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Abstract: The B88 exchange energy density functional (created by Becke in 1988) is a crucial part of the most popular
density functional in use today, B3LYP. B88 contains one empirical parameter which was fitted to Hartree–Fock exchange
energies for the noble gas atoms. We show how local approximations to exchange become relatively exact under a very
specific approach to the limit of large numbers, but the usual gradient expansion does not. The leading corrections can be
captured by generalized gradient approximations, producing a non-empirical derivation of the parameter in B88.
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Résumé : La fonctionnelle de la densité d’énergie d’échange B88 (développée par Becke en 1988) est une partie cruciale
de la fonctionnelle de densité B3LYP, la plus populaire parmi les bases en usage aujourd’hui. La fonction B88 comprend
un paramètre empirique qui a été ajusté aux énergies d’échange d’Hartree–Fock des atomes des gaz rares. On démontre
comment des approximations locales des échanges deviennent relativement exactes dans une approche très spécifique à la
limite des grands nombres, ce que l’expansion habituelle des gradients ne permet pas. Les corrections principales peuvent
être capturées par les approximations de gradients généralisées et produire une dérivation non empirique du paramètre
dans la fonction B88.

Mots-clés : théorie de la fonctionnelle de densité (TFD), fonctionnelle d’échange, B88, mise à l’échelle du potentiel.

[Traduit par la Rédaction]

I. Introduction
Density functional theory (DFT) has become the method

of choice for many electronic structure calculations in quan-
tum chemistry.1 It balances the demands of accuracy and
computation time, making it advantageous to other available
methods. Although DFT is a formally rigorous theory, in
practice, it requires an approximation to the exchange-corre-
lation (XC) energy, Exc, as a functional of the density. In the
late 1980s and early 1990s, approximations, such as B88,
were developed which proved accurate enough for their ap-
plication in many areas of both chemistry and physics. The
explosion in the use of DFT, driven by newly available
computational power, could not have succeeded without the
development of such functionals.

Modern DFT began with the Hohenberg–Kohn theorem of
19642 and the Kohn–Sham scheme of 1965.3 The first ap-
proximation to the XC energy was the local density approx-
imation (LDA), which uses only the density at a given point
to determine the energy density at that point. This is exact
for a uniform gas, since it is the known energy density of

the uniform gas that is used to define LDA. The natural suc-
cessor to LDA is a semi-local (or gradient-corrected) ap-
proximation which adds information about the derivative of
the density at that point. In fact, in the same paper in which
LDA is introduced, so too is the gradient expansion approx-
imation (GEA) for XC. The coefficients of the GEA are de-
termined by the energy of a slowly varying gas.4–6 However,
it was found that the GEA often worsened LDA results, and
two decades passed before substantial improvements were
made.

Generalized gradient approximations (GGAs) effectively
resum the gradient expansion, but using only jrnj. The B88
functional7 is the most used GGA for exchange overall (as
part of B3LYP8,9), but the most popular GGA in solid-state
applications is PBE.10 Neither reduces to the GEA in the
limit of small gradients. In this paper, we explain the reason
why this must be the case. Asymptotic expressions for the
energy components as functionals of N, the number of elec-
trons, display ‘‘unreasonable accuracy’’11 even for low N. To
give good energies for finite systems, any approximate XC
functional must have accurate coefficients in its large-N ex-
pansion. LDA gives the dominant contribution, but the GEA
does not yield an accurate leading correction for atoms. Pop-
ular GGAs such as B88 and PBE do get this correction
right.

In ref. 12, the underlying ideas behind this work were de-
veloped; however, the reasoning was based upon scaling the
density and not on the potential scaling discussed below. We
refine these ideas and explicitly show how they can be used
for functional development, and in particular, we show how
the parameter in B88 may be derived in a non-empirical
manner.
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II. Background theory
In this section, we review the theory behind asymptotic

expansions of the energy, including the expression for the
exchange energy. A demonstration of the usefulness of this
asymptotic expansion for exchange is also given, where the
constant in LDA is found without referring to the electron
gas. We also show the form of the gradient correction to
LDA exchange, as well as discussing the form of the
GGAs, B88, and PBE.

