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Abstract

We explore the question of how the resolution of

the input image (“input resolution”) affects the perfor-

mance of a neural network when compared to the resolu-

tion of the hidden layers (“internal resolution”). Adjust-

ing these characteristics is frequently used as a hyper-

parameter providing a trade-off between model perfor-

mance and accuracy. An intuitive interpretation is that

the reduced information content in the low-resolution in-

put causes decay in the accuracy. In this paper, we show

that up to a point, the input resolution alone plays lit-

tle role in the network performance, and it is the inter-

nal resolution that is the critical driver of model quality.

We then build on these insights to develop novel neu-

ral network architectures that we call Isometric Neural

Networks. These models maintain a fixed internal res-

olution throughout their entire depth. We demonstrate

that they lead to high accuracy models with low activa-

tion footprint and parameter count.

1. Introduction

Artificial neural networks today are a standard tool

for solving many if not most computer vision problems.

Many different types of neural networks are now run-

ning in server farms and mobile devices alike. Once

a good architecture is established a typical design pat-

tern is to scale such architecture by applying a fixed

multiplier to the resolution of each layer, the width of

each hidden layer, or the depth (the number of layers)

of the network [1, 2]. In the case of resolution multi-

plier, both the image resolution and the resolution of the

inner layers of the architecture are reduced by a given

factor, resulting in a faster but less accurate network.

Since lower-resolution images are intuitively less infor-

mative than high-resolution ones, the resulting drop in

accuracy is often implicitly attributed to that information

loss. However, the change in the resolution of the hidden

layers in the model is an important additional factor that

is often ignored. For example, all of the latest state-of-

the-art models [2, 3] use relatively high input resolution,

but no acknowledgment of performance with upsampled

data. In this paper, we disentangle these two compo-

nents and demonstrate that the resolution of the input

plays a minor role, and it is the internal resolution of the

model that controls model accuracy. We then propose

a novel class of networks that we call Isometric Neural

Networks. The defining characteristic of such models is

that they utilize single resolution throughout the entire

architecture and consist of identical blocks stacked on

top of each other. We show that these models require

fewer parameters and activation memory compared to

state of the art models such as MobileNets[1, 4, 5].

2. Related Work

Image-resolution and model width multipliers have

been used extensively both in the literature and by prac-

titioners in the industry to trade computational cost for

model accuracy. For instance see [1, 4, 2, 6] among oth-

ers. In [2], an additional layer multiplier was introduced.

However, most of this work relies on using high input

resolution, which is not always available. In this paper,

we disentangle image and model resolutions and show

that most of the benefit comes from the internal resolu-

tion of the hidden layers. We note that this entanglement

has been mentioned before, for example, in section 9 of

[6]. There, the authors mention the impact of input res-

olution on InceptionV3 network by adjusting the strides

of the earlier layers. However, it was mentioned as an

aside and wasn’t explored much further. In this paper,

we significantly extend and generalize those results. To

the best of our knowledge, this is the first study focused

on evaluating the internal resolution as a factor indepen-



dent of the input resolution.

In another related work [3], the authors studied the

resolution in the context of the relative mismatch be-

tween the test and train resolutions. This direction com-

plements ours. Also related is [7], where it is proposed

to use downsampled ImageNet as an alternative to an-

other low-resolution dataset CIFAR-100 [8]. The au-

thors did an early study of the accuracy of low-resolution

ImageNet, but they only relied on the width multiplier

and the number of layers as the primary ways to param-

eterize their models.

Finally, we use models that at low resolution use large

receptive fields that arise from the initial conversion of

spatial dimension into channel dimension. A related ap-

proach relying on atrous convolutions [9] used exten-

sively for semantic segmentation employs similar trans-

formation but uses batch dimension instead.

3. Our Contributions

We show that the actual input image resolution plays

a minor role in the predictive quality of modern neu-

ral networks. Instead, the internal resolution of inter-

mediate tensors is primarily responsible for the trade-

off between accuracy and the number of multiply-adds

required by the model. Specifically, we show that a

model trained with very low-resolution ImageNet im-

ages (14 × 14) can still achieve respectable accuracy.

