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Abstract

Origin and functions of intermittent transitions among sleep stages, including short awaken-

ings and arousals, constitute a challenge to the current homeostatic framework for sleep

regulation, focusing on factors modulating sleep over large time scales. Here we propose

that the complex micro-architecture characterizing the sleep-wake cycle results from an

underlying non-equilibrium critical dynamics, bridging collective behaviors across spatio-

temporal scales. We investigate θ and δ wave dynamics in control rats and in rats with

lesions of sleep-promoting neurons in the parafacial zone. We demonstrate that intermittent

bursts in θ and δ rhythms exhibit a complex temporal organization, with long-range power-

law correlations and a robust duality of power law (θ-bursts, active phase) and exponential-

like (δ-bursts, quiescent phase) duration distributions, typical features of non-equilibrium

systems self-organizing at criticality. Crucially, such temporal organization relates to anti-

correlated coupling between θ- and δ-bursts, and is independent of the dominant physio-

logic state and lesions, a solid indication of a basic principle in sleep dynamics.

Author summary

Sleep exhibits intermittent transitions among sleep stages and short awakenings, with

continuous fluctuations within stages that trigger micro-states and brief arousals. Despite

the established association between dominant brain rhythms and physiologic states, the

nature and dynamics of sleep-wake and sleep-stage transitions remain not understood.

Homeostatic models of sleep regulation at ultradian and circadian scales do not address

empirical observations of spontaneous transitions in sleep micro-architecture, and do not

account for the emergent complex structure of sleep stages and arousals, and the related

dynamics of bursts in cortical rhythms. Empirical observations of intrinsic bursts in
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cortical activity, and corresponding intermittent transitions in sleep micro-architecture,

raise the hypothesis that non-equilibrium critical dynamics underlie sleep regulation at

short time scales. We analyze θ and δ cortical rhythms in control rats and rats with lesions

in the parafacial zone, which plays a significant role in the regulation of slow-wave sleep.

The results demonstrate that critical dynamics underlie cortical activation during sleep

and wake, and lay the foundation for a new paradigm, considering sleep micro-architec-

ture as result of a non-equilibrium process and self-organization among neuronal assem-

blies to maintain a critical state, in contrast to the homeostasis paradigm of sleep

regulation at large time scales.

Introduction

The brain’s ability to adapt and perform complex functions crucially depends on the coopera-

tion of assemblies of neurons across multiple spatial and temporal scales. Cortical rhythms rep-

resent one of the most fascinating collective phenomena emerging from the self-organized

synchronous activity of large neuronal populations, and are consistently associated with com-

plex brain functions and distinct physiologic states such as sleep and wake [1, 2]. Different

brain rhythms characterize distinct phases of the sleep-wake cycle. During deep NREM sleep,

brain dynamics are generally dominated by δ rhythm, low-frequency high-amplitude oscilla-

tions referred to as slow-wave activity [3]. Such slow-wave oscillations result from the synchro-

nized activity of cortical neurons alternating between ‘up’ and ‘down’ states. In the up state,

cortical neurons are depolarized, i.e. their membrane potential is closer to the firing threshold,

and they fire in bursts of close-in-time action potentials. Conversely, in the down state, cortical

neurons are hyperpolarized, i.e. their membrane potential is lower than the resting potential,

and stay mostly silent [4]. Slow-wave activity can be modulated by the thalamus via thalamo-

cortical neurons [5], and is enhanced by chemogenetic activation of GABAergic neurons in the

parafacial zone (PZ) [6], while activation of cholinergic neurons in the basal forebrain results

in significant decrease of slow-wave activity [7, 8]. In contrast to NREM sleep, REM sleep and

arousals/wake state are characterized by desychronized and localized cortical rhythms of higher

frequency and lower amplitude, such as α waves in resting humans and θ waves in rodents [9].

The θ rhythm can be generated both in the cortex and in the hippocampus. During wakeful-

ness, cortical θ rhythm is driven by excitatory inputs from cholinergic, histaminergic, orexiner-

gic, dopaminergic and noradrenergic sub-cortical neurons [10]. During REM sleep,

hippocampal θ rhythm is driven by GABAergic inputs from the medial septum [11].

Despite the established association between dominant brain rhythms and emergent physio-

logic states, the nature and dynamics of sleep-wake and sleep-stage transitions remain not

understood. Indeed, sleep periods exhibit numerous abrupt transitions among sleep stages and

short awakenings, with continuous fluctuations within sleep stages triggering micro-states and

brief arousals [12–14]. Such transient behavior is typically observed for a class of physical sys-

tems exhibiting self-organization and characterized by (i) multi-component nonlinear feed-

back interactions; (ii) high susceptibility and responsiveness to perturbations; (iii) non-

equilibrium output dynamics with continuous fluctuations over a broad range of time scales;

and (iv) maintaining a critical state where alternating active and quiescent phases co-exist [15–

