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Non-destructive, high-content analysis 
of wheat grain traits using X-ray micro 
computed tomography
Nathan Hughes1, Karen Askew1, Callum P. Scotson1,2, Kevin Williams1, Colin Sauze1, Fiona Corke1, 

John H. Doonan1 and Candida Nibau1* 

Abstract 

Background: Wheat is one of the most widely grown crop in temperate climates for food and animal feed. In order 

to meet the demands of the predicted population increase in an ever-changing climate, wheat production needs to 

dramatically increase. Spike and grain traits are critical determinants of final yield and grain uniformity a commercially 

desired trait, but their analysis is laborious and often requires destructive harvest. One of the current challenges is to 

develop an accurate, non-destructive method for spike and grain trait analysis capable of handling large populations.

Results: In this study we describe the development of a robust method for the accurate extraction and measure-

ment of spike and grain morphometric parameters from images acquired by X-ray micro-computed tomography 

(μCT). The image analysis pipeline developed automatically identifies plant material of interest in μCT images, per-

forms image analysis, and extracts morphometric data. As a proof of principle, this integrated methodology was used 

to analyse the spikes from a population of wheat plants subjected to high temperatures under two different water 

regimes. Temperature has a negative effect on spike height and grain number with the middle of the spike being the 

most affected region. The data also confirmed that increased grain volume was correlated with the decrease in grain 

number under mild stress.

Conclusions: Being able to quickly measure plant phenotypes in a non-destructive manner is crucial to advance 

our understanding of gene function and the effects of the environment. We report on the development of an image 

analysis pipeline capable of accurately and reliably extracting spike and grain traits from crops without the loss of 

positional information. This methodology was applied to the analysis of wheat spikes can be readily applied to other 

economically important crop species.
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Background

Agriculture is facing major challenges to provide ade-

quate amounts of food in a changing environment. �ere 

is a need to produce high-yielding crop varieties under 

different predicted abiotic stresses. A great deal of pro-

gress in generating genomic tools for the major food 

crops means that the current challenge is to link genetic 

variation to plant phenotype. Although our ability to ana-

lyse phenotype in a comprehensive and automated man-

ner is rapidly developing, we still lack key capacities to 

analyse phenotypic variation at the population level and 

thereby dissect the complex genetic and environmental 

interactions that underpin breeding efforts (reviewed in 

[1, 2]).

Bread wheat is an important crop in temperate cli-

mates, widely used for human consumption and animal 

feed and a key target in breeding programs. Since domes-

tication some 10,000  years ago in the Fertile Crescent, 
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wheat has become one of the most important food crops 

worldwide, not only economically but also culturally [3].

Arguably, two of the most important traits during 

wheat domestication were the increase in grain size and 

the development of non-shattering seed. Later, during 

the green revolution, yields were further increased by 

introducing semi-dwarf alleles with specifically changed 

plant architecture, including fewer tillers and more 

compact spikes with more fertile flowers resulting in 

increased grain number [4]. Despite the observation that 

variation in grain shape may affect yield and grain qual-

ity including milling and nutritional properties [5], the 

relationship between spike and grain traits has not been 

systematically studied; one of the main reasons being that 

the capture of spike-related grain traits has been labour-

intensive, involving painstaking documented destruction 

of the spikes [6, 7].

�e drive behind the development of an alternative 

method was to address one of the main climate-change 

related challenges in contemporary crop research, 

namely to understand how yield-related grain proper-

ties are affected by increased temperatures and limited 

water. Transient increases in temperature can have a 

dramatic effect on yield in wheat, particularly if applied 

at specific stages during flowering when cells are in the 

early stages of meiosis and at anthesis [8–11]. Drought 

also has a significant impact on wheat yield particularly 

when applied during the reproductive phase [11]. �e 

effect on yield has mainly been attributed to reduced 

grain number although, for some varieties and at specific 

growth stages, grain size could increase to compensate 

for this [9, 10].

Evaluating the effect of stress on grain set and fill tradi-

tionally involves threshing the spikes to release the grain, 

which are then analysed in bulk. �e spike is a complex 

structure in which individual florets are only semi-syn-

chronised [12, 13] therefore threshing may discard devel-

opmentally relevant information.

Computer vision techniques using both visible and 

non-visible part of the light spectrum have been used to 

help evaluate the effect of biotic and abiotic factors on 

plant growth and are now starting to be used in physio-

logical breeding programs [1]. �ese techniques include 

growth analysis using visible light imaging, infrared 

thermography, fluorescence analysis, and spectroscopy 

imaging [1]. Other imaging techniques including mag-

netic resonance imaging (MRI) and positron emission 

tomography (PET) have been used to study plant traits 

but their use is not widespread [14, 15]. �is is due to 

the fact that both MRI and PET scanners tend to only 

be available in hospitals and medical research centres 

mainly due to the high cost of this equipment as well 

as their maintenance requirements. Recently NMR 

(nuclear magnetic resonance) was used to determine 

grain weight and composition on a population scale 

but this was done on loose grain [16]. Despite these 

advances, techniques to study the effect of stresses on 

crop yield, and specifically on grain traits in a fast and 

non-destructive way that retains positional informa-

tion, are still largely lacking. Combined with controlled 

environment growth facilities, these imaging capabili-

ties could offer unparalleled precision in dissecting the 

effect of environment on phenotype.

X-ray micro computed tomography (μCT) is a non-

invasive imaging technique based on differential X-ray 

attenuation by biological material that may offer a 

cost-effective alternative. �e μCT scanner comprises 

an X-ray source, a sample rotation stage and an X-ray 

detector. Attenuation of the X-rays as they pass through 

the sample is correlated with the density and atomic 

number of the material and is detected by the image 

detector as a grey value. Rotation of the beam or of 

the sample allows for these projections to be acquired 

from different angles that can be reconstructed as 

an accurate representation or model of the 3D object 

[17]. Originally developed as a medical diagnostic tool, 

recent advances in µCT have led to improvements in 

scan resolution and quality while reducing scanning 

time, allowing it to be applied to the study of complex 

plant traits [17]. �e capacity to detect and quantify 

internal structures in a non-invasive and non-destruc-

tive way, combined with the ability to automate the 

process, means that μCT is an attractive approach to 

study plant traits. High resolution μCT has been suc-

cessfully used to analyse soil properties, root struc-

ture, developing seeds, shoots, developing panicles and 

leaves [17–25].

