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The introduction of a non-deterministic operator in even a very simple functional programming language gives rise to a

plethora of semantic questions. These questions are not only concerned with the choice operator itself. A surprisingly

large number of different parameter passing mechanisms are made possible by the introduction of bounded non-

determinism. The diversity of semantic possibilities is examined systematically using denotational definitions based on

mathematical structures called power domains. This results in an improved understanding of the different kinds of non-

determinism and the properties of different kinds of non-deterministic languages.
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GLOSSARY OF SYMBOLS

Sets

U {A \p] distributed union of a family {A \p) of sets
0>A the power set of A, i.e. the set of all subsets of A
N t h e set o f p o s i t i v e i n t e g e r s : 1 , 2 , 3 . . .
No

Domains

±
Ax

the set of non-negative integers: 0, 1, 2, 3,

H
S
P

A V B

bottom (least element of a domain)
flat domain (the ordered set A U {!})
the partial ordering on a base domain
the power domain of domain D (with the Hoare,
Smyth, or Plotkin ordering)
the Hoare ordering
the Smyth ordering
the Plotkin ordering
any of the above three power domain orderings
collector of sets A and B (different for each of
H, S, and P above)
distributed collector of a family {A \p) of sets

Choice operators

a[\b

ru
amb
choice(ri)

a or b, chosen at random
a randomly chosen element from the finite set A
McCarthy's locally angelic choice operator11

Floyd's choice expression5

Miscellaneous

e
i +

 e
2

 e
i P

l u s e
i

ex -> e2, e3 if el is non-zero then e2 else e3

J[elt e2) function/applied to the expression pair (e1? e2)
g: A^-B a function g from A to B
X a.ga the function mapping each a to ga
F[Q~ the denotation of program Q

£[e~ the denotation of expression e
• end of definition or example

1. INTRODUCTION

The present paper investigates the concept of non-
determinism, in particular non-deterministic functional
programming language constructs, their properties, and
their mathematical semantics. The aim is to develop a
better understanding of the properties of languages that
include a non-deterministic choice operator, and to
present this understanding in a precise but not overly
technical way.

Non-determinism is often discussed in connection with
concurrency, where it arises naturally by abstraction
from the actual order of execution of different processes.
A main problem when writing concurrent programs is to
control this non-determinism, at least to some degree,
and this is one of the reasons why semaphores, monitors,
etc. have been introduced into concurrent programming
languages. More recently, synchronous communication
on named channels has been proposed as a simple but
powerful control mechanism,8 but even so, the risk of
inadvertently creating non-determinism in concurrent
programs is present. This has motivated a number of
examinations of non-determinism in connection with
concurrent programs.

However, this tangling of non-determinism with
concurrency appears to have the unfortunate effect of
blurring their distinction, perhaps owing to the fact that
neither is normally understood very well. But funda-
mentally the two notions are independent. So to clarify
notions related to non-determinism, the present work
investigates them out of the context of concurrency.

Non-deterministic concepts have an established pos-
ition in computer science. In the late fifties, Rabin and
Scott16 introduced non-deterministic finite automata,
and Turing machines with oracles were introduced some
years later by Kreider and Ritchie.10 In both cases, non-
determinism was implicit: an aspect of the device rather
than part of the corresponding formalism.

Features for explicitly expressing non-determinism
soon appeared in functional and sequential imperative
languages. McCarthy11 introduced a functional language
with a binary choice operator amb which is 'ambiguous'
or locally angelic, as we shall call it (cf. Section 2.3).

Floyd5 discussed the concept of backtrack pro-
gramming by introducing a non-deterministic expression
choiceiri) which yields an integer between 1 and n. In
addition he introduced statements 'failure' and 'success'.
One way of explaining these features is by means of an
operational semantics based on 'splitting up machines':
a statement 'x: = choice(n)' will spawn n machines in
accordance with the n different states possible after the
statement. The statement 'failure' eliminates the execu-
ting machine, and 'success' forces it to output and
stop.9

A very influential treatment of non-determinism is
found in Dijkstra's book on the guarded command
language.4 This presentation provided operational intui-
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NONDETERMINISM IN FUNCTIONAL LANGUAGES

tion as well as mathematical (predicate transformer)
semantics for an imperative language with non-deter-
minism. In Dijkstra's language the non-determinism
arises from the possibility that more than one guard is
true in a generalized conditional, rather than from an
explicit construct such as the amb operator. Recently, the
field of logic programming has provided a paradigm for
implicitly non-deterministic languages.19

When the mathematical description of programming
languages was undertaken (by researchers such as
Strachey, Landin, Floyd, and Scott) it appears that the
treatment of non-determinism lagged behind. Thus
Plotkin's seminal paper15 that made non-determinism fit
into the Scott-Strachey approach to semantics appeared
some 6 years later than the papers by Scott and Strachey.
Later the investigations into the semantics of concurrency
have led to new treatments of non-determinism.
Milner13 has a particularly interesting discussion on
experiments with non-deterministic devices.

It appears that non-determinism still is not as well
understood as most other programming language con-
cepts. This is reflected in the fact that there is no single
accepted model for the concept, but rather a number of
competing proposals, all of which have some drawbacks
that are not very well understood.

In this paper we focus attention on the pragmatic
aspects and the mathematical description of non-
deterministic programming languages. We assume that
the reader is acquainted with mathematical definition of
programming languages in the form of denotational
semantics. The aim is to remove the confusion which is
abundant in many discussions of non-deterministic
languages. We show how a very simple language can be
interpreted in at least twelve different (natural) ways. The
precise semantic definitions allow us to make general
statements about the properties of these language
variants.