17]. This is a challenge to the current conceptual framework for sleep regulation, which is

based on homeostasis, considers sleep as an equilibrium process, and focuses on factors modu-

lating sleep over large time scales, such as homeostatic sleep drive, sleep propensity and inertia,

ultradian and circadian rhythms [9, 18]. Models developed within the homeostasis paradigm
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have successfully accounted for consolidated sleep and wakefulness over time scales of hours

and days, reproducing homeostatic, ultradian and circadian influences [9]. Further, a flip-flop

switching mechanism involving mutually inhibitory interactions between sleep- and wake-

promoting neuronal assemblies distributed across brain areas [19–21], and regulated by slow

homeostatic factors such as adenosine and nitric oxide [9], has been proposed to explain the

transition from stable sleep to stable wakefulness. However, the mechanism responsible for

turning the switch on and off, the dynamic characteristics and temporal organization of these

transitions remain unclear. Moreover, existing homeostatic models of sleep regulation (i) do

not address empirical observations of transient behaviors at scales of seconds and minutes—

an intrinsic sleep micro-architecture on time scales much shorter than consolidated sleep and

wake states which last several hours, and sleep-stage episodes lasting from many minutes to an

hour; and (ii) do not account for the emergent complex structure of sleep stage and arousal/

brief wake transitions and the related micro-architecture of bursts in cortical brain waves

activity. The intrinsic fluctuations in activity of brain rhythms in response to nonlinear feed-

back interactions among multi-component sleep- and wake-promoting neuronal pathways,

the high susceptibility to abrupt transitions and the resulting complex temporal organization

of sleep micro-architecture at scales of seconds and minutes rise the hypothesis that non-equi-

librium critical dynamics may underlie sleep regulation at short time scales, in coexistence

with the well-established homeostatic behavior at large time scales.

The traditional description of sleep stages in terms of dominant cortical rhythms indeed

provides only an ‘average’, coarse-grained phenomenological picture that does not reflect the

complex dynamics of sleep microstates and brief arousals. Current guidelines for sleep-stage

classification do not consider the role of dynamical interactions among brain rhythms [3],

although these interactions are potentially an integral feature of the collective neuronal activity

driving physiologic states and related sleep-stage transitions [22–25]. Furthermore, the relation

between emergent cortical brain-waves dynamics and neuronal activity in sleep- and wake-

promoting areas remains largely unknown. Although many brain areas involved in sleep con-

trol have been identified [9, 10], the complex nonlinear dynamics of extended neuronal net-

works (comprised of diverse mutually connected neuronal populations) continues to pose

severe limitations to a mechanistic understanding of the collective neuronal behavior underly-

ing observed sleep-stage transition patterns. This is a general problem that arises in systems

where the emerging behavior at the system level originates from collective dynamics of a large

number of interacting units. While elegant theories bridging micro- and macro-scales are

sometimes available for such systems at thermodynamic equilibrium, emergent collective phe-

nomena out of equilibrium often require a top-down approach, where basic mechanisms are

inferred from the statistical characteristics of emergent dynamics.

Following this approach, here we investigate the temporal organization in bursting activity

of brain rhythms across the sleep-wake cycle, with the aim to understand the basic physical

principles bridging neuronal interactions at the microscopic level and physiologic state at the

system level. The present study is motivated by recent works showing that the complex dynam-

ics of sleep stage transitions give rise to power-law probability distributions for the durations

of brief awakenings and arousals, a robust scale-invariant organization observed in both

humans and animal models [13, 26–31]. Power-law distributions P(x) = Nx−α, where α is the

scaling exponent and N is a normalization constant, are the statistical hallmark of scale invari-

ance, i.e., they are not altered by a change of scale from x to Lx, hence lacking a relevant char-

acteristic scale. Power laws are typical features of physical systems at the critical point of a

second order phase transition in equilibrium thermodynamics [32, 33]. At criticality systems

exhibit high susceptibility and sensitivity to interactions among elements, leading to emergent

collective behavior across scales, and thus, power laws. The critical point is located at the

Non-equilibrium critical dynamics in brain waves define sleep and wake micro-architecture
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border between an ordered and a disordered phase, and can be reached by fine tuning external

parameters. In contrast to this scenario, in non-equilibrium systems the dynamics can be

spontaneously driven at criticality, where an active phase characterized by bursts/avalanches

with power-law distributed sizes and durations coexists with a quiescent phase with exponen-

tial-like statistics [15, 17, 34, 35]. We note that such avalanche criticality does not necessarily

co-occur with edge-of-chaos criticality [36].

Since brief awakenings/arousals can be viewed as ‘active’ states of the brain that interrupt

the ‘inactive’ phase represented by sleep periods, the scale-invariant organization of arousals

has been interpreted as a fingerprint of criticality in sleep dynamics [13, 26, 31, 37]. Contrary

to the established interpretation of arousals as random and detrimental disruptions of sleep

[38, 39], caused by external stimuli or as part of the patho-physiology of sleep disorders [12,

14, 40–44], such robust scale-invariant temporal organization indicates that arousals are an

integral part of sleep regulation, resulting from a single dynamic principle responsible for the

emergent temporal organization of sleep stages and sleep-stage transitions.

The hypothesis that sleep phenomenology and micro-architecture may reflect underlying

scale-invariant dynamics resulting from self-tuning of a system at criticality [34] would imply

presence of power-law distributions and long-range correlations as basic characteristics for

sleep-related neuronal activity across spatial and temporal scales. Although power-law distri-

butions [45–47] and long-range correlations [48] have been previously reported in neuronal

and brain dynamics, and some attempts to correlate them with behavioral scaling laws has

been made [49], the connection between (i) dynamics of sleep-related brain waves activity, (ii)

neuronal circuitry and pathways related to sleep regulation, and (iii) emergent scale-invariant

organization of brief arousals/awakenings, remains not understood.