However, this approach has not been so widely applied 

to study general plant traits as might be expected. �ere 

are several possible reasons for this. �e majority of the 

μCT hardware and software has been developed and 

optimised for medical purposes. Most of the available 

μCT scanners are designed to give high resolution images 

or to scan large specimens and thus only a few samples 

can be scanned in a given time. Smaller and bench top 

scanners are becoming commercially available and over-

come some limitations stated above.

At the software level, the available packages have been 

specifically designed for human biology and material 

sciences and lack the flexibility necessary to deal with 

images obtained from different plant organs at different 

stages of development.

Here, we report on the development of a robust, high-

throughput method that allows rapid and accurate fea-

ture extraction from μCT images acquired in batches, 

using a standard benchtop μCT scanner. �is method 
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offers many advantages over previously published work 

[25], and allows not only to quickly and accurately quan-

tify traditional grain traits like number and size, but also 

determine grain position along the spike which have 

previously required destructive and time-consuming 

dissection. To demonstrate the utility of the approach 

to address typical research questions, spikes result-

ing from a multiple stress experiment where plants had 

been grown under different water regimes and exposed 

to short periods at different temperatures were exam-

ined. Whole spike analyses indicated that grain number 

along the spike and other grain traits, such as volume, are 

affected by the treatments. �is method is provided in 

an accessible format with usage instructions and sample 

data. Finally our method can be used to extract similar 

features from grass inflorescences with very diverse mor-

phologies, demonstrating its flexibility and potential for 

wider use.

Methods

Plant materials

Spring wheat (Triticum aestivum cv Paragon) was grown 

as single plants in compost (3.5L Levington F2) in the 

greenhouse (day temperature set to 20 °C and night 15 °C, 

14 h day length) until the sixth leaf stage and then split 

into 2 equal groups, one watered to 80% field capacity 

(FC) (high water—HW) and one to 40% FC (low water—

LW). Plants were imaged and gravimetrically watered 

daily using a LemnaTec Scanlyser system until the pri-

mary tiller was at Growth Stage (GS) 39–41 (Zadoks 

scale) which approximates to meiosis (primary tiller was 

tagged). Plants were then subjected to different tempera-

ture regimes as follows: 25/20, 30/25 and 35/30 °C (day/

night set air temperature respectively) for 4  days, and 

then returned to ambient conditions within the glass-

house to complete their life cycle and ripen. At harvest 

the primary tiller was weighed and retained for scanning. 

Other parameters including the total dry weight of the 

plant and ears and height of the primary tiller were also 

collected.

Mounting and scanning of material

For each treatment, twelve representative, fully dried 

primary spikes were selected for scanning and placed 

in plastic holders (34 mm diameter, 70 mm height). �e 

majority of the spikes were too tall to fit in the hold-

ers so they were cut into two pieces and each scanned 

separately. Pieces of thermoplastic starch were used to 

eliminate sample movement while scanning. Sample 

preparation and loading into the scanner takes around 

30  min per 12 samples and after this time there is no 

more user input. �e twelve holders were loaded into the 

sample changing carousel of a μCT100 scanner (Scanco 

Medical, Switzerland). �is scanner has a cone beam 

X-ray source with power ranging from 20 to 100  kVp 

(pre-set and calibrated for 45, 55, 70, 90  kVp) and a 

detector consisting of 3072 × 400 elements (48 µm pitch) 

and a maximum resolution of 1.25 µm. �e samples can 

be positioned at different distances from the X-ray source 

greatly improving resolution while keeping scanning time 

to a minimum. Spikes were scanned with the X-ray power 

set at 45  kVp and 200  µA with an integration time of 

200 ms. Each spike was ~ 1000 slices (51 slices per stack), 

125 projections/180° were taken and a binning of 6 was 

used. Output images were produced with a 0.2 megapixel 

(512 ×  512) resolution (68.8  µm/pixel) in a proprietary 

ISQ file type format (Scanco Medical, Switzerland).

Computer hardware

�e 3D volume was reconstructed from the projections 

(raw data, including flat field correction data) using pro-

prietary software supplied with the Scanco μCT100 

scanner. After 3D volume generation, the developed pro-

cessing pipeline makes use of standard computing hard-

ware. A DELL XPS desktop computer with an Intel (i7 

6700k) 64  bit CPU, 64  GB of memory and an NVIDIA 

GPU (GTX 1080) was used.

Computational methods and tools

A computer vision and analysis protocol was developed 

using a combination of the MATLAB [26] image pro-

cessing toolbox and Python [27] (Additional file 1). Visu-

alisation of processed images, stored as TIFF files, used 

ImageJ’s 3D viewing plugin [28] and TomViz [29]. Post-

processing of results used the Scientific Python collec-

tion of software (SciPy). A full list of additional software 

packages can be found in supplemental table (Additional 

file 2: Table S1). All reconstructed 3D volumes and seg-

mented images can be accessed at https://www.aber.

ac.uk/en/research/data-catalogue/a11df174-d73d-4443-

a7fd-ab5b7039df79/ [30].

High-throughput image processing and feature extraction

A high-throughput automated pipeline was developed 

with the goal of reducing human input and time. Recon-

structed 3D volumes were retrieved from the µCT scan-

ner and MATLAB scripting then performed feature 

extraction. All the source code as well as user instruc-

tions are available from https://github.com/NPPC-UK/

microCT_grain_analyser. Analysis of the resulting data is 

performed using Scientific Python libraries.

Data and statistical analysis

Python scripts were used to automatically find data files 

and match them with information about their scanning 

parameters, correctly label and then compile data into 

https://www.aber.ac.uk/en/research/data-catalogue/a11df174-d73d-4443-a7fd-ab5b7039df79/
https://www.aber.ac.uk/en/research/data-catalogue/a11df174-d73d-4443-a7fd-ab5b7039df79/
https://www.aber.ac.uk/en/research/data-catalogue/a11df174-d73d-4443-a7fd-ab5b7039df79/
https://github.com/NPPC-UK/microCT_grain_analyser
https://github.com/NPPC-UK/microCT_grain_analyser
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tables (data frames) based on treatments, prior to anal-

ysis. Data was analysed using a collection of Scientific 

Python packages [27] and statistical analysis was per-

formed using one-way ANOVA with significance calcu-

lated at p < 0.05.

