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Abstract We consider the non-eikonal corrections to parti-
cle production in the color glass condensate stemming from
the relaxation of the shockwave approximation for the tar-
get that acquires a finite longitudinal dimension. We derive
a modified expression of the Lipatov vertex which takes into
account this finite target width. This expression is employed
to compute single, double and triple gluon production in
the Glasma graph limit valid for the scattering of two dilute
objects, at all orders in the expansion in the number of col-
ors. We justify and generalize previous results, and discuss
the possible implications on two particle correlations of these
non-eikonal corrections that induce differences between the
away- and near-side peaks.

1 Introduction

Particle production at high energies in the soft and semi-
hard regimes is usually computed resourcing to high energy
approximations [1], namely the eikonal approximation. This
is the case in the color glass condensate (CGC) [2—4]. In this
framework, the process of propagation of an energetic parton
from the projectile through the target, considered as a back-
ground field, is computed in the light cone gauge neglecting
its transverse components and considering it as infinitely time
dilated and Lorentz contracted (thus treated as a shockwave),
see for example the discussion in [5]. Also terms subleading
in energy (among them, spin flip ones) are neglected. On the
other hand, in the calculation of elastic and radiative energy
loss of energetic partons traversing a medium composed of
coloured scattering centers — jet quenching — the shockwave
approximation is relaxed and the target is considered to have
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a finite length, see e.g. the reviews [6,7].1 In this context, a
systematic expansion of the gluon propagator in non-eikonal
terms was done in [5,11] and applied to particle production
in the CGC in [12]. Non-eikonal corrections at high energies
have also been treated recently in the context of Transverse
Momentum Distributions and spin physics [13-19], and soft
gluon exponentiation [20-22].

In the CGC, particle production and correlations have been
computed within several approximation schemes, providing
an alternative explanation to final state interactions for the
ridge phenomenon observed in small systems, proton—proton
and proton—nucleus, at the Large Hadron Collider (LHC)
at CERN [23-36] and the Relativistic Heavy Ion Collider
(RHIC) at BNL [37—41]. The “Glasma graph” approximation
[42,43], suitable for collisions between two dilute objects
like proton—proton and containing both Bose enhancement
and Hanbury-Brown—-Twiss effects [44—47], has been used
to describe experimental data [48-51], and to compute three
and four gluon correlations [52,53]. Quark correlations have
also been calculated in this framework [54,55]. It was later
extended to dilute—dense (proton—nucleus) collisions both
numerically [56] and analytically [57-59], and used to cal-
culate three gluon correlations [58]. A description of data has
been obtained [60,61]. Density gradients [62] have also been
considered to explain the observed azimuthal structure.

Beyond the analytical extension to dense—dense colli-
sions, the remaining key theoretical problem for the descrip-
tion of azimuthal structure in small systems in the CGC lies
in odd harmonics that are absent in usual calculations. For
this, density corrections in the projectile [63—-65], quark cor-
relations [60,66,67] and a more involved description of the
target [68,69] than the one provided by the commonly used
McLerran—Venugopalan (MV) model [70,71], have been

! The relation between jet quenching and CGC calculations, using the
formalism in [8,9], was established in [10] where the validity of the
eikonal approximation for this type of computations was also addressed.
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Fig. 1 Diagrams that contribute to the computation of the Lipatov vertex. The black dot represents the Lipatov vertex which is the sum of all real
diagrams for gluon production shown on the right hand side of the equation

proposed. Using the former, a description of data is possi-
ble [72-74].

In this manuscript we deal with non-eikonal corrections
to particle production in the CGC that stem from relaxing
the shockwave approximation for the target, which becomes
of finite length. These are the corrections included in jet
quenching calculations and systematically expanded up to
next-to-next-to-leading order in [5,11]. In Sect. 2 we derive
an expression for the Lipatov vertex — one central building
block for particle production calculations in the CGC — that
takes into account the finite longitudinal extent of the target
field. While by itself this result is not new and similar cal-
culations and expressions can be found in the literature, see
e.g. Refs. [75,76] or more recently in Ref. [77], its identi-
fication for use to include non-eikonal corrections in CGC
calculations is done here for the first time. Then, in Sect. 3 we
apply our corrections to gluon production in the dilute-dilute
(Glasma graph) limit, following the notations in [58]. First, in
Sect. 3.1 we consider single gluon production, matching the
results in [12] and justifying the educated guess done there
on the basis of the expansion up to next-to-next-to-leading
order. Then we consider double gluon production in Sect. 3.2,
where we generalize the results in [12]. Third, in Sect. 3.3
we compute three gluon production. Finally, in Sect. 4 we
discuss our results. We focus on providing analytical expres-
sions and show a few numerical results; a more complete
study of the impact of non-eikonal corrections on particle
correlations is left for a forthcoming study [78].

2 Derivation of the non-eikonal Lipatov vertex

As usually done in the CGC, we describe a high energy p-A
collision by a right moving dilute projectile which interacts
with a left moving dense target described by a random and
intense (O(1/g)) classical gluon field A*(x). The simplest
setup to derive the non-eikonal Lipatov vertex is considering
the emission of a gluon from a projectile massless quark in
the process of a single scattering with the target (an analo-
gous calculation leading to the same conclusions on the non-
eikonal corrections holds for a projectile gluon). In light cone
coordinates a* = (ag %+ a3) / /2 and in the light cone gauge
(n-A=A"=0,n=(0,1,0,)in (+, —, L) coordinates),
this field can be written as

@ Springer

A (x) ~ S8 () AT (x 1), ey

since the transverse component of the gluon field is not
altered by the large Lorentz y factor, the x~ dependence dis-
appears due to the time dilatation and the target is shrinked
tox™* = 0 forming a shock-wave. However, in some applica-
tions these suppressed terms may be sizeable. For this reason,
in this note we will relax the infinite boost approximation, in
order to calculate the corresponding non-eikonal corrections
to the usual Lipatov vertex computed at O(g?).

To proceed, we analyze gluon production in p-A collisions
inthe quark initiated channel and compute the Lipatov vertex,
which is an effective vertex that takes into account all the real
contributions to gluon production. For that one needs to sum
the amplitudes where the gluon is emitted before, during and
after the interaction with the field as shown in Fig. 1.

Our setup is such that the right moving quark with momen-
tum p + k — q is generated by some function J (p +k —q) =
J(pt+kt—ghHatxj = —ocoand (x;, x01) = 0, and then
interacts with the classical gluon field A*(x) generated by
one scattering source located at x1, picking up a momentum
q. However, since we are interested in non-eikonal correc-
tions, we consider A* (x) with an x ™ dependence which has a
finite support instead of treating it as a shockwave at x ™ = 0,
but we still assume that there is no dependence on x . That
is, the new form of Eq. (1) is

A (x) ~ SHT AR (x T, x)), )
or, in momentum space,
Al (q) ~ 8" 218(g A (. q1). 3)

Furthermore, we assume that the outgoing quark has a large
momentum p T compared to all other momenta in the process.
The general strategy in this case is to keep the leading terms
in +-momenta in the numerator algebra, while taking the
full phase corrections coming from the integration of the
denominators, see below, as done in the Furry approximation
and its non-abelian generalization [79].

We start by computing diagram A where the gluon is emit-
ted with momentum k before the quark interaction with the
target field as shown in Fig. 2. Using the Feynman rules,
we find that the amplitude for fixed gluon and final quark
momenta is
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Fig. 2 Diagram A where the gluon is emitted before the interaction of
the quark with the target field

iMa = u(p)(—igy"t?)
d4q a igx)

/ G (@

ip+k—q)
(p+k—q)?+ie

ip—q
(p—q)* +ie
SIHEDN (p+k—q). (4

(—igy"t")eb* (k)

with ¢ the SU (N,) generators in the fundamental represen-
tation.

Since pT is the largest momentum in our problem, we
approximate p — ¢ ~ p and p + k — ¢ ~ p and write

dq A @pe”™ ) p
@m)*[(p = )? +iell(p +k — )% +ie]
ST (pF kT =g ). 5)

Using again the eikonal approximation (p™ much larger
than all other momenta), we can approximate (p — q)> ~
—2ptq~and (p +k — q)*> ~ 2pT(k~ — q~). Employing
¢b = 2a-b— pd and the massless Dirac equation it(p) p = 0,

we getii(p)A*(q) pg™* (k) p = i(p)4(p- A% (q))(p-€"* (k).
Therefore, the amplitude for diagram A can be written as

dq (p - A% (p - €7 (k)
Qm)* [ptq= —iellpT (k= —q™) + i€l
eiq(xl_xO)](p+ —|—k+ _ q+)

_ _L—t(p)ei(p+k)’x()+82tatb

d? :
e - )
J
dat . .+ _
/ a1t 4kt - gHemsat

dg= 4 T prATa(gT q1)
f ©)
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Fig. 3 Diagram B where the gluon is emitted after the interaction of
the quark with the target field

where in the last line we used Eq. (3) and we have set xg; =
x, = 0. Performing the ¢ and ¢~ integrals we obtain

iMy ~ —ii(p)e'™J (p* +kT)gtt?
2
d q.L €_iqulL[) . €b*(k)
(2m)?

i [eik_xg'A—a (0’ CIL) _ eik_xrA—a(k—’ CIL)]
X

Pk O —x). (N

Since the outgoing gluon is on-shell, k= = ki /2k™ and,
furthermore, in the light cone gauge we have €*7 (k) =
k'€’ /k*. Therefore, making use of pte* ~ pTe*™, we
obtain

i bi

. k
My~ 2ii(p)e P T (pT + kg2 PO (xf — x0+)kL2
1

2
d°q. e iqLxL
(2m)?

(eikixrAia(ki, CIJ_) _ el‘kix(TA*u(O’ QJ_)> . (8)

Now, sending x(“)L — —oo we can finally write

. o +ki€bi
iMy =~ 2ii(p)eP 0T (pt + kMgt e T ——
k1
d*q. _; —a—
/We ML ATk, q ). 9

Now we proceed to calculate diagram B where the gluon
is emitted with momentum k after the interaction of the quark
with the target field, as shown in Fig. 3. Following the pre-
vious procedure we find
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Fig. 4 Diagram C where the emitted gluon interacts with the target
field

. e
iMp ~ —2ii(p)e T (p* + kgl el =
kJ_
d’q. _; o
/(25)28 AT (KT q). (10)

Diagram C, shown in Fig. 4, where the emitted gluon inter-
acts with the target field, requires dealing with the three-gluon
vertex. Applying the Feynman rules we have

. dq i(p+k—q)

. _ e l.a

iMc =u(p)(—igy*t )/ Q7Y (p+k—q)2 +ie

ei(l""'k_q)x(’](p—}—k—q)
_l.dp,a(k_.Q) VabvﬁA
(k—q)* +ie ¢

G@er (e, (11)

where V2P = g pabe [8%V(q — 20)F + g"P(k + @)™ + gP*

abc
(k —2g)"] is the three-gluon vertex and dq (k) = gua —
kyng+kgn,

T the gluon propagator in the light cone gauge.
Considering Eq. (3), we only need the Va"‘b”ch component
of the vertex. Furthermore, using the Dirac equation and
the gamma matrices anti-commutation relation we have that
u(p)y"p = u(p)2p". Thus,

iMc = =2iii(p)e' PR g2
d*q prdua(k — q)VirTeb* (k)

abc
Q) [(p+k — q)? +ielltk — q)? + i€]
AT (@)e 10 g (pt kT — ). (12)

After some algebra we find, in the eikonal approximation,

Plduak = Vet el (k) ~ =2gf " p*k — @) - €,
(13)

and
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K= k—9)?
_ 2 _ _~p+ L iR

+2¢tq" -2k qt ~
I S (N
— 2kt (CI _ T . (14)

K2 (k)2
Thus, defining k = hz(k#’ we get

iMe ~ _iﬂ(p)g2tafabcei(p+k)xo
a4 - iq(x1—x0)
| e
(2m) ktk——q +iellg —k —ie]
AT (pT + kT =g ™). (15)

Using Eq. (3) and performing the g+ and ¢~ integrals we
obtain

iMe ~ 2ﬁ(p)](p+ + k+)eipx0g2tafabc

/dqu k=9 b igic,
2—2 € e
2m)* (k- q)1

ikxlJr

(ei(k*—é)ng—c(,;’ a0
— P AT q) O 5. (16)

Finally, making use of it% feP¢ =

xa“ — —00, we obtain

(%, ] and sending

iMc ~ =2iu(p)J(pt + kT)eP*g?[14, 1]

d*q1 (k—q)

bi ik~ x\ 4—a,,— —ig1x
€ 1A k , gLiriL
ST (k™. q1)e

A7)
Summing up the three diagrams we get
(Mg +Mp+ Mc)
~ =2ii(p)J (pt +kH)eP0g? 1, 1"
42 ) S .
S kg€ T AT g et
(2m)?
(18)
where
. k—q) Kk
Litkiq) =00 - = (19)
(k — Q)J_ kJ_

is the eikonal Lipatov vertex. We see that in our calculation,
as announced, the non-eikonal corrections result in the sum
of the amplitudes simply picking up a phase (important for
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k=x ~ 1 withk™ o k7 e~ and negligible for k3 x;"/ kT <«
1 where we recover the eikonal result) that can be absorbed
in a redefinition of the Lipatov vertex. Therefore, we define
a non-eikonal Lipatov vertex

(20)

: k—q) K| 4+
Ligk, q1;x1) = |: 1 ]

2 2
(k_CI)l kl

with k = (k—, k).

