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In the full spectrum k-distribution method, the k-distributions are Planck function weighted. These
k-distributions depend on temperature, which varies with location in nonisothermal media. Conse-
quently, in order to apply the method to nonuniform media, k-distributions evaluated at different local
temperatures are correlated by a k-distribution evaluated at an arbitrarily chosen reference blackbody
temperature. On the other hand, in the original band method, the k-distributions are directly related to
spectral locations. Such k-distributions can replace Planck function weighted k-distributions computed at
a reference temperature. This approach was employed by Maurente et al. [1] in order to deal with gas
mixtures in non-equilibrium media. In this paper the formulation is presented for the equilibrium case.
The proposed formulation simplifies the application of the FSK method to nonuniform media, and brings
new directions to k-distribution issues. It can be employed with a reference state, but not a reference
temperature, with reference state and temperature, as in the traditional FSK, and without any reference
state, being in this case the continuous limit of the recently developed Rank Correlated SLW [2]. Results
were obtained for test cases considering one-dimensional, nonuniform media, constituted by CO2 and
inert gases, and compared to line-by-line solutions.

& 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Exact line-by-line solution of radiation heat transfer in parti-
cipating media is computationally expensive, and can become
prohibitive in cases of coupled simulations in which radiation is
combined with other heat transfer modes. Because of that, one of
the major issues regarding computational simulation of radiation
heat transfer concerns how to efficiently and accurately account
for the spectral dependence of the radiative properties. Several
spectral models have been proposed, which are generally classified
into: band and global models. The band models characterize the
line-behavior inside spectral bands, while the global models en-
compasses all spectral lines that are important for the problem to
be solved. The early band models, Elsasser and Goody, were pro-
posed in the last half of the past century [3]. Regarding the global
models, the weighted-sum-of-gray gases (WSGG), introduced by
Hottel [4], is possibly the most widely used. Recently, Dorigon
et al. [5] and Centeno et al. [6] updated parameters of the WSGG
using data from HITEMP2010 [7] and demonstrated that it can still
nte).
provide accurate results when compared to current line-by-line
solutions.

The k-distribution methods use a transformation of variables in
which the spectral absorption coefficient is reordered into a
smooth, monotonically increasing function. This allows one to take
into account several spectral intervals at once while solving the
radiative transfer equation. Such procedure can be applied to
bands or the full spectrum, resulting in band k-distribution or
global k-distribution methods. The k-distribution principle has
been applied to state-of-the-art methods, as the full-spectrum
k-distribution (FSK) [8,9], spectral-line-based-weighted-sum-of-
gray gases (SLW) [10–13], cumulative wavenumber (CW) [14],
absorption distribution function (ADF) [15,16] and spectral-line
moment-based (SLMB) [17].

In spite of the important achievements in terms of accuracy
and computational efficiency, there still exist issues that maintains
a great research interest on k-distributions. Following are some
examples which demonstrate the diversity of studies about
k-distribution methods accomplished during the last decades and
recent years. Wang et al. [18], Wang and Modest [19], Maurente
et al. [20,21] and Maurente and França [22] used the FSK combined
with the Monte Carlo method. Methodologies to apply the FSK to
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Fig. 1. Absorption coefficient, κη, of a medium constituted by 10% CO2 and N2, at
1500 K and 1 atm, in function of the wavenumber, η, in a narrow spectral region,
which was computed using spectroscopic data from HITEMP [7].
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media at non-local-thermodynamic equilibrium were proposed by
Bansal et al. [23] and Maurente et al. [1]. Ma et al. [24] applied the
spectral collection method with the FSK. Tencer and Howell [25]
quantified uncertainties related to the correlated-k assumption for
FSK computations. Solovjov et al. [26] and Solovjov and Webb [27]
presented respectively the SLW-1, with only one gray gas, and the
exact SLW, when the number of gray gases approaches infinity. A
generalized SLW, which uses the absorption-line-blackbody dis-
tribution function (ALBDF) and its inverse form, was presented by
Solovjov et al. [28]. Cai and Modest [29] proposed an improved
version of the FSK for nonhomogeneous media using a narrow-
band database, and André et al. [30] presented an exact formula-
tion for k-distribution methods in nonhomogeneous media and
also a computationally less costly method based on a multi-
spectral framework which approximates their exact solution.