Results

Building a robust pipeline for measuring grain 

morphometric data from µCT images

Computer vision approaches have been previously used 

to extract quantitative grain characteristics from μCT 

images but these tend to require high resolution images 

and long scan times [25]; this makes μCT expensive, hard 

to scale up to population size samples and technically 

difficult to apply to new species. In order to overcome 

these issues we developed a high-throughput, automated 

method using relatively low resolution images acquired 

from a bench top scanner that is easily applicable to spe-

cies with diverse spike morphologies and grain sizes.

�e initial test population consisted of naturally rip-

ened dry wheat spikes (cv. Paragon) harvested from 

plants which had been subjected to different defined 

watering and temperature regimes. Dry spikes were 

harvested and 12 spikes per treatment were scanned 

at a resolution of 0.2 megapixel (512  ×  512  ×  ~  1000; 

68.8 µm/pixel). �is resolution was chosen to allow fast 

scan times and increase throughput while still retaining 

sufficient image information necessary for accurate data 

acquisition and analysis. Scanning time for each spike 

was around 40 min. We found that performing the scans 

at higher resolution (1024  ×  1024  ×  ~  2000; 34.4  µm/

pixel) increased scanning time to 60 min and this did not 

translate into an increase in the quality of the data output 

for the analysed grain traits (Additional file 3: Table S2). 

�erefore, we chose a resolution of 512 × 512 × ~ 1000; 

68.8  µm/pixel for routine scans. Higher resolutions 

(2048  ×  2048  ×  ~  4000; 17.2  µm/pixel) increased the 

scanning time to 3.3 h and produced a 32 Gb that was too 

large for routine use, but these may be useful for meas-

urement of tissue related traits (such as thickness of the 

bran layer or embryo size) as discussed below.

Our aim was to develop a pipeline that could auto-

matically identify and measure different grain parameters 

from these reconstructed volumes. �e measured param-

eters included spike height, grain number, grain height, 

width and depth, grain volume and surface area (Fig. 1).

A schematic representation of the pipeline used from 

scanning to data analysis is presented in Fig.  2. �e 

pipeline is divided in three sections: μCT scanning and 

3D volume reconstruction done by the Scanco soft-

ware (Scanco medical, Switzerland); segmentation and 

3D processing; and feature extraction and analysis both 

developed using MATLAB and Python. �is pipeline is 

readily applicable to other plant species with varied spike 

and grain morphologies, and scanned at different reso-

lutions, simply by adjusting the structured element size, 

the resolution and the minimum size the as detailed in 

Additional file  1 (setup.m). As default we set the struc-

tured element size at 5 and the minimum object size at 

1000, parameters that perform well for most of the spe-

cies tested. For species with very small seeds the mini-

mum size object can be reduced.

Segmentation pipeline

After 3D volume reconstruction, the files were exported 

to a data storage server. �e first computational task 

performed was converting these data into a malleable, 

workable format. For this, a file-reader in MATLAB 

(available from [31]) was developed to generate image 

stacks. �e 3D reconstructed volume as collected from 

the μCT scanner has a dual peak distribution of grey val-

ues and the use of this information has been essential in 

constructing an effective method for removing all non-

plant material from an image [25]. To further segment 

the plant material of interest, we developed an adaptive 

thresholding method that enabled both removal of non-

plant material and segmentation of grain and non-grain 

data (Fig. 3a, b). �is developed method relied on taking 

a cumulative sum of grey values across all slices in a sin-

gle scan and computing a minimum value for plant mate-

rial. Additional file 4: Fig. S1 illustrates that material with 

a density value within the pink shaded area is of interest 

for this method.

Post thresholding morphological operations were used 

to perform further sanitization on the segmented images. 

A disk shaped structuring element (SE) [32] was used 

to erode the image, and then we applied a median filter 

before dilating. �is allowed for the removal the major-

ity of the non-target plant material and artefacts of the 

scanning process and obtain a segmented image (Fig. 3c, 

d). From this image a minimum grain size parameter is 

used to filter out any remaining noise, thus an image is 

produced containing exclusively grain material. Find-

ing and removing the largest cluster of connected pix-

els throughout the 3D image allowed elimination of the 

outer tube used for scanning (Fig. 3e). To precisely pre-

serve the shape of the grains along with the grey levels 

and ensure that there was no data loss, this segmented 

black and white image was used to mask the original one 

(Fig. 3f ). After this step, the cleaned image can be used 

for trait extraction.

3D processing

�ere is an unavoidable trade-off between image reso-

lution and scanning/processing times. �erefore, acqui-

sition of low resolution images at the expense of image 
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a b

c

d

Fig. 1 Typical wheat spike, floret arrangement and grain traits. a Whole spike, b spikelet, c isolated grain, d grain cross section. Traits measured 

include: total height of the spike and grain position along the spike (a, b). Measured characteristics of isolated grains included grain length and 

width (c) as well as grain depth (d)
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Fig. 2 Schematic representation of the developed µCT imaging pipeline. Coloured areas represent the different stages of the method. µCT scan-

ning and reconstruction (blue), segmentation and 3D processing (green) and feature extraction and analysis (red). Solid lines represent automated 

steps while dashed lines steps that require user input

Fig. 3 Image segmentation. a µCT cross section image of a typical spike in 16-bit greyscale, b initial thresholding using our adaptive method, c 

erosion to remove outlying objects using a disk structuring element (SE), d median filter applied to smooth and further segment region of interest 

(ROI), e image dilated by same SE as (c) and with remaining holder removed and f final result of this process was obtained by using (e) as a mask in 

conjunction with (a)



Page 7 of 16Hughes et al. Plant Methods  (2017) 13:76 

quality enabled us to keep scanning times at a minimum 

and increase the sample numbers processed. While the 

information needed for the morphometric analysis is 

still present in these lower resolution images, there is 

an increased possibility for objects to be artifactually 

fused during segmentation (Fig.  4). Such fused grains 

were commonly encountered (red circles in Fig.  4a, c) 

and would be counted and treated as single objects, 

thus degrading data quality and requiring extensive 

manual curation. To overcome this problem, a dis-

tance-based watershed technique was developed [33]. 

�is technique was adjusted to work for 3D images by 

computing, for each white pixel, a distance from the 

nearest black pixel using a chessboard method for dis-

tance measurements [34]. With this newly computed 

distance map a standard watershed algorithm [35] was 

then applied to find dividing contour lines. �is allowed 

for the complete separation of previously fused objects 

(compare red circled areas in Fig. 4a, c with b, d). After 

this stage the data can be used to generate 3D images as 

shown in Fig. 5b–e. 