As stated in the Introduction, this result is not new by
itself and similar calculations and expressions can be found
in the literature, e.g. in Refs. [75,76] or later in Ref. [77]. But
the identification of this building block for its use to include
non-eikonal corrections in CGC calculations is done here for
the first time. Note that using the non-eikonal expression of
the gluon propagator from [5,11], the two first terms of the
expansion of the exponential were obtained in [12] and the
exponential form guessed.

3 Multi-particle production

In the previous section, we have presented the derivation
of the non-eikonal Lipatov vertex. Now, we would like to
use this expression in order to calculate multi-gluon produc-
tion cross section at mid rapidity within the Glasma graph
approach in order to study the effects of finite target width
corrections to those observables.

The double and triple inclusive gluon production cross
sections in p-A collisions have been recently studied in
[52,53] in the Glasma graph approximation, and in [58]
going beyond it, i.e. taking into account multiple scattering
effects of the dense target. For each observable, the contri-
butions to Bose enhancement of the projectile gluons and
HBT contributions of the final state gluons are identified.
However, the studies in [52,53,58] are performed within
the eikonal approximation without taking into account the
corrections due to the finite longitudinal width of the tar-
get.

In the rest of this section, we take this extra step.
Namely, we first expand the single, double and triple
inclusive gluon production cross section in powers of the
background field of the target which actually corresponds
to the original Glasma graph approach. Then, we intro-
duce the non-eikonal Lipatov vertex (20) in the expanded
cross sections and get the explicit expressions of the Bose
enhancement and HBT contributions beyond the strict
eikonal limit for the double and triple inclusive gluon pro-
duction. Hereafter, in order to alleviate the notation we
will drop the L for denoting transverse coordinates and
momenta.

3.1 Single inclusive gluon production beyond the eikonal
approximation

Within the CGC framework, the production cross section of
a gluon with transverse momenta k and rapidity n can be
written

do ; z i i
—— =47« / e*z=2) / Al(x —2)A'(Z—y)
d2kdn ). X

Z

(@) ([U: = v vl = uf]”) .

2

where p?(x) = p¢ is the colour charge density of the pro-
jectile, (- - -) p(r) denote the average over the projectile (tar-
get) colour configurations and A’ is the standard Weiziicker-
Williams field that is defined as

1=

2 i
e = AP mip-n P
T(x—y

(2m)? p*
(22)

Al(x —y) = —

Moreover, we have introduced a short hand notation for the
transverse coordinate integrals [, = [ d*z. Here, U is the
adjoint Wilson line in the colour field of the target represent-
ing the scattering matrix of a gluon at transverse position x,
whose explicit expression reads

U)?b — Peigfdx+TaCb A;(x*,x)’ (23)

with T, being the SU (N, generator in the adjoint represen-
tation and A (xT, x) the colour field of the target. The Wil-
son line operator accounts for the multiple scattering effects
of the gluon in its interaction with the target. However, as
mentioned previously, the Glasma graph approach for dou-
ble (or multiple) gluon production corresponds to the dilute
limit of the target. Therefore, we expand the Wilson lines to
first order in the colour field of the target:

Uwp(x) ~ 1 +ig ;b/dx+A;(x+,x)

2
=1 +igTCb/-dx+/d—qei‘” A-(xT,q).
a (2]_[)2 C
(24)

Using Eq. (24) we can write the single inclusive gluon pro-
duction cross section in the dilute limit as

dO’ / . _ . .
A I / Al(x = DAG - y)
d?kdn | giyee e xy

(@),
d’q) d*q

2 + .+
dx; d —_—
x& / R | oy 2n)?

@ Springer



600 Page 6 of 27

Eur. Phys. J. C (2019) 79:600

(a7 anaz 6F ) (TTa
[efiqrz _ efiqwc] I:eiqzi _ eiqzy] . (©25)

We can now perform the colour averaging over the projectile
colour charge densities. For the correlator of two projectile
colour charge densities, we use the generalized MV model
and write it in the following general form:

(@), = 8" 1, ). 26)

Inserting Eq. (26) into the expression for the dilute limit of
the single inclusive production cross section given in Eq. (25)
and integrating over transverse coordinates, we can simply
write the dilute limit of the single inclusive production cross
section as

do
d%kdn

=4m s Cy gZ/clerdx2+
dilute

d*q1 d*q
@n)? (2n)?
x 12[k —q1,q2 — k]L (k, g LY (k, q2),  (27)

54z of . a0A7 0 @),

where L (k, q) is the strict eikonal Lipatov vertex (19).

At this point, the effects of finite longitudinal width of
the target can be implemented in the single inclusive gluon
production cross section. Effectively, the implementation of
these effects corresponds to two modifications in the cross
section given in Eq. (27). The first modification is to replace
the eikonal Lipatov vertices by the non-eikonal ones derived
in Sect. 2:

Li(k,q) — Lig(k, q; x™). (28)

The non-eikonal Lipatov vertex given in Eq. (20) takes into
account the finite longitudinal width of the target to all orders
as discussed in Sect. 2. The second modification that is
needed to account for the finite longitudinal width of the tar-
get is adopting a modified expression for the correlator of two
target fields. Since the target has finite longitudinal width, the
target fields can be located at two different longitudinal posi-
tions. Therefore, for the correlator of two target fields, we
consider a generalization of the MV model in which the two
colour fields are located at different longitudinal coordinates
and are connected via gauge links along the longitudinal axis
[12]. In that case, the colour field correlator of two fields can
be written as

(A7 a0A7 0 @) =6 nix)

1
S0 = = xf1) %D @1 - @) latan P,

220t
(29)

@ Springer

where AT is the colour correlation length in the target and
much smaller than the total longitudinal width of the target
L. Moreover, function n(x™) defines the one dimensional
target density along the longitudinal axis. For simplicity of
the calculation, we assume that this function is constant with
a finite support, n(xT) = ng for 0 < x* < L™ and 0 else-
where. Finally, function a(q) that appears in the definition of
the two field correlator is the functional form of the potential
in momentum space which is usually taken to be a Yukawa
type potential in jet quenching calculations [6,7,75,76]:

2

() = ——— (30)
(42 +m2)*

with m some Debye screening mass or inverse colour corre-
lation length. We would like to emphasise that in the limit
of vanishing correlation length A together with a constant
potential a(g) and a constant longitudinal target density
n(x1+ ), the two target field correlator defined in Eq. (29)
reduces to the standard MV model correlator.

By implementing these two modifications in the sin-
gle inclusive gluon production cross section and using the
expression of the non-eikonal Lipatov vertex given in Eq. (20)
together with the two field correlator introduced in Eq. (29),
we can write the non-eikonal generalization of the dilute limit
of the single inclusive gluon cross section which accounts for
the finite longitudinal width of the target as

NE
=47 a; Ca (N2 — 1) ¢

dilute

do
d%kdn

d? ‘ .
/ (271[;2 w2 [k—q.q—k] L' (k. ) L' (k. q) |a() [

L+
+
X ng——-o dx
22+ Jo !
+ gt
X+ L2
f dx ¢ 57 O3, (31)
xr—)ﬁ

In this expression the non-eikonal Lipatov vertex is incorpo-
rated via the phase that appears under the longitudinal coordi-
nate integral, the 6-function provides the limits of the integral
in x;r and the one dimensional target density along the lon-
gitudinal axis is taken to be constant, ng for 0 < xl+ < Lt.
The integrations over the longitudinal coordinates xfr and x2+
can be performed in a straight forward manner and the final
result for the dilute limit of the non-eikonal single inclusive
gluon production cross section reads

do NE
Py, = 4T CANE = D&% (oL
1lute
_ d’q
o=t [ Sk —q.q k]
Lk, @) L'k, q) |a(g)]’, (32)
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where we have used the fact that AT < L for the integration
over the longitudinal coordinates. Here, g{\]E(k_, A1) is the
function that encodes all the non-eikonal information of the
single inclusive gluon production and reads

GG 2T = k—l/\ — sin(k~2"), (33)
with k~ = —2+ We would like to emphasize that the factor
(noL™) in Eq. (32) stands for the the number of scattering
centres inside the finite longitudinal extend L™ of the target.
In the dilute target limit, we only take account one single
scattering both in the amplitude and in the complex conjugate
amplitude. Therefore, in this limit this factor will be set to
one hereafter and we get

NE

do
i — 4oy Ca (N2 — 1) g2 GNEGk; 0
d*kdn dilute ' ‘ :

/ anp

Equation (34) is the final result for the dilute target limit
of the non-eikonal single inclusive gluon production cross
section. Note that in the limit of vanishing correlation length
AT one can expand the non-eikonal single inclusive produc-
tion cross section to second order in (k~A™) which corre-
sponds to the single inclusive gluon production cross section
at next-to-next-to-eikonal accuracy and the result coincides,
as announced, with the expression derived in [12].

Before we conclude this subsection, let us comment on the
relative importance of the non-eikonal corrections, that are
accounted for in Eq. (34) via the function g{‘IE (k=; A7) that
encodes the non-eikonal effects, with respect to the eikonal
limit of the single inclusive gluon production cross section
in the dilute target limit. First of all, in the limit of vanishing
(k—A1), we have

—q,q =k L'k, )L (k, ) |a(q)|.
(34)

lim GNEGk—;aT) =1 (35)
k=At—0
and we recover the well known eikonal limit of the single
inclusive gluon production in the limit of the dilute target. In
Fig. 5, we have plotted the ratio of the non-eikonal to eikonal
single inclusive gluon production cross sections, (33), as a
function of the transverse momenta of the produced gluon
at fixed pseudorapidity n = 2 for different values of the
colour correlation length A ™. In the limit of vanishing trans-
verse momenta of the produced gluon, the non-eikonal and
eikonal cross sections coincide and the ratio becomes one as
expected. The ratio shows up to 20% relative weight of the
non-eikonal corrections for AT = 1 fm, for smaller values of
AT the results show a suppression from a few to up to 10%.

In Fig. 6, we have plotted the ratio of the non-eikonal
to eikonal single inclusive gluon production cross sections,
(33), as a function of pseudorapidity for different values of

n=2
0.95+ 1
~
~
% 0.90 ]
w — At=0.4 fm
& 0.85 AT=0.6 fm ]
AT=0.8 fm
0.80F = At=1fm .
0.0 0.5 1.0 1.5 2.0 25

K [GeV]

Fig. 5 The ratio of non-eikonal to eikonal single inclusive gluon pro-
duction cross sections, (33), as a function of the transverse momenta of
the produced gluon for different values of the correlation length A ™", at
fixed pseudorapidity n = 2

At=0.5 fm
1.00f ‘ ‘ ]
0.95" ]
~
~
X 0.90F 1
u — k=1GeVv
S k=2 GeV
0.85¢ k=25GeV |
080 L 1 1 L 1 1 L

1.0 1.5 2.0 25 3.0 35 4.0
n

Fig. 6 The ratio of non-eikonal to eikonal single inclusive gluon pro-
duction cross sections, (33), as a function of the pseudorapidity of the
produced gluon for different values of its transverse momenta at a fixed
correlation length AT = 0.5 fm

the transverse momenta of the produced gluon at a fixed cor-
relation length AT = 0.5 fm. The ratio of the non-eikonal
to eikonal cross sections goes to one with increasing pseu-
dorapidity as expected, since the relative importance of the
non-eikonal corrections should vanish for large values of 7.
The results show that up to pseudorapidity n = 2.5, depend-
ing on the value of the transverse momenta of the produced
gluon, the relative weight of the non-eikonal corrections can
vary roughly between 15% and 2%. These results confirm our
analytical predictions for the importance of the non-eikonal
corrections in certain kinematical regions.

