0.68 (222.40 g), and 

0.79 (150.14 g), respectively (Fig. 3). Moreover, we found 

that these models all overestimated and underestimated 

at low and high biomass levels, respectively. In addi-

tion, the variable importance analysis of the SMR model 

showed that the important variables were H84, PLA, and 

canopy cover (Fig.  4). �e most important variables in 

the ANN model were H84, canopy cover, PAI, and PLA. 

As for RF, the most important variables were mainly 

height related, including  Hmax, H84, and  Hmean. 

Overall, the SMR model had the highest biomass pre-

diction accuracy at plot level, followed by LSR, RF, SLR, 

and ANN. However, SR models had the highest RMSE 

(Fig.  3). �e most important predictors were height 

related variables (i.e., H84,  Hmax,  Hmean), followed by can-

opy cover, PLA, and PAI.

Biomass estimation at individual plant level

At individual plant level, all SR models were highly sig-

nificant (p < 0.01) except for the models built with canopy 

cover (Table 5). �e best LSR model and SLR model were 

both built with the height variable and had  R2 of 0.93 

and 0.96, respectively. Meanwhile, the SMR, ANN, and 

RF models were fitted with all the extracted phenotypic 

traits. �e hidden size of ANN was 2, and the ntree and 

mtry of RF were 600 and 2, respectively. �e  R2 (RMSE) 

of SMR, ANN, and RF were also high, and were 0.94 

(10.29 g), 0.93 (10.75 g), and 0.94 (10.19 g), respectively 

(Fig.  5). We found that these models all fitted close to 

the 1:1 line without obvious saturation effects. In addi-

tion, the variable importance analysis of the SMR model 

Fig. 3 Correlations between predicted and field-measured biomass at plot level. a–c show the results derived from the SMR model, the ANN 

model, and the RF model, respectively. Note that the solid line represents the fitted line and the dashed line represents the 1:1 line

Fig. 4 Variable importance analysis for a the SMR model, b the ANN model, and c the RF model at plot level. Note that H84,  Hmax,  Hmean, PLA, PAI, 

and 3DPI represent the 80% quantile height, max point height, mean point height, projected leaf area, plant area index, and three-dimensional 

profile index, respectively
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showed that the most important variables were height, 

volume, and 3DPI (Fig. 6). �e most important variables 

in the ANN model were height, crown size, and volume. 

As for the RF, the most important variables were height, 

3DPI, and PLA. 

Overall, the LSR model had the highest biomass pre-

diction accuracy at individual plant level, followed by 

RF, SMR, ANN, and SLR, which also had high accuracy 

(Fig.  5). �e most important predictors were height, 

3DPI, and volume.

Biomass estimation at leaf group level

At leaf group level, all SR models were highly signifi-

cant (p < 0.01) except models built with canopy cover 

(Table 6). �e best LSR model and SLR model were built 

with height and 3DPI variables and had  R2 of 0.95 and 

0.92, respectively. Meanwhile, SMR, ANN, and RF mod-

els were fitted with all phenotypic traits. �e hidden size 

of ANN was 1, and the ntree and mtry of RF were 400 

and 2, respectively. �e  R2 (RMSE) of SMR, ANN, and RF 

were also high, and were 0.97 (2.41 g), 0.97 (2.22 g), and 

0.97 (2.34 g), respectively (Fig. 7). �ese models all fitted 

Table 5 Correlations between  predicted and  �eld-

measured biomass at  individual plant level using simple 

regression methods

Italic values indicate the most important variable and the corresponding 

prediction accuracy (i.e., R2 and RMSE) of simple regression models (i.e., SLR and 

LSR)

* p < 0.05; ** p < 0.01

Variable Simple linear regression Log transformed 
simple regression

R2 RMSE, g R2 RMSE, g

Height 0.93** 10.78 0.96** 9.13

Crown size 0.64** 23.24 0.72** 21.98

CHR 0.66** 22.87 0.65** 23.69

Canopy cover 0.06 37.47 0.06 41.27

PLA 0.71** 21.91 0.67** 22.42

Volume 0.83** 17.24 0.81** 18.12

PAI 0.43** 31.39 0.33** 37.72

3DPI 0.64** 23.24 0.78** 19.6

Fig. 5 Correlations between predicted and field-measured biomass at individual plant level. a–c show the results derived from the SMR model, the 

ANN model, and the RF model, respectively. Note that the solid line represents the fitted line and the dashed line represents the 1:1 line

Fig. 6 Variable importance analysis for a the SMR model, b the ANN model, and c the RF model at individual plant level. Note that PAI, PLA, 3DPI, 

and CHR represent the plant area index, projected leaf area, three-dimensional profile index, and ratio of crown size to height, respectively
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closely to 1:1 line. In addition, the variable importance 

analysis of the SMR model showed that the important 

variables were height, crown size, and PLA, etc (Fig. 8). 