To test this hypothesis, we consider the dominant brain waves in the sleep-wake cycle of

rats, and study their dynamics and coupling in relation to the neuronal circuitry responsible

for wake and sleep control. We focus on sleep-promoting PZ [50], a region of the rostral

medulla, that plays a significant role in the regulation of slow-wave sleep [6–8, 51]. Both PZ

cell body specific lesion and disruption of GABAergic transmission in PZ result in insomnia,

indicating that within the PZ, GABAergic neurons are primarily in sleep control. Similar to

other NREM sleep promoting neurons, PZ GABAergic neurons project to and inhibit wake

promoting systems, such as the parabrachial neurons that project to basal forebrain neurons,

which in turn project to the cortex and are critical for cortical activation and wakefulness [6].

It has been shown that lesions of all PZ neurons result in a significant decrease of total NREM

sleep during the light period (when rats are predominantly asleep), whereas chemogenetic acti-

vation of PZ neurons results in an increase of NREM sleep and slow-wave activity with domi-

nant δ rhythm [6]. However, the influence of PZ sleep-promoting neurons on cortical brain

waves activity remains not clear. In particular, the role played by PZ neurons in the dynamics

and temporal organization of δ waves, as well as in the emergence of transient θ-bursts arousal

activations during the sleep-wake cycle, has not been investigated.

To this end, we analyze long-term continuous EEG recordings in control rats and rats

where the PZ brain area is lesioned, and we investigate the complex dynamics of θ- and δ-
bursts in relation to PZ neuronal integrity, during both light and dark periods. In particular, we

focus on the emergent scale-invariant features in the temporal organization of θ- and δ-bursts,
and study whether alterations in the sleep-wake cycle are mirrored by a reorganization of dom-

inant brain rhythms, a question that has not been addressed so far in sleep research. Our aim is

to establish basic mechanisms that underlie cortical dynamics and sleep micro-architecture,

and whether these dynamics exhibit characteristics of a system at criticality. Confirming our

hypothesis, that cortical activations underlying sleep micro-architecture exhibit critical dynam-

ics, would lay the foundation for a novel unified framework of the sleep-wake cycle, where

Non-equilibrium critical dynamics in brain waves define sleep and wake micro-architecture

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007268 November 14, 2019 4 / 35

https://doi.org/10.1371/journal.pcbi.1007268


sleep and arousals/wake, consolidated and transient states, originate from the same fundamen-

tal principles and a common mechanism that bridge collective behaviors across spatio-tempo-

ral scales, from neuronal assemblies to brain rhythms and emerging physiologic states.

Results

Transient dynamics in bursting activity of θ and δ rhythms

To dissect the temporal organization of δ- and θ-bursts in the broadband brain activity during

sleep and wake, we analyzed the time course of the EEG signal by evaluating the spectral

power in several frequency bands on non-overlapping windows of length w (Materials and

methods, Data analysis). In Fig 1a we show a typical spectrogram S(f) as a function of time

for a 2 h recording of a rat in the control group. We notice that, in each window, the spectral

power is primarily concentrated in either the δ-wave frequency range (0 − 4Hz) or in the θ-

wave band (4 − 8Hz), and we observe sharp transitions from periods with dominant δ to peri-

ods with dominant θ waves. Such dynamics can be understood as the temporal evolution of

the ratio Rθδ = S(θ)/S(δ) between θ and δ spectral power in association with different physio-

logical states—NREM, REM and arousals/wake (Fig 1 shows the transient dynamics of bursts

in δ- and θ-waves power represented by the logarithm of Rθδ as a function of time t).

The ratio Rθδ(t) exhibits irregular, intermittent fluctuations between values larger and

smaller than a threshold Th—a typical characteristic of non-equilibrium dynamics: Rθδ >

Th = 1 indicates that the spectral power in the θ-wave band is dominant; vice-versa, for Rθδ <

Th = 1 the spectral power is dominated by the δ-wave. We define bursts in θ and δ brain

rhythms as sequences of consecutive time windows where Rθδ > Th = 1 and Rθδ < Th = 1,

respectively (Fig 1b). The focus of this study is to establish the dynamical features and underly-

ing mechanisms of bursts in cortical activity across the sleep-wake cycle by investigating the

temporal organization of such bursts and their coupling. To this aim, we associate a duration

d = n � w to each burst (Materials and methods, Data analysis), where n is the number of conse-

cutive windows belonging to a given burst and w is the window length (Fig 1b).

