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ABSTRACT
In this paper, the Non deterministic Repairable Fault Tree
(NdRFT) formalism is proposed: it allows to model failure
modes of complex systems as well as their repair processes.
The originality of this formalism with respect to other Fault
Tree extensions is that it allows to face repair strategies op-
timization problems: in an NdRFT model, the decision on
whether to start or not a given repair action is non deter-
ministic, so that all the possibilities are left open. The for-
malism is rather powerful allowing to specify which failure
events are observable, whether local repair or global repair
can be applied, and the resources needed to start a repair
action. The optimal repair strategy can then be computed
by solving an optimization problem on a Markov Decision
Process (MDP) derived from the NdRFT. A software frame-
work is proposed in order to perform in automatic way the
derivation of an MDP from a NdRFT model, and to deal
with the solution of the MDP.

Keywords
Fault Tree, Optimal repair strategy, Markov Decision Pro-
cess, Markov Decision Petri Net

1. INTRODUCTION
The Fault Trees (FT) [21] are a well-known formalism for

the evaluation of dependability of complex systems. They
provide an intuitive representation of the system in terms of
its faults, modeling how the combinations of failure events
relative to the components of the system, can cause the fail-
ure of the sub-systems or of the whole system.

Many extensions of this formalism have been proposed in
order to enhance the advantages of the FT for the design
and the assessment of the systems (e.g. Dynamic FT [16],
Parametric FT [5], etc.). Among these extensions, in [12] the
Repairable FT (RFT) was presented in order to evaluate the
effect of different repair policies on a repairable system.

In this paper, we present a new FT extension, called
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Non deterministic Repairable Fault Tree (NdRFT) which
has been designed to define and solve repair strategy opti-
mization problems: in an NdRFT model the possible repair
strategies are not predefined; on the contrary, the best strat-
egy, minimizing the failure probability of the global system,
is automatically computed. This is done by defining the
NdRFT semantics in terms of a Markov Decision Process
(MDP), a formalism embedding non deterministic and prob-
abilistic behavior [14, 17], and then solving the optimization
problem using the methods available for MDPs.

The generation of the MDP is achieved by an intermedi-
ate translation of the NdRFT model into a Markov Decision
Petri Net (MDPN) [3]: this allows to reuse the efficient algo-
rithms devised to derive an MDP from an MDPN. Moreover
a direct translation from NdRFT to MDP requires to imple-
ment a mechanism to combine the failure/repair events of
all components into a single complex transition or action:
this is already implemented for MDPN formalism.

The NdRFT formalism allows to express in an elegant way
several possible start repair options based on: 1) the concept
of “observability” of events (repair actions can only be trig-
gered by observable failures), 2) the notion of local versus
global repair action, 3) the notion of repair supervisor com-
ponent, in case of global repair. Very few restrictions are
imposed on the scope of repair actions (so that the repair of
each basic component can start based on observations made
on different failure events). The NdRFT formalism allows
the modeler to express in a familiar language (NdRFT ex-
tends FT) the failure mode and the repair options in the
system; in this way, he avoids to deal with a larger, unstruc-
tured and state-level MDP model that is instead derived
from the NdRFT model.

The paper is structured as follows: Sec. 2 presents some
related work about FT, tools for FT analysis, and RFT; in
Sec. 3 we provide the formal definition of the NdRFT for-
malism; Sec. 4 explains how to derive from a NdRFT model,
the corresponding MDPN; in Sec. 5 we present a software
framework for the design and the solution of NdRFT models
in order to compute the optimal repair strategy and the cor-
responding dependability of the system; finally in section 6,
we present and analyze some experimentations.

2. RELATED WORK

2.1 Fault Trees
In the FT formalism, nodes can belong to one of these

two categories: events and gates. Events concern the failure
of components, subsystems or of the whole system. We can



consider an event as a Boolean variable: it is initially false
and it becomes true when the failure occurs.

An example is shown in Fig. 1.b. The events graphically
represented as a rectangle with an attached circle are called
Basic Events (BEs) and model the failure of the components
of the system; such events are stochastic, so their occurrence
is ruled by some probability distribution.

The events depicted simply by a rectangle represent the
failure of subsystems; we call them Internal Events (IEs) and
they are the output of a gate node. Gates are connected by
means of arcs to several input events and to a unique output
event; the effect of a gate is the propagation of the failure
to its output event if a particular combination of its input
events occurs. In the standard version of the FT formalism
three types of gate are present and correspond to the AND,
OR and ”K out of N” Boolean functions.

Finally, we have a unique event called Top Event (TE),
modeling the failure of the whole system. The FT incorpo-
rates a Boolean formula expressing the TE truth value as a
function of its variables (BEs).