Although there is apparent simplicity behind the reordering
idea, global k-distribution methods become significantly more
complex for nonuniform media, as compared to the case in which
the media are homogenous and isothermal. This happens because
the non-trivial relation between the reordered absorption coeffi-
cient and the cumulative k-distributions evaluated at different
states. Thus, there exists an interest in simplifying k-distribution
approaches for nonuniform media. An example is the recently
developed Rank Correlated SLW (RC-SLW) model [2,31], which
does not require a reference state.

In this research it is proposed a FSK formulation which does not
use a reference temperature. Instead, it employs a cumulative
k-distribution which is equivalent to fractions of a spectral inter-
val. Such a cumulative k-distribution is defined as in the original
narrow band k-distribution and acts as a non-dimensional wave-
number. In the proposed formulation this non-dimensional wa-
venumber works like an independent variable which provides a
direct relation between properties and spectral locations, and thus
is useful for correlating the full spectrum cumulative k-distribu-
tions (or ALBDFs) across different media states, and simplifies the
FSK equations. As will be shown, the proposed formulation is well
suited to be employed without any reference state, being in this
case the continuous limit of the RC-SLW [2,31]. The formulation
can also be applied with a reference state but no reference tem-
perature, or with reference state and temperature, the latter falling
in the case of the traditional FSK approach. The three approaches
will be compared against line-by-line calculations for test cases
considering one-dimensional, nonuniform medium slabs formed
by CO2 and inert gases.
2. The k-distribution method

For an absorbing-emitting, but non-scattering medium, the
variation of intensity of a radiation ray traveling along a path
within this medium is described by the following simplified form
of the Radiative Transfer Equation (RTE):

κ κ= − ( )
η

η η η η
dI

ds
I I 1b,

where ηI is the spectral intensity of radiation and the subscript η
refers to the wavenumber, indicating spectral dependence; ηIb, is
the blackbody spectral intensity, given by the Planck function; κη is
the absorption coefficient and ds is a differential element of length
along the path of propagation of the radiation ray.

Computing radiation heat transfer requires that the RTE be
solved for a sufficiently large number of spectral intervals, then
integration over the entire spectrum to find the total intensity of
radiation. The k-distribution method uses a transformation of
variables to reduce the extent of the calculations. The method is
based on the fact that for a small spectral portion corresponding to
a narrow band the blackbody intensity does not vary significantly
with the wavenumber and can be considered constant, while the
absorption coefficient, κη, contains significant variations and re-
peats the same value, k, several times, as shown in the horizontal
bold line in Fig. 1, which presents a narrow region of the spectrum
of a medium constituted by 10% CO2 and N2, at 1500 K and 1 atm,
computed using data from HITEMP2010 [7]. Thus, the intensity
field can be computed only once for all the spectral locations
where the absorption coefficient attains a specific same value.

In k-distribution computations, k-distributions themselves are
not in fact necessary. It is more convenient to use the cumulative
k-distributions, which are smoothly monotonically increasing
functions and can be directly computed as

∫η
κ η( ) =

Δ
( − )

( )η
η

Δ
g k H k d

1
2

where H is the Heaviside function.
Although the narrow band k-distribution takes into account

several spectral locations at once, the computational efficiency of
the method is limited by the need of considering several small
narrow band intervals. A more efficient version of the method is
the full-spectrum k-distribution, presented by Modest and Zhang
[8]. In this method the blackbody intensity is allowed to vary
across the spectrum. In order to allow variation of the blackbody
intensity, the cumulative k-distribution is defined as

∫ κ η( ) = ( − )
( )η η

∞
F k

I
I H k d

1
3b

b
0

,

where Ib is the blackbody total intensity obtained integrating the
Planck function over the entire spectrum.