�e most important variables in the ANN model were 

height, crown size, and CHR. As for RF, the most impor-

tant variables were height, 3DPI, and crown size. 

Overall, the SR, SMR, ANN, and RF models had similar 

high accuracy  (R2 ≥ 0.95) at leaf group level (Fig. 7). �e 

most important predictors were height, crown size, and 

3DPI.

Biomass estimation at organ level

At stem level, SR models, all SR models were highly sig-

nificant (p < 0.01) (Table  7). �e best LSR model and 

SLR model were both built with stem height variable 

and had  R2 of 0.93 and 0.94, respectively. Meanwhile, 

the SMR, ANN, and RF models were fitted with all phe-

notypic traits. �e hidden size of ANN was 2, and the 

ntree and mtry of RF were 800 and 2, respectively. �e  R2 

(RMSE) of SMR, ANN, and RF were also high, and were 

0.94 (6.40 g), 0.95 (5.68 g), and 0.95 (5.81 g), respectively 

Table 6 Correlations between  predicted and  �eld-

measured biomass at  leaf group level using simple 

regression methods

Italic values indicate the most important variable and the corresponding 

prediction accuracy (i.e., R2 and RMSE) of simple regression models (i.e., SLR and 

LSR)

* p < 0.05; ** p < 0.01

Variable Simple linear regression Log transformed 
simple regression

R2 RMSE, g R2 RMSE, g

Height 0.95** 3.32 0.89** 5.37

Crown size 0.69** 7.76 0.69** 7.18

CHR 0.65** 8 0.54** 10.86

Canopy cover 0.02 13.37 0.02 13.16

PLA 0.87** 4.86 0.84** 5.28

Volume 0.84** 5.34 0.81** 6.1

PAI 0.48** 9.98 0.49** 9.49

3DPI 0.8** 6.09 0.92** 3.77

Fig. 7 Correlations between predicted and field-measured biomass at leaf group level. a–c represents the results derived from the SMR model, the 

ANN model, and the RF model, respectively. Note that solid line represents the fitted line and the dashed line represents the 1:1 line

Fig. 8 Variable importance analysis for a the SMR model, b the ANN model, and c the RF model at leaf group level. Note that PLA, CHR, 3DPI, and 

PAI represent the projected leaf area, ratio of crown size to height, three-dimensional profile index, and plant area index, respectively
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(Fig.  9). �ese models all underestimated at high bio-

mass, but they did not overestimate at low biomass. In 

addition, the variable importance analysis of the SMR 

model showed that the important variables were volume, 

stem height, and PAI (Fig. 10). �e most important vari-

ables in the ANN model were volume, stem height, and 

3DPI. As for RF, the most important variables were stem 

height, volume, and 3DPI.

Overall, all models had high accuracy at stem level, of 

which the multivariable methods (i.e., SMR, ANN, and 

RF) were slight better (Fig. 9). �e most important pre-

dictors were volume, stem height, 3DPI, and PAI.

At the individual leaf level, all SR models were highly 

significant (p < 0.01) except models built with PAI 

(Table 8). �e best LSR model and SLR model were both 

built with the leaf area variable with  R2 of 0.84 and 0.84, 

respectively. Meanwhile, SMR, ANN, and RF models 

were fitted with all the phenotypic traits. �e hidden 

size of ANN was 20, and the ntree and mtry of RF were 

400 and 2, respectively. �e  R2 (RMSE) of SMR, ANN, 

and RF were 0.86 (0.62 g), 0.86 (0.67 g), and 0.78 (0.84 g), 

respectively (Fig. 11). �ese models all overestimated and 

underestimated at low and high biomass, respectively. 