We also demonstrate that for a fixed input resolution,

model accuracy can be further increased without em-

ploying more parameters. We then, through carefully

designed experiments, eliminate the size of the receptive

field as a potential culprit.

Secondly, we show that for standard neural architec-

tures increasing (decreasing) model resolution is qual-

itatively equivalent to performing the following three

operations: (a) adding (removing) a few layers at the

bottom, (b) applying width multiplier and (c) removing

(adding) a few layers at the top. Such reduction may

explain why changing image resolution and width mul-

tiplier often produces very similar trade-off curves.

Our last contribution is a class of novel neural archi-

tectures that we call Isometric convolutional networks.

Isometric networks consist of multiple identical blocks

that keep resolution the same throughout the model. An

input image of an arbitrary resolution is fed into the first

network layer by using the space-to-depth [10, 11, 12]

operator or image rescaling. Isometric architectures

have multiple appealing properties. First is their sim-

plicity. In particular, they eliminate all pooling layers

while still keeping high receptive field. Secondly, iso-

metric networks retain high accuracy while requiring

very low inference memory (< 20% of MobileNet for

the same accuracy, see figure 9). Finally, we hope that

the simplicity of the isometric architectures might spark

more theoretical insights into the model expressiveness

in the future.

4. Resolution and Width Multiplier

We start by providing a quick review of resolution

and width multipliers as standard techniques used for

creating a family of models with various performance

trade-offs.

The crux of these techniques is as follows. If we want

to get a smaller model, we can reduce the width of each

layer (i.e., the number of channels) or the resolution of

each layer by a constant factor. Such transformations

produce a family of architectures that allow trading ac-

curacy for performance. We show the impact of these

changes on model size, activation memory footprint, and

MAdds count in table 1. To the best of our knowledge,

[1] was the first to articulate these techniques, and they

have been extensively used since then, see [13, 4, 2]

among many others. In particular, [2] extended this scal-

ing technique to the network depth. The advances in ar-

chitecture search such as [14, 5] showed that architecture

search techniques are capable of discovering more effi-

cient models at particular operating points. However, the

multiplier technique remains an essential tool in build-

ing families of diverse architectures.

One interesting empirical property of width and reso-

lution multipliers is that they appear to be nearly fungi-

ble when it comes to the trade-off between accuracy and

MAdds.1 That is, changing the resolution by a small

factor α has the same impact as changing the width by

the same factor, even though one transformation keeps

model size constant, while another increases it by a fac-

tor α2. For example, for MobileNets we show the trade-

off on figure 3.

Here we argue that this empirical property naturally

arises from the way the models are built and optimized

today. For simplicity consider an architecture A whose

layers have shape (ri × ri × ci), where ri and ci are the

resolution and number of channels for layer i. Most of

the commonly used convolutional architectures employ

progressive downsampling and increase the number of

channels by a factor of 2 while keeping the number of

layers in the same resolution block comparable. There-

1Throughout the paper we use MAdds – the number of multiply-

and-accumulate in matrix multiplication needed to compute a single

inference, as a proxy metric of required computational resources.



Transformation Activation Model size MAdds

#channels ×α α α2 α2

resolution ×α α2 1 α2

#layers ×α 1 α α

Table 1: Impact of different scaling techniques on model

size, activation footprint and MAdds.

fore we have ri = ri−1/si and ci = sici−1, where

s = 1, . . . 1, 2,
︸ ︷︷ ︸

b1 layers
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︸ ︷︷ ︸

b2 layers
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︸ ︷︷ ︸
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.

It then follows that the shape of each tensor in a block bp
is (r1/2

p−1, 2p−1c1). Now consider two architectures

Ar=0.5 and Ac=0.5 where we apply either the resolu-

tion or the channel width multiplier method. The result-

ing architectures will then have the following shapes for

each layer in a block bp: (r1/2
p, 2p−1c1) for Ar=0.5 and

(r1/2
p−1, 2p−2c1) for Ac=0.5. Expanding and aligning

these by resolution block we obtain:

{
r1
2
, ci}

︸ ︷︷ ︸

b1 layers

. . . {
r1

2p−1
, 2p−2ci}

︸ ︷︷ ︸

bp−1 layers
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2p
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bp layers
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︷ ︸︸ ︷
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ci
2
}

b2 layers
︷ ︸︸ ︷

{
r1
2
, ci} . . .

bp layers
︷ ︸︸ ︷

{
r1

2p−1
, 2p−2ci}

(1)

thus observing that Ar=0.5 is obtained from Ac=0.5 by

(a) removing the first block and (b) adding the last block,

while also (c) shifting layer counts in each resolution

block by 1. For well-calibrated architectures adding or

removing a few layers generally results in only mini-

mal changes in performance, and thus it follows that we

should expect similar performance when varying width

multiplier vs the resolution multiplier.

Finally, we note that despite MAdds and accuracy

similarity, width, and resolution multiplier do exhibit

very different properties when it comes to model size

and activation memory requirements, as shown in ta-

ble 1.

5. Resolution Multiplier: Data or Architec-

ture

In the previous section, we saw that the traditional

resolution multiplier essentially acts as a variant of the

width-multiplier method with a minor adjustment to

layer configuration. Thus it begs the following question:

does the input image resolution play a significant role in

the model accuracy? Intuitively, the answer seems obvi-

(a) Skip stride (b) Upsample

(c) S2D + skip stride (d) Resolution multiplier

Figure 1: Different ways to feed an image into the

model. Here (a) and (b) feed low-resolution input both

giving comparable accuracy. Skip-stride (a) eliminates

early operators with strides until the resolution matches

the original model. Figure (c) shows a variant of skip

stride where the input is high resolution but then fed di-

rectly into the first low-resolution hidden layer using a

space-to-depth transform. In (d) we show standard res-

olution multiplier for reference.

(a) Low resolution (b) High resolution

Figure 2: The impact of the input size on the model ac-

curacy for MobileNetV3. Low resolution curve in figure

2a continues as the high resolution curve in figure 2b,

and corresponds to classical resolution multiplier trade-

off. Two nearly matching solid lines in figure 2a corre-

spond to bi-linear upsampling and skip-stride methods

as described in section 5. The cyan dashed line corre-

sponds to using high-resolution input, but with imme-

diate down-sampling using space-to-depth followed by

a standard convolution in the first layer. In figure 2b

green curve corresponds to 224 × 224 input upsampled

to a given resolution. Note that image resolution mat-

ters very little compared to the impact of using higher

hidden-resolution layers. Best viewed in color.

ous: a 2×2 image can not be plausibly used to differen-

tiate between different breeds of dogs in ImageNet. On

the other hand, 112 × 112 photo should still retain 99.9
of the relevant information present in a 399 × 399 im-

age. However, despite that, it has been shown multiple



times in the literature [2, 6, 1, 4, 5] that classifier ac-

curacy grows appreciably as resolution increases. Thus

it begs the question: is resolution important, or we are

increasing the capacity of the model, and the image res-

olution was just an artifact of a chosen scaling method?

How can we measure these effects?

In this section, we use MobileNetV3[5] as our pri-

mary experimental platform. We perform all our exper-

iments on ImageNet[15].

The simplest experiment is to upsample the low-

resolution input up to the original resolution. As seen in

figure 2 image upsampling does lead to a dramatic ac-

curacy increase. The upsampling method itself seems

to matter very little, as even dilating the input while

filling missing points with zeros produces the desired

result. For instance, 112 × 112 input resolution leads

only to about 1.5% accuracy drop (73.3% vs. 75.1%),

compared to nearly 8% drop when the entire model is

down-sampled. Similarly, 56 × 56 image results in

5% drop when upsampled, and nearly 25% when the

model is rescaled. A similar phenomenon has been ob-

served previously, for instance in section 9 of Incep-

tionV3 [6], where instead of upsampling the input, the

authors skipped initial strides until the image resolution

matched the full-resolution model. We illustrate the dif-

ference between this and the upsampling in figure 1. In-

terestingly, the accuracy of these two methods matched

within less than 0.1%. It is particularly remarkable that

this simple trick allows reaching respectable 45% Top-1,

accuracy on image resolution of 14× 14, and more than

60% accuracy on image resolution of 28 × 28. We as-

sume that by using more powerful models, the accuracy

could be pushed even further.