The plan of the paper and the main points to notice are
as follows. Our goal is to investigate parameter passing
mechanisms and choice mechanisms in functional langua-
ges with a non-deterministic choice operator. Section 2
introduces a number of terms related to non-determinism
in an informal manner. Section 3 defines and discusses a
very simple functional language. In Section 4, this
language is extended with a binary choice operator, and
power domains are introduced as adequate semantic
tools. Section 5 presents a spectrum of possible semantics
for the extended language. We show the close relation
between the various interpretations of a choice operator
and the three standard power domains: the Hoare,
Smyth, and Plotkin power domains. We also discuss the
notions of definiteness, unfoldability, and referential
transparency and investigate which language versions
have such properties. Section 6 contains the conclusion.

2. BASIC CONCEPTS

In this section we introduce a number of concepts and
distinctions related to non-determinism. This is done in
a rather informal way, but many of the concepts are
treated in greater depth in subsequent sections.

Assume we are given a discrete system subject to
changes, or state transitions. If, at every point of time, the
system's present state constitutes an amount of infor-
mation sufficient for us to deduce its state after the next

transition, then the system is said to be deterministic.
Otherwise it is non-deterministic.

One way to illustrate the difference is to say that
determinism gives rise to a linear state sequence, whereas
non-determinism corresponds to a branching state tree.
We may consider the former a special instance of the
latter. A node in the state tree corresponds to a state of
the transition system. A branching point in the tree
indicates that a choice among the possible subtrees will
effectively take place, but we cannot foresee the result
before (possibly) reaching the point.

One may imagine that to every point is attached some
agent who actually performs the choice. Non-deter-
minism is thus ultimately defined in purely operational
terms.

2.1 Weak and strong non-determinism

A problem that comes up in the use of non-deterministic
constructs is: Should they be used in such a way that the
result of a computation can be predicted? The two
possible attitudes are:

(1) Yes, one should use non-determinism in a way
such that programs are essentially deterministic. That is,
their final results should never depend on the particular
choices taken by an evaluator.

(2) No, one should never care for a particular result,
but be satisfied with any of a number of possible
results.

Case (1) is often referred to as weak non-determinism:
though the system includes non-deterministic com-
ponents, as a whole it behaves deterministically. This
corresponds to the confluence or Church-Rosser prop-
erty for rewriting systems. Many examples of weak non-
determinism are found in Dijkstra's book.4 We refer to
case (2) as strong non-determinism.

The two notions cannot be attributed to agents. They
are meaningful only at a certain observational level.
They concern systems, just as the confluence property
applies to a rewriting system as a whole, not to the
rewrite rules individually.

The distinction between weak and strong non-deter-
minism will not be further discussed as the rest of this
paper will deal only with strong non-determinism.

2.2 Bounded and unbounded non-determinism

Bounded non-determinism refers to the case where every
computation that is known to terminate has a finite
number of possible results. This implies that every agent
is confined to a finite number of choices. Thus, in the case
of bounded non-determinism, the choice tree is finitely
branching.

Unbounded non-determinism refers to the case where
even computations that are known to terminate may
have a (countably) infinite number of possible results. In
this case agents may or may not be limited to a finite
number of choices.

Dijkstra4 shows that in the case of unbounded non-
determinism, an 'agent' does not comply with a concept
of 'terminating device': Turing machines are not able
to perform choices among an unbounded number of
possibilities in finite time.

In accordance with this, Hoare8 declares that his \\
('choose an element from set A') is meaningless if A is an
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H. S0NDERGAARD AND P. SESTOFT

infinite or empty set. (We later argue that the binary
choice operator n is associative, commutative, and
absorptive, which justifies the use of nA as a shorthand
notation for a1 n ... l~l an, where A = {a1;...,an}).

2.3 Angelic, demonic, and erratic non-determinism

The question of non-terminating computations becomes
more complex when non-determinism is introduced. The
reason is that now we have to discuss possibly non-
terminating computations and the way in which possible
termination depends on the non-deterministic choices
made during the evaluation of the program. One can
distinguish three kinds of non-determinism by con-
sidering the way choices are made when non-termination
is possible.

With angelic (or prescient) non-determinism all choices
are made in favour of termination if at all possible. We
can distinguish two kinds of angelicism: local and global.
By locally angelic non-determinism, a choice e1Ue2

between two expressions is made in such a way that if
ex is undefined, then e2 is chosen and vice versa; if both
are undefined, so is the choice expression. McCarthy's
choice operator amb

11 is locally angelic. By globally
angelic non-determinism, on the other hand, choices are
made so as to obtain termination of the overall
computation if at all possible. This is a somewhat
stronger concept: in a choice 0 n 1 between two perfectly
well-defined values, it may still be the case that the
surrounding expression is defined if 1 is chosen and not
if 0 is; in that case the operator must choose 1. Non-
deterministic simulation techniques as used in complexity
theory, for instance, employ globally angelic non-
determinism.

With demonic non-determinism choices are made in
favour of non-termination if at all possible. This is useful
if we are concerned with terminating programs only. As
with angelic non-determinism, we can distinguish be-
tween local and global demonicism. With local dem-
onicism, a choice expression el U e2 will fail to terminate
if any of ex or e2 does. With global demonicism, choices
will further be made so that a value that makes the entire
computation fail will be given preference.