Table 7 Correlations between  predicted and  �eld-

measured biomass at  stem level using simple regression 

methods

Italic values indicate the most important variable and the corresponding 

prediction accuracy (i.e., R2 and RMSE) of simple regression models (i.e., SLR and 

LSR)

* p < 0.05; ** p < 0.01

Variable Simple linear regression Log transformed 
simple regression

R2 RMSE, g R2 RMSE, g

Stem diameter 0.76** 13.99 0.80** 12.93

Stem height 0.93** 8.14 0.94** 7.46

Volume 0.90** 8.89 0.91** 8.63

PAI 0.51** 19.62 0.45** 21.38

3DPI 0.48** 20.19 0.69** 19.64

Fig. 9 Correlations between predicted and field-measured biomass at stem level. a–c represent the results derived from the SMR model, the ANN 

model, and the RF model, respectively. Note that the solid line represents the fitted line and the dashed line represents the 1:1 line

Fig. 10 Variable importance analysis for a the SMR model, b the ANN model, and c the RF model at stem level. Note that PAI and 3DPI represent 

the plant area index and three-dimensional profile index, respectively
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In addition, the variable importance analysis of the SMR 

model showed that the important variables were leaf area 

and PLL (Fig.  12). �e most important variables in the 

ANN model were leaf area, PLA, and leaf mean width. As 

for RF, the most important variables were leaf area, PLA, 

and leaf mean width. 

Overall, all models showed relatively high accuracies. 

�e SMR model had the highest biomass prediction 

accuracy at the individual leaf level, followed by ANN, 

SR, and RF (Fig. 11). �e most important predictors were 

leaf area, PLL, PLA, and leaf mean width.

Discussion
Importance of high-throughput phenotyping for biomass 

estimation

In this study, maize biomass estimation was based on 

accurate data and high-throughput phenotypic trait 

extraction algorithms. In recent years, lidar has proved 

the ability to provide data at millimeter-scale accuracy 

for high-throughput phenotyping [13, 14]. Meanwhile, an 

Table 8 Correlations between  predicted and  �eld-

measured biomass at the individual leaf level using simple 

regression methods

Italic values indicate the most important variable and the corresponding 

prediction accuracy (i.e., R2 and RMSE) of simple regression models (i.e., SLR and 

LSR)

* p < 0.05; ** p < 0.01

Variable Simple linear 
regression

Log transformed 
simple regression

R2 RMSE, g R2 RMSE, g

Leaf length 0.76** 1.25 0.77** 1.13

Leaf mean width 0.67** 1.35 0.67** 1.3

Leaf area 0.84** 1.02 0.84** 0.99

Projected leaf length 0.49** 1.83 0.43** 1.76

PLA 0.79** 1.3 0.72** 1.37

Volume 0.61** 1.47 0.65** 1.38

PAI 0.12 2.11 0.04 2.1

3DPI 0.38** 1.87 0.39** 1.91

Fig. 11 Correlations between the predicted and field-measured biomass at the individual leaf level. a–c represent the results derived from the SMR 

model, the ANN model, and the RF model, respectively. Note that solid line represents the fitted line and the dashed line represents the 1:1 line

Fig. 12 Variable importance analysis for a the SMR model, b the ANN model, and c the RF model at individual leaf level. Note that PLL, PLA, 3DPI, 

and PAI represent the projected leaf length, projected leaf area, three-dimensional profile index, and projected area index, respectively
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increasing number of studies have shown the potential of 

high-throughput phenotypic trait extraction for biomass 

estimation. For 1D phenotypic trait extraction, Jin et  al. 

[31] found that the  R2 between lidar and field-measured 

individual maize height, leaf length, leaf width, stem 

height, stem diameter and crown size were 0.91, 0.88, 

0.81, 0.97, 0.65, and 0.96, respectively. Although for stem 

diameter the  R2 was relatively low, the RMSE was only 

0.01  m. For two dimensional (2D) and 3D phenotypic 

traits, Jin et  al. [31] demonstrated the high correlation 

 (R2 = 0.88) between volume and total leaf area. Other 

studies have shown that lidar can provide highly accurate 

estimates of canopy cover [24] and PAI [28]. Lidar data 

and algorithm development have enabled high-through-

put phenotyping biomass estimation [24].