The analysis of an FT model returns several dependability
measures such as the system reliability, the system minimal
cut-sets, the criticality of each component [21]; in particu-
lar, the system reliability at time t is the probability that
the system has been working in the time interval (0, t). The
most efficient way to perform the analysis of an FT, consists
of generating the Binary Decision Diagram (BDD) [7] rep-
resenting the same Boolean formula expressed by the FT:
efficient algorithms allow to compute on the BDD the mea-
sures cited above [18].

2.2 Tools for FT analysis
Several software tools support the FT analysis. Some of

them can deal with the repair, but they allow only to model
the repair of single components: the repair process is trig-
gered by the component failure and has effect only on the
same component. For instance in the tool ASTRA [13] de-
veloped by the European Commission Joint Research Centre
(JRC), one of the parameters of a BE is the time to repair
the component whose failure is modeled by the same BE.
In other tools, the time to repair a component is a random
variable ruled by some distribution such as the negative ex-
ponential one. This is the case of the following tools where
a repair rate can be associated with a BE: Stars Studio de-
veloped by JRC [13], HIMAP [15] by Iowa State University,
Relex [25], FTA-Pro [24] by Dyadem, FaultTree+ [26] by
Isograph Software, FTAnalyzer [27] by Advanced Logistic
Development (ALD).

The SHARPE tool [20] allows hierarchical modeling: the
probability to occur of a BE can be set equal to some mea-
sure computed on another kind of model, for instance a Con-
tinuous Time Markov Chain (CTMC) [20]. In this way, the
failure and repair mode of a component may be more com-
plex than a simple transition from the working state to the
failure state and vice-versa. In any case, the model repre-
senting the failure and repair mode of the component has to
be manually drawn by the modeler. Hierarchical modeling
is possible by means of the HIMAP tool as well [15].

A Dynamic Fault Trees (DFT) [1] is a particular exten-
sion of FT where dependencies between BEs can be set by
means of the dynamic gates. The analysis of a DFT model
can be performed by conversion into a Continuous Time
Markov Chain (CTMC) [16] and is supported by the tool

Galileo [22]. In [6], a DFT model can include the repair of
components, and the analysis of the model is faced in by ex-
ploiting Input-Output Interactive Markov Chains, however
each repair action still concerns a single component.

2.3 Repairable Fault Trees
In the literature, the Repairable Fault Tree (RFT) formal-

ism [12] is the only extension of FT that allows to model the
repair of a subsystem when triggered by a specific failure
event. This means that the repair process concerns a set of
components instead of a single one. Moreover, in the RFT
formalism, the repair action is not simply ruled by a repair
rate, but it is influenced by a repair policy : defining a repair
policy in a RFT model means setting the parameters ruling
each aspect of the repair process, such as the mean time to
detect the failure, the mean time to repair a single compo-
nent or a set of components, the number of repair facilities,
the order of repair of the components. >From a RFT model
we can compute the system availability at time t; this means
the probability that the system is working at time t.

The RFT differs from the FT, for the introduction of a new
primitive called Repair Box (RB) [12] allowing the model
designer to represent the presence of a repair process in-
volving a certain set of components called basic coverage set
(CovBE) of the RB; such action is activated by the occur-
rence of a specific failure event called trigger event and con-
cerning a component or a subsystem. The effect of the RB is
setting the value of the BEs in its CovBE to true (working),
if their current value is false (failed). Such repair action
is performed according to the repair policy associated with
the RB node. Actually, the effect of the RB does not in-
fluence only the BEs in its basic coverage set, but also all
the IEs whose value can be expressed by a Boolean func-
tion over a set of BEs including at least one BE in CovBE .
In [12], the computation of the system availability from its
RFT model, has been faced by converting the RFT model
into a Generalized Stochastic Petri Net (GSPN).

In the RFT formalism, the repair policy (or strategy) is
defined by the modeler and is associated with the RB prim-
itive; therefore the only way for the modeler to identify the
best policy, consists of analyzing the system according to
several repair policies by constructing several RFT models,
and by comparing the system availability values returned by
the RFT models analysis. So, the RFT formalism does not
allow to automatically determine the best repair policy.

The possibility to determine the optimal repair policy
given all the repair possibilities, is an issue concerning sev-
eral fields of engineering. So far, this problem has been
usually faced in the literature in analytical ways, typically in
form of operative research problems [8, 23, 19]. The NdRFT
formalism presented in this paper, is an attempt to deal with
the problem of optimal repair strategy, by building a graph
based model having an intuitive notation and allowing to
model several repair options together with the failure com-
binations in the system.