The use of the terms 'angelic' and 'demonic' is due to
C. A. R. Hoare. In the rest of the paper we shall not deal
with the cases of locally angelic or locally demonic
choice. The reason is that a fixed-point theoretic
characterization of these kinds of semantics is very
difficult and still under investigation.

Erratic non-determinism comes closest to the intuitive
idea of a program running and making non-deterministic
choices on its way. In this kind of non-determinism
choices are made, operationally speaking, by flipping a
coin, which means that nothing is done to obtain or
prevent termination. The term 'erratic' is due to M.
Broy.

2.4 Restrained and unrestrained non-determinism

When we want to study the properties of a non-
deterministic choice operator, it is useful to distinguish
between the two cases: choice among atomic values
(such as integers or finite character sequences), and
choice among recursively defined values (such as func-
tions or infinite data structures). The first case shall be

referred to as restrained non-determinism, and the
second one as unrestrained non-determinism.

Clearly the unrestrained case is conceptually more
complex: full elaboration of the values chosen between
may itself involve infinitely many choices. This is reflected
in the problems with modelling unrestrained non-
determinism. We shall deal only with restrained non-
determinism in the rest of this paper. Problems with
unrestrained non-determinism are discussed else-
where.12

3. A SIMPLE DETERMINISTIC
LANGUAGE

In this section we define a very simple functional language
L. This language is deterministic but will be extended
with a non-deterministic operator in Section 4. While L
has the obvious (strict or non-strict) semantics, it is far
from clear what the semantics of the extended language
should be, and in Section 5 we discuss 12 reasonable
candidates for a definition.

Care has been taken to make the language L as simple
as possible, while still interesting. Simple as it is, we feel
justified in using L as a basis for our discussion, because
it contains features normally found in functional pro-
gramming languages, albeit only those necessary for the
present treatment. Section 3.1 defines some notions
needed in the following, and Section 3.2 defines L.

3.1 Preliminaries

The reader is assumed to have a basic knowledge of
denotational semantics. This section merely recapitulates
some important notions that will be used in the following.

A preordering in a set A is a binary relation, < , that
is reflexive and transitive; that is, for all aeA, a ^ a, and
for all a, b, ce A, a < b A b < c implies a < c. A partial
ordering in A is a preordering that is antisymmetric, that
is, for all a, be A, a 4, b A b < a implies a = b. A set
equipped with a partial ordering is called a poset. Given
a poset A, a subset C £ A is a chain, iff c1 < c2 v c2 ^ c1

holds for all ct, c2eC.

Given a poset A and a subset B £ A, an element aeA
is an upper bound for B iff b ^ a for all b e B. Dually we
may define a lower bound for B. An upper bound a1eA
for B is a least upper bound for B iff, for every upper
bound a2 for B, a1 < a2. When it exists, we let UB
denote the least upper bound for B.

The poset A is chain-complete iff a least upper bound
exists for every chain C £ A. A domain is a chain-
complete poset. Note that a domain A has a least element
U 0 , which we denote by 1A or sometimes simply 1 .

Assume we are given a set A not containing 1 . Setting
AL = A u {-L}, we can form a structure (Ax, ^ ) which is
clearly a domain, by defining a^b iff a = bVa=± for
all a, beA±. Such a structure is called aflat domain. In
the following, we think of A as a set of proper values and
of _L as denoting undefinedness. We denote the power set
of a set A by SPA.

Let A and B be domains and let g: A -> B be a function.
We say that g is strict iff g±A = 1B. The function g is
monotonic iff ga ^ gb whenever a < b; and g is continuous
iff g(UC) = U{gc\ceC} for all non-empty chains C.
Clearly a continuous function is monotonic.

A fixed-point for g: A -» A is an element a e A for which
a = ga. A fixed-point a for g is a least fixed-point for g iff,
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NONDETERMINISM IN FUNCTIONAL LANGUAGES

for every fixed-point b for g, a ^ b. If g is continuous (or
just monotonic) then g has a least fixed-point.

3.2 The language L

The language L is deliberately very simple. It
nevertheless includes all the features needed for the
following discussion, except for a choice operator which
is to be introduced in Section 4. A program consists of
one (and only one) function definition. The function
defined is called/and has two variables x and y, both of
type integer. The function definition serves as a program
by the convention that an initial call/(0,0) is understood.
The syntax of L is given in Definition 3.1, and an
informal semantic description is given in the annotations
following the definition.

Definition 3.1 The syntax of L is:

1. pgm^ f[x, y) = = exp
2. exp-* int -constant
3a. \x -first variable
3 b. \y - second variable
4. \exp + exp -addition
5. \exp -» exp, exp - conditional
6. \f{exp, exp) - function application •

Annotations to Definition 3.1

1. A program consists of a function definition. An initial
call/(0, 0) is understood.

2. Constants are drawn from the set int of integers
..., - 2 , - 1 , 0 , 1,2,...

3. The variables x and y refer to the argument values
of/.

4. There is an addition operator (as an example of an
operation that is strict in both arguments).

5. The conditional evaluates to the value of the third
expression if the first expression evaluates to zero,
otherwise it evaluates to the value of the second
expression. Thus it is an 'if non-zero'. The conditional
is strict in the first expression.

6. The (only) function/may be called recursively. •

We shall use parentheses freely to disambiguate or clarify
expressions in L. The semantic functions that assign
denotations to programs and expressions, respectively,
have types

F: pgm -*• intL

E: exp-»•den-»• den where den = int\-^int±.