�e development of deep learning further contributed 

to the implementation of high-throughput phenotyp-

ing imaging at fine scales, creating the opportunity to 

advance biomass estimation from a traditional plot level 

to finer levels. Deep learning methods have removed the 

key bottlenecks for high-throughput phenotypic traits 

extraction, which are individual plant segmentation and 

stem-leaf segmentation. �eir accuracy and robustness 

have been discussed in our previous studies [25, 26, 31]. 

�e F-score of individual segmentation reached 0.90 [25]. 

�e overall classification accuracy of stem-leaf classifica-

tion at instance level and point level were 1.0 and 0.96, 

respectively. �e F-score of stem-leaf segmentation at 

instance level and point level were 0.91 and 0.89, respec-

tively [26].

To summarize, advancements in high-throughput data 

and algorithms made it possible to estimate biomass at 

fine levels. In this study, high accurate lidar data were 

collected and processed based on deep learning meth-

ods. Moreover, we have manually refined the individual 

segmentation and stem-leaf segmentation results in the 

LiDAR360 software, which further improved the accu-

racy of the parameters in this study. Optimal parameter 

setting for calculating phenotypic traits (e.g., voxel size) 

were referred from related studies [24, 28], while the best 

parameters for the estimation models (i.e., ANN and RF) 

were determined through trial-and-error [35]. �e highly 

accurate lidar data, state-of-the-art algorithms, interac-

tive refinement, and best parameter setting lay a good 

foundation for constructing biomass estimation models.

Best models and phenotypic traits for biomass estimation 

at di�erent levels

At plot level, the best model for biomass estimation 

were SMR with H84, PLA, and canopy cover variables, 

followed by SR, RF, and ANN. �e results were consist-

ent with previous studies showing that multiple variable 

based methods are better than SR methods, and ANN 

may perform weakly with insufficient sample data [33, 

34]. However, all the models had  R2 of no more than 

0.80, and they all showed a saturation effect. A possible 

reason is that the plot data were all collected during the 

mature stage, and had a small biomass range. Li et  al. 

[6] also found that biomass estimation accuracy is high 

when using long-term data but is relatively low at any 

single growing stage. In addition, the important variables 

are consistent with previous findings in biomass estima-

tion in grassland, agriculture, and forest fields [40–43]. 

�e reason why 2D variables (i.e., canopy cover and 

PLA) were not significantly related with biomass is the 

symmetrical distribution of maize leaves. In the mature 

stage, the upper leaves of maize block the lower leaves, 

causing only a small difference in canopy coverage and 

PLA under different biomass levels. �e importance of 

3D variables may be influenced by the points quality. In 

this study, the mean plot height was 2.46 m, which pre-

vented the laser from fully penetrating the canopy and 

resulted in the spare point density at the bottom of the 

plants (Additional file 1: Figure S1). �e sparse point den-

sity caused the underestimation and uncertainty of the 

3D related traits, including PAI, 3DPI, and volume. How-

ever, in our study we still found 3DPI to be significantly 

related to biomass, which means that 3D related traits 

should have the potential to estimate biomass because 

they contain height information. By contrast, height is a 

1D phenotypic trait, which can be accurately extracted. 

�erefore, height related variables are always highly sig-

nificantly related to biomass. However, the best variable 

in this study was H84 rather than a variable like  Hmax or 

 Hmean. �e possible reason is that the height of individual 

maize plant strongly differs in each plot, causing  Hmax 

cannot represent the height property at plot level as sug-

gested by previous studies [24].  Hmean is the mean point 

height value rather than the mean individual height, and 

thus also not the best estimation variable. In summary, 

3D variables are not robust biomass estimators when 

data quality is poor, 2D variables tend to saturate early, 

while 1D height-related variables are the most reliable. 

�e reason why the multivariable methods did not out-

perform the SR methods may be that the 2D and 3D vari-

ables are not robust at the mature stage.

At individual plant level, the best model for biomass 

estimation was the LSR with the height variable. Besides, 

all models performed well with  R2 higher than 0.93 and 

have no saturation effect. �e no saturation effect and 

the highly significant correlations between biomass 

with all variables except canopy cover may benefit from 

multi-temporal data and accurate parameter extraction 

from highly accurate terrestrial lidar data (Fig.  1a). �e 

reason why canopy cover was not significantly related 

with biomass at the individual plant level is that canopy 
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cover of an individual plant is normalized by its bounding 

box area, and is almost a constant even though the PLA 

increases with biomass. Overall, due to the high accuracy 

of the data used in this study, most 3D (e.g., volume, PAI, 

and 3DPI) and 2D variables were significant. However, 

the 1D height variable was still the most important at the 

individual level.