Distinct functional forms of θ- and δ-burst duration distributions

We next study the probability distribution of the durations of θ- and δ-bursts over a 24h period
for control and PZ-lesioned rats (Materials and methods, experimental setup). We notice that

θ and δ bursts follow very different statistics. The probability density Pθ of the θ-burst dura-

tions exhibits a power-law behavior, followed by an exponential cut-off (Fig 2a),

PyðdÞ � d�a; ð1Þ

where α denotes the scaling exponent of the power law. Power laws are the fingerprint of scale

invariance and, depending on the context, they imply that events of any size, length or dura-

tion are likely to occur with some finite probability that is larger than expected in random or

short-range correlated processes. Presence of power law indicates absence of characteristic

time scales in the underlying control mechanism, which is a typical feature of physical systems

at the critical point of continuous phase transition—a highly sensitive state where cooperative

behavior spontaneously emerges over a range of time scales characterized by long-range corre-

lations (presence of such correlations in the duration of consecutive δ- and θ-bursts is shown
in Fig 7 and is discussed later in the manuscript). Notably, such scale-invariant power-law

behavior is not influenced by lesions of the PZ neurons: in both control and PZ-lesioned

group we find an exponent of α ’ 2.35 (Fig 2a), indicating that lesions of the PZ do not alter

the dynamical micro-architecture of θ-bursts across the 24h sleep-wake cycle.

Non-equilibrium critical dynamics in brain waves define sleep and wake micro-architecture
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Fig 1. Cortical activity across the sleep-wake cycle is characterized by intermittent irregular transitions between
brain rhythms with dominant spectral power. (a) (Top panel) Spectrogram obtained from cortical EEG signal of a
control group rat over a 2 h segment of 12-hour lights-on period (when rats predominantly sleep). Spectral power is
calculated in non-overlapping time windows w = 5 s, and is color coded over a range (0-20 Hz) of physiologically-
relevant frequencies. Segments in red indicate bursts of prominent activity in the low frequency band (0-4 Hz,
corresponding to δ waves) and intermediate frequency band (4-8 Hz, corresponding to θ waves). (Bottom panel) Ratio
Rθδ = S(θ)/S(δ) of the spectral power in the θ and δ band in logarithmic scale obtained for each window w from the
spectrogram shown in top panel. Values Rθδ above a threshold Th = 0 indicate predominance of θ rhythm (in red),
while values below the threshold Th = 0 correspond to predominance of δ rhythm (in blue). (b) Smoothed ratio Rθδ of
the spectral power in the θ and δ band during a 30 min segment of 12-hour dark (lights-off) period for a control rat
(top panel) and a PZ-lesioned rat (bottom panel). Rθδ is calculated in non-overlapping windows w = 5 s; smoothing is
performed using a 5 point moving average. θ- and δ-bursts are defined as sequences of consecutive windows w where
either the power in θ or δ band is dominant.

https://doi.org/10.1371/journal.pcbi.1007268.g001
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In contrast to the power-law characteristic of θ-bursts, δ-burst durations follow a distinct

behavior that is described by a Weibull distribution (Fig 2b),

Pdðd; b;lÞ ¼
b

l

d

l

� �b�1

e�ðd=lÞb ; ð2Þ

where λ is the characteristic time scale and β is the shape parameter. Further, we find that the

Fig 2. Durations of θ- and δ-bursts across the 24 h sleep-wake cycle follow distinct statistics that are robust, do
not change with lesion of the PZ neurons, and are typical for non-equilibrium systems at criticality. (a) Probability
density distribution of θ-burst durations for control (open circles) and PZ-lesioned rats (full triangles) over the 24 h
period (pooled data). The distribution exhibits a power-law behavior in both groups (red tick line), with exponent αctrl

= 2.34 ± 0.06 for control rats and αPZ = 2.31 ± 0.07 for PZ. The power-law exponent value for control and PZ rats do
not show significant difference (t-test, p> 0.99). Lesion of the PZ area does not cause significant variations in the
power-law exponent α, indicating a robust scale-invariant temporal organization of θ-bursts. (b) Probability density of
δ-burst durations for control and PZ-lesioned rats over 24 h period (pooled data). In contrast to the statistics of θ-
bursts, δ-bursts durations follow aWeibull distribution (stretched exponential tail with a characteristic time scale, Eq
2). Parameters of the Weibull functional form are not significantly affected by lesion of the PZ (βctrl = 0.59, λctrl = 0.16;
βPZ = 0.54, λPZ = 0.13). Black line is a Weibull fit of the distribution for control rats. All durations are calculated using
window size w = 5 s for the spectrogram and threshold Th = 1 on the ratio Rθδ (Fig 1). Error bars are calculated for
each value and where not shown are smaller than the symbol size. Error bars calculation and binning procedure are
described in Materials and methods, Data analysis.

https://doi.org/10.1371/journal.pcbi.1007268.g002
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distribution of δ-burst durations follows the same Weibull functional form for both control

and PZ-lesioned groups, with similar values of the Weibull parameters λ and β.
The functional forms established for the distributions of θ- and δ-burst durations in Eqs 1

and 2 and Fig 2, indicate a very different temporal organization of θ- and δ-bursts. A surrogate

test based on randomizing the sequence of windows w in the EEG spectrogram (Fig 1a) leads

to a different profile of θ- and δ-burst durations with an exponential functional form for their

distributions (Fig A in S1 File), indicating that the observed temporal organization in bursting

activity of brain rhythms is physiologically relevant and relates to underlying regulation.