3. NON DETERMINISTIC RFT

3.1 NdRFT syntax
In this section the formal definition of the NdRFT is pro-

vided and commented through an example:



Definition 1 (Non deterministic Repairable FT).
An NdRFT is a five-tuple:

S = 〈E ,G,A,R, res0〉

where:
E is the set of events.
G is the set of gates; E ∩G = ∅. A gate g has a type1 denoted
g.type ∈ {and, or}.
A is the set of arcs, a subset of E × G ∪ G × E. For x
belonging to E ∪ G, we denote x• ≡ {y | (x, y) ∈ A} and
•x ≡ {y | (y, x) ∈ A}. A satisfies:

1. ∀g ∈ G, |g•| = 1 and ∀e ∈ E , |•e| ≤ 1
2. There is exactly one event, denoted > and called Top

Event, s.t. >• = ∅; all other events satisfy |e•| ≥ 1
3. The set of events can be partitioned into basic events

E ≡ {e | •e = ∅} and internal events E ≡ {e | •e 6= ∅}
4. The (directed) graph induced by A is acyclic.

R is a finite set of repair resource types; res0 ∈ Bag(R) is
the multiset of available resources, where Bag(R) is a gener-
alization of a set, so that it can contain several occurrences
of the same element.
Each event is associated with a set of attributes, related to
its failure probability and to the definition of the applicable
repair actions. Any event e is either observable (e.obs =
true) or non observable (e.obs = false); only observable
events can trigger a repair action.
Moreover, each BE e has the following additional attributes:

1. a fault probability denoted e.fprob ranging over [0, 1];
2. a repair attribute denoted e.rep ∈ {true, false} indi-

cating if the event is repairable or not; if e.rep = true, e
has also a repair probability denoted e.rprob ∈ [0, 1] and a
bag of resources denoted e.res ∈ Bag(R).
Finally, each internal observable event e has the following
additional attributes:

1. a set of BEs that should be repaired in case of e failure,
denoted e.torep such that e′ ∈ e.torep ⇒ e′.rep = true,
moreover there is a path from e to e′ according to A;

2. a repair strategy denoted e.str ∈ {global, local}.
When the strategy associated with an event is global , it also
has a repair probability denoted e.rprob ∈ [0, 1] and a bag of
resources denoted e.res ∈ Bag(R).

Let us comment the above definition by means of the ex-
ample of Fig. 1 (whose meaning will be explained in Sec. 6):
in the picture the events are depicted in a different way ac-
cording to their obs and rep attribute values. Down arrows,
labeled with a number, next to BEs indicate their failure
probabilities; up arrows, labeled with a number, next to
repairable BEs or to internal events with global strategy, in-
dicate the repair probability. Basic events A3 and P3 in the
example are not repairable. In the NdRFT formalism, the
assumption of discrete time holds: the time to fail (repair) a
component is ruled by the geometric distribution having as
parameter the failure (repair) probability (see section 3.3).

The failure of an observable and repairable BE e (e.g. A1)
can immediately trigger a repair action of the component,
while the repair of a non observable (but repairable) event
e (e.g. A2) can only be triggered by an observable internal
event connected to e (for A2 it can be U2 or TE). Intu-

1Since the proposed optimization method is based on the
state space, other gate types could easily be considered, in-
cluding dynamic ones: in this paper only and/or gates are
considered for the sake of space.

itively, observability is related to the possibility of detecting
a failure. In the example of Fig. 1 we have only one type of
resource and each repair action requires only one resource
(observe that any local repair action, including the one trig-
gered by the TE, requires one resource for each BE to be
repaired).

The event attribute repair strategy defines the granularity
of the repair process triggered by the occurrence of the (in-
ternal) event e: if the repair strategy is global (as for U2 in
the example), all the repairable basic components in e.torep
(A2 and P2 in the example) are repaired simultaneously and
brought back to the working state when the global repair
process terminates. This means that a global repair process
is a unique repair process (e.g. representing the substitu-
tion of a down server with a new server: all components are
substituted at once); while a global repair action is ongoing,
the basic components in e.torep cannot be simultaneously
involved in any other repair action (global or local). If in-
stead the repair policy is local (as for TE in the example),
for each repairable BE component in e.torep, it is possible
to decide to repair or not such component; moreover the
single components repair may not start simultaneously (e.g.
because there are not enough resources). A BE can appear
in the torep set of several internal events; for example A2
and P2 are in the torep set of both U2 and TE: when a fail-
ure has occurred for only one among the two BEs, the local
strategy could be more appropriate, but it can be activated
only if TE has occurred already. Otherwise, if both A2 and
P2 failure has occurred, the global repair of U2 may be more
convenient. Observe that given the example NdRFT struc-
ture, U2 can immediately witness the failure of one or both
events A2 and P2, and trigger the substitution of both.

3.2 MDP semantics of NdRFT
MDP definition. A (discrete time and finite) MDP is a

dynamic system where the transitions between states follow
a two-step process. First, one non deterministically selects
an action inside the subset of enabled actions. Then one
samples the new state with respect to a probability distribu-
tion depending on the current state and the selected action.
The non deterministic step represents a decision taken by a
controller in order to manage the system, or a behavior trig-
gered by the environment that the system cannot control.
Our approach is based on the former interpretation. The
probabilistic step takes into account that the effect of an
action statistically depends on non modeled (or unknown)
parameters.