A. Asymptotic expansion in N
Begin with any system (atom, molecule, cluster, or solid)

containing N electrons. We then imagine changing the num-
ber of electrons to N’. Since we usually begin from a neutral
system, usually we consider only N’ > N. Thus, we define a
scaling parameter z = N’/N > 1. As we change the particle
number, we simultaneously change the one-body potential
vext(r) in such a way as to retain overall charge neutrality,
which means

½1� v
z
extðrÞ ¼ z4=3vextðz1=3rÞ; N ! zN

We refer to this as charge–neutral (CN) scaling. For an iso-
lated atom, Z ? zZ under this scaling, so it remains neutral as
the electron number grows. For molecules with nuclear posi-
tions Ra and charges Za, Za ? zZa, and Ra ? z–1/3Ra. In the
special case of neutral atoms, the resulting series for the en-
ergy is well-known:

½2� E ¼ �a0N7=3 � a1N2 � a2N5=3 � . . .

where a0 = 0.768745, a1 = –1/2, and a2 = 0.269900.11,13 We
say an approximation is large-N asymptotically exact to the
pth degree (AEp) if it recovers exactly the first p + 1 coeffi-
cients for a given quantity under the potential scaling of
eq. [1]. Lieb and Simon14,15 showed that Thomas–Fermi
(TF) theory becomes exact in the limit z ? ? for all sys-
tems. TF is exact in a statistical sense, in that TF gives the
correct first term of eq. [2], but not the other terms. We say
TF is AE0 for the total energy.

A similar expression exists for the exchange component
of the energy alone

½3� Ex ¼ �c0N5=3 � c1N � . . .

where c0 = 0.2208 = 9a2/11, and c1 will be the main topic of
this paper. In a similar fashion, Schwinger demonstrated
that the local approximation for exchange is AE0, and this
coefficient is given exactly by local exchange evaluated on
the TF density.11,13,16 However, to give atomic exchange en-
ergies needed for chemical accuracy, any exchange approxi-
mation should be at least AE1.

Now, suppose we want to make a local approximation for
Ex but know nothing about the uniform gas. Dimensional
analysis (coordinate scaling17) tells us that it must be of the
form:

½4� ELDA
x ½n� ¼ AxI; I ¼

Z
d3rn4=3ðrÞ

Requiring that this gives the leading contribution to
eq. [3] then fixes the value of the constant Ax. Using any

(all-electron) Hartree–Fock atomic code, such as were al-
ready available in the 1960s,18 one calculates I for densities
running down a particular column of the periodic table and
then deduces its dependence on Z5/3. A modern alternative is
to use the fully numerical OPMKS code19 using the OEP ex-
act exchange functional to find densities for neutral atoms
from Z = 1 to Z = 88. By fitting, one finds I = 0.2965Z5/3

and hence Ax = –0.7446. This is remarkably close to the de-
rived result of

½5� Ax ¼ �
3

4

3

p

� �1=3

¼ �0:7386

Thus, without any recourse to the uniform electron gas, we
have derived the correct local approximation to Ex[n]. This
demonstrates that, via asymptotic exactness, the local ap-
proximation to exchange is a universal feature of all systems
as N ? ?, when scaled appropriately. (In fact, Schwinger
only proved this for atoms,11 we know of no proof for arbi-
trary systems).

B. Gradient expansions
The next step up the ladder of increasingly sophisticated

density-functional approximations20 is a semi-local approxi-
mation for Ex[n], i.e., one which includes information about
the gradient of the density. We introduce the dimensionless
measure of the gradient:

½6� sðrÞ ¼ jrnðrÞj
2kFðrÞnðrÞ

where kF(r) = (3p2n(r))1/3 is the local Fermi wave vector.
This is often written in terms of x ¼ jrnj=n4=3, which is sim-
ply proportional to s. Assuming smoothness in s and no pre-
ferred spatial direction, we know any sensible
approximation depends only on s2. The gradient expansion
is defined as the expansion of the energy as a functional of
the density around the uniform limit. The leading correction
for exchange is

½7� Eð2Þx ½n� ¼ m

Z
d3rs2ðrÞeLDA

x ðnðrÞÞ

where 3x = Axn4/3 and m is a constant. Alternatively, we may
write

½8� Eð2Þx ½n� ¼ �b
Z

d3rn4=3ðrÞx2

with

½9� b ¼ 3

16p

1

3p2

� �1=3

m

In a very slowly-varying electron gas, the gradient is very
small, and the exchange energy will be accurately given by
ELDA

x þ Eð2Þx . For such systems, the constant m = 10/81,4 so
that b & 0.0024.