The results demonstrate a remarkable duality of power-law scale-invariant dynamics for θ-

bursts andWeibull dynamics with characteristic time scale for δ-bursts. Such duality of two

unlikely processes appears to be a general feature of brain cortical activity of individual sub-

jects in each group across the entire sleep-wake cycle. Moreover, this feature is robust as it

remains unchanged in both control and PZ-lesioned rats. Coexistence of scale-invariant and

exponential type behaviors is a hallmark of non-equilibrium systems at criticality characterized

by alternating active and inactive states, and exhibiting self-organization (i.e., maintaining crit-

ical behavior without external tuning) [35, 52, 53]. Thus, our observations indicate an intrinsic

common mechanism that underlies the temporal organization of bursting activity in both δ
and θ cortical waves across the distinct physiological states of wake/arousals and sleep.

To achieve a more detailed understanding of the temporal organization of bursting activity

of θ- and δ-waves during sleep and wake, and the role of PZ neurons in these dynamics, we

next analyze the probability distributions of θ- and δ-burst durations separately during
12-hour dark (nighttime) and light (daytime) periods. In contrast to humans, rats are predom-

inantly awake during the dark period and asleep during the light period. Although sleep and

wake are characterized by different dominant brain rhythms with distinct dynamics, synchro-

nization and coupling patterns across cortical areas [25, 54], our analyses show that the duality

of power-law for the θ-bursts and Weibull distribution for the δ-bursts durations is robust and
remains independent of the dominant physiologic state (sleep or wake). Such coexistence of

scale-invariant and scale-specific temporal organization in θ- and δ-bursts appears to be a
basic characteristic of cortical activity during both dark and light periods (Fig 3). Importantly,

the scaling exponent α of the power law as well as the Weibull parameters λ and β concurrently

change comparing dark to light periods, indicating a coordinated modulation of θ and δ brain

dynamics across sleep and wake. This rises the hypothesis of a coupling mechanism controlling

the durations of consecutive θ- and δ-bursts (confirmed by empirical results shown in Fig 8).

The observations are consistent for both control and PZ-lesioned group, demonstrating a

remarkable robustness of the power-law andWeibull functional form, which remain present

across the dark and light periods, and even after lesioning the PZ neurons (Fig 3).

Further, considering separately dark and light periods, we observe that the power-law scal-

ing exponent α is higher for the dark period (Fig 3a and 3c), indicating that θ-bursts of longer

duration are more likely during the light period when rats are predominantly asleep. Higher

probability for longer lasting θ-bursts during light periods could be associated with the pres-

ence of longer episodes of REM sleep, where θ-wave oscillations are dominant. This leads to

an average increase of spectral power in the θ band, and thus, to a higher likelihood for longer

θ-bursts (smaller α) during the light period. For both control and PZ-lesioned rats, the scaling

exponent α � 2.45 is higher during the dark period, and lower α � 2.25 during the light period

(Fig 3a and 3c), in concurrence with change in Weibull parameters λ and β (Fig 3b and 3d).

Notably, comparing the control vs the PZ-lesioned group within a given dark or light period,

we find no significant difference for the distributions of θ- and δ-burst durations, indicating
that the temporal organization of these fundamental brain rhythms across the sleep-wake cycle

is not influenced by neuronal assemblies in the PZ area.
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Robust organization of θ- and δ-bursts across time scales

Our findings show that bursts associated with θ and δ rhythms exhibit a distinct temporal

organization described by specific duration distributions: power law for θ-bursts indicating

absence of a characteristic time scale (i.e. scale-invariant behavior), and Weibull distribution

for δ-bursts with a characteristic time scale λ (Figs 2 and 3). These findings are obtained

based on a particular choice for the observational window size w and threshold Th utilized to

analyze bursting dynamics (Fig 1; Materials and methods, Data analysis). We note that in

our analyses, θ- and δ-bursts are defined as time periods for which the ratio Rθδ = S(θ)/S(δ) is
above or below the threshold Th = 1, where Rθδ is evaluated over consecutive windows of

w = 5 s. To demonstrate that our results are indeed independent of the particular choice of

Fig 3. Critical behavior represented by duality of power-law andWeibull distribution for θ- and δ-bursts
characterizes cortical activity during both dark and light periods in control and PZ-lesioned rats. (a) Probability
distributions of θ-burst durations for control (circles) and PZ-lesioned (triangles) rats over the 12 h dark lights-off
period (pooled data) follow a power-law with an exponent αctrl = 2.44 ± 0.06 and αPZ = 2.40 ± 0.06 (higher than for the
24 h sleep-wake cycle, Fig 2), where the line shows a power-law fit for the control group. (b) Probability distributions
of δ-burst durations for control and PZ-lesioned rats over 12 h dark period (pooled data) follow aWeibull form, with
no significant differences in the fitting parameters (βctrl = 0.59, λctrl = 0.16; βPZ = 0.54, λPZ = 0.14), where the line shows
a Weibull fit for the control group. (c) Probability distributions of θ-burst durations for control and PZ-lesioned rats
over the 12h lights-on period (pooled data) also follow a power-law but with smaller exponent αctrl = 2.28 ± 0.07 and
αPZ = 2.24 ± 0.08 compared to the dark period, indicating higher probability for longer durations. (d) Probability
distributions of δ-burst durations for control and PZ-lesioned rats over the 12 h light period (pooled data) follow
Weibull behavior for both groups with no significant differences in the fitting parameters (βctrl = 0.54, λctrl = 0.12; βPZ =
0.56, λPZ = 0.14). Lines in (c) and (d) show fits for the distributions of the control group. All durations are calculated
using window size w = 5 s for the spectrogram and threshold Th = 1 on the ratio Rθδ (Fig 1). Error bars are calculated
for each value and where not shown are smaller than the symbol size. Error bars calculation and binning procedure are
described in Materials and methods, Data analysis. The power-law exponent value for control and PZ rats do not show
significant difference for both light and dark periods (t-test, p> 0.46).

https://doi.org/10.1371/journal.pcbi.1007268.g003
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parameters Th and w, we repeat the analyses for a range of parameter values. We find that

universal scaling functions describe the dynamics of burst durations across the 24-hour

sleep-wake cycle.