Here den is a domain of function denotations. Each is a
total mapping that maps a pair of values for/'s variables
into a result. We order den pointwise, so for d13 d2eden,

dx ^ d2 iff Vvveint\.dxw ^ d2w.

The semantics of L is given by Definition 3.2.

Definition 3.2 (Deterministic semantics)

Below, de den; neint; u, ve intL; w e int\; z, abbreviates
E~e,~ dweintL.
1 • F

 r
J[x, y) = = e\= d(0, 0) where rec d = E\e] d

2. E ~n\ dw = n
3 a. E x dw = u where (u, v) = w
3 b. E y dw = v where (M, V) = w

4. E'e1 + e2] dw = if zx = 1 or z2 = 1 then 1 else
Zl+Z2

5. £>1-»e2 , e3] dw= if z, = 1 then ± else if zx 4= 0
lthen z2 else z3

6. v e2); dw = d(zv z2)

Annotations to Definition 3.2

1 .The denotation of/is the least solution to the equation
d = E\e\d. Since EleJ is continuous, d is well-defined.
The result of the program is the result of applying
the denotation d of / to the initial argument values
(0, 0).

3. The w in the semantics plays the role of a state. Since
there are only two variables x and y, the state is
determined by the values u and v of these variables,
where (u, v) = w.

4. The special treatment of 1 makes addition strict in
both arguments. Operationally, this means that
evaluation of er + e2 terminates only when evaluation
of ex and e2 does.

5. The special treatment of _L makes the conditional
strict in the first argument.

6. The result of a recursive function call is that of
applying the denotation d of / to the values of the
argument expressions. •

The semantics of L is well-defined since d is: for every
expression e, the function E\e\ is continuous and so has
a least fixed-point.

Example 3.3. The program
/{x, y) = = x->x, f (\,/[x, y)) denotes 1. •

By Definition 3.2,/is non-strict. This, however, is easily
changed so that / becomes strict, by replacing the
recursive definition of d in equation 1 by
d(u, v) = if u = -L or v = 1 then ±

else E\e\ d(u, v).

By the resulting semantics, the program in Example 3.3
denotes J., that is, the result of evaluating the program
is undefined. We shall only consider the two cases: /
being strict in both arguments or in none of them. These
two cases correspond to applicative order and normal
order evaluation, respectively, or 'call-by-value' and
'call-by-name'. As the example shows, normal order
evaluation may terminate when applicative order evalua-
tion will not. The converse does not hold.

In the non-deterministic case discussed in Section 4,
the issue of call mechanisms becomes more complicated.
Sections 5.1 and 5.2 cover these problems, and in Section
5.3 the diversity of semantics is exemplified.

4. NON-DETERMINISM AND POWER
DOMAINS

In this section we discuss the implications of adding a
binary non-deterministic choice operator to the language
L. This leads to an exposition of the three classical power
domains. Since our language is first order (functions are
not data objects) the choice operator works on simple
values (integers) only. Technically, therefore, we have
non-deterministic choice among elements from flat
domains (the power domains over which are said to be
discrete). This is referred to as restrained non-deter-
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H. S0NDERGAARD AND P. SESTOFT

minism, and turns out to have a particularly simple
semantics.

We now extend L by adding the following rule to the
grammar of Definition 3.1:

exp -*• exp Uexp,

stating that the choice between two expressions is itself
an expression.

Example 4.1. Consider the following programs (for
now, assume non-determinism is erratic):

We would expect that

F\Qi; = {'} - Qi will terminate and return 1,

F[Q2] = {-L, 1} - Q2 may fail to terminate or may

terminate and return 1,

- Qz
f a i l t o terminate.

Clearly, the range of the semantic function F can no
longer be intL, since a result may in general be any of a
number of possibilities, and the semantic definition must
reflect this fact. So Fand is need to record all the possible
outcomes: p. pgm _+ ap int±

E: exp -> den -> den.

But what should den be, that is, how do we want to
model the behaviour of/? There are many possibilities,
but the two most worthy of consideration are

den = int\ -> & intL,

and den = (SP int, )2 -

according as a variable is always bound to exactly one
value or is bound to a set of possible values. Both
possibilities are perfectly feasible, and we give the
semantics for the two cases in Sections 5.1 and 5.2,
respectively. The former case yields a so-called singular
semantics, whereas the latter yields a plural semantics.3

The singular semantics will record all possible states (in
the traditional sense: each state binding a name to one of
its possible values), whereas the plural semantics will
work with ' states' that bind a name to the set of all its
possible values. The resulting languages are very different,
as we shall see. Most language designers seem to consider
a singular semantics more natural than a plural semantics.

We now discuss the structure of & intL. As is usual, we
want a fixed-point characterization of the semantics, so
somehow SP intL must be equipped with a partial ordering.
The resulting structure should be a domain (thus: a
power domain), and we denote it by ^[intL]. (In fact,
^[int±] will not in general contain all the elements of
& intL: all three power domain constructions leave certain
elements out, as we shall see). Given a power domain
^[D], we refer to D as the base domain.

We denote an ordering on power domains by^. Such
an ordering should reflect the usual notion of 'infor-
mation content'. For instance {±}e{l} should hold. In
this way, the special case of deterministic programs will
be treated according to the semantics of L. The problem,
however, with the ordering is that it should capture
both this and a concept of approximation of the set of
possible results.