3.2 Double inclusive gluon production beyond the eikonal
approximation

In this Subsection we consider double inclusive gluon pro-
duction beyond the eikonal approximation. Our strategy for
this subsection is the same as the calculation performed for
single inclusive gluon production in the previous Subsection.
Namely, we start with the double inclusive gluon produc-
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tion cross section that takes into account multiple scatter-
ings in the target in [58]. Then, we consider the dilute target
limit of this expression which effectively corresponds to the
Glasma graph approximation by expanding the dipole and
quadrupole operators in powers of the background field of the
target. Finally, we introduce the finite longitudinal width of
the target effects via the non-eikonal Lipatov vertex Eq. (20)
and the generalised MV model for the two field correlator
Eq. (29) in the expanded expression of the double inclusive
gluon production cross section.

The general expression for the production of two glu-
ons with pseudorapidities 17 and 7, and with transverse
momenta k| and kp reads

do
dzkldn1d2k2dn2

o / ok G2 Fika-Ga—32)
21212222

= al(4n)?

X / Al (x1—21) A (Z1—y1) AT (xa—22) A (22— 12)
X1X2Y1Y2
x (ot 200 p;’§>P (v, - va]™

x[Ud UL ] (U= U] UL U] ™) 66
In the dilute limit of the target, or equivalently in the Glasma
graph approximation, the Wilson lines are expanded in pow-
ers of the background field of the target as in Eq. (24). There-
fore, in the dilute target limit double inclusive gluon produc-
tion cross section can be written as

do
d?kidmd*kadns | gine

x / etk @i=z)+ika-(22—y2)
21212222

= al(4n)?

x / Al(x) — 2)A'Z1 — y) A (x2 — 22) A/
X1X2Y1Y2

ap ,az

x(E2 = y2) (oSl p2on o)

d*q1 d*qy d’q3 d’qu
m)? 2n)? (2m)? (2n)?
x(A7 G a4y (F AT (L 4 Ag (e aw),

X (TOT?) a1, (TCT) gy [ €741 —e 710111 ]

x [eiqﬁl —elen ] [e*iqs-zz

% [eiq4-22 _ giq4~y2]_ (37)

X g4 / dxfdx;'dx;'dxj'

_ e*i%'xz]

Let us now perform the averaging of the double inclusive
production cross section with respect to the colour charge
densities of the projectile. Since we are using a generalized
MYV model, the average of any product of the colour charge
densities factorize into products of all possible Wick contrac-
tions:

@ Springer

bi b by b
<'O§:11 Px; Py py§>P = <'0J(cl11 pfclzz>P<py1] 'Oyzz)P
ap b ay b
+<’0x1| pyl‘>P<px22py§>P
b b
+{oso2) (p2el) (38)
For the correlator of two colour charge densities, we use the
generalized MV model introduced in Eq. (26). After imple-
menting Eq. (38), the dilute limit of the double inclusive

gluon production cross section can be written as a sum of
three contributions:

do
d2k1dn1d2k2dn2
etk i=z0+ik-(22—y2)

x/
21212222

x/ Al (x1 =z A" G1—yD A (2 —22) AT (Z2 — )
X1X2Y1Y2

2 2 4
=o;(4r)°g
dilute

< 7T TIT P (1, 22 (01 v2)
x + e[ 7T e[ T T (a1, y) 2 (02, y2)
x + [ TUTP T T (o, )P, ) |

d*q1 d*qx d*qz d’qu
(27)? (27)? 2m)? (27)?

x(A7 a0 AG 0 @A (L 43 Ag (. 49))

X /dxI*'abc2+d)c3+dx;‘|r

X [e—iq1~z1 — e—iqrxl][eiQZ‘Zl — eiqz-yl]
x [e—ifn'Zz _ e—iqs‘n]
X[eiq4-22 _ eiq4~yz]. (39)

In order to preserve the consistency of the notations intro-
duced for different contributions in [58], here after we refer
to the first contribution as Type A, the second one as Type B
and the last one as Type C, in Eq. (39).

Let us focus on Type A contributions to the dilute limit of
the double inclusive gluon production cross section and adopt
the same procedure applied in single inclusive gluon produc-
tion in order to incorporate the non-eikonal effects due to the
finite longitudinal thickness of the target. The same proce-
dure and arguments hold for the calculation of Type B and
Type C contributions. After integrating over the transverse
coordinates, the Type A contribution can be written as

dO.Type A
d2kydn d2kad

=al@n)? gtu[TeTPTITC]

dilute
ot gt
X /dx1 dxy dx3 dx)

d’qy d*qy d’qz d’qs
(2m)? (2m)% 27)? (27)?
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x (A7 a4, (F AT (L g Ag (g
x Wkt — q1, k2 + qa] 1?2 — ki, —k2 — g3]

x L' (ky, q1) L' (k1, q2) LY (k2, —q3) L (k2, —q4).  (40)

Moreover, we can factorize the the average of the colour
fields of the target into all possible Wick contractions and
write it in the following factorized way:

(AZ6t a4y (3 A7 (4 A7 (e a0),
= (a7t ana; o ) (4767 a7 (s a9)
(A7 a0 A G an), (A7 6 a4, @)

+ (A7 Az 6 an), (47 0F a2 A (e aw)
(4D

T

We can now incorporate the non-eikonal effects due to the
finite width of the target. This is achieved by replacing the
Lipatov vertices by the non-eikonal ones and using the gen-
eralized MV model for the correlator of two target fields
as defined in Eq. (29). After implementing these two mod-
ifications, the Type A contribution to the dilute limit of the
non-eikonal double inclusive gluon production cross section
reads

doTypeA NE 5
_— =a?@n)?g* CR (N> - 1)
d*kidm d*lom |gine A
d’q1 d’q

2 2
)2 W|a(q1)’ la(q)| /dxrdx;dx;dxj

% ekt @ =x) ik (e —xi)
X {Mz[kl — g1,k — @) 1P g1 — k1, g2 — ko]

x L' (ky, q1) L' (k1, q1) LY (ka, g2) L’ (k2, ¢2)

1
+ + +_ ot
X M_+n(xl )@(k =[x = x, |)

x—n(x?)@()ﬁ' — |x;r — x4+|>
X + ,U«Z[kl —q1. k2 +q1] M2[612 — ki, —k2 — 2]
x L' (ki, q1) L' (k1. q2) L’ (ka, —q2) L7 (k2. —q1)
1 1
+ + +

X S )@(x+ — x =] |) —
x@(k+ - I)c;r —x;r|>
<t ) [k — a1 ko — 2] wP[a2 — k1. g1 — k

sk —ai ks @] 1la — kg1 — k]
<L (ki, q)L (k1. 2) L (ka, 1) LY (k2. q2)
X —n()cf“)@()»+ — |xfr — x;rl)

><—n()c;')®<)fr — |)c§L — xr )}

2+ 42

where we have used the following colour identities

w[7TT T"] = C5 (N2 — D), (43)

w[TTPTOTh] = % C3 (N2 -1, (44)
with C4 = N, the quadratic Casimir in the adjoint represen-
tation. Now, the integral over the longitudinal coordinates
can be performed in the same way as in the single inclusive
gluon production. After using the ® -functions to determine
the limits of the integrals, a straightforward integration gives

dgypeA NE 2 2 42 a2
_ =o. (4r)"g" Cy (N —1)
kidm ko |gre A
d’q d’q

(27{)2 (277)2 |a(QI)|2 |a(q2)|2g{\IE(kl_; )»+) g{\IE(k2_7 )L+)

x {“2[1‘1 —q1.ka — @] P [q1 — ki g2 — ko]

x L' (ki, q1)L" (k1, q1) LY (ka, g2) L7 (ka, q2)
+ Bk —ky s LY [k — g1 ko + q1| 1
x[q2—ki, —ka—q2] L' (k1.q1) L (k1. q2) LY (k2. —q2) LY (k2. —q1)

1 o
+ EQZNE(kl Ky L) [k — g1 ko — g2 4

x[q2 —ki.q1 — k2] L' (k1. 1)L (k2. q2) LY (k2. ) LY (k2. q2) ¢

(45)

where, on top of the function QFE(k’; AT) that takes into
account the non-eikonal effects defined in Eq. (33), we
have introduced a new function Qg”i (ki ky s L7T) that also
accounts for the non-eikonal effects in the dilute target limit
of the double inclusive gluon production cross section and
reads

GYE(ky k35 L)
— — 2
={ 2 sin[“l—kz)ﬁ]}.
(ky —ky )L+ 2

Again, this function goes to 1 when we consider the shock-
wave (eikonal) limit LT — 0.

The same procedure can be adopted to calculate Type B
and Type C contributions to the dilute target limit of the non-
eikonal double inclusive gluon production cross section. The
results read

(46)

dgyeeB NE 2 2 4,2 A2
_ =o 4m)"g" Cy (N —1)
d*kidm d?kam2 |gge A
d*qy d’q»
(2m)? (2m)?

X :(ch =Dkt —q1.q1 — ki 1Pk — q2. g2 — k2

lat@n)|* |at@) PG K5 1) GNE Gy 5 27)

x L' (ki, q1)L" (k1, q1) LY (ka, q2) L7 (ka, q2)
+ GEky ks LY [k — g1 g2 — ki [ 0P [k — 2. 91 — k2]
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Li(ki, )L k1, q2) LY (ka, ¢2) LY (k2. q1)
+ GYEky . —ky s L) P [ki—q1. ga—ki ] P [ka+q1, —ko—q2]

x L' (ki, q)L' (k1. q2) LY (k. —q1) LY (ko —qz>} (47)
and
doTypeC NE 5
- =a?(@4m)? g*CA (N> = 1)
d2kydnid?kadna | g " ATe
q d* ¢

latqn)|* alg) | GNE kT 27) GNB ks A )

2m)? (27)?
X {l‘«z[kl —q1. @2 — k2] 1P [ke — @2, q1 — k1]
xL'(ky, q1)L' (k1, q1) L (ka, ¢2) LY (k2. q2)
+ GNEky k5 s L) [kt — g1, g1 — ko] 14
x[k2 — g2, q2 — ki | L' (ki q1)L' (k1 42)
x L (ka, q1) LY (k2. q2)

1 o

+ 5gzNEac —k3 s LYY [kt — g1, —k2 — q2]
xu?[ky + g1, q2 — ki ] L' (ki )L (k1. 42)

x L (ka, —q1) L’ (k2. —q2>}A (48)

Finally, we can add the three contributions Eqs. (45), (47)
and (48) and organize the full result of the dilute limit of the
non-eikonal double inclusive gluon production cross section
as

do NE

dzkldmdzkzdr)z dilute
d*q1 d*q 2 2
2n)? G2 la(gD)|” |a(g2)]
x G (ks AT Gy s AT

1

(O (1) (1)

x {IZtr + N2 —1 [IZtr + Iltr]}’ (49)
c

=a? @)’ gt CR (N2 - 1)

X

where the subscripts denote the single trace terms (1 f{r) ) or the

double trace term (12(2 ) in the double inclusive gluon produc-

tion cross section given in Eq. (39). The explicit expressions
for these terms read

By = 1’k —q1.q1 — k] 1 [ka — q2. 02 — k2

L (k1. q)L (k1. q1) L (k. ) L' (k2. q2),  (50)
15 = |9k L)

wrky — g1, g2 — ki) k2 — g2, g1 — ko]

x L (ki gL ki, 42) LY (k2. )L (k2. )

+(ky = —k;) (51)

and, finally,
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Il(tlr) = {Mz[kl — 41,92 —kz] M2[k2 — 42,41 —k1]

L' (k1, @)L k1, q1) L (k2, g2) LY (ka, q2)
+ G E(ky k55 LY [Mz[kl —q1.q1 — k2]

1
wrka — g2, g2 — ki) + E,U«Z[kl —q1.ky — q2]
M2[612 —ki,q1 — kz]]

x L' (k1, q)L' (k1, q2) L (ka, q1) L7 (ka, qz)}

ik — ko). (52)

Let us now identify the terms that appear in the dilute tar-
get limit of the non-eikonal double inclusive gluon produc-
tion cross section. For this analysis, we follow the procedure
introduced in [58]. The function u2(k, p) can be considered
as function of the total transverse momenta and a function of
the average transverse momenta:

k —
(k. p) = T(T”) F[(k + p)R]. (53)

where function 7 can be identified with a transverse momen-
tum dependent distribution of the colour charge densities, and
function F is a soft form factor which is peaked when the
argument of the function F vanishes and rapidly decreases
when |(k + p)R| > 1, with R the radius of the projectile. In
our set up, the transverse momenta k; — g1 and k» — g are
the momenta of the two gluons in the projectile, k1 and k»
are the momenta of the two gluons in the final state and the
momenta g1 and g; are the transverse momenta that are trans-
ferred from the target to the projectile during their interaction.
In such a set up, the (forward/backward) Bose enhancement
of the gluons in the projectile is identified by the form fac-
tor that is peaked around (k1 — ¢q1) F (k2 — ¢2), the (for-
ward/backward) HBT correlations of the final state gluons
are identified by the form factor that is peaked around k| F k»
and finally the (forward/backward) Bose enhancement of the
gluons in the target is identified by the form factor that is
peaked around g1 F g2. We proceed to analyse them all:

e First of all, it is straightforward to realise that the first
term in Eq. (49), whose explicit expression is given in
Eq. (50), is nothing but the square of the single inclusive
gluon emission probability. Therefore, this term is com-
pletely factorised and does not give any contribution to
the correlated production.

e The second contribution to the non-eikonal double inclu-
sive gluon production cross section is given in Eq. (51).
This term is proportional to
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1wk — a1, a2 — kil uke — g2, q1 — k2

_ T[k1 (¢ +qz)}T[k2 (¢ +qz)]
2 2

X F2(|q1 —q2|R>. (54)

The form factor F in Eq. (54) is strongly peaked when the
transverse momenta transferred from the target are very
close to each other. Therefore, the term defined in Eq.
(51) is the term responsible for the Bose enhancement in
the target wave function.

e Let us now consider the third contribution to the double
inclusive gluon production cross section which is defined
in Eq. (52). This contribution consists of three different
terms:

(1) The first term in this contribution is proportional to

1wk — a1, a2 — ko] 1 [k2 — g2, q1 — ki |

_ 72 (k1 —q1) | (k2 —q2)
h 2 2

P2t = 1) = (k2 = a2)| R] (55)

Since the transverse momenta k; — g1 and k> — g2
are the momenta of the two gluons in the projectile
wave function and the form factor F is peaked around
when the momenta of the two gluons in the projectile
wave function are close to each other in this term, it is
the Bose enhancement contribution in the projectile
wave function.
(i) The second term in Eq. (52) is proportional to

1wk —qi a1 — k] uks — 2. g2 — ki |

ki +k
R

T[(klzﬂ —q2i|F2|:|k1 —k2|R]. (56)
Now the form factor F is peaked for the transverse
momenta of the two gluons in the final state is close
to each other, so this term corresponds to the HBT
contribution.