In order to formally define the objective to optimize, one
associates a reward with any state and selected action (the
reward can also be interpreted as a cost). The following
definition formalizes these concepts.

Definition 2 (Markov Decision Process, MDP:).
An MDP M is a four-tuple M = 〈S, A, p, r〉 where:

1. S is a finite set of states,
2. A is a finite set of actions defined as

S
s∈S As where

As is the set of enabled actions in state s,
3. ∀s ∈ S, ∀a ∈ As, p(·|s, a) is a (transition) probability

distribution over S such that p(s′|s, a) is the probability to
reach s′ from s by triggering action a,

4. ∀s ∈ S, ∀a ∈ As, r(s, a) ∈ R is the reward associated
with state s and action a.

Once an action choice is fixed, the MDP behaves like a



Figure 1: a) The block scheme of the AHRS. b) The NdRFT model of the AHRS.

Markov chain and different global measures on the random
path can be defined as for example the (discounted) sum
of rewards or the average of the rewards. The goal of the
analysis is computing the optimal value of the measure, and
when possible, computing the associated strategy. In finite
MDPs, efficient solution techniques have been developed to
this purpose [17] and different tools are based on this theory
(see for instance the experiment section).
NdRFT semantics. The semantics of an FT is simply a
Boolean formula expressing the TE truth value as a function
of the BEs truth value; the possible (minimal) failure config-
uration leading to the TE and their occurrence probability
(at time t) can be efficiently computed using a BDD [18]
representation of the FT, without need to develop its dy-
namic failure behavior. NdRFT semantics instead (as well
as RFT one) requires to explicitly expand and analyze the
dynamic behavior of the model since the introduction of the
repair processes adds the possibility for events to switch be-
tween the up and down state several times within a given
observation period.

In this paragraph, we will define precisely the dynamic
behavior of an NdRFT, which can be described by an MDP.
Let us first define the MDP states:

Definition 3 (MDPNdRFT state). A state ρ of the
MDP corresponding to a given NdRFT is a tuple:

ρ = 〈{ste}e∈E , {supe}e∈E〉

where ste = {Up, Down, LocRep, GlobRep} represents the
state of the component/subsystem whose failure corresponds
to the event e, with e = false ⇔ ste = Up otherwise e =
true ⇔ ste = Down ∨ ste = LocRep ∨ ste = GlobRep. Only
BEs can be in repair state, and for these events supe repre-
sents the supervisor of the repair process: this is the basic e
itself if the repair action is local, while in case of global repair
the supervisor is the internal event that triggered it. Observe
that ste ∈ {Up, Down} ⇔ supe = NULL. The state of the
internal events in ρ can only be in {Up, Down} and is de-
rived from the state of the BEs and the FT structure. The
initial state ρ0 is: ρ0 : ∀e ∈ E , st0e = Up ∧ supe = NULL.

For each state ρ, reachable from the initial state ρ0 (fol-
lowing the transition rules described next),the multiset of
busy resources is defined as: resρ =

P
e∈sup(E) e.res.

The dynamic of the MDP corresponding to an NdRFT,
is defined in terms of two steps: a non deterministic one

(selecting the subset of repair actions that should start) and
a probabilistic one (probabilistically choosing the newly oc-
curred failure events and which ongoing repair actions have
completed). Of course at each time the following condi-
tion must be verified: resρ ⊆ res0, i.e. ∀r ∈ R, resρ(r) ≤
res0(r), where resi(r) is the multiplicity of r in resi.

The state change at each step is described hereafter:
Non Deterministic step: MDP actions. This step com-
prises a (possibly empty) set of repair start decisions for BEs.
The repair must be triggered by (basic or internal) observ-
able events that are in state Down. For each repair start
decision, the supervisor of the involved event must be spec-
ified: it is the event itself in case of local repair, while it is
the internal trigger event for global repair.

The conditions for the two types of state change are:
ste : Down → LocRep: (1) e.obs = true ∧ e.rep = true
or (2) ∃e′ : e ∈ e′.torep, ste′ = Down, e′.obs = true, e′.str =
local; in both cases supe = e.
ste : Down → GlobRep: ∃e′ : ste′ = Down, e′.obs =
true, e′.str = global; in this case the state change must hap-
pen simultaneously for every e ∈ e′.torep and supe = e′.

Of course the set of chosen repair actions leading to a new
state ρ must be consistent with the requirement resρ ⊆ res0.