The cumulative k-distribution computed with Eq. (3) gives the
fraction of the blackbody intensity in the portions of the spectrum
where the absorption coefficient is less than a prescribed value k,
as depicted in Fig. 2. Such a function was previously defined by
Denison and Webb [11] as the absorption-line-blackbody dis-
tribution function (ALBDF). The symbol F was used instead of g in
order to distinguish the Planck function weighted cumulative
k-distribution from that of the narrow band k-distribution meth-
od, which corresponds to fractions of the spectral interval ηΔ . For
the sake of clarity, the cumulative k-distribution computed with
Eq. (3) is from now on referred as ALBDF, and non-dimensional
wavenumber is preferred for the wavenumber weighted cumula-
tive k-distribution computed with Eq. (2).

The ALBDF, can be applied to reorder the RTE by grouping
spectral segments which correspond to a same value of k. In the



Fig. 2. Fraction of the blackbody energy in the spectral regions where κ <η k.
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case of a uniform non-scattering medium, the reordering process
results in:

= −
( )

d
I

ds kI kI
4F

b F

Eq. (4) can be solved to provide the intensity field, IF. Then, the
intensity for the entire spectrum, that is, the total intensity, is
obtained by the following integration:

∫= ( )I I dF 5F
0

1

The full-spectrum k-distribution method is exact for uniform
media. However, when the state of the medium varies with loca-
tion, the correlated-k assumption must be invoked. In this case, it
is assumed that all wavenumbers that are associated to a same
absorption coefficient value ko at one state, are also associated to
another single absorption coefficient value k at a different state, as
depicted in Fig. 3. Since the spectra of real gases are not truly
correlated, the FSK computations cannot be as accurate as line-by-
line computations for nonuniform media.

For correlated absorption coefficients,
Fig. 3. Example of correlated-k spectra.
( ) ( )ϕ ϕ= ( )F T k F T k, , , , 6b o o b

where ϕ is the state vector of the medium, which includes tem-
perature, pressure and mole fraction of the emitting/absorbing
species, and the subscript o indicates reference state. The ab-
sorption coefficient k, evaluated at the state ϕ, is correlated to the
absorption coefficient ko, evaluated at ϕo.

Eq. (6) states that the fraction of the total blackbody intensity,
Ib, within the spectral portions where κ ϕ( ) <η ko o is also the fraction
of Ib where κ ϕ( ) <η k, since both ko and k are correlated and
therefore associated to the same spectral locations. Such a relation
holds only for ALBDFs evaluated at the same blackbody tempera-
ture, Tb. However, as the temperature of nonuniform media can
vary with location, Modest and Zhang [8] proposed the use of a
reference temperature, Tb o, , in order to obtain the following re-
ordered RTE for full spectrum k-distribution computations in
nonuniform media:

⎡⎣ ⎤⎦ϕ= ( ) ( ) − ( )
dI
ds

k T F a T T F I I, , , , 7
F

b o o b b o o b F, ,

where ϕ= ( )F F T k, ,o b o o o, is the ALBDF computed using the reference
temperature, and a is a factor which, according Solovjov et al. [28],
can be computed as follows, if considering Fo as an independent
variable:

ϕ ϕ
( ) =

( ( ))
( )

a T T F
dF T k F T

dF
, ,

, , , ,

8b b o o
b o o o b o

o
,

,

For numerical solution Eq. (8) can be written in terms of finite
increments, as presented by Wang et al. [33].

Assuming black walls, the boundary condition for Eq. (7) is

= ( ) ( ) ( )I a T T F I T, , 9F w b o o b w,

where Tw is the wall temperature. This boundary condition applies
also to the case of uniform media, where the wall temperature can
be different of the medium temperature.

The intensity of radiation for the entire spectrum can be
computed by integrating the intensity field IF, from Eq. (7), over
the entire Fo space:

∫= ( )I I dF 10F o
0

1

Radiation scattering and reflective surfaces were not con-
sidered in the above equations for simplicity. However, extending
the formulation to include diffuse gray boundaries and media
whose scattering coefficient and phase function are independent
of the wavenumber is straightforward and does not change the
characteristic k-distribution functions. Details about the derivation
of the FSK formulation, which include diffuse gray boundaries and
scattering can be found in [32].
3. The non-dimensional reordered wavenumber in FSK
computations