(iii) The last term in Eq. (52) is proportional to

1wk — g1k — @] 1*[a2 — ki, g1 — k2]
_ T[(kl —q1) (k2 —42)]

2 2
T|:(k2+qz) (kg —HI])]
2 2
xF[|tki = an) + (k2 = g2 |R]. 57

In this term, the form factor is peaked for the trans-
verse momenta of the two gluons in the projectile
wave function are close and opposite to each other.

Therefore, this term is a contribution to the backward
peak of Bose enhancement of gluons in the projectile
wave function.

Apart from the non-eikonal effects that are encoded in
the functions g{\IE(k’; A1) and gyE(kf, ky ; L), the main
difference between the dilute target limit of the double inclu-
sive gluon production cross section calculated in this subsec-
tion and the double inclusive gluon production cross section
derived in [58] is the N, counting of some of the contribu-
tions. Our main result, Eq. (49), shows that apart from the
uncorrelated contribution that is identified as the square of the
single inclusive gluon production cross section, all terms that
contribute to the correlated production come with the same
N, power. However, in [58], the Bose enhancement contribu-
tion of the gluons in the target and part of the Bose enhance-
ment contribution of the gluons in the projectile have shown
to be N.-suppressed with respect to the rest of the terms. This
is a well known consequence of the fact that some aspects
of N, counting are different in the dilute and dense limits
[80,81].

Let us comment on the function gyE (ky k5 s L),
Eq. (46), which is one of the functions that encode the non-
eikonal effects in the double inclusive gluon production in
the dilute target limit. As it can be seen clearly from the final
expression, Eq. (49) together with Egs. (50), (51) and (52),
the mirror image of the terms that contribute to the correlated
production of two gluons which is given by (k, — —k,),
is accompanied by gg“i (ky —ky s L7T). However, in certain
kinematic regimes the behaviour of QEIE (ki k5 s L7) differs
completely from gzNE(k;, —ky ; LT). Namely, in the kine-
matic region where k;” ~ k, we get

GNB(k ks s LT > GNB k7, —ky s L) (58)

which creates an asymmetry between the terms with (k;, k,)
and their partners with (k, — —k,). This asymmetry created
by the non-eikonal effects immediately reminds the asym-
metry between the forward and backward peaks of the ridge
structure observed in two particle production.

While a dedicated study of two particle correlations and
azimuthal harmonics with non-eikonal corrections is left
for a forthcoming work [78], here we show a few results
with the sole purpose of illustrating these points. To com-
pute them, we have taken N. = 3, m = 0.2 GeV in (30),
,uz(k, q) x 8@ (k +¢) (i.e. translational invariance) but with
a projectile size S| =4 GeV~2, and regulate the denomina-
tors that give rise to infrared divergencies by substituting the
corresponding squared transverse momenta /> — [> + m§
where we have used the numerical value mz, = 0.2 GeV.

In Fig. 7 we show the ratio of the non-eikonal to eikonal
double inclusive gluon production cross sections as a func-
tion of the transverse momenta of the second produced gluon
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At=0.5 fm, n; =N, =2 and k; =1 GeV
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Fig. 7 The behaviour of the ratio of non-eikonal to eikonal cross sec-
tions at A¢ = 0 and A¢ = 7 as a function of the transverse momenta
of the second gluon for a correlation length A* = 0.5 fm, LT = 6 fm,
rapidities of the produced gluons 71 = 12 = 2 and transverse momenta
of the first gluon k1 = 1 GeV

while keeping the transverse momenta of the first gluon fixed
k1 = 1GeV, for Ap = 0and A¢ = m with A¢ the azimuthal
angle between the two produced gluons. In this plot, we use
for the correlation length AT = 0.5 fm, L+ = 6 fm and the
pseudorapidities of the produced gluons n; = 1y = 2. The
result shows that the ratio of the non-eikonal and eikonal dou-
ble inclusive gluon cross sections is enhanced for A¢ = 0
and suppressed for A¢ = m as expected by our observation
for the behaviour of gg’E(k;, ky s L) givenin Eq. (58). The
relative modification is peaked when the transverse momenta
of the second gluon is the same as the transverse momenta
of the first gluon and it varies roughly between 4% and 10%
for values of the transverse momenta of the second gluon 0.5
GeV < ky < 1.5 GeV.

In Fig. 8 we plot the normalized non-eikonal and eikonal
double inclusive gluon production cross sections as a func-
tion of the azimuthal angle between the two produced gluons
A¢. We again take AT = 0.5 fm, L™ = 6 fm, the rapidi-
ties of the two produced gluons 171 = 71y = 2 and their
transverse momenta k; = 1 GeV and kp = 1.2 GeV. These
kinematic values are chosen to enhance the asymmetry com-
ing from the behaviour of function QZNE(kl_, ky L7T). The
results are completely symmetric with respect to A¢ = 7/2
in the eikonal case, while an asymmetric behaviour is seen
for the non-eikonal case.

3.3 Triple inclusive gluon production beyond the eikonal
approximation

Let us now proceed with the triple inclusive gluon production
cross section. The general expression for the production of
three gluons, with transverse momenta k1, k> and k3 and with
pseudorapidities 1, n2 and 13 in the dilute-dense set up reads
(58]
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A"=0.5 fm, ny1=n2=2, ky=1 GeV and k;=1.2 GeV
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Fig. 8 The non-eikonal and eikonal normalized double inclusive gluon
production cross sections as a function of azimuthal angle between the
two produced gluons A¢ for AT = 0.5 fm, L™ = 6 fm, and rapidities
n1 = ny = 2 and transverse momenta k; = 1 GeV and k, = 1.2 GeV
of the two produced gluons

do
d%kidn1d?*kydnrd?ksdn;

» / ik @1 =2 +iko-(22~22)+ik3(23—23)
212223212223

=a’(4n)?

x/ Al(x) — 21)AY(Z1 — y1)
X1X2X3Y1Y2Y3
x Al (x2 — 22) A7 (22 — 2)

x A*(x3 — 23)A4(Z3 — 3) (pf?l‘ P o))t pfjﬂfi) .

" § ayby
x({[om - v ][w - vi ]}

. ¥ arbs
x{[Ve - ) [0 - U]}

A-wlpi-al”) o

After the manipulations described in Appendix A, we can
organize the dilute target limit of the non-eikonal triple inclu-
sive gluon production cross section according to the powers
in the number of colors and the result reads

NE

do
=@n)dad gty (NP - 1)
d?kydn1d?kodnrd?k3dn3 | gige 8 mat

a1 d%ar d?
(an)lz (2,:])22 (27:])32 ‘a(th)|2 }a(tlz)\2 ]a(q3)}2

x Gk s AT Gitky s DG (ks AT

1
U] (1 (1) (1
x {I3tr T [I3tr + Dy +I2tr,2]
c
1
@ 0 @ o 0
TNz [(IStr,l + IStr,2> + (IZtr,l T hyo+ 12tr,3)
c

(2 @) 2 (@)
+ (Iltr,l T hpo s+ 1m,4)]}» (60)
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where functions Ii(t? ; can be found in Egs. (A14) to (A20),
(A22) to (A31) and (A33) to (A41). This is our final result
for the dilute target limit of the non-eikonal triple inclu-
sive gluon production cross section. Apart from the fact that
this result accounts for the finite longitudinal width target
effects through non-eikonal Lipatov vertices which leave
their imprints in the functions glNE upon integration over
the longitudinal coordinates, it is valid to all orders in the
number of colors. It differs from the dilute target limit of
the result calculated in [58] in two aspects. First, the study
performed in [58], while it is valid for the dense target limit,
is truncated at O(l /(N 62 - 1)3). This obviously affects the
total number of terms in the final result. Second, as we will
discuss next, some of the N, -suppressed terms that were dis-
carded in [58], have been identified in our study and shown
to establish some interference effects that were absent there.

Let us now consider each term in Eq. (60) separately and
identify their correlation features. For this analysis we follow
the same strategy introduced in Sect. 3.2 and use the fact that

n?(k, p) o F[|k + pIR], (61)

with R being the radius of the projectile and the form factor
F peaked at zero.

e We start our analysis with the O(1) terms. The only O(1)
term in the dilute target limit of the non-eikonal triple
inclusive gluon production cross section is 13(2) term. It is
equal to product of three single inclusive gluon produc-
tion cross sections and it gives contribution to the totally
uncorrelated production of three gluons.

e Next, we consider the O [1 /(N 3 — 1)] terms. At this order,
we have three different terms: one originating from three-
trace contribution and two originating from double-trace
contribution.

(i) The explicit expression of the three-trace term, 13(tlr),

is given in Eq. (A16) and its symmetry partners in
Eq. (A15). This term is proportional to

1wk — a1, ¢ — ki ][k — g2, q1 — k2
1?lks — g3.q3 — k3] o< F*[|g2 — q1|R]
1?[ks — g3, g3 — k3] (62)

which is clearly a contribution to the forward Bose
enhancement of the gluons ¢g; and g, while the third
gluon is emitted independently from the others. Its
mirror image, given by (k, — —k,), exhibits the
same behaviour. The symmetry partners of this term
which are obtained through (k; < k3) and (k, <
k3) correspond to the two cases where the indepen-
dently emitted gluon is the first and the second gluons,
and the remaining two still give contribution to the

(ii)

(iii)

forward Bose enhancement in the target wave func-
tion.

The remaining two terms at this order, originate from
the double-trace contribution. The explicit expression
of the first of these terms is given in Eq. (A23) and its
symmetry partners are given in Eq. (A22). This term
is proportional to

Wk —qi.q1 — ki
12 ka — g2, g3 — k3] 1 [ks — g3, 42 — k2
o F*[|(k2 — q2) — (ks — q3)IR]
1k —qi.q1 — ki (63)

which can be easily identified as a contribution to
the forward Bose enhancement of the gluons k> — g3
and k3 — g3 in the projectile wave function while the
first gluon is emitted independently of the remaining
two. Clearly, the symmetry partners of this term cor-
responds to the independent emission of second and
third gluons, while the remaining two gives contribu-
tion to the forward Bose enhancement in the projectile
wave function.

The explicit expression of the last term at this order,
IZ(LIr),Z’ is given in Eq. (A25) with its symmetry partners
given in Eq. (A24). This term is proportional to

12[ks — g3, g3 — k3]

{M2[kl —q1.q1 — k2] 1?[ka — g2, g2 — k1]

1
+§,u2[k1 —q1, ko—aq2] P2 — ki, g1 — kz]}

o ks — g3, q3 — k3]{F2[Ik1 — ka|R]

1.2
t5F [I(kl—CI1)+(k2—Q2)|R]}- (64)

The first term in the brackets corresponds to forward
HBT of the gluons k; and k», and the second term
corresponds to backward Bose enhancement of the
gluons k1 — g1 and k» — g in the projectile wave func-
tion while the third gluon is emitted independently
from the other two. The mirror image of this term
which obtained through (k, — —k,) corresponds
to backward HBT of the gluons k; and k>, and for-
ward Bose enhancement of the gluons k1 — g1 and
k> — g7 in the projectile wave function while the third
gluon is emitted independently. The symmetry part-
ners of this term which are obtained via (k; < k3)
and (k, <> k3) correspond to the following two cases:
emission of the first gluon (or the second gluon in
the second symmetry partner) while the remaining
two gluons exhibit the same behaviour and contribute
to (forward/backward) HBT and (backward/forward)
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projectile Bose enhancement of the corresponding
gluons.

e We can now proceed with the (’)[1/(Nc2 - 1)2] terms. At
this order, we have terms originating from the three-trace,
the double-trace and the single-trace contributions.