The possible actions Aρ available in state ρ of the MDP
are thus all the legal repair start decision sets satisfying the
conditions and the resource constraints described above.
Probabilistic step. In this step the possible state changes
for each BE e are:
ste : Up → Down: with probability e.fprob (or remain in
the Up state with probability 1− e.fprob);
ste : LocRep → Up: with probability 1− e.rprob (or remain
in the LocRep state with probability e.rprob);
ste : GlobRep → Up: with probability 1 − sup(e).rprob (or
remain in the LocRep state with probability sup(e).rprob):
this state change must happen simultaneously for all e′′ ∈
sup(e).torep (it is a single probabilistic choice with syn-
chronous effect on all events involved in the repair action).
For any event e that returns to the Up state, supe is re-
set to NULL. Hence the probabilistic choice that follows a
given non deterministic action in the MDP, corresponds to
a probabilistic step as described above: the probability of
each step is obtained as the product of the probabilities of
each single event state transition.

As already remarked, the states of the internal events are



derived from those of the BEs using the FT structure.

This completes the definition of the MDP underlying a given
NdRFT. The optimization problem has the following goal:
minimizing the probability (at time t or in steady state) of
being in a state where the TE failure has occurred.

In practice, the computation of the optimal strategy re-
quires three steps: (1) generation of the MDP from the
NdRFT, (2) analysis of the MDP, (3) presentation of the
results in a form that is understandable for the designer.

These steps can be automatized. The first step can be im-
plemented in two ways: defining an algorithm that generates
the set of reachable states, the corresponding non determin-
istic actions and consequent probabilistic state change, or
translating the NdRFT in an intermediate model for which
the above tasks have already been defined and implemented.
In this paper we propose to use the second approach and pro-
vide an algorithm for translating an NdRFT into a Markov
Decision Petri Net (MDPN) [3]. From the MDPN model
an MDP can be automatically derived. This allows to reuse
the efficient algorithms devised to derive an MDP from an
MDPN Observe that a direct translation from NdRFT to
MDP requires to implement a mechanism to combine the
failure/repair events of all components into a single com-
plex transition or action, that it is already implemented for
MDPN formalism.

3.3 Discussion
The NdRFT model is a discrete time one. This can be

justified by the fact that faults in plants are often detected
at the time a sampling is performed through some sensor:
sampling is usually done periodically according to a syn-
chronous schema. Due to the discrete time assumption, the
specification of the failure and repair process of each (basic)
repairable component x is given by probability PFailure(x)
and PRepair(x). PFailure(x) (resp. PRepair(x)) represents
the probability that a failure (resp. the end of the repair)
occurs at any (discrete) time step provided the correspond-
ing component is up (resp. is down and under repair). As
a consequence, the time to failure of a component, and its
repair time have geometric distribution:
P (TtFe = k) = (1− PFailure(e))

k−1PFailure(e)
P (repT imee = k) = (1− PRepair(e))

k−1Prepair(e)
In NdRFT the repair policy is not completely specified (in-

stead, this is the case for RFT): the choice to repair or not a
repairable components fault is non deterministic. This leads
to an MDP semantics: as a consequence, we can compute
the optimal repair strategy minimizing the failure probabil-
ity of the global system. Observe that even without taking
into account the cost of repair, finding the optimal strategy
is not trivial, since we account for limited repair resources
(each repair action can be associated with a multiset of re-
quired resources to complete it).

In the NdRFT we can model processes where the com-
ponents or the subsystems under repair return available as
soon as possible (maybe in a degraded state) without wait-
ing the repair of all its down BE components. Moreover, the
notion of observability allows to specify when a fault can be
detected, and hence when the corresponding repair activity
can start (this generalizes the notion of trigger event).

Finally repair actions may involve common components:
this choice increases the flexibility in the choice among the
possible repair strategies that may be pursued, still allow-

ing a simple and clean semantics based on the notions of
observability and of global vs. local repair strategy.

4. TRANSLATING NDRFT INTO MDPN
In this section we are going to describe how to obtain

from an NdRFT model the corresponding MDPN model.
An informal introduction to the MDPN formalism is pro-
vided first, then the pattern-based translation algorithm is
presented. The proof of the translation correctness is pro-
vided in [4].

The generation of the MDP from the MDPN model can be
performed as described in [3]. The MDP obtained is solved
in order to find the optimal repair strategy (at finite horizon
t or in steady state, as appropriate) and the corresponding
Top Event failure probability.
A brief introduction to MDPNs. MDPNs were first in-
troduced in [3] as high level models to specify the behavior of
an MDP. The main features of the high level formalism are
the possibility to specify the general behavior as a composi-
tion of the behavior of several components (some of which
are controllable); moreover each MDP non deterministic or
probabilistic transition can be composed by a set of non de-
terministic or probabilistic steps, each one involving a subset
of components.