Comparing the similarity in performance between the

skip-stride method and the upsampling method, we see

that the resolution of the first few layers appears to mat-

ter very little.

To explore the importance of the resolution of the first

few layers we perform another experiment. We use the

full resolution input and replace the first 3× 3 convolu-

tional layer, with a stride-k 3k× 3k convolutional layer.

This transformation is also equivalent to a combination

of a space-to-depth transformation with block size k fol-

lowed by the original 3× 3 convolution. If the accuracy

does not drop, it would suggest that the model indeed

retains most of its discriminative power. For example,

to get from 224× 224 to 56× 56 we use the block size

k = 4. Similarly to get to 7×7, we instead use the block

size k = 32. Strikingly, we see from figure 2 that this

nearly eliminates any performance losses for resolutions

down to 56 × 56 (74.6% vs 75.1%), using just a single

(a) Mobilenets (b) Isometric

Figure 3: Trade-off between width multiplier and image

resolution for MobileNets and Isometric networks.

(a) Isometric architecture (b) Standard architecture

Figure 4: Comparison of isometric and standard net-

work architectures. Note that the first layer in isometric

architecture could be a down-sampling layer or space-

to-depth layer. The impact of the image resolution vs.

space-to-depth is shown in Figure 2

.

linear projection layer, and even allows to downsample

down to 7×7 (which corresponds to using 96×96 convo-

lution with stride 32 as a first layer) while still achieving

the Top-1 accuracy of nearly 50%. Such a result is par-

ticularly striking when we realize that MobileNetV3’s

first layer has only 16 channels. So when adapted to

7 × 7 resolutions it only contains 7 × 7 × 16 = 784
elements, after just a single linear transformation of the

raw image. These experiments suggest that the high res-

olutions in the first few layers have only limited utility.

On the other hand, the following layers benefit from hav-

ing a higher internal resolution, as shown by numerous

studies on higher-resolution images. A natural extension

of this is to consider an architecture that uses the same

model resolution in all layers. We discuss this idea in

the next section.

6. Isometric Architectures

As discussed in the previous section, using a lower

resolution in the first few layers has little impact on

model accuracy. Even simply reducing the resolution of

all layers down to 7×7 in MobileNetV3 architecture still

leads to a somewhat surprising accuracy (50%), which is

higher than what we get if we naively train MobileNet

with 56 × 56 images (see figure 2). We note here that

this holds despite introducing a 7 × 7 × 16 bottleneck

in the first layer. On the other hand, higher-resolution in



latter blocks does appear to be helpful as evidenced by

the usage of resolution multiplier. What if we built an

architecture from scratch that uses only fixed resolution

blocks?

In this section, we introduce isometric architectures.

By design, these architectures maintain constant inter-

nal resolution throughout all layers (except for the last

global pooling). An illustration of an isometric architec-

ture is shown in figure 4.

First, let us discuss why such architectures are use-

ful. The primary advantage is that using low resolution

allows to significantly reduce activation memory foot-

print, which is essential for many embedded hardware

devices. Secondly, increasing the internal resolution al-

lows one to build more accurate models while keep-

ing the number of parameters the same. Third, because

they use the same block throughout the model, with lit-

tle cross-layer dependencies, the isometric architectures,

can be easily customized to specialized hardware re-

quirements. For example, modern hardware is most ef-

ficient when the number of channels is divisible by 32,

64, or even 256. Such a condition is trivial to accom-

modate in our architectures. Finally, isometric networks

provide a tempting target for theoretical analysis due to

their simplicity. In particular, there are no stride oper-

ations, and they consist of identical blocks stacked on

top of each other in contrast with multi-resolution archi-

tectures that employ pooling and striding. At the same

time, these models reach nearly 81% accuracy on Im-

ageNet using standard resolution images, and they are

comparable in terms of raw compute requirements to

state-of-the-art AutoML models such as those in [2, 5].