Morphometric feature extraction

After segmentation and separation of all fused objects, 

each isolated grain was orientated by calculating the 

major axis of the 3D shape and was fitted to an ellipsoid 

in order to calculate circularity (Fig.  5c–e). �e length 

was calculated by measuring the size of the major axis 

while width and depth were found by examining a cross 

section of each grain and taking measurements of major 

and minor 2D axis respectively. Volume is the complete 

connected-pixel count for each given grain. Surface area 

was calculated by adapting previously successful meth-

ods [25]. �e calculation of positional data for each grain 

required registration at a post-processing stage, due to 

splitting spikes for scanning (see below).

Fig. 4 Separation of fused objects using a distance-based watershed technique. a, c Images before segmentation (red circles indicate regions of 

fused grains). b, d After segmentation. a, b Image cross sections, c, d 3D reconstructions
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Once compiled, grain parameters in pixels were 

converted to metric units by the following equation 

(mm =
(pixel ∗ conversion)

1000
) and this data was then exported 

as a CSV formatted file on a per-spike basis (Additional 

file 5: Table S3).

Rejoining of split spikes

Due to size limitations of the available scanner some of 

the samples were scanned in two portions. �e posi-

tional data in the Z axis was inverted before in silico spike 

rejoining was performed (Z = max(Z) − Zi), by incre-

menting top-portion scans globally by the size of the bot-

tom scan (Zt
i = Zt

i + length
(

Zb
)

). �is could be easily 

generalised to 3 or more portions for longer and larger 

structures.

�e beginning and end of a spike was calculated by 

locating the lowest and highest rachis points respectively 

in the Z axis. Detection of the rachis is done by relaxing 

the thresholding algorithm by 20% to detect less dense 

plant material.

Fig. 5 3D visualisation of images. a Top portion of a wheat spike before segmentation, b and after segmentation and c–e examples of isolated 

grains
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Estimation of accuracy

In order to evaluate the accuracy of the software in deter-

mining grain number and volume, different approaches 

were taken. For grain number, three separate counts were 

done manually on reconstructed 3D volumes. One veri-

fier used a counting technique that involved examining 

each individual Z slice while the other two examined the 

data set in a 3D image viewer. �is provided a grain count 

on a per spike basis that could be directly compared to 

the one obtained from the computer vision approach. As 

can be seen in Additional file 6: Fig. S2a, the software was 

able to accurately identify and count grains.

To confirm that no data was lost during the segmenta-

tion process, several randomly selected processed image 

files were compared with their original counterparts, 

with contour maps drawn and manually examined. �is 

showed that there was no data loss during the segmenta-

tion process (Additional file 6: Fig. S2b).

�ese ground truthing results clearly demonstrate the 

high degree of accuracy achieved with the developed 

method.

We also found a strong correlation (R2 = 0.75) between 

the total volume of all the grains in a spike as measured 

by our method and manually acquired spike weight for all 

the spikes (Additional file 6: Fig. S2c).

Temperature and water regime a�ect grain number 

and grain characteristics along the wheat spike

After establishing the robustness and accuracy of the 

data provided by the segmentation method, we then 

asked whether it could provide insight into the combined 

effect of water regime and temperature stress on grain 

characteristics.

μCT scanning confirms that grain development is dif-

ferentially affected by water and heat and, in addition, 

that the developmental position along the spike modu-

lates these effects. By using 3D reconstructions of whole 

spikes, the spatial distribution of grains along the spike 

is maintained and this can be overlaid with the traits 

measured for each grain (Fig. 6). �is allows for a visual 

representation of how grain traits change along the spike 

and also how the different stresses affect those traits. A 

high degree of resolution was achieved in the y and z axis 

(Fig. 6a); this is illustrated by detection of occasional sec-

ondary spikelets that protrudes in the y-axis (Fig. 6a cir-

cled region). Generally, the middle region of the spike (in 

the z axis) contains more grains than the top and bottom 

and grains at the top of the spike are smaller (Fig. 6a, b). 

�e effect of temperature on spike height and grain num-

ber is clearly visible with spikes grown at 35 °C showing 

reduced height and reduced number of grains (Fig.  6a). 

�e major reduction in grain number occurs in the mid-

dle of the spike with the top and bottom regions being 

less affected (Fig.  6b). Increased temperature also leads 

to a reduction in grain volume at the top of the spike 

but this is only observed in the plants grown in a high 

water regime (Fig. 6b). On a per spike basis, we found an 

inverse correlation between average grain volume and 

grain number with the temperature stressed spikes har-

bouring fewer but bigger grains (Fig. 6c).

Temperature had an effect on spike height with spikes 

being shorter in both water regimes as the temperature 

increased while water supply alone did not have an effect 

on spike height (Fig.  7a). Temperature also had a dra-

matic effect on grain number with temperature increases 

significantly reducing seed number per spike in both 

watering regimes (Fig. 7b). Surprisingly, we observed that 

the lower water regime resulted in an increased grain 

count at a given temperature compared to the high water 

although this effect was lost at the highest temperature 

(Fig. 7b).

Grain volume was also strongly influenced by growth 

conditions, shown by a general increase of individual 

grain volume with increased temperature (Fig.  7c). As 

noted for Fig. 6c, the observed grain volume increase is 

associated with a decrease in grain number for a given 

treatment (Fig.  7b, c). �e observed increase in volume 

is a result of a general increase in grain length, width and 

depth (Fig. 7d–f).

Discussion

Food security has been identified as one of the largest 

challenges being faced in the world today [36]. Glob-

ally we have become increasingly dependent on a select 

handful of plant species and as a result an increasing 

importance is being put on research of these crops [37]. 

In many crops yield is dependent on the stability and uni-

formity in grains (shape, size and yield) and this has been 

the target of breeding programmes. �e current chal-

lenge is to develop methods able to measure grain traits 

on a large scale in a quick and robust manner.

In this study we demonstrate that X-ray micro-com-

puted tomography (μCT) can provide non-destructive, 

quantitative data on the environmental impact of stress 

on grain traits within their normal developmental con-

text. Moreover this can be done quickly, accurately, 

and is scalable to large sample sizes with minimal user 

intervention.