The gradient expansion approximation (GEA) means ap-
plying this form to a finite system, using the value of m
from the slowly-varying gas. The GEA for exchange typi-
cally reduces the LDA error by about 50%. However, it’s
counterpart for correlation worsens the LDA error, as its en-
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ergy density is not even always negative. In many cases,
GEA strongly overcorrects LDA leading to positive correla-
tion energies and giving poor total energies.5

A generalized gradient approximation (GGA) seeks to in-
clude the information contained in s(r) while improving on
the success of LDA. The B88 exchange functional was de-
signed to reduce to the GEA form when s is small, but also
recover the correct –n(r)/2r decay of the exchange energy
density for large r in atoms. Thus, it interpolates between
two known limits, and has the form:

½10� DEB88
x ½n� ¼ �bB88

Z
d3rn4=3ðrÞ x2

1þ 6xbB88sinh�1½21=3x�
where DEx denotes the correction to LDA. Thus, the B88
functional7 contains one unknown parameter, bB88. In 1988,
Becke found this parameter by fitting to the Hartree–Fock
exchange energies of the noble gases, finding a value of
0.0053. In fact, Becke notes that this value is consistent
with the observation of a high-Z asymptote for b. In ref. 21,
B86, Becke calculates what value of b in eq. [8] is required
to give the HF exchange energy for each atom in the first
two rows of the periodic table along with the noble gas
atoms. Thus, b is treated as a function of Z, and he observes
that it converges for high-Z. Thanks to the previous section
on asymptotic series, we can now understand why this con-
vergence occurs. Although the B88 form reduces to that of
the gradient expansion for small gradients, the value for b is
about twice as large as that predicted from the slowly vary-
ing gas.

Another common GGA for exchange is the Perdew–
Burke–Ernzerhof (PBE) approximation,10 usually written in
terms of an enhancement factor, Fx(s), to the LDA exchange
energy density

½11� EPBE
x ½n� ¼

Z
d3rFPBE

x ðsÞeLDA

x ½n�

where

½12� FPBE
x ðsÞ ¼ 1þ k� k

1þ ms2=k0

and m = 0.2195 and k = 0.8040. This form for the enhance-
ment factor is chosen so that it reduces to LDA for s = 0
and again recovers the form of the gradient expansion for
small s. For large s, it becomes a constant determined by
the parameter k. Both k and m are determined via satisfac-
tion of various exact conditions. The value of m was chosen
to preserve the good linear response of LDA for the uniform
electron gas under a weak perturbation,22,23 while k is set by
the Lieb–Oxford bound24 on the exchange-correlation en-
ergy. (That condition is obviously violated by B88, while
PBE does not accurately recover the X energy density in
the tails of Coulombic systems).

III. Theory
LDA yields the dominant term in either the asymptotic

charge–neutral expansion (z ? ?) or the gradient expansion
for the slowly varying electron gas, s ? 0. We next show
that, contrary to popular myth, the important expansion is
the charge–neutral expansion, not the gradient expansion.

The charge–neutral expansion can be applied to any type
of matter, be it molecule or extended solid. For any finite
system, the density decays exponentially far from the nuclei.
This is a key distinction between finite systems and bulk
matter, treated with periodic boundary conditions. Bulk mat-
ter has no such regions.

But, for slowly varying gases, or more generally when
there are no classical turning points at the Fermi surface,
the charge–neutral scaling and the gradient expansion be-
come identical, i.e., the gradient expansion for the slowly
varying gas is simply a special case of charge–neutral scal-
ing. To see that this is so, consider just the kinetic energy as
a density-functional. Here, the gradient expansion is known
out to 6th order,25 and eventually, the integrated quantity it-
self diverges for atomic densities due to the evanescent tail.
But no such divergence occurs for extended systems with fi-
nite density everywhere.25,26