In this paper, we begin an empirical evaluation of iso-

meric networks. We concentrate on the architecture as

described in table 2. We note that this only scratches

the surface of possible architectures, and also poten-

tially provides a useful target for NAS-style approaches

[16, 14] to find better isometric models. In our exper-

iments, we use isometric networks consisting of Mo-

bileNetV3 + SE bottleneck blocks [5]. For reference, we

show the structure of the MobileNetV3 block in figure

5. We use them mainly as a convenient building block.

To match the resolution of the first layer, from an reso-

lution image that is k time larger, we use the standard

space-to-depth operation with the block size k. If the

first bottleneck uses higher resolution we use bi-linear

upsampling instead. Note, space-to-depth transforma-

tion, when combined with the first convolutional opera-

tion, is equivalent to using a single convolution operator

with the kernel size and stride equal to k.

Each block of the isometric network uses a 64 chan-

Figure 5: MobileNetV3 [5] block.

Op Inp Out

S2D(target=d× d) input d× d
MV3 SE(64m, 384m, 4) ×l d× d d× d
Conv1x1(768m) d× d d× d
AvgPool(d) d× d 1× 1
FC(1280) 1× 1
FC(num classes)

Table 2: Isometric architecture w/MobileNetV3 blocks.

We explore architectures containing l = 8, 16 and 32
layers, and utilizing internal resolution d = 7, 14 and

28. MV3 SE(x, y, z) denotes MobileNetV3 block with

bottleneck x expansion size y and squeeze-excite factor

z. Finally, m denotes the width multiplier that we apply

to the model backbone. Following [4, 5] we don’t apply

multiplier m to fully connected layers.

nel bottleneck and uses the expansion factor 6 (that is the

expansion size of 384). We conduct experiments with

networks containing 8, 16, and 32 identical layers. Since

the model is now characterized by a single internal res-

olution, we will be casually referring to all models that

have 14× 14 internal resolution as 14× 14 models.

We note that in the case of isometric neural net-

works the “common” part of the equation (1) disappears.

However, as shown in figure 3b, there is still a remark-

able correlation, suggesting that there might be an ad-

ditional connection between width and image resolution

that should be explored.

6.1. Isometric vs. classical architectures

One intriguing property of isometric networks is that

their first layer is essentially a convolution with a huge

receptive field. For instance, for 7× 7 network, the filter

size is 32. Such large filters, present an interesting in-

sight because it is common to assume that the first layer

often forms “edge detectors” [17] and other basic feature

extractors such as Gabor filters [18]. How then would a

32×32 filter look to be general enough to do a large scale

recognition? There appear to be two types of filters.

Some look like colorful globs, such as those in figure

6a, or fairly precise Gabor filters of varying frequency.



(a) Type I (b) Type II

I 62.5&

II 57.2%

All 67.1%

(c) Accuracy

Figure 6: First layer filters for isometric neural network

with 32 × 32 initial space-to-depth. 1 × 1 convolution

output corresponds to is equivalent to 32 × 32 convolu-

tion applied to original image. Note how there are two

distinct styles of filters – the filters which look like very

rough edge detectors, and the second that look like high-

resolution maze. Table (c) shows the top 1 accuracy of

a model that artificially has frozen features of Type I or

Type II respectively.

However, a great number of filters have a complex maze-

like regular structure. These filters appear to be a part

of an embedding extractor rather than individual feature

extractor.2 To measure the relative importance of either

type, we trained two architectures with frozen first lay-

ers containing respectively colorful blobs and maze-like

features. The results are shown in table 6c. Interest-

ingly, colorful blobs appear to provide somewhat higher

accuracy, but both types of filters contribute significantly

to the whole network. Interestingly, in the recent work

[19] also observe the maze-like structure of the first lay-

ers in architectures that try to learn DCT-like transform

and use relatively large 8× 8 filters.

Receptive Fields of Isometric Architectures The

comparison of the receptive field sizes for MobileNetV3

and Isometric networks as a function of depth is reported

in figure 8. The fascinating feature of isometric archi-

tectures is that the receptive field of convolutional filters

spans almost the entire image even in the first few layers.

7. Experiments

For our experiments in addition to isometric net-

works, we also use MobileNetV3 [5]. Our training setup

follows that of [5] since our main building block is the

same. All our experiments are on ImageNet.