μCT as the method of choice for spike and grain trait 

analysis

�ere is a scarcity of organ-level imaging approaches that 

lend themselves to rapid quantitative measurements suit-

able for in-depth physiological or genetic dissection and 

modelling. Light and electron microscopy are widely 

used but they provide limited information and tend to be 
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Fig. 6 The effect of two environmental variables, water regime and temperature, on spike and grain traits. a Graphical representation of the total 

number of grains for all the spikes in a given treatment. Each circle represents an individual grain in its corresponding ZX position along the length 

of the spike. Colours and sizes represent the volume of the grain. Colours are normalised between 0 and 1, with 1 being the largest grain across all 

treatments, b mean grain number (left-hand panel) and grain volume (right-hand panel) per section of spike. Each spike was divided in top, middle 

and bottom (median spike height ± 16% was considered middle, region below that bottom and above top) and the grain number in each region 

calculated for each treatment and c relationship between grain number and grain volume per spike over all the treatments. Samples are identified 

by the temperature they were stressed with and HW indicates 80% FC watering while LW indicates 40% FC watering
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labour-intensive to produce [38]. Other techniques using 

conventional cameras that rotate around the subject 

can also generate accurate 3D model but do not provide 

information about the internal structure of plant mate-

rial [39, 40]. As the organs of interest are often embed-

ded within other tissues, the techniques described above 

require the manual removal of the surrounding tissue. 

�is can be time-consuming and spatial/developmental 

information is easily lost. Methods have been designed to 

allow automated removal of grains from the spike while 

retaining positional information, but these are highly 

specialized and expensive instruments [41].

�ese limitations can be largely overcome by μCT. 

μCT has traditionally been used, to great effect, in medi-

cal imaging, and its applications in plant science have 

increased over the last few years [17–25]. Methodologies 

developed in the medical field have been applied to wider 

biological studies, for example techniques used to model 

a b

c d

e f

Fig. 7 The effect of temperature (25, 30 and 35 °C) and water regimes (HW-80% FC, LW-40% FC) on wheat spike and grain traits. a Spike height, b 

number of grains per spike, c grain volume, d grain length, e grain width, f grain depth. Significance groups for p < 0.05 were calculated using a 

one-way ANOVA
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regions of the human heart [42, 43] have more recently 

been used to examine seed anatomy [18] and methods 

used to study metamorphosis in insects [44], modified to 

track root development in soil and non-destructive floral 

staging [19, 45].

One of the critical advantages of μCT imaging is that 

positional information of organs and tissues is preserved 

and can be analysed. �is is extremely important when 

looking at changes throughout development and vari-

ation in grain traits within each spikelet or along the 

length of a spike is a good example. Imaging of internal 

tissues and organs without dissection is also possible, 

although this will require scanning at higher resolutions. 

�us non-destructive imaging of the bran layer and the 

embryo, both of which are economically important traits, 

could be further developed and scaled for breeding and 

quality control applications. Finally, detailed study of spe-

cific 3D grain parameters such as circularity, surface area 

and crease volume which are agronomically relevant are 

also made possible by this method.

Constraints of the scanning and image analysis 

methodology

Underlying the increased use of μCT in plant biology has 

been the development of more affordable small, and even 

benchtop, μCT scanners with sample loading carousels 

more suitable for larger sample numbers. However, their 

use necessitates a number of trade-offs between sample 

number, size and data quality. For example, the load-

ing carousel imposes physical limitations on the size of 

individual samples and we had to divide many spikes. To 

re-integrate measurements taken from separate portions 

of the same spike, we identified conjoining points along 

the rachis of each spike and rejoining images was intro-

duced as an additional processing step. Further issues can 

emerge from the use of a fixed X-ray beam which rotates 

the subject to obtain a 360° image. �is gives opportunity 

for movement during scanning resulting in minor image 

distortion. To limit movement, scanning material was 

held in place using thermoplastic starch that, although 

visible in the scan, can easily be removed by the appli-

cation of morphological filters during image processing. 

�e time required to produce and reconstruct high reso-

lution scans represents, perhaps, the most serious bot-

tleneck for routine grain analyses. For a wheat spike this 

can take several hours using typical hardware. To address 

this, the scans were performed at the lower resolution of 

0.2 megapixels (512 × 512) rather than much higher res-

olutions used in previous studies, for example 5 megapix-

els (2048 × 2048) and larger is often used [19]. �is also 

reduced the output file size on average by a factor of 16. 

�e trade-off for this lower resolution was the decrease 

in spatial accuracy resulting in the incorrect joining of 

juxtaposed objects; this was rectified during the segmen-

tation process.

Development of a robust computer vision pipeline

During our initial attempts to analyse the data produced 

through μCT we discovered that there was a lack of soft-

ware that could handle the volume of the data and imple-

ment modern computer vision algorithms easily and was 

well-suited to high-throughput automation. VGStudio 

Max, a commercially licensed software package, and 

BoneJ, a free and open source software package, are often 

used in biological and medical science for image analy-

sis and visualisation [19, 46, 47]. However they require 

human interaction on a per image basis. While this level 

of interaction is justifiable for high value subjects (i.e. in 

a medical context), the scale required for crop biology 

demands minimal intervention.

�is prompted us to design and create a new computer 

vision based methodology. Our aim was to develop an 

entirely adaptable system which we could build upon in 

future, and robust enough to work with a multitude of 

grain shapes and sizes. �e MATLAB [26] scientific pro-

gramming language and environment provided a widely 

available professional platform that has closely related 

open-source alternatives (Octave [48]) that can be used 

to implement our method, albeit with reduced function-

ality (some of the watershedding techniques are not yet 

implemented in Octave).