Thus, CN scaling applies to all systems, but only becomes
identical to the gradient expansion for slowly varying bulk
systems. For the dominant contribution, effectively the local
Fermi wavelength becomes short on the length scale on
which the density is changing, so that the local approxima-
tion applies and yields the exact answer for this term.
Hence, LDA reproduces the AE0 terms, but GEA does not
produce the leading corrections. All this has been amply
demonstrated for simple 1D model systems16 and for the
Kohn–Sham kinetic energy for atoms.27

Here, we apply the same reasoning for exchange. The lo-
cal approximation becomes relatively exact as z ? ?, but
the gradient expansion does not reproduce the leading cor-
rection in the CN expansion. Below, we use the simple rea-
soning of ref. 12 to recover this leading correction. We
perform a much more extensive calculation of the asymp-
totic behavior, using methods developed in ref. 27. We find,
in agreement with ref. 12, that the leading correction for
atoms is about double that given by the gradient expansion,
matching quite closely that of B88 and of PBE. Reversing
this logic for B88, we show that B88 may be more or less
derived non-empirically via the constraint that the approxi-
mation be AE1. If we enforce AE1 exactly, we find a
slightly different value for b, and discuss the properties of
the resulting functional, excogitated B88.

IV. Extracting asymptotic coefficients
Under the potential scaling of eq. [1], any approximation

for the exchange energy that reduces to LDA in the uniform
limit has an expansion in N like eq. [3], with the same value
for c0. However, the coefficient c1 depends on the particular
approximation. Below, we explain the procedure used to ex-
tract these coefficients.

As mentioned in the previous section, the OPMKS19 elec-
tronic structure code is a fully numerical electronic structure
code that has the ability to perform optimized effective po-
tential (OEP) calculations. We evaluate the various approxi-
mations using atomic densities found with the OEP exact
exchange (EXX) method. The densities found using this
method will be extremely close to the exact densities despite
the fact that correlation is missing. Moreover, the effect of
correlation will contribute at higher orders in the asymptotic
expansions of the energy than those we are interested in.
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Thus, EXX calculations are in principle sufficient for ex-
tracting the coefficient we seek.

In Fig. 1, we plot Ex=Z
5=3 vs. Z–1/3 where Ex is the ex-

change energy from the exact exchange calculation. Since
the leading term in the asymptotic expansion of eq. [3] is
Z5/3, this procedure picks out the c0 coefficient as a constant
while all other terms are functions of Z–1/3. One can see that
the curve in Fig. 1 is heading towards the exact value of
c0 = –0.2208, but it is difficult to extract higher coefficients
due to oscillation of the curve due to the shell structure.

To overcome this difficulty, in Fig. 2, we add the LDA
curve to Fig. 1. It can be seen that it too recovers the exact
c0 coefficient, but also clearly differs in higher orders in the
asymptotic expansion. More usefully, we see that the LDA
curve mimics the oscillations shown by exact exchange, so
subtracting LDA from EXX will minimize this effect and
make the extraction of asymptotic coefficients more accurate.

In Fig. 3, we plot ðEx � ELDA
x Þ=Z vs. Z–1/3 and find that it

behaves close to linearly. There appears to be no Z4/3 term

in Ex. Such a contribution was argued not to exist in ref.
12, but this was based on CN scaling of the density and
studying the behavior of the terms in the gradient expansion.
That reasoning is insufficient, as the expansion should be
performed in terms of the potential, as described in section
II. But since the Scott correction (the Z2 contribution to the
total energy) comes from the core region, there is no reason
to expect an analogous contribution for exchange. To show
this and also to precisely determine the c1 coefficient, one
should use the techniques developed by Schwinger for de-
riving the Scott correction to the total energy,11 but apply
them to exchange.

To further reduce the remaining uncertainty due to shell
structure oscillations, we choose simply to use the noble gas
atoms (excluding helium) for our fit. The strongest devia-
tions from linearity come from the transition metals and lan-
thanides and actinides. We fit the difference ðEx � ELDA

x Þ=Z
with a straight line in Z–1/3, and extrapolate to Z ? ?, find-
ing Dc = –0.2240, where Dc ¼ c1 � cLDA

1 , and

½13� Ex � ELDA
x � 0:2240 Z þ 0:2467 Z2=3

The coefficient of the last term is given by the slope of
the dashed line in Fig. 3, although the meaning of this term
is unclear in the presence of such strong oscillating contribu-
tions.