Traditionally, three different candidate orderings com-
bining 'information content' and 'set approximation'
orderings are proposed. We shall call them H for Hoare,
5 for Smyth, and P for Plotkin (the last one is often
called the Egli-Milner ordering or the Milner ordering17).
The three orderings and their intended interpretations
are now discussed.

Definition 4.2. Let D be a domain, partially ordered
by <. The relations H, S, and P c {0>Uf, all denoted
by E, are defined by

H: A£B iff VaeA.lbeB.a^b

S: A*=B iff VbeB.laeA.a^b

P: AsB iff VaeA.lbeB.a^b A

VbeB.laeA. a^b •

Of these, P is the smallest relation since H n S = P. For
an arbitrary domain D, the relations are actually
preorderings, so A^B A B^A does not in general
imply A = B. This means that some additional manipu-
lations are needed in the general case of power domain
construction. However, when the base domain is flat (as
is the case in this paper since we consider restrained non-
determinism only), P is a partial ordering. The relations
H and S will also turn out to be partial orderings in our
case, but this is due to the fact that certain elements of

6 intx will be excluded in the power domain constructions
below. Flat base domains lead to simple constructions,
and the resulting power domains are called discrete.

We now turn to the actual constructions of the three
versions of ^[intL] corresponding to H, S, and P. As will
be seen, the three orderings introduced above closely
correspond to (globally) angelic, (globally) demonic, and
erratic non-determinism, respectively. Table 1 compares
the orderings (and gives all possible yes/no combina-
tions).

Definition 4.3. The discrete Hoare power domain con-
struction is this: the elements of & [int x] are those of

Table 1. Sample relations

Case H

{1} —
U, 1)
{1} c

{-L, 1]

{2}
• e {2}

{1, 2}
'• — { ' >2}

No
No
Yes
Yes

No
Yes
No
Yes

No
No
No
Yes

Figure 1. Hoare ordering of 9 \int±\.
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NONDETERMINISM IN FUNCTIONAL LANGUAGES

0> int\{0} and {-L}. The ordering is H restrictd to
&>[intx]. See Figure 1.

We will use the Hoare power domain for modelling
(globally) angelic non-determinism. The interpretation
of {1} is non-termination, and the interpretation of a
non-empty set A # {±} is that any element of A is a
possible result, and non-termination is impossible. With
angelic non-determinism, a computation may well be
able to return infinitely many results, and therefore the
Hoare power domain must include such infinite sets.

We can think of the discrete Hoare power domain as
the power set 0> intL where for any non-empty set A £ int
we identify A U {1} with A. If any of two sets contains
a proper result (different from 1) then their union will be
identified with a set not containing L. This reflects the
convention of angelic non-determinism that if it is
possible to choose a proper result, then non-termination
will be avoided.

Since {1} is the bottom element, and A is identified
with A U {!}, we could as well have used the usual power
set (Pint and let 0 play the role of {!}. The power
domain {Flint,] and the power set (Pint (with subset
ordering) are thus order isomorphic. However, S?\intL\ is
preferable in this context, since it allows for a uniform
presentation of the power domains.

Definition 4.4. The discrete Smyth power domain con-
struction is this: the elements of 2?[intL] are {A.} and the
finite elements of 0>int\{0}. The ordering is S restricted
to 0>\intL\ See Figure 2. •
The discrete Smyth power domain will be used for
modelling globally demonic non-determinism. Again,
{1} is interpreted as non-termination, any other element
as a set of possible results. With demonic non-
determinism, no computation can return infinitely many
different results, and therefore the Smyth power domain
includes only finite sets.

The discrete Smyth power domain can be thought of as
containing the finite subsets of int U {!}, when we identify
any set containing 1 with {!}. If any of two sets contains
-L (representing non-termination), their union will be
identified with {!}. This reflects the convention of
demonic non-determinism that if it is possible to choose
non-termination, then it will be chosen.

{-1}

{J-,-1}

U , -1,0,1}

A
. { - 1 , 0 } / \ { O , 1 } . -

\ 1 / \ 1 '
{1,-1,0} {1,0,1}

A A
/ \ {0} / \

{1,0}

- \ 1 ^
w

{1}

U.i)

Figure 2. Smyth ordering of & \int±\.

Figure 3. Plotkin ordering of & \intj.

Definition 4.5. The discrete Plotkin power domain
construction is this: we take as the elements oi^[intx] all
elements of & intx\{0} which are finite or contain _L. The
ordering is P restricted to ̂ [int±]. See Figure 3. •

The discrete Plotkin power domain also has {J.} as
bottom element. A set A is interpreted as the set of results
which must be possible, and may include _L indicating
that non-termination is possible. All infinite sets also
contain 1 to reflect that with erratic non-determinism, if
a computation can return infinitely many results, then it
can also go on forever.

The Plotkin power domain is obviously useful for
modelling erratic non-determinism, since the ordering
does not use 1 to identify sets of results, but rather treat
non-termination (±) as a 'result' like any other.

The reason why the empty set 0 is not in any of the
power domains is clear: we must have a result (thinking
of non-termination as a 'result'). Note that the restriction
to finite sets in the Smyth and Plotkin cases means that
only the Hoare case can model unbounded non-
determinism.

A clarification of the difference between the Smyth and
Plotkin power domains is offered by Apt and Plotkin.1

They show (for a non-deterministic sequential language)
that a denotational semantics based on a Plotkin power
domain of states is equivalent to an operational (state
transition) semantics. Correspondingly, a denotational
semantics based on the Smyth power domain is shown
equivalent to a predicate transformer ('weakest pre-
condition ') semantics.