Suitability for grain trait analysis

As a proof of principle, the developed methodology was 

used to study the effect of temperature and water regime 

on spike development and grain traits on a population of 

wheat plants. We found that temperature differentially 

affects grain formation along the spike with the middle 

of the spike being more sensitive to the stresses. Recent 

studies have shown that there are two discrete develop-

mental stages where the spike is more sensitive to tem-

perature: early booting when meiosis is occurring and 

anthesis [8–10]. Floret development along the spike is 

asynchronous [12] it is thus tempting to speculate that 

the florets in the middle were at a temperature-sensitive 

stage when the stress was applied. In agreement with 

previous reports [9] we also found an inverse relation-

ship between grain number and grain volume across 

treatments. While high temperature and high water 

regime caused a decrease in the number of grains per 

spike, the average volume of grains increased, partially 

compensating for grain loss. It should be noted that the 

low water plants were slightly ahead in terms of spike 

development when the heat stress was applied and this 

could explain why in these plants’ temperature has a less 

detrimental effect on grain number per spike. Despite 
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Fig. 8 Evaluating methodological versatility: 3D reconstructions of µCT images. a, b Foxtail millet (Setaria italica), c, d oats (Avena sativa), e, f darnel 

ryegrass (Lolium temulentum) and g, h ryegrass (Lolium perenne). a, c, e, g Pre-segmentation images and b, d, f, h post-segmentation images
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suggestions that grain height, width and depth are 

affected by independent sets of genes [49], our data indi-

cates that the response of these traits to different growth 

conditions are highly correlated. It will be informative to 

extend these studies to diversity and mapping popula-

tions to explore how changes in spike architecture and 

grain traits in response to multiple stresses are geneti-

cally controlled.

Finally, to demonstrate the wider applicability of the 

method, we examined different species (foxtail mil-

let, oats, darnel ryegrass and ryegrass) that illustrate a 

diversity of inflorescence and grain morphologies, from 

the dispersed open panicle structure of oats to the very 

congested structure of millet which has numerous small 

grains packed together (Fig.  8). In all cases, simply by 

adjusting two parameters (the structuring element size, 

and minimum grain size) our method identified the 

grains and performed grain feature extraction accurately 

(Additional file 7: Table S4).

Challenges and future perspectives

Grain uniformity is of economic value in many cere-

als and is an active breeding target. Grain size changes 

not only along the spike but also within each spikelet. 

Relating the position of an organ in physical space to its 

position in developmental space is a wider challenge, 

well-illustrated by the contrast between oats and mil-

let but also applicable to other grasses. Besides the grain 

morphometric traits, the use of μCT may also provide a 

handle on more difficult to measure traits like crease vol-

ume and thickness of the bran layer. Both of these traits 

are commercially important and determine grading of 

grains for the milling industry, but are extremely difficult 

to measure. Embryo size in the seed is also thought to be 

important in determining seedling growth and final bio-

mass of the plant, but again this is difficult to measure in 

a non-destructive way [50].

�e challenge now is to develop more advanced com-

puting methods that are able to detect and measure these 

highly complex and variable traits. Recent developments 

in computer vision methods and machine learning mod-

elling should prove to be very useful for this purpose.

Conclusions

X-ray μCT offers advantages over traditional techniques 

to measure morphometric traits in a non-destructive, 

non-invasive way. Here, we show that fast, relatively low 

resolution scans, combined with refined segmentation 

techniques and 3D feature extraction are effective in 

providing robust and accurate results with minimal user 

intervention. We used this methodology to study the 

effect of abiotic stresses on wheat spike and grain mor-

phology, and also show that the method is applicable to 

other economically important grasses. When applied 

to whole populations, this methodology could be 

extremely informative and be used in targeted breeding 

programs.

Abbreviations

µCT: micro computed tomography; MRI: magnetic resonance imaging; PET: 

positron emission resonance; NMR: nuclear magnetic resonance; 3D: three-

dimensional; 2D: two-dimensional; L: litre; FC: field capacity; HW: high water; 

LW: low water; mm: millimetre; kVp: peak kilovoltage; µm: micrometres; µA: 

microamps; ms: miliseconds; GPU: graphical processing unit; ANOVA: analysis 

of variance; p value: probability value; cv: cultivar; SE: structuring element; ROI: 

region of interest; CSV: coma separated value.

Authors’ contributions

CN and FC designed the experiment. FC and KA grew and manually measured 

the plants. KA and CN performed the µCT scanning. NH developed the imag-

ing analysis and feature extraction pipeline. NH, and CPS analysed the data. 

KW and CS advised on data analysis and provided critical feedback. NH, CN 

and JHD wrote the manuscript. CN and JHD oversaw the data analysis. JHD 

obtained funding. All authors read and approved the final manuscript.

Author details
1 The National Plant Phenomics Centre, Institute of Biological, Rural and Envi-

ronmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberyst-

wyth SY23 3EE, UK. 2 Present Address: Faculty of Engineering and Environ-

ment, University of Southampton, University Road, Southampton SO17 1BJ, 

UK. 

Acknowledgements

The authors acknowledge Catherine Howarth (IBERS, Aberystwyth Univer-

sity), John Harper and Danny Thorogood (IBERS, Aberystwyth University) and 

Yuanhuai Han (Shanxi Agricultural University) for providing respectively oat, 

ryegrass and foxtail millet samples for scanning, Sam Nicholls for help with 

data analysis and, Roger Boyle for critically reading the manuscript. We thank 

the BBSRC for funding (BB/M009459/1 and BB/M018407/1 - FACCE ERA-NET/

MODCARBOSTRESS)

Additional �les

Additional �le 1. MATLAB Image processing pipeline. This file contains 

all image processing code and instructions explaining input and output as 

well as usage of our method.

Additional �le 2: Table S1. Additional software packages used in this 

study.

Additional �le 3: Table S2. Dataset obtained for the same wheat spike 

scanned at different resolutions as indicated. No significant difference for 

p < 0.001 was found for traits measured either in the 68.8 µm/pixel or the 

34.4 µm/pixel 3D reconstructed volumes.

Additional �le 4: Fig. S1. Bimodal distribution of grey values. Histo-

grams for 4 different scans are shown. Grey values in the pink shaded 

region were used for segmentation.

Additional �le 5: Table S3. Dataset used. Tables contain all the collected 

data for grain and spike parameters.

Additional �le 6: Fig. S2. Ground truthing data. (a) Comparison of grain 

counts obtained by the method and manual counts done by 3 independ-

ent people. Bars represent average ± SD of the 3 counts. (b) Processed 

image file with segmented out region in green, overlaid with the original 

image to show that no grain data is lost. (c) Correlation between manual 

acquired spike weight and grain volume determined by the developed 

method.