We first examine the duration distributions of θ- and δ-bursts for different threshold values

Th, keeping the window size w fixed. By increasing the threshold on the ratio Rθδ from Th = 1

to Th = 2, we find that the scaling exponent α characterizing the power-law distribution of θ-

burst durations remains stable (data collapse on to a single curve, Fig 4a and 4c). The scaling

behavior is followed by an exponential cut-off that, with increasing Th values, shifts to shorter

burst durations dθ.

Fig 4. Critical characteristics in temporal dynamics of bursts in dominant rhythms are a fundamental feature of
cortical activity across the sleep-wake cycle independent of thresholds utilized to define bursts. The distribution
functional forms of power-law for θ-bursts durations andWeibull for δ-bursts durations remain preserved for
different threshold values Th imposed on the ratio Rθδ (Fig 1). (a) Distributions of θ-burst durations for control rats
over a 24h period (pooled data) evaluated using different Th values consistently follow the same power-law behavior
(red line), with an exponential cut-off that is controlled by Th. With increasing Th the distribution cut-off shifts
towards shorter burst durations, a finite size effect typically observed in systems at criticality. Inset: data for different
Th collapse onto a single universal function fθ when we plot P(d)dα versus Th�d, with α = 2.35 and � = 0.8. (b) Rescaled
distributions of δ-burst durations for control rats over a 24 h period (pooled data) obtained for different Th values,
consistently follow the sameWeibull form. Distributions are rescaled by hdδi

η, where hdδi is the mean δ-burst duration
and η = 1.2. After rescaling, distributions collapse onto a single function following a Weibull behavior, f(d; λ, β) (black
line) with λ = 0.55 and β = 0.59. Inset: Distributions Pδ for different thresholds Th (not rescaled). (c) Distributions of θ-
burst durations for PZ-lesioned rats over a 24 h period (pooled data) evaluated using different threshold values Th
consistently follow the same power-law behavior (red line), with an exponential cut-off controlled by Th. Inset: Data
collapse onto a universal function fθ by plotting P(d)d

α versus Th�d with α = 2.35 and � = 0.8 (same as for control rats
in a). (d) Rescaled distribution of δ-burst durations for PZ-lesioned rats over a 24 h period (pooled data) obtained for
different Th values follow theWeibull form. Distributions are rescaled by hdδi

η, with hdδimean δ-burst duration and η
= 1.2. After rescaling, the distributions collapse onto a single Weibull distribution f(d; λ, β) (black line) with λ = 0.44
and β = 0.54. Inset: Distributions Pδ for different thresholds Th (not rescaled). Results in all panels are obtained for a
fixed scale of analysis, keeping the window size w = 5 s (Fig 1). Results are consistent when considering separately light
and dark periods (Fig B and Fig C in S1 File).

https://doi.org/10.1371/journal.pcbi.1007268.g004
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For both control and PZ-lesioned rats this behavior is captured by the relation

PyðdyÞ � d�a
y
fy

dy

Th��

� �

; ð3Þ

where fθ(dθ/Th
−�) is a universal scaling function, α is the power-law scaling exponent and �

expresses the dependence of the cut-off on Th. This universal scaling function is confirmed by

the data collapse obtained by plotting da
y
PyðdÞ versus dθ/Th

−� for a range of Th values (insets in

Fig 4a and 4c). In addition to the universal scaling function, such exponential cut-off is remi-

niscent of finite size effects observed in systems at criticality.

Similarly, we demonstrate that a unique function fδ describes the distribution of δ-burst
durations that is independent of the threshold Th (Fig 4b and 4d). Since a δ-burst is defined as

a time period of consecutive windows w where Rθδ < Th = 1 (Fig 1b), to properly explore the

behavior of the duration distribution for states with increasingly dominant δ power, we repeat
the analyses for different values Th< 1. We observe that as Th decreases the probability for

long δ-bursts decreases, while short δ-bursts become more likely (insets in Fig 4b and 4d).

However, when distributions are rescaled by their respective mean δ-burst duration hdδi, they

all collapse onto a unique function fδ, which is the same for both control and PZ-lesioned rats

(shown in main panels of Fig 4b and 4d respectively). This universal function fδ is defined by

the scaling relation,

PdðddÞ � hddi
�Z
fdðdd=hddi

Z
Þ; ð4Þ

where η = 1.2 for both rat groups, and is well fitted by a Weibull functional form as we find by

rescaling dδ and Pδ.