At leaf group level, the best models for biomass esti-

mation were multi-variable models  (R2 = 0.97). Besides, 

all models had high performances with  R2 higher than 

0.93 and had no saturation effect. �e SR results showed 

that all variables were closely related to biomass except 

canopy cover, which was similar to findings at individual 

plant level. �is might be reasonable because height has 

strong correlations with both leaf size and number of 

leaves, which are the two direct factors influencing the 

biomass at leaf group level. However, the most important 

variable in the LSR model was 3DPI, followed by height, 

suggesting that 3D variables may play as important role 

as 1D height at the leaf group level.

At the stem level, all models had a high performance 

with  R2 greater than 0.93. �e SR results show that all 

variables were highly significantly related with biomass 

(Table 6). However, the multi-variable models showed a 

slight underestimation. A possible reason is that the stem 

may be under-segmented in the upper part due to the 

aggregation of the top leaves in the late growth stages. 

From the variable importance analysis, volume was as 

important as stem height, which is consistent with pre-

vious findings that lidar-derived stem volume is strongly 

correlated to biomass [44].

At the individual leaf level, the best model for biomass 

estimation was SMR. However, the  R2 of all models were 

no greater than 0.9. �is may be because the param-

eter extraction accuracy at individual leaf level was not 

as accurate as at the stem and leaf group levels. Mean-

while, the saturation effect may be caused by variations in 

leaf water content. Usually, leaf water content decreases 

with the increase of leaf age. In this study, the ratio of 

wet weight to dry weight was estimated using leaves in 

the maturing stage, which may lead to overestimations to 

the biomass of young leaves and underestimations to the 

biomass of matured leaves. From the variable importance 

analysis, in the SR model all variables were highly signifi-

cantly related with biomass, except PAI. Because PAI was 

proposed for an individual plant or plot, it may be not an 

appropriate variable at the individual leaf level. In con-

trast, leaf area, as a combination variable of leaf length 

and leaf width, is the most important variable.

From a comprehensive view at all different levels, we 

found that (1)  R2 at the leaf group level were higher than 

that at individual plant level and group level, which indi-

cates that terrestrial lidar data can be used for biomass 

estimation at fine levels. �e pattern is similar to that of 

large level biomass estimation, in which the relative error 

of biomass estimation decreased with the decrease of plot 

size [45]. As state-of-the-art parameter extraction algo-

rithms mature and become more widely used, the aggre-

gation of fine-level biomass measurements is expected 

to yield more accurate biomass than at the plot level. In 

this study, we used the lidar measurements in 2018 to 

estimate the plot-level biomass by first estimating the 

biomass at the individual plant level, and then summing 

up individual measurements at each plot to generate 

plot-level biomass estimations. Results showed that the 

mean absolute error by using this method is 8.56  g/m2, 

comparing to a value of 28.94 g/m2 using the regression-

based method. However, in practice, using regression-

based method for plot-level biomass estimation is still the 

most commonly used because it has a higher efficiency 

and satisfying accuracy. Using individual plant-based 

method requires to segment individual plants first, which 

is a very time-consuming task in large-scale applications 

and may even be difficult to be used in fields with high 

plant density. Although biomass estimation accuracy 

seems to be higher at fine levels, the biomass estimation 

accuracy at the individual leaf level is not yet the highest, 

which may rely on the further improvements in individ-

ual leaf segmentation accuracy and parameter extraction 

accuracy. (2) In this study, all models had a similar high 

performance. However, the SR method is recommended 

because it requires only one independent variable. �at 

may explain why traditional allometric functions are 

widely applied for forest biomass estimation [19, 20]. (3) 