The ALBDF, ϕ( )F T k, ,b o o varies with location in nonisothermal
media, since the spectral distribution of the blackbody intensity
depends on temperature. However, it must be always evaluated at
the same considered spectral locations, where ϕ κ ϕ( ) = ( )ηk T F, ,b o o, ,
as one solves Eq. (7) across the spatial locations. The factor
( )a T T F, ,b b o o, given by Eq. (8) correlates ALBDFs evaluated at the
local temperature with the reference ALBDF, ϕ= ( )F F T k, ,o b o o o, . In-
directly, ( )a T T F, ,b b o o, correlates ALBDFs evaluated at different local
temperatures with the invariable spectral locations where

ϕ κ ϕ( ) = ( )ηk T F, ,b o o, .
In the proposed FSK formulation no reference temperature is
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used. Instead, ALBDFs are directly related to spectral locations
using wavenumber weighted cumulative k-distributions (or non-
dimensional reordered wavenumbers) similar to that of the ori-
ginal band k-distribution, given by Eq. (2), although extended to
the entire spectrum:

∫η
κ η( ) = ( − )

( )

η

ηg k H k d
1

11max 0

max

where ηmax is such that the emission of radiation is negligible if
η η> max.

The cumulative k-distribution computed using Eq. (11) gives
the fraction of the spectrum where the absorption coefficient κη is
lower than k. It is a non-dimensional reordered wavenumber for
the entire spectrum, and varies from 0, when k¼0, to 1, when

κ= ηk ,peak, where κη,peak is the maximum (peak) value of the ab-
sorption coefficient. Using this non-dimensional wavenumber, the
factor a can be simplified to

( ) = ( )
( )

a T g
dF T g

dg
,

,
12

and the radiative transfer equation becomes:

⎡⎣ ⎤⎦ϕ= ( ) ( ) − ( )
dI

ds
k g a T g I I, , 13

g
b g

Thus, the total intensity of radiation is obtained by integration
of the intensity, Ig, over the non-dimensional reordered wave-
number g:

∫= ( )I I dg 14g
0

1

If the medium spectra are correlated-k throughout the ther-
modynamic states, ϕ ϕ ϕ ϕ( ) = ( ) = ( ) = ( )g k g k g k g k, , , ,o o1 1 2 2 , for any
arbitrary state ϕ, the absorption coefficient, k, can be written as a
function of the non-dimensional wavenumber, g, that is,

ϕ= ( )k k g, . Also, for correlated-k spectra ϕ ϕ( ) = ( )F T k F T k, , , ,o o .
Therefore, ϕ( )F T k, , can be written as ( )F T g, , by comparison with

ϕ ϕ( ) = ( )g k g k, ,o o , in order to simplify notation. A rigorous proof
that ϕ ϕ( ) = ( )F T k F T k, , , ,o o for any state, ϕ, under the assumption
of rank correlated spectrum, is presented by Solovjov et al. [2,31].

Observe that as g is a non-dimensional wavenumber it is well-
suited for ( )F T g, . With the proposed notation the fraction of the
blackbody emitted energy is represented as a function of tem-
perature and non-dimensional wavenumber, similar to the black-
body emissive power itself, which is a function of temperature and
wavenumber.

In the traditional formulation, the dependence of quantities
appearing in Eqs. (7) and (8) with respect to spectral locations is
implicitly considered by the joint use of Tb, Tb o, , ϕo, ko, F and Fo.
Thus, the quantities depend on local properties and properties
evaluated at a reference state. In the proposed formulation, the
dependence of quantities with respect to the spectral locations is
made explicit by the use of the non-dimensional wavenumber, g.
Thus the quantities depend only on local properties and g, which is
independent of the state. This simplifies notation, as can be ver-
ified by comparing Eqs. (7) and (8) with Eqs. (12) and (13).
Moreover, looking at the method from a different viewpoint can
lead to insights to provide new methodologies to solve FSK issues.
The idea of using a wavenumber weighted cumulative k-dis-
tribution for the entire spectrum was first proposed by Maurente
et al. [1] for applications to media at non-local thermodynamic
equilibrium (non-LTE). In that case, the formulation was necessary
to allow employing approximations for k-distributions of mixtures
[34] along with the FSK for non-LTE method. In the present study
the formulation was presented for the case of LTE media, thus
becoming applicable to both LTE and non-LTE cases.
Next section presents two examples which demonstrate the
application of the proposed formulation.
4. Example of application of the proposed FSK formulation