2The difference is that instead of extracting a single feature, each

coordinate in embedding provides a meaningful signal only when

looked in combination with other coordinates.

7.1. Input vs. internal resolution

In this section, we quantify the importance of the

input image versus the internal resolution. For Mo-

bileNetV3, the difference between the full resolution

model vs. an identical model that uses the upsampled

low-res image is shown in figure 2. It can be seen that

reducing the resolution by a factor of two results in only

about 1% degradation.

Our remaining experiments are with isometric net-

works. In figure 7b we show the trade-off when we fixed

the resolution and instead vary the internal model reso-

lution between 7× 7 and 56× 56. In terms of the equiv-

alent resolution of MobileNetV3 that would lead to the

same 56× 56 last layer, this corresponds to the input of

size 1792× 1792.

By contrast in figure 7a we show the impact of reso-

lution on a fixed model, where one can see that there is

little benefit of going beyond 224× 224 resolution.

Now, we explore the highest accuracy we can achieve

with different input and model resolutions. In table 4 we

compare the performance of input resolutions 14 × 14,

28 × 28, 56 × 56 and (the standard) 224 × 224 against

the internal resolutions of 7 × 7, 14 × 14 and 28 × 28
respectively. We use an isometric model with 32 layers

and multiplier 2. We use space-to-depth or upsampling

(in case of matching 14× 14 input to 28× 28 model) to

match input to the model.

Finally, one might ask a question: why change from

14 × 14 to 28 × 28 input resolutions produces nearly

almost 15% increase in accuracy, while increase of in-

ternal resolution from 14× 14 to 28× 28 produces less

than 2% percentage points. Wouldn’t it contradict our

claim that internal resolution is more important than in-

put? This however should not be surprising, as input

resolutions do matter at extreme resolutions. E.g. one is

unlikely to differentiate between 1000 categories using a

4×4 sprite. Internal resolution operate at different scale

because hidden layers have much more than 3 channels.

For instance 14 × 14 internal resolution corresponds to

a large neural network and, with 64 channels, encodes

about as much as 64× 64× 3 image. On the other hand

14 × 14 RGB image corresponds to small input resolu-

tion that is rarely if ever used in practice. However once

the input is large enough, the model resolution plays a

bigger role than the input resolution.

7.2. Sizes of receptive fields

Another obvious difference between the high-

resolution and low-resolution architectures is the dif-

ference in receptive fields. Specifically, low-resolution

models have receptive fields that cover a larger fraction



(a) Input resolution (b) Model resolution

Figure 7: Internal vs. input resolution. The baseline

16×16 isometric model with resolution 224 is present on

both graphs. Increasing resolution beyond 224 provides

little utility. Increasing internal resolution improves ac-

curacy significantly, despite not changing the model size

or the data.

(a) MobileNetV3 (b) 16-layer Isometric

Figure 8: The sizes of receptive fields for MobileNetV3

vs Isometric networks. Dilation=2 corresponds to Mo-

bileNetV3 with dilated convolution used to mimic the

behavior of 112 × 112 network as described in section

7.2.

of the image compared to high-resolution models. It

is thus possible that the difference in receptive fields is

responsible for the performance difference. To demon-

strate that the receptive field size role is relatively minor,

we conduct the following experiment. First, for Mo-

bileNetV3, we replace all stride one depthwise convolu-

tional layers with rate two convolutions. This transfor-

mation replicates receptive fields of the lower resolution

model. Finally we replace stride=2 layers with 5 × 5
convolution to maintain changes in receptive fields. The

size of the receptive fields is shown in Figure 8. If the

use of the wider receptive field were indeed detrimental,

we would observe a significant accuracy drop. However,

as shown in table 3, the actual impact is positive. This

experiment strongly suggests that a large receptive field

is not a source of significant performance degradation,

and in fact might have a mild positive impact.

7.3. Lowest activation footprint

The amount of activation memory needed to run in-

ference for isometric models depends on a particular im-

plementation of the inference framework. A good upper

dilation 2 224 (baseline) 112(baseline)

75.6 75.15 63

Table 3: Dilated MobileNetV3, Top 1 Accuracy.