So the Plotkin power domain (and operational
semantics) can represent computations that may fail to
terminate, whereas the Smyth power domain (and
'weakest precondition' predicate transformer semantics)
is concerned only with computations that will terminate.
Operationally, therefore, the Plotkin power domain
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H. S0NDERGAARD AND P. SESTOFT

allows for the best description of non-deterministic
constructs. In particular, it is the only power domain (of
those discussed here) that allows the three programs in
Example 4.1 to be distinguished.

Finally, Winskel20 discusses the relation between
powerdomains and modality. He identifies three simple
modal logics as the logical counterparts of the three
powerdomains.

The powerdomains are usually presented in a way
which is more uniform than ours, namely as quotients
over the equivalence relations generated by E, rather
than as "powersets with certain elements left out".
However, generality may sometimes impair intelligibility,
and our aim here has been to make the introduction of
the powerdomains as painless as possible.

5. TWELVE VARIANTS OF
A NON-DETERMINISTIC LANGUAGE

In this section we give denotational definitions for a
variety of possible semantics of the extended language.
Section 5.1 covers the singular semantics, Section 5.2
covers the plural semantics, and Section 5.3 discusses the
various languages' properties and makes some com-
parisons.

5.1 Singular semantics

The characterization of the orderings given in Section 4
may be made more concrete now that we have the three
proposals for 0>[int±]. Below we give these character-
izations. Also, we define for each case the 'collector'
operator V which proves useful in the semantic definitions
to come.

Definition 5.1. Let A c ^
>
(int±)\{0} and define VAe

&[intx] for each of the three powerdomains as follows:

Discrete Hoare power domain:

A^B iff A={±}vA^B

VA={L} if A ={{!}}

= ((J /O\U} otherwise

Discrete Smyth power domain:

A c B = iff A' = {1} v B £ A

VA = {1} if 1 e \JA or [JA is infinite
= {JA otherwise

Discrete Plotkin power domain:

sB iff A =B V (±eA A A ^B U {!})

= {±}\j{jA if (J A is infinite
= (J A otherwise

We write V{A,B} as AVB. Note that V is commutative,
associative, and absorptive in all three cases. Also, even
though V is not monotonic with respect to E in the
Smyth and Plotkin cases, V is monotonic in all three
cases. Furthermore, in the Plotkin case, the result of the
V operator is the union of its results in the Hoare and
the Smyth cases.

We are now ready to give a semantics for the language
of our definition extended with non-deterministic choice.
In the singular semantics we have

F: pgm -> 3P[intJ

E: exp -> den -> den where den = int\ -»• ̂ [/ '«/J.

The domain den of function denotations is equipped
with the respective orderings taken pointwise. Note that
-Ltfen = *>

w
- I-1-) irrespective of the power domain used.

The revised semantic functions are given in Definition 5.2.

Definition 5.2. (Singular semantics)

Below, deden; neint; u, veint1; weint
2

±; z, abbreviates
E[e,ldwe!?[intj]. The operator V was defined previously.
The operator V is the distributed version of V.

1 •
2.
3 a.
3 b.
4.

5.

6
-

En'dw
Ex'dw
Eydw
£Vj + e2] dw

d(0, 0) where recd = Ee~d

{«}
{«} where (w, t>) = w

{v} where (u, v) = w

{if r, = 1 or r2 = _L then J.
else r2\rlez1 A

i 2

EeUe2]dw

1

V{r2|r26z2 A
V{/-3|r36z3 A O e z J
V{d(u, v)\uez1 A vez2}
zxV' z2

Annotations to Definition 5.2

1. Here deden is the denotation of the (only) function/.
The definition gives a non-strict/. As in the determin-
istic case, a strict / is obtained by replacing the
recursive definition of d by

d(u, v) = if u = -L or v = J_
then 1 else E\e\d(u, v).

4. Addition is strict. The semantics takes all possible
combinations of sums. In this way + distributes over
n, that is,

e, + (e2 n e3) = (e, + e2) n (e1 + e3) (5.1)

{el n e2) + e3 = (e, + e3) n (et + e3) (5.2)

Here and below,' = ' (also) denotes strong equality of
programs or expressions. That is, either both sides are
undefined, or they are defined and equal. Note that
does not distribute over +, as can be seen from the
example:

dpXd.kw.i2, 3, 4} = F ( l n 2 ) + (l n2)].

5. By this, fl distributes over conditions, so

(e1 Fle2) -+ e3, e4 = (et -+ e3, e4)n(e2-• e3, e4). (5.3)

Furthermore, the following holds in the demonic

case:

(<?! -> e2, e3) n e4 = <?x -* (e2 ), (e3 n e4). (5.4)

It does not hold otherwise, witness the case where ex

evaluates to {1}, while e4 evaluates to {3}, say. For
example,

does not define the same function as does

Ax,y) = =Ax,y)-"{\ n 3), (2 n 3)

in the angelic and erratic cases, since the former may
yield 3.

6. With singular semantics, a variable always has exactly
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NONDETERMINISM IN FUNCTIONAL LANGUAGES

one value and this makes function application
distribute over n , that is,

J[e1 He2, <?3) =./!>!, e3)n/!>2, e3) (5.5)
fiev e2 n e3) = J{eu e^Jie^ e3). (5.6)

Note that in the Smyth and Plotkin cases, V is applied to
finite collections of finite sets only. Thus E\e] is
continuous in all cases and F is well-defined.