(1) Letus start with the terms originating from the three-

trace contribution:

(a) The explicit expression for the first term in there,
Iz(tzr) 1» is given in Eq. (A18) and its symmetry
partners are given in Eq. (A17). This term is pro-
portional to

w2k —q1.q2 — k1]
1k + q1. g3 — ko] w3 [ks — g2, —q3 — k3]

« F[lg2—q11R] F[lgi1+q3IR]F[l92+43|R].
(65)

This term gives contribution to the case where
all three gluons are correlated. In particular, it
contributes to forward target Bose enhancement
of the gluons ¢; and g, with contributions to
backward target Bose enhancement between the
gluons g; and g3 as well as ¢» and g3. Since
the form factors in this term are independent of
the momenta of the produced gluons, the mirror
image of this term and its symmetric partners
exhibit exactly the same behaviour.

(b) The second term in the three-trace contribution
at (9[1/(NC2 — 1)2] is 13(22 which is defined in
Eq. (A20) and its symmetric partner is defined
in Eq. (A19). This term is proportional to

1k —q1.q2 — ki
12 ka — g3, q1 — ko] 1 [ks — q2. g3 — k3]

o F[lg1—q2IR] F[lg1—q3|R] F[lg2—q3|R].

(66)

Clearly, this term is a contribution to the forward
Bose enhancement of the target gluons between
the gluons ¢ and ¢, together with ¢ and g3, as
well as ¢> and ¢3. Its symmetric partner defined
in Eq. (A19) exhibits the same behaviour.
Before we continue our analysis with the terms
originating from the double-trace contributions at
O[l / (NC2 — 1)2], we would like to mention that the
two terms 13(t2r)’1 and 13(22 give contribution to the cor-
related production of all three gluons. However, the
study performed in [58] has shown that the totally cor-
related production of three gluons originate from the
sextuple contribution which in our case corresponds
to the single-trace contribution. This difference is due

@ Springer

(ii)

2)

w1 and

to the fact that the analogue of the terms 13(

13(t2r) , in the dense target limit are suppressed in pow-
ers of the number of colors and therefore discarded
in [58]. In our study, we show that these terms are
of the same order as the single-trace contribution and
give contribution to the totally correlated production.
The difference between the counting of the number
of colors in the dilute and dense limits is addressed
in detail in [80,81].

Let us proceed with the terms that originate from
double-trace contribution at order O[1/(N? — 1)?]:

(a) The first term is 12(?’1 and it is defined in
Eq. (A27) with its symmetric partners defined

in Eq. (A26). This term is proportional to
w2k —q1.q2 — k1][M2[k2 —q2. 93 — k3]
12 ks — q2. q1 — ko]
+1P[ko—q2, ks—q3] 1 [q1 — k2. g3 — k3]}
o F[lg1 — q2|R]
{FlIta=a2)~ (ks = )R] F[lks — ko R]
+ FItks = g2) + (s = g2)IR] ). (6D)

The first term in Eq. (67) is a contribution to the
forward target Bose enhancement of the gluons
q1 and g2, together with the forward projectile
Bose enhancement of the gluons ky — g, and k3 —
q3 and forward HBT contribution to the gluons
k» and k3. However, due to the HBT contribution
to the gluons k> and k3, the second form factor
in this term can be considered as peaking around
(g3 — ¢2) and, in that case, it would contribute
to the forward Bose enhancement of the gluons
q> and g3 in the gluon wave function. In [58]
there were no such contributions, again due to
the fact that this term is suppressed in powers of
the number of colors in the dense target limit. We
would like to mention that, in the translationally
invariant limit, this term is suppressed by a phase
space integration with respect to the other terms
at (9[1/(NC2 - 1)2]. The second term in (67) is a
contribution to the forward Bose enhancement of
the gluons g1 and g7 in the target wave function
together with backward contribution the Bose
enhancement of the gluons &k — g2 and k3 — g3
in the projectile wave function.

(b) The second term that originates from the double-
trace operator at O[l/(Ng - 1)2] is IZ(tzr),Z' It
is defined in Eq. (A29) with its symmetry part-
ners in Eq. (A28). This terms has three different
pieces. The first piece is proportional to
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M2[k1 —q1,—q2 — k1]
1
[ Euz[kz +q1.93 — k312 [k3 + a2, —q3 — k2]

1 [ka+q1. k3+qz]u«2[—q3—k2, q3—k3] ]
o F[lg1 + q2|R]

1
[§F2[|(k2—qz)—<k3—q3)|R] + F2[|k2+k3|R]] .
(68)

Clearly, the first term is a contribution to the
backward Bose enhancement of the gluons g
and ¢ in the target wave function with a con-
tribution to the forward Bose enhancement of
the gluons k; — ¢» and k3 — g3 in the projectile
wave function. The second term is a contribution
to the backward Bose enhancement of the glu-
ons ¢ and ¢ in the target wave function with a
backward HBT to contribution to the gluons k>
and k3. The second piece of 12([23’2 is proportional
to

12 lkr + q1. g2 — ko]

[Hz[kl —q1. —k3 — q2|1*[q3 — ki, k3 — 3]
1

+§u2[k1—q1, ks—q3|u*[gz—ki, —ks—q2] ]

o Flg1 + q2|R] | F?[lki — k3| R]

1
3 F[I = g1+ s — q3)|R]] (69

The first term in Eq. (69) is a contribution to
the backward Bose enhancement of the gluons
g1 and ¢» in the target wave function with a
forward contribution to the HBT of the glu-
ons k1 and k3. The second term in Eq. (69) is
a contribution to the backward Bose enhance-
ment of the gluons ¢; and ¢» in the target
wave function with a backward contribution
to the Bose enhancement of the gluons k; —
q1 and k3 — g3 in the projectile wave func-
tion. The last piece of 12(?’2 is proportional
to

1 [ks + q2. —k3 — q3]

1
[Eﬂz[kl —q1. g3—ka [ [—q2—k1. k2 + g1 ]
+uP[ki—q1, ka1 |u?[ g2k, %—kz]]

1
o F[lg2—43IR] [EFU(/CI—QI)—(/(B—%”R]

(©)

F[l(ki —q1) — (k2 — ¢2)|R]
+ F2[ |k —k2|R]]. (70)

The first term in this equation is a contribu-
tion to forward Bose enhancement of the gluons
q> and g3 in the target wave function together
with forward Bose enhancement of the gluons
ki — q1 and k3 — g3 as well as k; — g1 and
ko — ¢» in the projectile wave function. The
second term is a contribution to forward Bose
enhancement of the gluons ¢, and g3 in the target
wave function together with the forward HBT
of the gluons k| and k». The symmetry partners
of all three pieces in Iy 2 that are defined in
Eq. (A28) can be easily identified in the same
way.

The last term that originates from the double-
trace contribution is 12(3{3 which is defined in
Eq. (A31) together with its symmetry partner
defined in Eq. (A30). The first piece in 12(?3 is
proportional to

w2k —q1.q2 — k1] [
12 ka — g3, g3 — k3]u?[ks — q2. q1 — k2]

1
+5M2[k2—%, k3—q2 | u*[q1—k2, g3—ks] ]

o F[lg1 — @2l R] [F2[|k2 ~kalR]

1
+ 5 P21tk = 42) + (ks — q3)|R]] . an

The first term here is clearly a contribution to
the forward Bose enhancement of the gluons
g1 and ¢g> in the target wave function together
with a contribution to forward HBT of glu-
ons k> and k3. The second term is a contri-
bution to the forward Bose enhancement of
the gluons ¢; and ¢> in the target wave func-
tion together with a contribution to the back-
ward Bose enhancement of the gluons ky — ¢»
and k3 — g3 in the projectile wave function.
The second piece of 12<t2r)’3 is proportional to

1?lks = q2. q3 — k3] [
1k — g1, q1 — ko ]u*[gq2 — ki, k2 — g3]

1
+§M2[k1 —q1. ko—q3 |1 [q2—k1, q1—k2] ]
o F[lg2 — 31 R] [F2[|k1 —klR]

1
5P (10— a0 + (e~ qIR] . 72)
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The first term in this equation is a contribution
to the forward Bose enhancement of the gluons
g2 and g3 in the target wave function with a for-
ward contribution to HBT of gluons k; and k.
The second term in Eq. (72) is a contribution to
the forward Bose enhancement of the gluons ¢»
and g3 in the target wave function with a back-
ward contribution to the Bose enhancement of
the gluons k1 — ¢ and ky — g7 in the projectile
wave function. Finally, the third piece of Iz(tzr)’3 is
proportional to

1?ka — g3, g2 — k2] [,U«Z[kl — g2, 93 — k3]
1 g — ki ks — qi]

1
+§M2[k1 —q, k3—q1]M2[611 —ki. q3—k3] ]

o F[lg2 — 431R] [F2[|k1 — ksIR]

1
+ 31 =) + s - q3)|R]] . (73)

The first term here is a contribution to the for-
ward Bose enhancement of the gluons ¢, and g3
in the target wave function together with a con-
tribution to the forward HBT of the gluons k; and
k3. The second term in Eq. (73) is a contribution
to the forward Bose enhancement of the gluons
g» and g3 in the target wave function together
with a contribution to backward Bose enhance-
ment to the gluons k1 — g1 and k3 — g3 in the
projectile wave function. The symmetry partner
of the 12(t21'),3 that is defined in Eq. (A30) can be
identified easily in the same manner.

(iii) Finally, we can analyze the terms that are originate
from the single-trace contribution. They are four of
them:

(a) The first one, 1 2)
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110 is defined in Eq. (A34) with
its symmetry partners given in Eq. (A33). The
first term is proportional to

1k — q1.ka — g2 [MZ[k:% —q3.q1 — ki
Mz[% — ko, q3 — k3]
+u?[k3—q3, ga—ka | [q1—k1, g3 —ks3] ]
o F[|(ki — q1) + (k2 — q2)|R]
[ Flits a9 = 1 = quiR]

F[l(k2 — q2) + (k3 — g3)|R]
+ F[ltks — g3) — (k2 — q2)|R]

FlIGk — q1) + (k3 —q3)|R]]. (74)

(b)

Clearly, the first term in this equation is a con-
tribution to backward Bose enhancement of the
gluons k1 — g1 and k» — g» together with con-
tribution to forward Bose enhancement of the
gluons k1 — g1 and k3 — g3 as well as a con-
tribution to backward Bose enhancement of the
gluons k — g2 and k3 — g3, all in the projectile
wave function. The second term in Eq. (74) is
a contribution to backward Bose enhancement
of the gluons k1 — g1 and k — ¢» together with
a contribution to forward Bose enhancement of
the gluons k3 — g3 and k» — g7 as well as a con-
tribution to backward Bose enhancement of the
gluons k| — g1 and k3 — g3, all in the projectile
wave function. The symmetry partners of this
term are given in Eq. (A33) and, again, they can
be easily identified by using the same procedure.
The second term that originates from the single-
trace contribution, / l(tzr),Z’ is defined in Eq. (A36)
with its symmetric partners given in Eq. (A35).
This term has four pieces and the first piece is
proportional to

12k — g2, k2 — q1]

1
[ 5”2 [k3—a3, q1—k1]u*[g2—k2, g3—ks]

1
+§u2[k3—613, fIz—kz],uz[CIl —k1, q3—k3] ]

o F[|(ki — q1) + (k2 — q2)|R]

(5 Flits -4 - & - aniR]

F[|(ka — q2) + (k3 — g3)|R]

43 Fits — g9 — (2 — @2)IR]

Flt = a0 + (- 9] . (75)

The first term in this equation is a contribution
to backward Bose enhancement of the gluons
k1—q1 and kp—go as well as ko —gp and k3 —g3 in
the projectile wave function together with a for-
ward contribution to Bose enhancement of the
gluons k1 — g1 and k3 — g3 in the projectile wave
function. The second term in Eq. (75) is a con-
tribution to backward Bose enhancement of the
gluons k1 — g and k — g2 as well as k| — g1 and
k3 — g3 in the projectile wave function together
with a forward contribution to Bose enhance-
ment of the gluons kp — ¢g» and k3 — ¢3 in the
projectile wave function. The second piece of
1 1(t2r),2 is proportional to
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wrky — g1, ks — g3]