❍
❍
❍
❍
❍

MR

IR
14× 14 28× 28 56× 56 224× 224

7× 7 48.8 62.1 67.7 70.4

14× 14 53.7 68.2 74.7 77.6

28× 28 53.6 70.2 77.1 80.6

Table 4: Internal vs. input resolution for 32 layer iso-

metric network with multiplier 2. Each row and column

corresponds to a different internal and input resolution

respectively. Note: all models have the same number of

parameters.

bound is a maximum across all layers, the size of all

the inputs and outputs. Thus, to achieve the lowest ac-

tivation footprint, the obvious strategy is to increase the

number of layers, while keeping the internal resolution

of the model to a minimum. In figure 9 we show the per-

formance of the 32-layer models for different multipliers

and internal resolutions. The best 7 × 7 model reaches

70%+ accuracy while using less than 100K of memory.

Similarly, the best 14 × 14 model reaches 75%+ accu-

racy while using only 300K of memory. By comparison,

MobileNetV3 requires nearly 800K to achieve 75% ac-

curacy.

7.4. Model size and computation cost

In figure 9 we show the trade-off between model size

and MAdds and accuracy. For model size, the best mod-

els are those with highest internal resolution. For in-

stance models with 56x56 internal resolution (see figure

7b), achieve 77% accuracy with less than 5M param-

eters. For multiply adds we show comparison in fig-

ure 9. Isometric models, while slightly worse than Mo-

bileNetV3, nevertheless provide comparable MAdds vs

accuracy trade-off, despite not relying on architecture

search.

7.5. Parallel isometric networks

From the discussion in section 7.2 we noted that large

dilation convolutions actually perform well. However,

part of the reason they even outperform the baseline is

the usage of 5 × 5 convolution in the layers that have

stride two. Recall that isometric networks do not em-

ploy stride two layers, thus using dilated convolution

with rate r is equivalent to splitting the initial input layer

into a batch of (r2) inputs, running them independently



Figure 9: Isometric model trade-offs between accuracy and activation memory, model size and MAdds. Each curve

contains runs for multipliers 0.5, 1 and 2, for the network with labeled resolution and number of layers. MobileNet

numbers are given for reference.

(a) High res input (b) s2b→s2d mask (c) s2b→s2d batch

(d) Performance (e) s2d → s2b mask (f) s2d→s2b batch

Figure 10: The visualization of the input to parallel iso-

metric networks.

in a batch and then averaging out the result. There-

fore this converts a single input inference into a large

batch size inference, which is often considerably more

efficient. Interestingly, a naive split, where we simply

split the input into d × d patches (like those in figure

10c) resulted in only marginal improvement (∼ 1%) as

shown in figure 10d. Intuitively, it made sense because

the inputs are only marginally different and provided lit-

tle additional information. However, swapping space-

to-batch and space-to-depth, so that we first create a set

of patches followed by batching them improved the per-

formance dramatically. This operation is a shifted ap-

plication of a grid in figure 10e to generate one sam-

ple. The resulting batch of 16 images is shown in

figure10f. Intuitively this batch forms a data-based en-

semble, where the same model is applied to a slightly

different view of the data, and the results are averaged

out. We show the comparison of these architectures in

figure 10d. The baseline curve shows the performance

of the model without space-to-batch transformation. We

note that such kinds of architectures might be highly

beneficial on hardware and frameworks that provide par-

allel batch compute capability. In that case, using a par-

allel 16-replica model can boost accuracy, while keeping

the wall-time the same.

8. Open Questions and Conclusions

In this paper, we have developed a new way of dis-

entangling neural network internal resolution from the

input resolution, and have shown that input resolution

plays a fairly minor role in the overall model accuracy.

Instead, it is the internal resolution of the hidden layers

that are responsible for the impact of resolution multi-

plier. We introduced the notion of isometric convolu-

tional networks – the class of neural architectures that

share the same resolution throughout the hidden lay-

ers. We showed that they are competitive with modern

AutoML architectures on several characteristics, despite

their simplicity. Furthermore, since these architectures

lack strides and can potentially share weights across the

layers, they form an appealing target for further theoret-

ical analysis.
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