If instead we used the alkaline earth atoms (excluding ber-
yllium), we find an almost identical value, Dc = –0.2236. If
we use all elements with Z > 10, we find a similar value,
Dc = –0.2164. If all elements from Z = 1 to 88 are used, we
find Dc = –0.1982. In ref. 12, Dc was found using noble gas
atoms, except with the helium value included, and that
method gave a value of Dc = –0.1978. In our analysis, atoms
with Z < 10 are not used as they are not necessarily domi-
nated by the asymptotic series.

Since LDA displays the shell oscillations that prevented
us from fitting EXX directly, the value of the LDA c1 coef-
ficient cannot be found exactly. But we estimate

Fig. 1. The OEP exact exchange energies Ex for neutral atoms from
Z = 1 to 88, divided by Z5/3 to pick out the leading term in its
asymptotic series. The leading corrections are proportional to
powers of Z–1/3. The values for the noble gas atoms are given as the
circle symbols.

Fig. 2. We add to Fig. 1 the results for the LDA functional evalu-
ated on the OEP densities (dashed-line) keeping the EXX values
(solid line). As in Fig. 1, the noble gas atoms are highlighted with
circle and square symbols for EXX and LDA, respectively.

Fig. 3. We now find the next coefficient in the exchange asympto-
tic series. To minimize the error due to shell structure oscillations,
the LDA exchange energy is subtracted from the exact exchange
for each atom. As both give the leading correction, their difference
will then have DcZ, Dc ¼ c1 � cLDA

1 , as the leading term in its
asymptotic expansion. The dashed line is the result of fitting to the
noble gas atoms (circle symbols).
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0 � cLDA
1 � �0:04, i.e., at least five times smaller in magni-

tude than Dc. In Fig. 4, we show Ex – c0Z5/3 as a function of
Z for both the exact values and within LDA, demonstrating
that the linear contribution comes almost entirely from the
beyond-LDA terms.

Finally, we determine Dc for GEA. In Fig. 5, we plot
ðEGEA

x � ELDA
x Þ=Z vs. Z–1/3 to find Dc ¼ cGEA

1 � cLDA
1 , find-

ing Dc = –0.1062. This plot is much closer to linear than
the previous one. The leading corrections to LDA in the
asymptotic expansion produce corrections to the shell struc-
ture beyond those captured by LDA evaluated on the exact
density.16,27 Although the smooth contribution can be parti-
ally captured by GEA, there is almost no correction to the
shell structure. Just as for the kinetic energy,27 GEA yields
a correction to the smooth part that is about half of the ac-
curate value.

To understand the power of these asymptotic expansions,
we add the corrections of eq. [13] to the LDA energies, and
in Fig. 6, plot the percentage error relative to exact ex-
change, as a function of Z. For all but the second row of
the periodic table, the resulting error is below 0.5% in mag-
nitude, and typically of the order 0.2%.

V. Generalized gradient approximations
Generalized gradient expansions were designed to im-

prove energetics over LDA for electron systems of interest
and relevance. Early versions, such as PW91,28,29 were tor-
tured into reducing to the gradient expansion when the den-
sity is slowly varying. But this was later given up, in both
B88 and PBE exchange, which both reduce to the gradient
expansion form for slow variations, but with coefficients
much larger than that of the gradient expansion.

Our analysis explains why this must be so. Regardless of
its derivation, any modern GGA for exchange is tested
against the neutral atoms. Any approximation that cannot re-
cover the right c1 will be generally inaccurate for these en-
ergies, and so discarded. Thus, any that become popular
have already passed this test.

In Table 1, we give the results for Dc for several different
functionals. The same methodology was used in all extrac-

tions. Both popular GGAs recover (at least approximately)
the accurate value. B88, designed specifically for molecular
systems, is very close to the accurate value. PBE exchange
is less so, but is also designed to bridge molecular and
solid-state systems. The PBE value is between that of GEA
and B88, but much closer to the latter than the former. Tak-
ing advantage of this insight, a new variation on PBE, called
PBEsol,30 restores the original gradient expansion, thereby
worsening atomization energies (total energy differences),
but improving many lattice constants of solids over PBE
and LDA.