The proposed formulation is equivalent to the traditional one,
and is expected to provide the same accurate results for uniform
media or hypothetical nonuniform media with truly correlated
absorption coefficients. However, in the case of real media, the
correlated-k is an approximation, and the absorption coefficients
evaluated at different states need to be computed based on some
sort of assumption to be correlated. As presented in Section 3, in
the traditional FSK, ϕ( )k T F, ,b o o, are assumed correlated to

ϕ( )k T F, ,o b o o o, . The proposed formulation suggests alternative as-
sumptions for the computation of correlated absorption coeffi-
cients, as will be explained in this section.

Moreover, the proposed formulation can simplify the way one
computes the data points for the numerical discretization of the
cumulative k-distributions. The discretization procedure is im-
portant since the accuracy and computational efficiency of the FSK
depends on the choice of the data points to represent the k-dis-
tribution functions and the respective reordered absorption coef-
ficients. Large g values correspond to large k values, which tends to
dominate radiative heat transfer. Thus, for the numerical solution
it is advantageous to use a non-uniform discretization with more
data points toward large values of g. Wang and Modest [35] pre-
sented high-accuracy, compact database for narrow band k-dis-
tributions of water vapor and carbon dioxide, and suggested two
quadrature schemes for the computation of g data points. One of
them is:

θ θ π= =
+

( = … ) ( )g
n

N
n Ncos ,

2 1
1, 2, ,

15n n

where N is the total number of data points used for the dis-
cretization of g. The scheme given by Eq. (15) has an open end at
g¼0, which is an advantage, since the g¼0, corresponding to k¼0,
is not useful in k-distribution calculations. Such a scheme is used
to compute the g data points for the considered examples.

Although Eq. (15) was proposed for narrow band cumulative
k-distributions, it is used in traditional FSK computations through
the following equations proposed by Modest and Riazzi [36]:

∑ϕ( ) = ( )
( )=

ηΔ

F T k
I

I
g k, ,

16
b o

j

N
b j

b
j

1

,

where

∫ η= ( )
( )η

η
Δ

I I T d
17

b j b b, ,
j

is the Planck function integrated over narrow band ηΔ j, ηΔN is the
number of bands, and gj(k) is the cumulative k-distribution of the
narrow band, or the non-dimensional wavenumber of the band.

In order to compute ALBDFs using Eq. (16), it is necessary to
consider several narrow band intervals, ηΔN , within which the
blackbody intensity is approximated as constant, and the gj must
be computed to every one of these narrow bands. On the other
hand, in the proposed formulation Eqs. (16) and (17) are not used.
Instead, Eq. (15) can be directly employed to generate g data points
for the entire spectrum, since the proposed formulation uses a
non-dimensional wavenumber, g, for the full spectrum. After ob-
taining g data points from Eq. (15), the respective F and k are
computed at any local state, as explained in the following example
problems.



Fig. 4. One-dimensional slab of medium constituted by three different regions,
considered in example 1.
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4.1. Example 1

The considered problem consists of an one-dimensional non-
uniform medium at 1 atm, composed of CO2 and N2, confined
between two black cold walls. The medium has three different
uniform regions, numbered as 1, 2 and 3, each 1/3 m thick. The
temperature and CO2 mole fraction in each of the three regions are
shown in Fig. 4. The line-by-line absorption coefficients were
computed using data from HITEMP2010 [7]. Lines from all CO2

isotopes available in the database were taken into account, making
a total of 11,193,608 lines distributed in the spectral range from
0 to 12,785 cm�1. Considering wavenumber values higher than
12,785 cm�1 did not affect the LBL solution. Thus,
ηmax¼12,785 cm�1 was assumed for the FSK solutions. Although
the choice of ηmax affects the ϕ( )g k, distribution, the formulation
consistence relies on the relation between k, F and g. Thus, pro-
vided that all non-negligible regions of the spectrum be con-
sidered, a value higher than 12,785 cm�1 can be arbitrarily chosen
for ηmax without affecting the FSK radiative heat transfer solution.
Nevertheless, ηmax can have an effect on the numerical con-
vergence. Thus, it is not desirable to chose for ηmax a value far
beyond that considered for the line-by-line spectrum.