Additional �le 7: Table S4. Grain trait data for foxtail millet (Setaria 

italica), oats (Avena sativa), darnel ryegrass (Lolium temulentum) and 

ryegrass (Lolium perenne).

http://dx.doi.org/10.1186/s13007-017-0229-8
http://dx.doi.org/10.1186/s13007-017-0229-8
http://dx.doi.org/10.1186/s13007-017-0229-8
http://dx.doi.org/10.1186/s13007-017-0229-8
http://dx.doi.org/10.1186/s13007-017-0229-8
http://dx.doi.org/10.1186/s13007-017-0229-8
http://dx.doi.org/10.1186/s13007-017-0229-8


Page 15 of 16Hughes et al. Plant Methods  (2017) 13:76 

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The datasets used during the current study are avail-

able from https://www.aber.ac.uk/en/research/data-catalogue/

a11df174-d73d-4443-a7fd-ab5b7039df79/.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

Received: 6 July 2017   Accepted: 21 September 2017

References

 1. Furbank RT, Tester M. Phenomics-technologies to relieve the phenotyp-

ing bottleneck. Trends Plant Sci. 2011;16:635–44.

 2. Rahaman MM, Chen D, Gillani Z, Klukas C, Chen M. Advanced pheno-

typing and phenotype data analysis for the study of plant growth and 

development. Front Plant Sci. 2015;6:619.

 3. Shewry PR. Wheat. J Exp Bot. 2009;60:1537–53.

 4. Glémin S, Bataillon T. A comparative view of the evolution of grasses 

under domestication. N Phytol. 2009;183:273–90.

 5. Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, et al. A 

genetic framework for grain size and shape variation in wheat. Plant Cell. 

2010;22:1046–56.

 6. Ferrante A, Savin R, Slafer GA. Floret development and grain setting 

differences between modern durum wheats under contrasting nitrogen 

availability. J Exp Bot. 2013;64:169–84.

 7. Zheng C, Zhu Y, Wang C, Guo T. Wheat grain yield increase in response to 

pre-anthesis foliar application of 6-benzylaminopurine is dependent on 

floret development. PLoS ONE. 2016;11:e0156627.

 8. Draeger T, Moore G. Short periods of high temperature during meiosis 

prevent normal meiotic progression and reduce grain number in hexa-

ploid wheat (Triticum aestivum L.). Theor Appl Genet. 2017. doi:10.1007/

s00122-017-2925-1.

 9. Semenov MA, Stratonovitch P, Alghabari F, Gooding MJ. Adapting wheat 

in Europe for climate change. J Cereal Sci. 2014;59:245–56.

 10. Barber HM, Lukac M, Simmonds J, Semenov MA, Gooding MJ. Temporally 

and genetically discrete periods of wheat sensitivity to high temperature. 

Front Plant Sci. 2017;8:51.

 11. Barnabás B, Jäger K, Fehér A. The effect of drought and heat stress on 

reproductive processes in cereals. Plant Cell Environ. 2008;31:11–38.

 12. Lukac M, Gooding MJ, Griffiths S, Jones HE. Asynchronous flowering and 

within-plant flowering diversity in wheat and the implications for crop 

resilience to heat. Ann Bot. 2012;109:843–50.

 13. Rajaram S, Food and Agriculture Organization of the United Nations, 

Macpherson HG. Bread wheat: improvement and production. London: 

Godsfield Press; 2002.

 14. Borisjuk L, Rolletschek H, Neuberger T. Surveying the plant’s world by 

magnetic resonance imaging. Plant J. 2012;70:129–46.

 15. Hubeau M, Steppe K. Plant-PET scans: in vivo mapping of xylem and 

phloem functioning. Trends Plant Sci. 2015;20:676–85.

 16. Corol DI, Ravel C, Rakszegi M, Charmet G, Bedo Z, Beale MH, et al. H-NMR 

screening for the high-throughput determination of genotype and 

environmental effects on the content of asparagine in wheat grain. Plant 

Biotechnol J. 2016;14:128–39.

 17. Dhondt S, Vanhaeren H, Van Loo D, Cnudde V, Inzé D. Plant structure 

visualization by high-resolution X-ray computed tomography. Trends 

Plant Sci. 2010;15:419–22.

 18. Rousseau D, Widiez T, Di Tommaso S, Rositi H, Adrien J, Maire E, et al. Fast 

virtual histology using X-ray in-line phase tomography: application to the 

3D anatomy of maize developing seeds. Plant Methods. 2015;11:55.

 19. Tracy SR, Gómez JF, Sturrock CJ, Wilson ZA, Ferguson AC. Non-destructive 

determination of floral staging in cereals using X-ray micro computed 

tomography (µCT). Plant Methods. 2017;13:9.

 20. Dorca-Fornell C, Pajor R, Lehmeier C, Pérez-Bueno M, Bauch M, Sloan J, 

et al. Increased leaf mesophyll porosity following transient retinoblas-

toma-related protein silencing is revealed by microcomputed tomogra-

phy imaging and leads to a system-level physiological response to the 

altered cell division pattern. Plant J. 2013;76:914–29.

 21. Pajor R, Fleming A, Osborne CP, Rolfe SA, Sturrock CJ, Mooney SJ. Seeing 

space: visualization and quantification of plant leaf structure using X-ray 

micro-computed tomography. J Exp Bot. 2013;64:385–90.

 22. van der Niet T, Zollikofer CPE, de León MSP, Johnson SD, Linder HP. 

Three-dimensional geometric morphometrics for studying floral shape 

variation. Trends Plant Sci. 2010;15:423–6.

 23. Staedler YM, Masson D, Schönenberger J. Plant tissues in 3D via X-ray 

tomography: simple contrasting methods allow high resolution imaging. 

PLoS ONE. 2013;8:e75295.

 24. Jhala VM, Thaker VS. X-ray computed tomography to study rice (Oryza 

sativa L.) panicle development. J Exp Bot. 2015;66:6819–25.

 25. Strange H, Zwiggelaar R, Sturrock C, Mooney SJ, Doonan JH. Automatic 

estimation of wheat grain morphometry from computed tomography 

data. Funct Plant Biol. 2015;42:452.

 26. Mathworks T. MATLAB [Internet]. 2013. https://www.mathworks.com/

products/matlab.html.

 27. Analytics C. Anaconda software distribution [Internet]. 2016. https://con-

tinuum.io.

 28. Rasband WS. ImageJ [Internet]. 1997–2016. https://imagej.nih.gov/ij/.

 29. Jiang Y, Hanwell MD, Padgett E, Waldon S, Muller DA, Hovden R. 

Advanced platform for 3D visualization, reconstruction, and segmenta-

tion with electron tomography. Microsc Microanal. 2016;22:2070–1.

 30. Hughes N, Nibau C, Doonan J, Corke F, Williams K, Sauze C. Data from: 

analysis of wheat grain traits using X-ray micro computed tomography. 