Repeating the analyses for 12-hour dark and light periods separately, we find that the uni-

versal scaling forms in Eqs 3 and 4 consistently describe the dynamics of δ- and θ-bursts in
both control and PZ-lesioned groups (Fig B and Fig C in S1 File). Thus, our results indicate

that the duality of power-law andWeibull distribution, as well as the scaling properties sum-

marized in Eqs 3 and 4, are robust features of the bursting dynamics of θ and δ rhythms across

the sleep-wake cycle, and do not depend on the particular threshold Th utilized to study the

time evolution and intermittent dynamics of θ- and δ-bursts embedded in the EEG spectral

power.

Moreover, we also find that the functional behavior of the distributions of θ- and δ-burst
durations is to a large extend independent of the window size w, used to investigate the time

course of the EEG spectral power (Fig 1a). Intuitively, larger w would tend to fail in identifying

short bursts and merge them together, thus causing an increase in the probability of observing

longer durations. In that regard, considering the power-law temporal organization of θ-bursts,

larger window sizes wmainly influence the tail of the distribution with longer θ-bursts dura-

tions, thus leading to decrease of the scaling exponent α (insets in Fig 5a and 5c). We note that

the window size effect becomes visible only for extremely large w compared to the average θ-

burst duration hdθi. However, when the θ-bursts distributions (curves in insets of Fig 5a and

5c) are rescaled by their respective window size w, all data collapse onto a single power law

(Fig 5a and 5c), confirming the robustness of the results obtained in Fig 2a for both control

and PZ-lesioned rats. This rescaling is represented by the following relation

PyðdÞ � w�1 � fyðd=wÞ: ð5Þ

Separate analyses of 12-hour dark and light periods for different window sizes w (shown in

Fig D a and c, Fig E a and c in S1 File) further confirm the robustness of the established scale-

invariant power-law form for the θ-burst durations (Fig 3a and 3c).
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A similar data collapse characterizes the dependence of the δ-burst duration distribution on

window size w. Generally, we observe that for increasing w the probability for long δ-bursts
increases, while short δ-bursts become less likely (insets in Fig 5b and 5d). We find that the

relation between w and the average duration of δ-bursts hdδi is given by w� hdδi
ξ, with expo-

nent ξ = 1.2 for both control and PZ-lesioned rats. When δ-burst duration distributions corre-

sponding to different window sizes w, are rescaled by their respective mean duration hdδi, we

find that all distributions collapse onto a unique function fδ of a Weibull form (Fig 5b and 5d),

Fig 5. Critical characteristics in temporal dynamics of bursts in dominant cortical rhythms are independent of the scale of analysis.
Distributions of θ- and δ-burst durations for different scales of observation defined by the window size w (Fig 1). (a) Rescaled
distribution Pθ of θ-burst durations for control rats over a 24 h period (pooled data). Distributions obtained for different scales of
observation are rescaled by the window size w and consistently show the same power-law behavior with α = 2.35, as proven by the data
collapse (red line). Small deviations observed on the tail of Pθ for w> 6 are due to coarse-graining effect at large-window sizes. Inset:
Distributions Pθ for different window sizes w (not rescaled). (b) Rescaled distribution of δ-burst durations for control rats over a 24 h
period (pooled data). Distributions obtained for different window sizes w are rescaled by hdδi

ξ, where hdδi is the mean δ-burst duration
and ξ = 1.2, and collapse onto a single function that is well described by a Weibull distribution f(d; λ, β) with λ = 0.55 and β = 0.59 (black
line). Inset: Distributions Pδ for different window sizes (not rescaled). (c) Rescaled distribution of θ-burst durations for PZ-lesioned rats
over a 24h period (pooled data). Distributions obtained for different window sizes w are rescaled by the corresponding window size, and
consistently show the same power-law behavior with α = 2.35, as proven by the data collapse (red line). Small deviation observed on the
tail of Pθ for w> 6 are due to large-window effects. Inset: Distributions Pθ for different window sizes (not rescaled). (d) Rescaled
distribution of δ-burst durations for PZ-lesioned rats over a 24 h period (pooled data). Distributions are rescaled by hdδi

ξ, with ξ = 1.2,
and collapse onto a single function following a Weibull behavior f(d; λ, β) (black line) with λ = 0.44 and β = 0.54. Inset: Distributions Pδ

for different window sizes (not rescaled). Results in all panels are obtained for fixed threshold Th = 1 on the ratio Rθδ (Fig 1). Results are
consistent when considering separately light and dark periods (Fig D and Fig E in S1 File).

https://doi.org/10.1371/journal.pcbi.1007268.g005
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expressed by the following scaling relation

PdðdÞ � w�1 � fdðd=wÞ � hddi
�x

� fdðd=hddi
x
Þ: ð6Þ

As in the case for θ-burst dynamics, we find that the temporal organization of δ-bursts is
robust and characterized by a scaling function (Eq 6), which is universal for the control and

PZ-lesioned groups, and remains stable during light and dark periods (Fig D b and d, Fig E b

and d in S1 File).

The existence of universal scaling functions (Eqs 3–6) not only demonstrates that duration

distributions are independent of the specific set of parameters used to identify θ- and δ-bursts,
but also constitutes a striking evidence of scale invariance, a property associated with systems

operating at criticality.