The non-dimensional wavenumber data points were obtained
for the entire spectrum with Eq. (15). Table 1 presents some
ALBDFs, F, and reordered absorption coefficients, k, obtained with
N¼30 non-dimensional wavenumber data points. This number of
data points was selected based on a convergence analysis per-
formed for three 1 m thick uniform slabs with the temperature
and CO2 mole fraction of each uniform region of the medium
shown in Fig Fig. 4. For N¼30 the error associated with the nu-
merical discretization was lower than 0.5%, which is considerably
smaller than errors associated with the correlated-k.

The F and k are presented in Table 1 as functions of the non-
dimensional wavenumber, g, whose values are associated with
specific spectral locations. Therefore, the dependence of F and k
Table 1
Data points for the FSK-1 solution: non-dimensional wavenumber (g), ALBDF (F), and r

Region 1 Reg

N g ϕ( )k g,1 ( )F T g,1 ϕ(k

[cm�1] [cm

1 0.0257 1.89�10�7 8.59�10�6 1.16
2 0.0772 2.09�10�7 2.78�10�5 1.2
3 0.1284 2.50�10�7 8.03�10�5 1.5
. . . . .
. . . . .
. . . . .
28 0.988 4.47 0.958 7.3
29 0.995 17.47 0.981 17.7
30 0.999 46.92 0.995 42.
with respect to g, indicates dependence with respect to spectral
locations. For example, in line 29 of Table 1, g¼0.995 is a fraction
of the spectrum, as computed with Eqs. (11), and also is associated
to the spectral locations where k¼17.47 cm�1 crosses κ ϕ( )η 1 . For
truly correlated spectra these spectral locations are also the same
where k¼17.78 cm�1 crosses κ ϕ( )η 2 and k¼17.22 cm�1 crosses
κ ϕ( )η 3 . For a real spectrum it is an assumption in the proposed
formulation, which is different from that adopted in the traditional
FSK.

The formulation without reference state simplifies the appli-
cation of the FSK, because F and k can be written as functions of
the independent parameter, g, since only local properties are
considered while solving the RTE. In this case, the proposed for-
mulation becomes fundamentally identical to the continuous limit
of the Rank Correlated SLW (RC-SLW) model [2,31], and can be
understood as the extension of the theoretical foundation of RC-
SLW to the FSK method.

Differently, in the usual assumption, a reference state, ϕo, must
be chosen, and a Planck function is computed using the reference
temperature, To; the reordered absorption coefficients, k, are
computed for every considered state using the local absorption
coefficients, κ ϕ( )η , and reference Planck function evaluated at To;
finally, the ALBDFs are computed for every state using the ab-
sorption coefficient of the reference state, κ ϕ( )η o , and Planck
functions evaluated at local temperature. The F and k computed
with such a procedure can be associated to non-dimensional wa-
venumbers so that the reordered RTE resulting from the proposed
formulation, Eq. (13), can be employed. However, in this case the
proposed formulation is exactly equivalent to the traditional for-
mulation, which uses Fo instead of g.

A third procedure which uses an assumption close to the tra-
ditional one was also considered. It does not require a reference
temperature; however, it uses a reference state. In this case, the
ALBDFs are computed for every state using the absorption coeffi-
cient of the reference state, κ ϕ( )η o , and Planck functions evaluated
at local temperature.

For simplicity, from now on the approach which does not re-
quire any reference state will be referred as FSK-1; the approach
which does use a reference state, but not a reference temperature
will be referred as FSK-2; while the traditional approach will be
referred as FSK-3. Some of the F and k obtained for the FSK-2 and
FSK-3 are presented respectively in Tables 2 and 3. The reference
state was chosen as that of the region with higher temperature.