As for parameter importance, height-related variables 

were the most important variables at plot, individual 

plant, leaf group, and stem levels. By contrast, previous 

studies found that optical vegetation indexes for crop bio-

mass estimation changed with the growth stage and sam-

pling data [8]. �erefore, lidar may provide more robust 

variables for fine level biomass estimation because lidar 

can acquire high accurate height information. Moreover, 

because height is an easily available variable at plot or 

larger level, which makes biomass estimation from lidar 

at large scale also feasible [6]. At the individual leaf level, 

individual leaf height was not considered since there is no 

meaningful definition for such parameter, but we found 

that leaf area was the most important. In addition, 3D 

variables, such as volume and 3DPI, are important for 

biomass estimation at stem, leaf, and individual plant lev-

els. �ese height-related variables and 3D variables are 

hard to acquire through traditional field measurement or 

2D image-based methods, suggesting that lidar may be 

particularly advantageous at fine levels.
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Contributions and future work

�is study demonstrated the high accuracy of terrestrial 

lidar data and various regression models for biomass esti-

mation from plot to individual leaf levels. Meanwhile, we 

explored the best models and phenotypes for biomass 

estimation at different levels through the comparison of 

different model performances for maize biomass esti-

mation and parameter importance analysis. However, 

there are still some issues and researches that need to be 

illustrated and explored in the future. First, there may be 

autocorrelations between various predictors used in this 

study. One of the major goals of this study is to explore 

the variable importance for biomass estimation. �e rec-

ognized physical meaningful variables with strong cor-

relations with maize biomass can be used to guide users 

to measure phenotypes for biomass estimation in the 

future. Usually, methods such as principal component 

analysis for eliminating variable autocorrelations may 

remove the physical meanings of parameters, and make it 

hard to interpret. �is is one of the major reasons that we 

decided to use the direct lidar measured variables with 

physical meaning to perform the analysis. �is is also a 

commonly seen approach in similar studies that aim to 

evaluate the performance of different structural traits on 

functional trait estimations [33]. Second, although the 

biomass at plot level had a certain variability, it was all 

collected at the mature stage. In the future, time-series 

of biomass data at plot level need to be collected to bet-

ter resolve the saturation effect. �ird, recent studies 

have also demonstrated the feasibility of estimating can-

opy leaf water content using the backscatter coefficient 

derived from full-waveform terrestrial laser scanning 

data [46, 47]. In the current study, we did not have full-

waveform terrestrial lidar data. In future, we will further 

investigate whether we can find a calibration function to 

remove the effect of water content from biomass estima-

tion with 3D lidar data. Moreover, a comparison of the 

accuracy of biomass estimation using hyperspectral and 

lidar data may also help to illustrate the saturation effect 

at the individual leaf level and give an insight on biomass 

estimation with both structure and spectral information 

[5]. Fourth, matching individual leaves from the field 

and lidar data is a very time-consuming and challeng-

ing task because leaves might be broken in the packaging 

processes and too small to be found in lidar data. In this 

study, we randomly sampled 59 leaf samples and matched 

with field data. Although the leaf samples are representa-

tive, we will further collect more small leaf samples by 

acquiring high quality lidar data with better scanning set-

tings. Finally, besides to scanning setting, more factors 

(e.g., sensor mode and point density) that influence the 

accuracy of biomass estimation are worth more investi-

gations in future studies.

Conclusions
Previously, terrestrial lidar data has been rarely used 

for crop biomass estimation, especially at individual 

plant or even finer levels because of the limited data 

and algorithms. �e development of high through-

put data acquisition and processing methods offers an 

unprecedented opportunity to overcome the biomass 

estimation problems at fine levels. �is study collected 

high accuracy terrestrial lidar data at plot, individual 

plant, leaf group, stem, and individual leaf levels with 

both platform-mounted and tripod-mounted scan-

ning methods. Based on these data, phenotypic traits 

were extracted using state-of-the-art algorithms with 

human refinements in the LiDAR360 software. We 

used SR, SMR, ANN, and RF methods to evaluate the 

biomass estimation accuracy and analyzed the impor-

tant variables at all levels. �is study highlighted that 

(1) the potential of terrestrial lidar data for biomass 

estimation at fine levels, showing that the accuracy of 

biomass estimation at fine levels are higher than at plot 

level; (2) all selected models are suited for biomass esti-

mation, but SR is more transferable and interpretable; 

(3) height-related variables are the most important and 

robust phenotypes for predicting maize biomass from 

terrestrial lidar at all levels, while some 2D and 3D phe-

notypes, such as leaf area, volume, and 3DPI, also show 

great potential. �ese findings demonstrated the great 

advantages of using lidar data in maize biomass estima-

tion and may contribute to the development of preci-

sion agriculture and improved food security.
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