2017. Aberystwyth University Data Catalogue. https://www.aber.ac.uk/

en/research/data-catalogue/a11df174-d73d-4443-a7fd-ab5b7039df79/, 

doi:10.20391/a11df174-d73d-4443-a7fd-ab5b7039df79.

 31. Hughes N. ISQ file reader [Internet]. 2017. https://github.com/NPPC-UK/

ISQ-Reader.

 32. Di Rubeto C, Dempster A, Khan S, Jarra B. Segmentation of blood images 

using morphological operators. In: Proceedings 15th international 

conference on pattern recognition. ICPR-2000 [Internet]. doi:10.1109/

icpr.2000.903568.

 33. Gaetano R, Masi G, Poggi G, Verdoliva L, Scarpa G. Marker-controlled 

watershed-based segmentation of multiresolution remote sensing 

images. IEEE Trans Geosci Remote Sens. 2015;53:2987–3004.

 34. Shih FC, Mitchell OR. A mathematical morphology approach to Euclidean 

distance transformation. IEEE Trans Image Process. 1992;1:197–204.

 35. Beucher S. Segmentation tools in mathematical morphology. Image 

algebra and morphological image processing [Internet]. 1990. 

doi:10.1117/12.23577.

 36. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, 

et al. Food security: the challenge of feeding 9 billion people. Science. 

2010;327:812–8.

 37. Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L, 

Jarvis A, et al. Increasing homogeneity in global food supplies and the 

implications for food security. Proc Natl Acad Sci USA. 2014;111:4001–6.

 38. Wegel E, Pilling E, Calder G, Drea S, Doonan J, Dolan L, et al. Three-

dimensional modelling of wheat endosperm development. N Phytol. 

2005;168:253–62.

 39. Roussel J, Geiger F, Fischbach A, Jahnke S, Scharr H. 3D surface recon-

struction of plant seeds by volume carving: performance and accuracies. 

Front Plant Sci. 2016;7:745.

 40. Apelt F, Breuer D, Nikoloski Z, Stitt M, Kragler F. Phytotyping (4D): a 

light-field imaging system for non-invasive and accurate monitoring of 

spatio-temporal plant growth. Plant J. 2015;82:693–706.

 41. Duan L, Yang W, Huang C, Liu Q. A novel machine-vision-based facility 

for the automatic evaluation of yield-related traits in rice. Plant Methods. 

2011;7:44.

https://www.aber.ac.uk/en/research/data-catalogue/a11df174-d73d-4443-a7fd-ab5b7039df79/
https://www.aber.ac.uk/en/research/data-catalogue/a11df174-d73d-4443-a7fd-ab5b7039df79/
http://dx.doi.org/10.1007/s00122-017-2925-1
http://dx.doi.org/10.1007/s00122-017-2925-1
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://continuum.io
https://continuum.io
https://imagej.nih.gov/ij/
https://www.aber.ac.uk/en/research/data-catalogue/a11df174-d73d-4443-a7fd-ab5b7039df79/
https://www.aber.ac.uk/en/research/data-catalogue/a11df174-d73d-4443-a7fd-ab5b7039df79/
http://dx.doi.org/10.20391/a11df174-d73d-4443-a7fd-ab5b7039df79
https://github.com/NPPC-UK/ISQ-Reader
https://github.com/NPPC-UK/ISQ-Reader
http://dx.doi.org/10.1109/icpr.2000.903568
http://dx.doi.org/10.1109/icpr.2000.903568
http://dx.doi.org/10.1117/12.23577


Page 16 of 16Hughes et al. Plant Methods  (2017) 13:76 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 42. Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models-their 

training and application. Comput Vis Image Underst. 1995;61:38–59.

 43. Oakden-Rayner L, Carneiro G, Bessen T, Nascimento JC, Bradley AP, Palmer 

LJ. Precision radiology: predicting longevity using feature engineer-

ing and deep learning methods in a radiomics framework. Sci Rep. 

2017;7:1648.

 44. Martín-Vega D, Simonsen TJ, Hall MJR. Looking into the puparium: Micro-

CT visualization of the internal morphological changes during meta-

morphosis of the blow fly, Calliphora vicina, with the first quantitative 

analysis of organ development in cyclorrhaphous dipterans. J Morphol. 

2017;278:629–51.

 45. Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett M, Mooney SJ, et al. 

RooTrak: automated recovery of three-dimensional plant root architec-

ture in soil from X-ray microcomputed tomography images using visual 

tracking. Plant Physiol. 2012;158:561–9.

 46. Kato A, Ohno N. Construction of three-dimensional tooth model by 

micro-computed tomography and application for data sharing. Clin Oral 

Investig. 2009;13:43–6.

 47. Qu Q, Sanchez S, Zhu M, Blom H, Ahlberg PE. The origin of novel features 

by changes in developmental mechanisms: ontogeny and three-dimen-

sional microanatomy of polyodontode scales of two early osteichthyans. 

Biol Rev Camb Philos Soc. 2017;92:1189–212.

 48. Chaves JC, Nehrbass J, Guilfoos B, Gardiner J, Ahalt S, Krishnamurthy A, 

et al. Octave and python: high-level scripting languages productivity and 

performance evaluation. HPCMP Users Group Conf. 2006;2006:429–34.

 49. Maphosa L, Langridge P, Taylor H, Parent B, Emebiri LC, Kuchel H, et al. 

Genetic control of grain yield and grain physical characteristics in a bread 

wheat population grown under a range of environmental conditions. 

Theor Appl Genet. 2014;127:1607–24.

 50. Li N, Li Y. Signaling pathways of seed size control in plants. Curr Opin 

Plant Biol. 2016;33:23–32.


	Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Plant materials
	Mounting and scanning of material
	Computer hardware
	Computational methods and tools
	High-throughput image processing and feature extraction
	Data and statistical analysis

	Results
	Building a robust pipeline for measuring grain morphometric data from µCT images
	Segmentation pipeline

	3D processing
	Morphometric feature extraction
	Rejoining of split spikes
	Estimation of accuracy
	Temperature and water regime affect grain number and grain characteristics along the wheat spike

	Discussion
	μCT as the method of choice for spike and grain trait analysis
	Constraints of the scanning and image analysis methodology
	Development of a robust computer vision pipeline
	Suitability for grain trait analysis
	Challenges and future perspectives

	Conclusions
	Authors’ contributions
	References