An MDPN model is composed of two parts, both specified
using the PN formalism: the PNnd subnet and the PNpr

subnet (describing the non deterministic (ND) and proba-
bilistic (PR) behavior respectively); the two subnets share
the set of places, while having disjoint transition sets. In
both subnets the transitions are partitioned into “run” and
“stop” subsets, and each transition has an associated set of
components involved in its firing. Transitions in PNpr have
a“weight”attribute, used to compute the probability of each
firing sequence. Run transition firings represent intermedi-
ate steps in a ND/PR transition at the MDP level, while
Stop transitions represent the final step in a ND/PR tran-
sition, for all components involved in it. An MDPN model
behavior alternates between ND transition sequences and
PR transition sequences, initially starting from a ND state.
The PR sequences are determined according to the PNpr

structure, and include exactly one stop transition for each
component; the ND sequences are determined by the PNnd

structure, and include exactly one stop transition for each
controllable component plus a stop “global” transition. The
generation of the MDP corresponding to a given MDPN has
been described in [3]: it consists of (1) a composition step,
merging the two subnets in a single net, (2) the generation
of the reachability graph RG of the composed net, (3) two
reduction steps transforming each PR and ND sequence in
the RG into a single MDP transition.

In the next subsections a pattern based approach to gener-
ate a MDPN mimicking the dynamic behavior of an NdRFT
is presented. We introduce the set of repairable basic compo-
nents: ER = {e ∈ E|e.repair = true}, and the set Comppr

of components of the MDPN and the subset Compnd of con-
trollable components: Comppr = E , Compnd = ER.

The PNpr and the PNnd are obtained directly from the
NdRFT model using a pattern-based approach. We illus-
trate the method informally describing the basic patterns,
and how to instantiate and compose them.

4.1 Generating the PR subnet
Fig. 2 shows how each BE can be translated in a PNpr



Figure 2: Conversion of the NdRFT BEs into submodels of PNpr of an MDPN.

Figure 3: Conversion of the NdRFT AND/OR gate plus its output event into submodels of PNpr of an
MDPN.



submodel according to their rep attribute: each non re-
pairable event is translated into subnet A while each re-
pairable event is translated into subnet B. It is easy to
recognize the places that model the state of each (basic)
event e labeled UPe, DOWNe and UnderRepaire. Run
and Stop transitions have different icons, so that they can
be easily distinguished. At each probabilistic step an Up
component can either remain Up (stop transition Worke)
or go Down (sequence FailRe, FailSe). A Down compo-
nent can either remain Down (stop transition FailSe) or
start its repair (run transition Repair, either followed by
the sequence ContRepe and ContRepSe, meaning that the
repair has not completed in the current time unit, or by the
sequence EndRepRe, EndRepSe if the repair completes).
Place Assigne is set by the PNnd when a decision to re-
pair e is taken. Places AV RESi represent the resources,
and they become available as the repair ends. The rprob
and fprob attributes associated with the events are used
to properly weight the transitions representing failure and
end/continuation of repair actions.

The conversion rule for an AND gate g and its output
event e is shown in Fig. 3. We emphasize that the two PN
models in Fig. 3 are templates that must be instantiated
according to the set of input events of each gate. Subnets
C and E simply model the propagation of the faults from
the input events of the gate to its output event. Internal
events that are not observable or have local repair strategy
are translated into these simple subnets. Those with a global
repair strategy have an additional subnet D (common to
both gate types) shown on the right: this subnet represents
the corresponding global repair process (see details in [4]).

The algorithm visits all the events in the NdRFT and
generates for each of them an appropriate PN submodel (the
selection of the appropriate PN submodel follows the indica-
tions depicted in the template figures). Finally all submod-
els are composed by merging the places with equal label,
leading to the whole probabilistic subnet of the MDPN.

4.2 Generation of the ND subnet
The corresponding PNnd is built instead from the tem-

plate subnets depicted in Fig. 4 and 5. The basic idea is
that the PNnd submodel must decide whether a repair ac-
tion must be started for each down BE. Firing of stop tran-
sition NoAssigne means that a non repair decision has been
taken for event e, while firing of stop transition Assigne cor-
responds to the opposite decision: observe that the second
decision can be taken only if the needed resources are avail-
able (input places AV RESi and the event is not involved
in some global repair (input place NotInvolvede). Start of
local repair actions triggered by observable BEs are repre-
sented by subnet G, Start of local repair actions triggered
by observable internal events are represented by subnet L,
start of global repair actions are represented by subnet I.
Subnet H instead is needed for technical reasons: it is used
to ”refresh” the state of the internal events which must be
recomputed at the end of each probabilistic step (after all
fail/repair steps have been taken for BEs). Again the fi-
nal PNnd submodel is obtained by properly composing the
subnets generated for each event in the NdRFT.

Finally in order to analyze the MDPN model, one has
to define its reward functions. They are defined as fol-
lows: rs(TE) = −1 otherwise 0; ∀t ∈ T nd, rt(t) = 0;
rg = sum(rs, rt).

Figure 7: Framework architecture.