Deriving the b in B88
When designing a good GGA, one first chooses the func-

tional form in terms of the dimensionless gradient s. This is
usually based upon satisfying various constraints that the de-
signer feels are important, e.g., reduce to LDA for s = 0,
give correct asymptotic behavior for large r, prevent diver-
gence for large s, and so forth. This is the most important
step, and we do not discuss it in this paper, although work
is ongoing in this direction.16 After picking a functional
form, there is usually still some freedom to choose any pa-

Fig. 5. We use the same procedure as in Fig. 3 to find the Dc
coefficient for the gradient correction to LDA, Eð2Þx ½n�, as defined in
eq. [7]. The dashed line was fitted to the noble gas atoms (circle
symbols).

Fig. 6. The percentage error of the approximate asymptotic series
given in eq. [13] is plotted as a function of Z. The error is remark-
ably low and demonstrates the power of these asymptotic series.

Fig. 4. To see that LDA does not significantly contribute to the
higher orders of the exchange asymptotic series, we plot the differ-
ence between LDA and the leading term c0Z

5=3 (dashed line), as a
function of Z. The exact exchange value is also shown (solid line).
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rameters (hopefully a small number) that may be left. These
can be fixed by satisfying different exact constraints or by
fitting to a set of experimental or computational data. The
former is considered more favorable by some,31 as it makes
a functional more trustworthy for application to many differ-
ent classes of systems, while the latter generally gives better
properties for systems close to the fitting set. In the case of
B88, we now show that the previously empirical parameter
can be derived by requiring the exact condition that it be
AE1. This explains why B88 was so successful when ap-
plied to different types of system.

The exchange energies found using GGAs such as B88 or
PBE are generally dominated by their gradient expansion
components for most chemically relevant densities (see Ta-
ble 2 in ref. 12). Thus, to make B88 AE1, it is sufficient to
impose this exact condition on just the Eð2Þx ½n� functional

form. Since both B88 and the GEA are built on top of
LDA, we can simply look at the Dc values calculated above.
If we set m = 2.109mAK in eq. [7], we multiply the c1 coef-
ficient of GEA by a factor of 2.109, making it AE1. In
Fig. 7, we name this functional MGEA for modified GEA
and plot its percentage errors. The values for LDA and
GEA are also shown. It can be seen that modifying GEA to
be AE1 has greatly reduced the error.

We now require that the B88 functional form, eq. [10], re-
duce to this MGEA for small values of x. Using eq. [9], this
corresponds to using a value of b = 0.0050. Thus, we have
derived an excogitated B88 that is free of any empirical pa-
rameters. The actual value used in B88 is bB88 = 0.0053 (for
spin-polarized systems, this becomes 0.0042, which is the
value given in ref. 7), so the values are very close. This is
not surprising as fitting to Hartree–Fock exchange energies
is an approximate way of demanding asymptotic exactness.
Interestingly, the value quoted as the high-Z asymptote in
ref. 7 and found using ref. 21 is essentially the same as our
value, but was evidently rejected in favor of a better fit. In
Fig. 8, we plot the percentage errors for B88, PBE, and the
excogitated B88. As is typical for empirically fitted func-
tionals, B88 performs very well for systems close to the
data set used in the fitted procedure. Although the error for
PBE is higher than both B88 and the excogitated B88, it is
systematic in its overestimation. As noted, PBE was de-
signed to perform reasonably well for a wide range of sys-
tems, so again, its behavior is not surprising. On this data
set, the excogitated B88 was never going to do better than
B88, although it remains to be seen how it performs for
more complicated systems.

VI. Conclusion
We have carefully and systematically extracted the lead-

ing large-Z correction to the exchange energy of atoms. Our
results differ slightly from those of ref. 12 but yield the
same qualitative conclusion, i.e., that the gradient expansion
yields an error of a factor of 2 or more for this coefficient.
We have clarified some of the reasoning, and applied it
more generally to any atom, molecule, or cluster. By look-
ing in detail at the exchange energy asymptotic series for
neutral atoms, we have demonstrated the power of using
such series for functional development. Requiring that the
small gradient expansion of B88 capture the two leading co-
efficients of the asymptotic expansion is a method by which
the unknown coefficient b can be found. This gives a coeffi-
cient very close to the one actually used in B88, and thus is
an ex post facto ‘‘derivation’’ of B88. Inserting our most ac-
curate estimate for b into the B88 form yields an excogi-
tated B88.
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