7. This makes n commutative, associative, and absorp-
tive. •

Note that the semantic definition is incomplete until we
state which version of V is meant. Proofs of (5.1)—(5.6)
are straightforward.

5.2 Plural semantics

The collection of semantics given by Definition 5.2 are
singular: a variable is always bound to a single value, so
x + x would always evaluate to an even number. Now we
give several plural semantics; with these a variable may
be bound to a set of possible values and hence x + x may
evaluate to 3 in case x is bound to {1, 2}. For the plural
semantics we have ^ ^.r. n

F.pgm -+ ^[intj
E:exp -> den -> den

as before, but now den = (&>[intj)
2 -> 0>[intx] because a

variable may be bound to a set of possible values. The
semantic functions are given in the following definition.

Definition 5.3. (Plural semantics)

Below, deden;u,ve ^[int±]; w e (&[intj)
2; z, abbreviates

Eet dwe ^[intL]. The semantic functions are as shown in
Definition 5.2, except:

1. FJ[x, y) =

3 a. Ex'dw
3b. Ey'dw
6.

= e] = d({0}, {0}) where
recd= Ee'd
= u where (w, v) = w
= v where (u, v) = w

w = d(zu z2) •

Annotations to Definition 5.3

1. Both initial arguments are the singleton set {0}. The
definition gives a non-strict function / . A strict / is
obtained by replacing the recursive definition of d
by

d(u, v) = if u = {-L} o r ! )= {1} then {1}
else (Ee'J(u, v)) U ({1} fl (w U v)).

In the erratic case, this definition is justified as
follows: if non-termination of argument evaluation is
possible, then non-termination must be a possible
result of the function call. If it is the only possibility,
then it is the only possible result of the function call as
well. Note that in the angelic and demonic cases, the
'else' part is just Ee d(u, v), since neither u nor v
contain 1.

3. Variables are now bound to sets of values.
4. The equations (5.1) and (5.2) hold in this case too.

Still does not distribute over + , since the above
counter-example applies.

5. Equation (5.3) still applies, and in the demonic case so
does (5.4).

6. The equations (5.5) and (5.6) are no longer valid. For
example,

Ax, y) = = x-

does not define the same function as does

Ax, y) = = x + x+x,(A\, y)nf[2, y)),

since the former may yield 3, whereas the latter
cannot. •

Note that equations 3 a, 3 b, and 6 are exactly as in the
deterministic semantics of Definition 3.2

5.3 Summary of language properties

Sections 5.1 and 5.2 made the existence of several
unallied semantic notions apparent. We now discuss and
recapitulate these from an operational point of view. We
have seen that an important part of defining a non-
deterministic language with function application is to fix
the semantics along three dimensions:

(1) the usual strict/non-strict dimension of functions
known from deterministic languages;

(2) the singular/plural dimension of variables in a
non-deterministic language, and

(3) the angelic/demonic/erratic dimension of non-
deterministic choice.

First we illustrate each of the dimensions by examples;
then we show that the 12 = 2-2-3 semantics are all
different.

Strict or non-strict functions

• When / is strict, the program

fails to terminate because of an attempt to evaluate
/(0, 0) infinitely often. When / is non-strict, the
program will terminate with result 1 because the value
of variable y is not needed when x is non-zero and the
argument expression /(0, 0) need not be evaluated.

Singular or plural semantics

• This second dimension is sometimes referred to as call-
time-choice / run-time-choice

6
'
1 to indicate at what time

the variable's value is fixed. We prefer the shorter
singular/plural since in general variables may become
bound by other constructs than function calls, such as
let clauses, etc. With any singular semantics, the
program

" • {in 2,0) (5.7)

has the set {2, 4} of possible results because x must be
bound to either 1 or 2. With any plural semantics, the
set of possible results is {2, 3, 4} since one occurrence
of x may evaluate to 1 and the other to 2.

Angelic, demonic, or erratic choice

• With angelic semantics, the program

Ax, y) = = y ^A0, l), ( * -* ,y ( i , 0)n/(l, l))

will terminate with result 1 because the choice operator
will choose the left call/(I, 0) to make the program
terminate. With demonic semantics, the right call
7(1, 1) will be chosen, resulting in non-termination.
With erratic semantics, the program either terminates
with result 1 or it fails to terminate.
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H. S0NDERGAARD AND P. SESTOFT

Items (1), (2) and (3) above span 12 semantics (all
compactly given by Definitions 5.2 and 5.3 and their
annotations). Interestingly, the 12 semantics are all
different. This is an important point of this paper: very
often we confuse the notions involved, because we try to
maintain a too simplistic view of non-deterministic
programs. For example it is common to think that the
strict vs. non-strict distinction is just the same as the
singular vs. plural distinction. This misunderstanding
comes from considering programs such as (5.7) and
reasoning that since both 'strict' and 'singular' seem to
have some affinity with 'call-by-value', they must be
equivalent. This is not correct, and the problem is that in
reasoning like this, we let ' call-by-value' (which is
familiar from the more narrow deterministic case) serve
as the bed of Procrustes, into which we force the richer
notions from the non-deterministic case. We hope to
have demonstrated the advantage of a more rigorous
mathematical analysis of the notions.

To demonstrate that the 12 semantics are all different,
we give three example programs. First, the reader may
want to verify that the following program yields 8
different values depending on whether the semantics is
strict or non-strict, angelic or erratic, and singular or
plural:

fix, y) = = y^fx, y), (x^x + x,

(/(i n 2, o) n/(3 n/(o, 0),/(0, i)))) (5.8)

The eight values are tabulated in Table 2. Yet a ninth
value is {±} which results from any demonic semantics.
Notice that in the (non-strict) angelic cases there
is an infinite set of possible results, and non-termination
is not a possible result. Hence we have an example of
unbounded non-determinism. In the (non-strict) erratic
cases, non-termination (_L) is an additional possibility in
the cases where there is an infinity of possible results.