[uz[kz—qz, a2~k | [g1—k2. g3 — k3]

2
o F|(k1 — q1) + (k3 — g3)|R]

[F[uq kol R] F[|(k1—q1)+(3—g3)|R]

1
+= 12 [ko—q2, g3—k3 | [qa—k1, g1 k2] ]

1
+t3 F[|(k2—q2)—(k3—gq3)|R]

F[1k1 — q1) + (k2 —qz)|R]]. (76)

The first term here is a contribution to backward
Bose enhancement of the gluons k1 — g1 and
k3 — g3 in the projectile wave function together
with a contribution to forward HBT of the gluons
k1 and k>. The second term in Eq. (76) is a con-
tribution to backward Bose enhancement of the
gluons k1 — g1 and k3 — g3 as well as the gluons
k1 — g1 and ky — g3 in the projectile wave func-
tion together with a contribution to forward Bose
enhancement of the gluons kp — g2 and k3 — g3
in the projectile wave function. The third piece
of I l(tzr),2 is proportional to

w2k — g1, q1 — k2]

[Mz[kz — g2 k3 — @3]z — k1. g3 — k3]

+1l[ka—q2, g3—k3 | [ks—q3. g2—k1] ]
(77)

o F[lki—ka|R] [F2[|(kz—qz>+<k3—q3>|R]

+ FItks — q) — (k3 —q3>|R]]. (78)

Clearly, the first term this equation is a contri-
bution to forward HBT of the gluons kj and k»
together with a contribution to backward Bose
enhancement of the gluons k, — g2 and k3 — g3
in the projectile wave function, while the second
term is a contribution to forward HBT of the
gluons k; and k, together with a contribution to
forward Bose enhancement of the gluons k> — g»
and k3 — g3 in the projectile wave function. The
last piece of the 1 1(t2r)2 is proportional to

w2k = q1.q3 — k3]

1
[EMZ[/Q — g2 k3 — @3]uP[q2 — k1. q1 — k2]

+ul[ka—q2, g2 —k1 | [ks—q3. g1 k2] ]
(79

(c)

o F[ltk1 = q1) = (k3 — ¢3)|R]

1
[5 FlIks — g2) + (ks — 3)|R]

F[I(ki — q1) + (k2 — q2)1]

+ Fllki—kal R] FlIti—qn—(a—g2) R] .
(80)

The first term in this equation is a contribution
to the forward Bose enhancement of the gluons
k1 — g1 and k3 — g3 together with a contribution
to the backward Bose enhancement of the gluons
ko —q» and k3 — g3 as well as the gluons k1 — ¢
and ky — g7 in the projectile wave function. The
second term in Eq. (79) is a contribution to for-
ward Bose enhancement of the gluons k; —¢1 and
k3 — g3 in the projectile wave function together
with a contribution to forward HBT of the glu-
ons k1 and k». The identification of the symmetry
partners of 1(t2r)2 can be performed in a straight
forward way by adopting the same procedure.
The third term that originates from the single-
trace contribution, / 1(?3 is defined in Eq. (A38)
and its symmetry partners are given in Eq. (A37).
This term has also four pieces and the first one
is proportional to

{Mz[kl—f]l»kZ‘HIl]
[Mz[k3+q2, k1 |1 [~q3—ka, g3—k3]

1
+§u2[k3+q2, —g3—ka ] [~q2—k1, 43—k3] ]
1

+5 12 (=1, g3—ka]u? [katqr. —gr—ki]

Mz[k3+q2, —q3 —kz]}
o {F[|k1+k2|R] [F[|k1 —k3|R] F[lkay+k3|R]

1
+3 P[0 =g9)~(a—a)IR]

+- FlItki—g1)—(k3—q3)IR]

Bl

F

—

|(k1—q1)—(ka—q2)|R]
F[I(kz—f12)—(k3—f13)|R]}- (81)

The first term in this equation is a contribution
to the backward HBT of the gluons k; and k>
as well as the gluons ky and k3 together with a
contribution to forward HBT of the gluons ki
and k3. The second term in Eq. (81) is a contri-
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bution to backward HBT of the gluons k; and
ko together with a contribution to forward Bose
enhancement of the gluons k» — ¢ and k3 — g3
in the projectile wave function. The third term is
a contribution to forward Bose enhancement of
the all three gluons k1 —q1, k2 — g2 and k3 — g3 in
the projectile wave function. The second piece
of I 1(t2r)% is proportional to

[Mz[kl—fh, k3—q3] w[ka+q1, g3—k1]

12 [g2—ka, —k3—q2]
+u[ki—q1, @2—ka | n*[ka+q1, —k3—q2]

1*[k3s—q3. 3—ki ] ]
x [F[|k2+k3|R] F[I(k—g1)+ (s —g3)IR]

+F [kl R] P10 —g) —(a—gIR] |
(82)

The first term here is a contribution to backward
HBT of the gluons ky and k3 together with a
contribution to backward Bose enhancement of
the gluons k; — g1 and k3 — g3 in the projectile
wave function. The second term in this equation
is a contribution to forward HBT of the gluons
k1 and k3 together with a contribution to forward
Bose enhancement of the gluons k1 — g1 and
k> — g7 in the projectile wave function. The third

piece of 1 1(t21')3 is proportional to

w2k — g3, ks — 1] WP [ka + g3, —ks — 2

12 a1 — ki o — ko]

o F[|tk1 — q1) + (k3 — q3)|R]

F[I(ky — g2) — (k3 — q3)IR]

F[I(ki —q1) + (k2 — q2)|R]. (83)
This term is a contribution to backward Bose
enhancement of the gluons k; — ¢ and k3 —
q3 as well as the gluons k| — ¢ and k> — ¢»
in the projectile wave function together with a
contribution to forward Bose enhancement of the
gluons ky — g and k3 — g3 in the projectile wave

function. The last piece of 1 l(tr)3 is proportional
to

w2k + g2, —q1 — k2]
1 ka — g2, ks — q3] (g3 — ki, g1 — k3]
o F[|(ki — q1) — (k2 — q2)|R]
F[I(kz — q2) + (k3 — q3)|R]
FIki — 1) + (ks — g3)IR]. (84)

(d)

This term is a contribution to the backward Bose
enhancement of the gluons k1 — g1 and k3 —
g3 as well as the gluons k> — g2 and k3 — g3
in the projectile wave function together with a
contribution to the forward Bose enhancement
of the gluons k| — g and ky — g7 in the projectile
wave function. The symmetry partners of / l(tzr)?)
can be identified in a similar manner. ’
The last term that originates from the single-
trace contribution, / l(tzr) 4» 18 defined in Eq. (A41)
with its symmetry partners given in Eq. (A40).
This term has four pieces and the first one is pro-
portional to

1
{Mz[kl—Q] .q1—k2] [Euz[kz—qs, k3—q>]
12 [qa—k1, q3—k3]

i [k2—q3. g3 —k3]/L2[k3—£12, qr—k1] ]
+%u«2[k1 —q1, ¢3—k3 |2 [ka—q3, k3—q2]

w2 [qa—k1, q1—k2] }

o {F[Ikl—kle] 3720 0e—a+ts—gi]
+ F[lko—k3|R] F[lkl—kg\R]]

1
+Z F[I(ki—q1)—(k3—¢3)|R]
F[l(k2—g2)+(k3—g3)|R]
F[|(k1—q1)+<kz—qz)|R]}. (85)

The first term in this equation is a contribu-
tion to the forward HBT of the gluons k; and
ko together with a contribution to the backward
Bose enhancement of the gluons k» — ¢» and
k3 — g3 in the projectile wave function. The sec-
ond term in Eq. (85) is a contribution to for-
ward HBT of the three gluons k1, k» and k3. The
last term is a contribution the backward Bose
enhancement of the gluons k1 — ¢; and ky — ¢»
as well as the gluons ky — g7 and k3 — g3 together
with a contribution to the forward Bose enhance-
ment of the gluons k| — g1 and k3 — g3 in the
projectile wave function. The second piece of

1 l(tzr) 4 1s proportional to

[Mz[kl —q1. ko — @2 |*[ks — g3, g3 — ki1 ]

1w a1 — k2. g2 — ks]
+ul[ki — g1 ks — @3]k — g2, g2 — k3]

12 qs — ki q1 — kz]]
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oc [F2[|(k1 —q1) + (k2 — q2)|R]

F[lki — k3| R]
+ F2[|(ki — q1) + (ks — g3)|R]
Fllky — k3|R]] . (86)

The first term in this equation is a contribu-
tion to the forward HBT of the gluons k; and
k3 together with a contribution to the backward
Bose enhancement of the gluons k1 — g1 and
ko — g2 in the projectile wave function. The sec-
ond term in Eq. (86) is a contribution to the for-
ward HBT of the gluons k; and k; together with
a contribution to the backward Bose enhance-
ment of the gluons k1 — g1 and k3 — ¢3 in the
projectile wave function. The third piece of / 1(t2r) 4
is proportional to

12k = q2. ko — g1 JuP[ks — g3, 42 — k2]
1*[q3 — ki, q1 — k3]
o F[I(ki — q1) + (k2 — q2)IR] F[I(k3 — g3)

— (k2 — q2)|R] F[I(k3 — q3) + (k1 — q1)|R].

87)

This term is a contribution to the backward Bose
enhancement of the gluons k| — g1 and k» —¢» as
well as the gluons k| — g1 and k3 — g3 together
with a contribution to forward Bose enhance-
ment of the gluons kp — ¢ and k3 — ¢3 in the
projectile wave function. The last piece of 1 l(tzr) 4
is proportional to

w2 ki—g3. ks—qi |u*[ka—q2. g1—k1]

12 [g3—ka, g2—ks]

o F[|(ki—q1)+(ks—q3)|R] F[|(ki—q1)

—(ka—q2)|R] F[|(ka—g2)+(k3—q3)|R].

(88)

This term is a contribution to the backward Bose
enhancement of the gluons k; — g1 and k3 —
q3 as well as the gluons kp — g2 and k3 — g3
together with a contribution to the forward Bose
enhancement of the gluons k1 — g and ky — ¢2.
The symmetry partners to / l(tzr) 4 can be identified
in a similar way.

4 Discussion and outlook
To conclude, we have derived the non-eikonal Lipatov ver-

tex that takes into account the finite longitudinal width of the
target to all orders. This result was conjectured in [12] after

considering the first two corrections to the eikonal limit of
the Lipatov vertex coming from the non-eikonal expansion
of the gluon propagagor obtained in [5,11]. However, here
we have presented a different derivation from first princi-
ples. Then, we have used the non-eikonal Lipatov vertex to
study the single, double and triple inclusive gluon production
cross sections in p-A collisions at mid pseudorapidity. Our
results are valid for dilute-dilute collisions since we consider
the dilute target limit which, for double and triple inclusive
gluon production, corresponds to the original Glasma graph
calculation with the exception that we take into account the
non-eikonal corrections due to the finite longitudinal thick-
ness of the target.

In the single inclusive gluon production cross section, we
have shown that the non-eikonal corrections are encoded in
function GNE(k—, A1) that is defined in Eq. (33) with k~
being the light cone energy of the produced gluon and A™
the colour correlation length along the longitudinal direction
in the target. On the one hand, in the limit of (k"A") —
0, our result reproduces the well known eikonal expression
which is often referred to as the k;-factorized formula in the
CGC. On the other hand, by expanding our result to second
order in (k~ A1), we recover the result calculated in [12]. Our
numerical results show that in the kinematic region where the
non-eikonal effects are expected to be sizeable, the relative
importance of the non-eikonal corrections can vary from 2
to 15% with respect to the eikonal result. This shows that,
depending on the kinematic region that one is interested in,
the non-eikonal effects might very well be sizable.

We have also used the non-eikonal Lipatov vertex to cal-
culate the double inclusive gluon production cross section
for dilute-dilute scattering. Adopting the same strategy that
was introduced in [58], we have identified the terms that con-
tribute to uncorrelated production, those that are responsible
for Bose enhancement of the gluons in the projectile and in
the target wave functions, and the terms that contribute to
HBT interference effects. Our results agree with the results
in [58] up to the N, counting of the target Bose enhancement
and part of the projectile Bose enhancement terms. However,
it is known that this difference is a consequence of the fact
that some aspects of N, counting are different in the dilute
and dense limits [58,80,81].