This means that a negative reward (corresponding to a
penalty) is associated to each state where the TE has failed.
All other states and all actions have reward of 0. This means
that every time unit spent in a state with a TE failure gives
us a penalty of -1. The optimization problem hence consists
in finding the strategy that maximizes the reward (i.e. that
minimizes the penalty).

More complex reward structures can be naturally devised
to take into account the cost of repair actions, as well as the
penalties due to the fact that the system is in a degraded
state (the system is up but some subsystem is down, e.g.
corresponding to a system with degraded performance).

5. FRAMEWORK ARCHITECTURE
The architecture of our framework for the NdRFT design

and solution, is depicted in Fig. 7 and extends the one pre-
sented in [2], by introducing the new module NdRFT2MDPN
able to convert an NdRFT model into MPDN, according to
the conversion rules defined in Sec. 4. The solution process
of an NdRFT model comprises five steps:

1. The NdRFT model drawn by the user by means of
Draw-Net [11], is stored in a XML file (.mdl) and becomes
the input of NdRFT2MDPN. The resulting MDPN model
consists of two separate Petri Nets (PN): the probabilistic
PN (Npr) and the non deterministic PN (Nnd); each of these
nets is stored in a couple of files (.net, .def) according to the
GreatSPN [10] file format.

2. The Npr and the Nnd models are composed by place
merging; this is done by means of the algebra tool [10]. The
result of this step is a Petri Net (PN).

3. The PN is the input of WN(S)RG generating the
Reachability Graph (RG) [9]. The resulting graph is stored
in a specific file (.srg).

4. From the graph obtained in step 3, an MDP is derived
by means of the RG2MDP converter.

5. The obtained MDP is stored in an XML file which is
in turn processed by the MDPSolver producing the optimal
repair strategy. According to such strategy the system un-
availability can be computed. Both results can be visualized
by Draw-Net.

6. EXPERIMENT RESULTS
The example we report is inspired to the Active Heat Re-

jection System (AHRS) presented in [1]. The block scheme
of our version of the AHRS’s architecture is depicted in
Fig. 1.a: the system is composed by three redundant ther-



Figure 4: Conversion of the NdRFT BEs into submodels of PNnd of an MDPN.

Figure 5: Conversion of the NdRFT gate into submodels of PNnd of an MDPN.

Figure 6: TE probability at time t increasing the t values (0 ≤ t ≤ 4500)



mal rejection units U1, U2 and U3. U1 is composed by the
heat source A1 and the power source P1. Similarly, U2 is
composed by A2 and P2, while U3 by A3 and P3.

Fig. 1.b shows the NdRFT model for the AHRS system;
the failure probability (↓) and the repair probability (↑) of
each basic component are shown in the same figure. The
unit U1 fails if its heat source A1 is failed or if its power
source P1 is failed. Similarly, the failure of U2 and U3 is
due to the failure of their respective heat source or power
source. The failure of the whole system (TE) occurs if all
the thermal rejection units are failed.

The NdRFT model in Fig. 1.b shows that in our version of
the AHRS, several components are repairable (A1, P1, A2,
P2), whereas their failure can be observable or not. Two
repair processes can be activated: 1) a global repair process
in case of failure of U2 and involving the components A2
and P2; 2) a local repair process in case of the system failure
(TE) and involving the components A1, P1, A2 and P2. In
case of global repair, one repair resource is used to repair the
subsystem; in case of local repair instead, one resource has to
be dedicated to the repair of each component of the system.
We suppose that in our case study, two repair resources are
available (Fig. 1). One resource is used for the global repair
of U2: while such repair process is running, the local repair
of the system (TE) may start but in this case, it can exploit
only one resource because the other one is already is used in
the global repair of U2. So only one component (A1 or P1)
could be locally repaired during the global repair of U2. If
instead the local repair of the system starts while the global
repair of U2 is not running, then the local repair can exploit
both resources and two components among A1, P1, A2, P2
can be repaired at the same time. In this case, during the
local repair of the system, the global repair of U2 can not
run since all the resources are already in use.

The RG of the MDPN model obtained by the NdRFT in
Fig. 1.b has 11.515 states; while the underlying MDP has 389
states. This difference in terms of number of states between
the RG of the MDPN2 and the obtained MDP is due to the
fact that the MDPN formalism gives a macroscopic view of
probabilistic and non deterministic behaviors of the system.
In other words, at MDPN level, complex non deterministic
and probabilistic behaviors are expressed as a composition
of simpler non deterministic or probabilistic steps, that will
be reduced to a single step in the final MDP.