Tables 1 and 2 differ only on the value of F, which in the FSK-1
approach is computed using local absorption coefficients, while in
the case of FSK-2, it is computed using the absorption coefficient of
the reference state. On the other hand, Table 3 differs from Table 2
only on the value of k, and from Table 1 on both F and k. The k are
slightly different in Table 3 because they are weighted from a
eordered absorption coefficient (k).

ion 2 Region 3

)g,2 ( )F T g,2 ϕ( )k g,3 ( )F T g,3
�1] [cm�1]

�10�7 1.55�10�3 8.32�1 �8 3.55�10�3

8�10�7 5.54�10�3 9.27�10�8 1.18�10�2

3�10�7 1.13�10�2 1.11�10�7 2.31�10�2

. . .

. . .

. . .
3 0.956 9.11 0.982
8 0.980 17.22 0.992
55 0.995 30.87 0.998



Table 2
Data points for the FSK-2 solution: non-dimensional wavenumber (g), ALBDF (F), and reordered absorption coefficient (k).

Region 1 Region 2 Region 3

N g ϕ( )k g,1 ( )F T g,1 ϕ( )k g,2 ( )F T g,2 ϕ( )k g,3 ( )F T g,3

[cm�1] [cm�1] [cm�1]

1 0.0257 1.88�10�7 6.99�10�6 1.15�10�7 5.51�10�4 8.33�10�8 3.54�10�3

2 0.0772 2.09�10�7 2.98�10�5 1.28�10�7 1.99�10�3 9.27�10�8 1.18�10�2

3 0.1284 2.487�10�7 8.16�10�5 1.54�10�7 4.30�10�3 1.11�10�7 2.31�10�2

. . . . . . . .

. . . . . . . .

. . . . . . . .
28 0.988 4.46 0.954 7.33 0.971 9.11 0.982
29 0.995 17.48 0.979 17.76 0.987 17.22 0.992
30 0.999 46.93 0.995 42.60 0.997 30.87 0.998

Table 3
Data points for the FSK-3 solution: non-dimensional wavenumber (g), ALBDF (F), and reordered absorption coefficient (k).

Region 1 Region 2 Region 3

N g ϕ( )k g,1 ( )F T g,1 ϕ( )k g,2 ( )F T g,2 ϕ( )k g,3 = ( )F F T g,o 3

[cm�1] [cm�1] [cm�1]

1 0.0257 1.89�10�7 6.99�10�6 1.15�10�7 5.51�10�4 8.32�10�8 3.54�10�3

2 0.0772 2.11�10�7 2.98�10�5 1.28�10�7 1.99�10�3 9.27�10�8 1.18�10�2

3 0.1284 2.51�10�7 8.16�10�5 1.54�10�7 4.30�10�3 1.11�10�7 2.31�10�2

. . . . . . . .

. . . . . . . .

. . . . . . . .
28 0.988 4.06 0.954 7.17 0.970 9.11 0.982
29 0.995 17.14 0.979 17.87 0.987 17.22 0.992
30 0.999 47.56 0.995 42.60 0.997 30.87 0.998
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reference ALBDF, Fo, while in FSK-1 and FSK-2 the k are weighted
from the non-dimensional wavenumber g. The data presented in
Table 3 can be employed with the traditional formulation, using
Eq. (7), or with the proposed formulation, using Eqs. (13), and g in
place of Fo. In this case, both formulations provide exactly the
same results.

Table 4 presents results for the heat flux to the left and right
walls obtained with FSK-1, FSK-2, FSK-3 and line-by-line. The table
also shows the error of the FSK results with respect to the line-by-
line solution. As expected, the results obtained with any of the FSK
approaches presented some difference as compared to the line-by-
line solution. However, the differences between the FSK results
themselves were small.

In this example, the medium was composed by three distinct
uniform regions. Such a simple problem is well suited for explain
the proposed formulation. However, in real radiation heat transfer
discontinuities as those of the considered example are unlikely to
occur.

The next example considers a medium with continuous tem-
perature variation.
Table 4
Results of example problem 1: heat flux to the left and right walls obtained with
FSK-1, FSK-2, FSK-3 and line-by-line, and the error of the FSK with respect to the
line-by-line solution.