Moreover, including the non-eikonal corrections in the
double inclusive gluon production cross section has a direct
consequence. On top of the function GII\IE (ki A1) that
also exists in the single inclusive case, a new function
Q%‘IE(k]_, ky L™), defined in Eq. (46), appears which also
encodes non-eikonal effects. The partners of the terms that
contain g;“E(k;, ky L7), obtained via (ky — —k;), also
appear in the double inclusive gluon production cross section
but they are accompanied by QQIE (ky —ky s L7T). However,
in some specific kinematic regions, namely when k;” ~ k,,
GNE(ky, k5 L) > GNE(k;, —k; ; LT) which creates an
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asymmetry. We would like to emphasize that this asymmetry
is absent in the eikonal limit. One can immediately realize
that this asymmetry created by the non-eikonal corrections
in the double inclusive gluon production indeed mimics the
asymmetry between the forward and backward peaks in the
ridge observed in the two particle correlations. The conse-
quences of this asymmetry are illustrated in Fig. 7 and in
Fig. 8. This is one of the most striking results of our cur-
rent study. A dedicated study of two particle correlations and
azimuthal harmonics with non-eikonal corrections is left for
a forthcoming work [78].

Finally, we have also considered the non-eikonal triple
inclusive gluon production cross section in the dilute tar-
get limit. We have identified all the terms that appear in the
final result. Compared to the work performed in [58], the
main difference — apart from non-eikonal corrections that
we have included in our study — is that we have included
all terms while only the leading N, ones were considered in
[58]. This difference is again due to the fact that N, count-
ing is different in the dilute and dense regimes. In our study,
we have identified the terms that correlate all three gluons
which originate from three-trace or double-trace contribu-
tions, which were absent in [58] since they are suppressed in
powers of N, in the dense target limit and therefore discarded
there. Moreover, the non-eikonal effects enter through two
new functions G3(ky ", k5 , k3 ; L1) and Ga(k;, ky , ks LT)
that are defined in Egs. (A8) and (A9) respectively, on top of
the functions Gy (k—; A1) and Ga(k; , k5 ; L™) that already
appeared in the double inclusive case. Obviously, in the limit
of the vanishing L™ these functions become one and provide
the eikonal limit of the triple inclusive gluon production cross
section in the dilute target limit.
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Appendix A: Details of the calculation of the triple inclu-
sive gluon cross section beyond the eikonal approximation

As in the case of single and double inclusive gluon produc-
tion, we first take the dilute target limit which corresponds
to the expansion of the Wilson lines in powers of the back-
ground field of the target, Eq. (24). Then the triple inclusive
gluon production cross section reads

do
d?kydny d*kadny d?k3dn3 dilute

f etk @1 =2 +iky-(za—22)+iks-(z3—23)
212122222323

= (4m)’ o}

/ X Af(x — 2D AN G1 — yD)AT (12 — 22)
X1X2X3Y1Y2Y3
A (Z2 — y2) AR (x5 — z3) AR (Z3 — y3)
by by b
(oot ol o2el),
X g6 / dxfrdx;alx;ra'xzrdx;“dxgr

d*q d*qy d*qz d*qs d’qs d’qe

(27)? 27)? 2m)? (27)% (27)? (27)?

(T7) TST) | (TOT)
arby

aib ( azbz

x (45 67 anAG (5 A5 6F . g)
X AL (L A A (5 1 a6),

[e—iq1~zl _ e—iq1~x1][eiq2-21 _ eiq2~y1]

X [e_iq3'zz - e_iq3'x2][eiq4'22 — eiq4'y2]

[e*i45'23 _ e*i%'xs][ei%-fa _ eiqﬁ'y3]. (A1)
In the calculation of the single and double inclusive gluon
production cross section, we performed the averaging over
the colour charge densities of the projectile first. However, it
can also be left for further stages of the calculation for con-
venience since the expressions for the triple inclusive gluon
production are longer. Therefore, we leave it for later and
perform the integrals over the transverse coordinates which
yields

do
d?kidny d?kodna d?k3dn3 | gipye

= (4n)dal b

fdxrdx;'dx;'dxjdx;dxg_

d*q1 d*q» d*q3 d’qs d*qs d’qe
(27)% 27)* 27)? (27)? (27)? (27)?
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x (A5 G a0 AG (L 4 AL (6 g3)
X AL (L aDA (5 a6),

aj a as by by b3
('Okl—lh Pka—q3 Pks—g5 Pgr—ki Pas—ka 'Oqﬁ—k3>P
x (T979), , (T2T%), , (TFT%)

L' (ky, q1)L' (k1, q2) L (ka, q3) L7 (ka, qa)
L¥(ks, g5)L* (k3, g6),

azbz

(A2)

where L’ (k, q) is the eikonal Lipatov vertex defined in Eq.
(19). At this point, we can incorporate the non-eikonal effects
for the triple inclusive gluon production cross section. As
discussed earlier, these effects are taken into account by
exchanging each eikonal Lipatov vertex in Eq. (A2) with
the corresponding non-eikonal Lipatov vertex given in Eq.
(20), and using Eq. (29) for the correlator of two target fields.
After exchanging each eikonal Lipatov vertex with the cor-
responding non-eikonal one, the dilute target limit of the
non-eikonal triple inclusive gluon production cross section
reads

do NE

dzkldr]l dzkzdr}g d2k3d773 dilute
d’qy d’qy d’qz d*qu d*qs d’qe
(2m)? (27)? 27)? 27)? 27)? 27)?

= @n) o ¢

/dxi"dx;dx3 dx4 dxs dxﬁ
< eik;(xl*—x;>+ik;(x;—xj)+ik3(x;—x;)<A;1 o)
AL G AL 0 )AL (L a0 AL 6 ao))
w (oM 2 az b1 by b3

Pri-q1 Plo—g3 Plas—qs Par—ki P~ Pas—ts | p

(TT2), p, (TOTH),, (TSTC), % Litki, gL (K1, g2)
x LI (ka, q3) LY (ka, qa) L* (3, q5) L (k3, g6)- (A3)

Let us now consider the averaging over the colour fields of
the target. As in the case of the double inclusive gluon pro-
duction, the average over six colour fields of the target can
be factorized into all possible Wick contractions:

a5 a7 545 = i )
[145 Ay (A5 A5 ), + (A5 A5), (47 4g),
AT Ay (47 A5 )]+ (47 A7),

[<A’A’> (A5 Ag )y (A2 As ) (A3 Ag )y (A3 Ag)y
(A3 A5 ), ] +(AT AL )y
({45 43)7 (A5 4G )y +(A45 45) (A5 AQ)r + (A5 Ag),
(4745 ), ] +(A7AS)y
({45 A3)7 (A4 Ag )y +(45 44 )7 (A7 AG )y + (A7 Ag)y
(A543}, ] + (AT AG)r

({45 A3)y (A4 AS )y +(4544);
(4745 )7 + (A7 AS)r (A5 A4) ] (A4)
where we have introduced a shorthand notation for the target
fields A, = Ac_,- (xl.+, gq;) for convenience. The target fields
are originating from the expansion of the Wilson line in the
amplitude (complex conjugate amplitude) when the subscript
i is odd (even). With this shorthand notation, the correlator
of two target fields defined in Eq. (29), can be written in the
most convenient way as

— 4 + + ) Add
(a747), =ne; )2/\—+®( |t =afl) At @)
where A% is defined as
AT =57 ) 5@ gi + (=g | [a@) . (a6)

Note that Eq. (A3) can now be integrated over the longitudi-
nal coordinates. After plugging the factorized expression for
averaging of the colour fields of the target given in Eq. (A4)
into Eq. (A3), the longitudinal coordinate dependent part of
the dilute target limit of the non-eikonal triple inclusive gluon
production cross section can be written as

/dx?'dx2 dx3 dx4 de dx6

ikt O =) Hiky (o =) +iks (15 —xg)

(AT A, AT AL AS Ay

= Gk AN G (ks A7) G (s AT
{AHAMA%

+ Alz[ggna(k;’ —k3; LT)A A%

+ ggTE(kz—’ k3_, L+)A36A45

T A34[Q§E(k—’ —ky; LH)AIS A
+ OBy k53 LA ]

+ ASﬁ[gyE(k;, —ky: LHABA

+ OV ks L*)A14A23'

+ gé\IE(kl_, ks k3 L+)[A13A25A46 + A16A24A35]

+ GNE(k k7 ks L+)[A13A26A45 4 A15A24A36]

+ ONET Lk kg s L+)[A14A26A35 n A15A23A46]

T QFE(/‘T’ ks k L+)[A14A25A36 i A16A23A45] }
(A7)
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where the functions GNE (k5 AT) and GYE (&, ks L7T) are
the functions that account for non-eikonal effects and they are
defined in Egs. (33) and (46), respectively. Moreover, for the
triple inclusive gluon production the longitudinal coordinate
integral produces two new functions gg“i (kl._ , k]_, ks LT
and QFE (k;, kj_, k. ; L7T) that also account for the non-
eikonal effects and read

GNE(ky ky k3 L)
—sin[(k) + k3 )LT] +sin [(k; — k3)LH] +sin[(ky +k3)LT]
[+ _DLA [ = k) LH] [y +k3)LY]

(A)
and
GYE (k5 ki L)
sin [Mﬁ] [(k L+] [(" L+]
[t o] [t ][]
(A9)

Both functions go to 1 when we consider the shockwave
(eikonal) limit L™ — 0.

We can now substitute Eq. (A7) into the dilute target limit
of the non-eikonal triple inclusive gluon production cross
section given in Eq. (A3). By using the definition of A%/
given in Eq. (A6) and integrating over the three transverse
momenta, we get
do NE

— (4)3 o of
kydy dhoydn, dPhadns “r) e g

dilute

d*q d*q d*qs
(2m)? 27)? (2m)?

x GNE(k, ANGNE(ky , ATGNE (k3 , A7)

lat@n)|* atg2)| |agn)|’

x {Ci(pi’l PPl Pl Pt P i),
Li(ky. qUL (k1. 1) L7 (k2. ¢2) L7 (k2. q2) L* (k3. q3) L* (k3. q3)

+ [[gg“E(kr, k33 L) Ca(T T )y, (TP T) 80
Li(ki, qu)L' (k1. q2) L7 (k2. q1) L7 (ka, q2) L* (k3. g3) L* (k3. q3)

x (p,‘:,‘_ql L R WO R >P

= k) [+ (b k) + (0 > &) |

+ [[gé““:(k;, ky ks s LOYTT ) a5, (T TV ayty (TP T)ayy L (k1. q1)
Li (k1. q2) LY (ka. —q1) LY (k2. 43) L* (k3. ¢2) L* (k3. —g3)

x (p,i’,‘,qlp,fjmpfj,qz pflqupfzkﬁ%ﬂ'i3k3,q3>P + (k3 — —k3):|

+ (ky < k3) + (ky < k3) ]

+ [[QL“E(k;, Ky k3 s LT ) ayby (TT Vg (TP T Vs L (k1. 1)
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Li(ky, g2) L7 (ka, 1) LY (ka, q3) L (k3, q2) L* (K3, q3)

a a as by by b3
x (pkll—lilpkz—tnpks—qu—kl+q2p—k2+q1p—k3+qs>P + (k2 e k3) :|] }’
(A10)

where we remind the notation k = (k—, k). Our next order
of business is to perform the averaging over the projectile
colour charge densities. As in the previous subsections, we
adopt the generalized MV model for the average of two pro-
jectile colour charge densities and write down all possible
Wick contractions of their products. Then, the average of six
generic projectile colour charge densities can be written

az b2)< az bz)

(ol 2o oppiaely) | = ot b2 iaofc ot

'Okl Piey Pis Ppi Pp2Pps

+ (o o) oz Pl Neael) + (ol el lefe 3)

+ (o2 b2 (o oot o)

e oo o] + (e o) leit oMot o)

g ot oo
+ ot o) (o2 oMot o) + (o o2 ot of)
+ (o2 o) (ef of2 o B2) + (o oot o)
+ (o2 o) ok o Noma o) + (ot ofaei of2)]
oo ok izl o) + o oot o2)

(A11)

where the two projectile colour charge correlator is given
by Eq. (26). One can use Eq. (A11) in order to perform the
projectile colour charge density averaging in Eq. (A10). The
resulting expression consists of three distinct parts: a term
with a single trace, a term with double trace and a term with
three traces of the colour generators (these terms are the ana-
logue of three-dipole, dipole-quadrupole and sextuple con-
tributions in [58] for the dilute-dense set up). Therefore, we
write the dilute target limit of the non-eikonal triple inclu-
sive gluon production cross section as sum of those three
contributions:

do NE
d?kydny d*kadna d?k3dn3 | gige
do B NE
© d%kydn d2kadnn dk3dns | e
do 2 NE
+

d?kidny d?kydna d?k3dn;3 | gipye

do (10 NE

(A12)

t Phd dlodn, dPkadn

dilute
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Let us now write down the explicit expressions for each of
these three contributions starting from the the three-trace one:

do B NE

d>kidn1d*kadnad®k3dn3 | e
= @)Y adg®cl (N - 1)}
dqu d2q2 d2q3 5 , .
(2m)? (2m)? (27)? lag)|” ag2)|" |a(g3)|
x Gk G (hy ) G )