It is not hard to exemplify the variety of demonic
semantics either. To show that they are different, we
evaluate the following two programs in the four cases
(strict/non-strict and singular/plural):

(5.9)

(5.10)

The program (5.9) denotes {2, 4} if non-strict singular,
{2, 3, 4} if non-strict plural, and {±} if strict. But also

strict singular and strict plural are different, as witnessed
by (5.10).

We end this section by categorizing the various
language variants according to some important proper-
ties. We first define these properties, then summarize the
result in Table 3.

A language has the unfolding property if a function call
fe1, e2) may be replaced by the function's body expression
with the argument expressions substituted for the formal
parameters, without disturbing the meaning of the
enclosing expression. More precisely, let a (e, eu e2) be
the result of substituting expression el for every
occurrence of x and expression e2 for every occurrence of
y in expression e. Then the requirement is that

^ ejdw = Eo(e, eu e^fdw for all weint\
(5.11)

where d = Bed is the denotation of/.
Variables in a language are definite if all occurrences of

a variable (within its scope) always have the same value.
Lack of definiteness implies a slightly unnatural seman-
tics. For example, consider the conditional expression
x -> x, 1 and assume that (by plural semantics) x is bound
to {0,1}. The expression then denotes {0, 1} although one
might feel that x ->• x, 1 should not yield 0 (recall that the
conditional is an 'if non-zero'). With non-strict plural
semantics, a language has the unfolding property (as can
be verified by proving (5.11) by induction on the structure
of e). To see that the property is not shared by any
language with strict semantics, consider the program

which has the denotation {L}. Unfolding the outermost
function call yields

/(*, y) = = x-» 1, (1 - ],f],f\,Ax, y)))\

which has the denotation {1}. To see that all languages
with singular semantics lack the unfolding property,
consider the program

(\n2, y)

which has the denotation {2,4} by any singular semantics.
Unfolding yields

fx, y) = = x

which has the denotation {2, 3, 4}.

Table 2.

Angelic

Erratic

Table 3.

Having i
Lacking

Results from

Singular

{2,4}

U . 2, 4}

Properties of

the unfolding
the unfolding

evaluating (5.8)

Strict

Plural

{2, 3, 4}

U , 2, 3, 4}

Singular

U {2", 3-
ne.v

{-L}U U
ne.V

the various language variants

property
property

Non-strict

2"}

{2", 3-2"}

Having definite variables

None
Those having

Plural

JV\{1}

singular semantics

Having indefinite variables

Those having non-strict plural semantics
Those having strict plural semantics
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NONDETERMINISM IN FUNCTIONAL LANGUAGES

Our language has referential transparency by all 12
semantics, at least in Quine's sense, since no construct
destroys referentiality.14 A quoting operator such as
QUOTE in Lisp or a string constructor such as ' . . . ' in
Pascal would destroy referentiality. We note, however,
that just like the notions discussed in this paper, that of
referential transparency has caused much confusion. We
discuss referential transparency and its relation to similar
but distinct notions elsewhere.18

non-discrete) power domains can be found in Main's
tutorial paper.12
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6. CONCLUSION

We have presented some concepts related to non-
determinism in programming languages, exemplified by
a small non-deterministic functional language. In particu-
lar, we have demonstrated the various possible mechan-
isms for parameter passing and some possible interpre-
tations of a non-deterministic choice operator. These
possibilities have all been formally described (using
denotational semantics) to allow for a precise discussion
of language properties, and we have shown that no less
than 12 different semantics are possible, spanned by the 3
dimensions:

(1) strict/non-strict functions;
(2) definite/indefinite variables, and
(3) angelic/demonic/erratic choice.

This richness is not often recognized and as a result there
is generally much confusion about non-deterministic
languages. This is understandable; the unexpectedly large
number of combinations shows that the introduction of
a non-deterministic choice operator into a simple
functional language complicates its semantics con-
siderably. Seemingly minor changes in the interpretation
of non-deterministic choice and call mechanisms have
great impact on the properties of the resulting language.

The formal discussion of the non-deterministic lan-
guage by denotational semantics required us to deal with
sets of possible results of a computation instead of a
single result. Therefore we presented the standard so-
called power domains; these are mathematical structures
intended to describe such sets of possible results. We
related the three well-known kinds of power domain, the
Hoare, Smyth, and Plotkin power domains to the three
possible interpretations of a non-deterministic choice
operator (dimension number (3) above).

Finally we summarized the various semantics, and the
properties with which they endow the language were
discussed. We have not formally discussed locally angelic
or locally demonic choice which were informally intro-
duced in Section 2.3. A (rather complicated) proposal for
a formal semantics of a language with an erratic and a
locally angelic choice operator has been given by Broy.2

Several other aspects of non-determinism have not
been treated formally here. For example, we have
discussed only restrained non-determinism: choice
among basic values (numbers), so that the particularly
simple so-called discrete power domain constructions
would do. Modelling unrestrained choice (choice between
functional values, say) poses some delicate problems.
Hence we have not discussed general power domains
either. The original papers on power domains are by
Plotkin15 and Smyth ;17 an introduction to (discrete and
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