Heat flux Error relative to line-by-line

Left wall Right wall Left wall Right wall

Line-by-line - 25.75 kW 48.96 kW – –

FSK-1 - 23.49 kW 48.79 kW 4.61% -0.33%
FSK-2 - 24.11 kW 48.80 kW 3.35% -0.32%
FSK-3 - 24.39 kW 48.66 kW 2.78% -0.61%
4.2. Example 2

This second example consists of a one-dimensional slab of
medium confined between two parallel cold walls. The medium is
composed of 10% CO2 and presents the following temperature
profile proposed by Tencer and Howell [25]:

( ) = ( ) ( )T x x L1250cos / 18

where T is given in Kelvin, and L is the distance between the walls
and its value is 1 m.

The finite volume method was used for the numerical solution.
The slab was divided into 33 non-equal sized uniform volumes.
Each volume was associated to one temperature and a respective
spectral absorption coefficient obtained from the HITEMP2010
database [7], considering a spectral interval from 0 to
12,785 cm�1. The k and F were obtained for each volume using
the approaches FSK-1, FSK-2 and FSK-3 described above.

Fig. 5 presents the divergence of the radiative heat flux ob-
tained with the three FSK approaches and line-by-line, and Fig. 6
shows similar results for the radiative heat flux. As can be seen,
the FSK results presented good agreement with the line-by-line
solution. To visualize with more detail the differences between the
three FSK approaches, Fig. 7 shows the error of the heat flux ob-
tained with the FSK with respect to the line-by-line, which was
normalized by the maximum value of the heat flux to avoid divi-
sion by zero. The errors associated to all three approaches were
relatively low, the maximum difference was about 2.8% for the
simplest FSK-1 approach, and occurred in the cold region of the
gas where the heat transfer is less significant.

For the considered example problems, results obtained with
the FSK-1, FSK-2 and FSK-3 presented good agreement with each
other, indicating that the FSK-1 can provide results with accuracy
comparable to that associated to the traditional FSK-3, with the



Fig. 5. Results of example problem 2: divergence of the radiative heat flux obtained
with FSK-1, FSK-2, FSK-3 and line-by-line.

Fig. 6. Results of example problem 2: radiative heat flux obtained with FSK-1, FSK-
2, FSK-3 and line-by-line.

Fig. 7. Normalized error of the radiative heat flux obtained by FSK-1, FSK-2, FSK-3
approaches with respect to the line-by-line solution.
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advantage of being significantly simpler, since it requires neither a
reference temperature nor a reference state, and only local prop-
erties are considered.

5. Conclusions

A formulation for the full-spectrum k-distribution (FSK) which
does not require the use of a reference blackbody temperature is
presented. In place of a Planck function weighted reference cu-
mulative k-distribution (or ALBDF of reference), the proposed
formulation uses a cumulative k-distribution which is equivalent
to fractions of a spectral interval, as in the original narrow band
k-distribution, but extended over the entire spectrum. Such a cu-
mulative k-distribution acts as a non-dimensional wavenumber
and is independent of the state of the medium. This leads to some
simplifications on the FSK equations: no arbitrary reference tem-
perature is necessary, and the properties appearing in the re-
ordered radiative transfer equation of the method are directly
related to the non-dimensional wavenumber. The application of
the proposed formulation was demonstrated through two ex-
ample problems, where three different approaches regarding the
use of the correlated-k were considered. The first one, referred as
FSK-1, which corresponds to the continuous limit of the RC-SLW
model, is the most well suited for applications with the proposed
formulation and the simplest one, since it does not require any
reference state, and only local properties are taken into account.
The second approach uses a reference state, but not a reference
temperature. The third approach uses a reference state and tem-
perature falling into the case of the traditional FSK formulation.

Although the idea behind the FSK is apparently simple, the
application of the method to solve problems involving nonuniform
media can become complex, in part because of the implicit man-
ner in which properties are related to spectral locations while
solving the radiative transfer equation across different spatial lo-
cations at different states. Therefore, the proposed formulation can
be very useful by simplifying the treatment of nonuniform media.
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