1 1

(0) (1) (2) (2)

X {13& + (N2 — 1)I3tr + (ch—_l)z [I3tr,1 + 13&,2] }
(A13)

where

3 — MK — 41, q1 1|17 [k2 —q2,q2 2

x 12[ks — g3, q3 — k3]
x L' (ki, q1)L' (k1, q1) L (ka, g2) LY (ka, q2)

x L¥(ks, q3) L* (k3, ¢3). (Al14)

For (9(1 /(N 62 — 1)) terms, we have introduced the following
compact notation

) = |:I~3(tlr) + (ky — —’iz)] + (ky < k3) + (ky < k3)

(A15)
with
Y = Bk ks L) 12k — g1, g2 — ki
x 1Plky = g2, q1 — ko) i [ks — 3. g3 — k3]
x L'(ki, q)L' (k1, ¢2) L’ (k2. q1) LY (k2. q2)
x LK(ks, q3) L¥ (k3. g3). (A16)

A similar compact notation has been adopted for the
0(1/(1\73 - 1)2> terms in Eq. (A12):

13(12r),1 = [i3(t2r)1 + (k3 — —’£3)] + (k) < k3) + (ky < ks3)
(A17)

with

i3(t2r),l = GYE(ky ky ks LYY [k — g1, 2 — ki
x wilka + q1. q3 — ko] 1?[ks — g2, —q3 — k3]
x L'(ki, q1)L' k1, g2) LY (ka, —q1) LY (ka, q3)

x L*(k3, q2) L* (k3, —q3), (A18)

and

2 F(2
Iy, =Ly, + (ky < k3) (A19)

with

B, = Gy ks k35 LYY [kt — g1, 2 — ki
x 1Plky = g3, q1 — ko) i [k3 — q2. g3 — k3]
x L'(ki, q1)L' k1, g2) LY (ka, 1)L (k2, ¢3)

x L*(k3, q2) L* (k3, q3). (A20)

The double-trace contribution to the dilute target limit of
the non-eikonal triple inclusive gluon production cross sec-
tion can be organized in a similar way:

NE

do,(2tr)
= @n)}ad g 3 (N2—1)?

d2k1dn d2kadnrd®ksd s

dilute
d>q) d*qy d*
(2:)12 (2:)22 (2:)32 latgn)|* [a@)[ |atgs)]

X Gk A G (ks AT G ke s AT
1
(1) (1) (2) (2) (2)
X {[IZtr,l + IZtr,Z] + w1 [IZtr,l +12tr,2+12tr,3] }
C
(A21)

Similar compact notations can be adopted for each term in the
double-trace contribution. Let us start with the O(1) terms:

(1 7(1)
IZtr,l = [IZtr,l
ey = ko) |+ (ko k) + (k) &), (A22)
with
i2(t1r),1 = Mz[kl — 41,491 — kl] Mz[kz —q2,93 — k3]
X Mz[k3 —q3,92 — k2
x L'(ki, q1)L' (k1, q1) LY (k2, g2) LY (k2, ¢)

x L*(k3, g3) L* (k3, ¢3), (A23)

and

150, = [0+ (k> ko) | + (b < k) + (b < k)
(A24)

with
~(1 _ _ .
Iy = OBy kg s L) 12 [ks — g3, 43 — k3L (k1. q1)
x Li(ky, q2) LY (ka, q1) L7 (ka, q2) L¥(k3, g3) L¥ (K3, ¢3)

x {Mz[kl —q1.q1 — ko) W2 [ka — 42, 92 — ki1 ]

1
+ Eﬂz[kl —q1. k2 — g2 Mz[qz —ki,q1 — kz]}‘

(A25)
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O(l J(N? — 1)) terms in the double-trace contribution can
be written in a similar manner. The first term reads

2 2
IZ(tr),l = [IZ(tr),l + (ky — —kz)] + (k) < k3) + (ky < k3),
(A26)
with
i2(t2r),1 = GYE(ky ko s L) [k — g1, g2 — ki ]

x L' ki, gL' (ki, g2) LY (k2, q1)
x L (ka, ¢2) L* (k3, ¢3) L* (k3. 43)
X [Mz[kz — .93 — k3| 1’[ks — q2. q1 — k2]
+ 1k — g2 ks — q3] wP[q1 — k. g3 — k3]}-
(A27)
The second term can be written as
Is = I:i2(t2r)2 + (ks — —Ks)] + (ki < k3) + (ko < k3),
(A28)
with
I, = O (7 k5 k3 L) L k1, g L (ki —qo)
x LI (ka, =q0) LY (ka, —q3) L* (k3, —=g2) L* (k3. 3)
x u?lki — q1. —q2 — ki | [%Mz[kz +q1. 93 — k3]
x u2lks + q2. —q3 — ko] + 1 [k2 + q1. k3 + g2
x 12 = g3 — k2. g3 —k3]]
+GYPky ke kg s LYY LY Gkt gL ki, g3)
x LY (ka, —q1) LY (ka, 2) L* (k3, ¢3) L* (k3, —q2)
< 12 [ka + q1. 42 — ko [Mz[kl —q1. —k3 — q2]
12q3 — ki, k3 — 3]
+ %Mz[kl —q1. k3 — g3 |u*[q3 — ki, —ks — 612]]
+ GNPk ky ks L) L (ki ) L (ki —g2)
x LI (ka, =q) LY (ka, g3) L* (k3, —q2) L" (k3, —g3)
x 12k + g2, —k3 — q3] [%lf[kl —q1.q3 — k2
x w[ = g2 — ki k2 +q1]
+ 1k —qi ke + @ P — a2 — ki g3 — kz]] .
(A29)

Finally, the last term can be written as

2 (2
Iy =I5 + (ky < k3) (A30)
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with

Iy =GBy ky  ky s LYY LUkt 1)L (k1. 42)

x L (ka, q1) L7 (ka, q3) LX (k3, q2) L* (k3, q3)

X {Mz[kl —q1.92 — k1] [Mz[kz —q3,93 — k3]

12 ky — g3, k3 — g

5 1
X [ k3—Q2,611—k2]+§

[
x u[q1 — k2. q3 — ]
[

2

k3]
+ 1k — q2. g3 — k3] | P [ki — q1. 91 — k2]

1
x u[q2 — ki ko — q3] + Euz[kl —q1. k2 — q3]

x u[qz — ki q1 —kz]] }

+ Gk Ky ks L) LY (ki qi) L (k. g2)
x LY (ka, q2) L7 (ka, q3) L* (k3. q1) L* (k3. 3)
x 12[k2 = g3, q2 — k2] [,U«Z[kl — g2, 93 — k3]
x u[q1 — ki ks — q1]

1
+ §M2[k1 — 2. ks — qi | [qr — ki, g3 — ks]] :
(A31)

The last contribution to the dilute target limit of the non-
eikonal triple inclusive gluon production cross section that
we need to consider is the single-trace contribution which
can be organized as follows:

NE

do (10
= @)Yl g3 (NP -1)

dzkldn1d2k2dn2d2k3d7’]3 dilute
d’q d*q d*qs 2 2 2
@2 2n)? (2n)3|a(611)| la(g2)|"|a(g3)]

x GYEky AT G s A GYE (ks L)

(2) 2 (2 ()
X [Iltr,l eyt hps + Iltr,4]‘

(A32)

The first term in the single-trace contribution can be written
as

Il(tzr),l = I:Il(tzr)l + (k, > —122)] + (ky < k3) (A33)

with
il(tzr),l = L'(k1, q) L' (k1, 1)L’ (k2, ¢2) LY (ka, o)
x LK (ks, q3) L* (k3. q3)
x 12[ki = q1. k2 — q2] [Mz[kz —q3.q1 — ki ]

1?2 — k2. g3 — k3] + ?[ks — g3. g2 — k2]
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W —ki+q1.q3 - k3]] . (A34)

In a similar manner, the second term in the single-trace con-
tribution can be written as

Ifgy = [ Iy + (kg — —k )] + (k) © ks) + (ky < ks)
(A35)
with

I, = Yy k5 L) L (ki g0 L (k1. 42)
x L (kz. q1) LY (kz. q2) L* (k3. g3) L* (k3. 3)
x {Mz[kl —q2. ko — q1] [%uz[ka —q3.q1 — ki ]
x u[q2 — k2. q3 — ]+ SH 2[ks — g3, 92 — k2]
x u?[q1 — k1. q3 — k3]
A

12k — g1, ks — g3 ] | 12 [ka — g2, g2 — ki ]

x w*[q1 — k2. q3 — ]+%M2[k2—CI2,<I3 — k3]
X MZ[CD — ki, q1 — k2]
+ 1Pk = q1.q1 — ko] | 1 [k2 — g2, k3 — q3]
x u[q2 — k1. q3 — k3] + w?[ka — q2. g3 — k3]
x 12[ks — g3, q2 — k1]
1k — q1, g3 — ks] %Mz[kz —q2. k3 — q3]
12 a2 — ki g — k] + 1 [k2 — q2. g2 — k1]
12lks = a3, 41 — ko] } (A36)

The third term in the single-trace contribution reads
2 2
Iy = [ Iies + (ks — _113)] + (k< k3) + (ky < k3)
(A37)
with
[0 = Galky ke ks LYY L (ki q) LY (ki —q2)
x L (ka, —q0) LY (ka, —q3) L* (k3, —=g2) L* (K3, g3)
x {u2[k1 —q1. ka2 +q1] [u2[k3 +q2. —q2 — ki
x 12 = g3 — k2. g3 — k3]
1
+§M2[k3+42, —g3—ka )W [—q2—ku, 6]3—k3]]
(A38)

1
+ [k — q1. g3 — ks|uP[ka + g1, —q2 — k1]

4
1 ks + q2. —q3 — kz]}

+Gatky Ky k35 LYY L ki, q) L (K1, g3)

x LI (ka, —q1)L? (k2, q2) L* (k3, g3) L* (k3, —q2)

1
X E{Mz[kl —q1. k3 — q3] M2[k2 +q1,q3 — ki

1 [q2 — ko, —k3 — q]
+ ik — q1. g2 — ko] 1
1k — g3, q3 — kl]}

+Gaky Ky k35 LYY L (ky, g3) LY (k1. q1)
x L (ka, —q3) L’ (k2, q2) L* (k3, q1) L* (k3, —q2)

[k2 + g1, —k3 — q2]

—q3.k3 —q1]

12 ka + g3, —ks — @2 n?[a1 — ki, 2 — k2]
+ Ga(ky k5 k35 LYY L (ki —q2) LY (K1, q3)
x L (ka, q2) LY (ka, —q1) L¥(k3, ¢3)L* (k3, q1)

1
Xzﬂ[kl

1
X g B w2 ky + g2, —q1 — ko] 1P [k2 — g2, k3 — 3]

12 g3 — ki, q1 — ks]. (A39)

Finally, the last term in the single-trace contribution can be
written as

2) 7(2)
Lpa =Ly + (ky < ks) (A40)
with
Il(tzr)4 =Gy (ky  ky ks LYY L (k. q) L (ki q2)

x LI (ka, q1)L? (ka, q3) L* (k3. ¢2) L* (k3. ¢3)

1
X {M2[k1 —q1.q1 — k2] [§M2[k2 — g3, k3 — g2
x 17 [q2 — k1. q3 — k] + 1 [ka — g3, q3 — k3]

12 lks — q2.q2 — kl]]

1
+ —pP[k = q1. g3 — k3|iP[ka — q3. ks — 2]

4
< 1*[q2 — k1. g1 —kz]}
+ GYE Ky k5 k3 L) Lk, q1) L (k1 q3)
x L (ka, q1) LY (ka, q2) L (k3, ) L¥ (k3. q3)

1
x E{Mz[kl — a1,k — @1 [ks — g3, 43 — k1]

x u?[q1 — k2. g2 — k3]

1k — g1, ks — g3]u’[ka — q2. g2 — k3]
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Xuq%—kum—kﬂ}
+ GYE Ky k5 k3 L) Lk, @) LY (k1 q3)
x L’ (ka, q1) L’ (ka, q2) L (ks, q1) L* (k3, g3)
1
X 7 w2k — g2, ko — 1 Ju’[ks — g3, g2 — k2]
x 12[qs — ki, q1 — k3]
+ GYE Ky k5 k3 L) Lk, 1) L (k1 q3)
x L (ka, q2) LY (ka, q3) L* (k3, q2) LX (K3, q1)
1
x — k= g3, ks — g1 Ju’[ka — q2. q1 — k1]

4
x u*[qz — k2. g2 — k3. (A41)
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