Since the non repairable components (A3 and P3) can-
not induce directly the failure of the global system, we can
compute the average reward and the optimal strategy of the
underlying MDP at infinite horizon. Observe that defining
the optimal strategy for this model is not trivial: for in-
stance when all the basic events are down then the optimal
strategy suggests us to repair P1 with a local repair action,
while A2, P2 with a global repair action. This is justified by
the fact that the global repair action of A2, P2 needed only
one resource. Instead when A1, P1, P2 and P3 are down, it
suggests to repair P1 and P2 with a local repair action. The
choice to repair locally P2 is justified by the fact that in this
case the probability to repair the component (1−P2.rprob)
in one time unit is greater than that associated with the
global repair action (1− U2.rprob).

Moreover we have computed the TE probability in steady
state, solving the DTMC obtained from the underlying MDP

2We recall that the RG of the MDPN model is used in the
reduction step for obtaining the MDP as described in [3]

Table 1: Experiments increasing the example size
RG RRG MDP

Com. St. Time St. St. Time
1,1,1 11.515 1s 5.262 389 0
2,1,1 50.844 7s 21.094 937 6s
2,2,1 921.354 167s 401.350 7.754. 1.630s
2,2,2 16.841.490 ≈23h 6.048.310 32.558 ≈4h

Using priorities among the transitions
1,1,1 3.189 0 1.572 389 0
2,1,1 35.555 8s 11.581 937 4s
2,2,1 453.257 145s 147.716 7.754 1.614s
2,2,2 2.919.999 ≈2h 1.048.310 32.558 7.006s

fixing the action to take in every state according to the per-
formed optimal strategy. In particular we have obtained
that the TE probability of this model in steady state is
0.0151943. We have also studied the TE probability at time
t, so that we have observed that this probability converges
to the steady state probability. TE probability at time 4300
is equal to TE probability in steady state as shown in Fig. 6.

Finally the Tab. 1 shows some experiments performed in-
creasing the dimension of our example. Practically we have
replicated the subtrees of the NdRFT model in Fig. 1.b. For
instance, in Tab. 1, 2, 2, 2 means that we have duplicated
the subtrees rooted in U1, U2, U3 respectively, while 1, 1, 2
means that we have duplicated only the subtree of U3.

The computation has been performed with an INTEL
Centrino DUO 2.7 of 2Gb memory capacity. In particular
the first column shows the model complexity, the second and
the third one the RG number of states and its computation
time, the fourth the RRG number of states, and the last two
columns the MDP number of states and its generation and
solution time.

These results show that state space grows very fast (the
state space explosion problem), so that the model becomes
quickly intractable. A further reduction of the number of
states for this model can be achieved associating different
priorities with the system transitions such that the number
of possible interleavings of the non deterministic/probabilistic
actions in each path are reduced (see the results in second
part of Tab. 1). It is important to observe that a different
priority level can be set up only among independent actions;
in fact if the actions are not independent then all the pri-
ority can constrain the set of policies to be considered (and
may exclude the optimal one).

Another possible way to mitigate the state space explo-
sion problem consists in translating the NdRFT model into
a Markov Decision Well-formed Net model (MDWN) [3].
From a MDWN, a reduced MDP can be obtained, and pro-
vides the optimal strategy equivalent to the one given by the
not reduced MDP.

7. CONCLUSION AND FUTURE WORK
We have defined a new FT extension called NdRFT that

allows to model failure modes of complex systems as well as
their repair processes. The originality of this formalism with
respect to other proposals is that it allows to manage repair
strategies optimization problems. This is done by defining
the NdRFT semantics in terms of an MDP and then solving
the optimization problem using the techniques available for
MDPs. The generation of the MDP is achieved by an inter-
mediate translation of the NdRFT model into an MDPN,



so that we can reuse the efficient algorithms devised to de-
rive an MDP from an MDPN. We have also highlighted that
NdRFT allows to express in an elegant way several possible
repair start options based on the following concepts: ob-
servability of events, the notion of local versus global repair
action, the notion of repair supervisor component in case of
global repair.

A possible future work is extending the NdRFT, so that
the modeler can directly define more complex reward func-
tions, for instance considering the cost of repair actions, or
the penalties due to the fact that the system is in a degraded
state (the system is up, but some subsystem is down, e.g.
corresponding to a system with degraded performance).

Another future work in order to mitigate the well-known
state space explosion problem in the final MDP, consists in
translating the NdRFT model into a MDWN instead of an
MDPN. In fact for MDWN, an efficient analysis technique
taking advantage from the intrinsic symmetries of the sys-
tem, is developed: from an MDWN it is possible to derive
a Symbolic Reachability Graph [9], and from it a reduced
MDP can be obtained. This allows a computational cost re-
duction, but the optimal strategy computed on the reduced
MDP is equivalent to the one computed on the ordinary
MDP. This possibility is useful when the system is charac-
terized by symmetries and redundancies in its structure.

Observe that the NdRFT formalism could be extended by
considering dynamic gates [16], which allow to express func-
tional and temporal dependencies among component fail-
ures, as well as repair resources preemption.
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