Self-similar micro-architecture of active and quiet states in the sleep-wake
cycle

Our investigations reveal a scale-invariant power-law structure for the durations of θ-bursts

and a homogeneous functional form of Weibull type with a characteristic time scale for δ-
burst durations, that are remarkably robust during light and dark periods across the sleep-

wake cycle, and are consistent for both the control and PZ-lesioned group (Figs 2 and 3). The

coexistence of these two distinct types of dynamics draws a strong parallel with far-from-equi-

librium physical phenomena that are characterized by bursting dynamics and abrupt transi-

tions between active and quiet states, such as avalanches and earthquakes [15, 35, 55–57]. For

instance, the energy released during avalanches/earthquakes (active states) is also distributed

according to a power law, while the distribution of time intervals between consecutive ava-

lanches/earthquakes (quiet states) is described by a generalized Gamma distribution with a

characteristic time scale (exponential tail). Gamma is a universal scaling function that is inde-

pendent of spatial scales and minimummagnitude thresholds, and is consistently observed for

a broad range of conditions despite the large variability associated with phenomena such as

earthquakes and avalanches [55, 58–60].

In the context of sleep dynamics, wake and brief arousals during sleep can be considered as

active states that, in rodents, are characterized by bursts in θ rhythms. Thus, we focus on the

organization of θ rhythms in time. Specifically, we investigate the relationship between the

duration of θ-bursts and their occurrence in time (Fig 6), and we hypothesize that a self-

similar structure, invariant across time scales, may also characterize the occurrence of θ-

bursts. In analogy with non-equilibrium phenomena, where quiet times are associated with

the magnitude of active states, presence of a self-similar structure between occurrence and

duration of θ-bursts (active states) would provide additional evidence for criticality in sleep

micro-architecture.

To this end, we consider the time sequence of θ-bursts, and we investigate the statistical fea-

tures of the quiet times Δt separating consecutive bursts, taking into account the duration dθ of

each θ-burst (Fig 6a). Since θ-bursts vary in duration, we impose a threshold D0 representing

the time scale of analysis, and we define quiet time Δti as the period from the end of θi-burst

to the beginning θi+1-burst. Thus, the statistical characteristics of Δti depend on the threshold

value D0. We obtain the probability distribution P(Δt; D0) of quiet times Δti for different values
of D0 (insets in Fig 6c and 6d). With increasing threshold (scale of observation) D0, the proba-

bility of longer Δti increases, while the probability of short quiet times decreases, leading to dif-

ferent curves for the distributions P(Δt; D0).

Visual inspection of the complex profile formed by the time sequence of θ-bursts and their

respective durations shows an apparent similarity when comparing short segments of the
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profile with the entire sequence above a given threshold D0 (Fig 6b). Indeed, the transforma-

tion illustrated in Fig 6b resembles a renormalization-group transformation, analogous to

those studied in the context of critical phenomena. In particular, the picture in the bottom

panel of (Fig 6b) can be seen as a result of contracting the time axis by a factor a with respect

to the middle panel, and successively decimating the number of events by the same factor.

To demonstrate statistical self-similarity in the sequence of θ-bursts, we systematically analyze

Fig 6. Self-similar structure in quiet times between consecutive θ-bursts indicates coupling between time of occurrence and
burst duration. (a) Schematic diagram of quiet time Δt between consecutive θ-bursts. A quiet time Δti is the time elapsed from the
end of burst θi to the beginning of the following burst θi+1. (b) Top: Time series of θ-burst durations for about 600 min recording
of a control rat. Middle: A 60 min segment from the sequence shown in top panel. Bottom: Sequence comprised only of the θ-burst
durations longer than D0 = 15 s that are present in the 600 min time series shown in the top panel. Selecting only bursts longer
thanD0 = 15 s, the temporal pattern at the scale of 600 min looks similar to pattern at smaller scale of 60 min, indicating self-
similar structure in quiet times. (c) Distribution of quiet times for different thresholdsD0 on θ-burst durations over a 24 h period
in control rats (blue symbols). When rescaled by hΔti (main panel), distributions obtained for different D0 collapse onto a unique
function that is well described by a generalized Gamma distribution G(x; b, ν, p) (solid green line), with b = 0.15, ν = 0.31, and
p = 0.91. Applying the same procedure to a sequence of randomly reshuffled θ-burst durations, thus eliminating information about
the timing of θ-bursts, leads to distributions that collapse onto an exponential function (dashed lines). Inset: Distributions of quiet
times for different thresholds D0 before rescaling. (d) Distributions of quiet times for different thresholds D0 on θ-burst durations
over a 24 h period in PZ-lesioned rats. Distributions collapse onto a unique function when rescaled by hΔti (main panel). Similar
to control rats, this function is well described by a generalized Gamma function G(x; b, ν, p) (solid green line), with b = 0.17, ν =
0.24, and p = 0.83. Distribution of quiet times obtained from a sequence of randomly reshuffled θ-burst durations collapse onto an
exponential distribution (dashed lines). Insets: Distributions of quiet times in PZ-lesioned rats for different thresholds D0 before
rescaling. Results are consistent when considering separately light and dark periods (Fig F in S1 File).

https://doi.org/10.1371/journal.pcbi.1007268.g006
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the functional form of the probability distributions P(Δt; D0) for different thresholds D0 by

rescaling each distribution on the average quiet time hDtiD0
. Remarkably, we find that all dis-

tribution curves collapse onto a single functional form G (Fig 6c and 6d), defined by the fol-

lowing scaling relation

PðDtÞ ¼ hDti
�1

� GðDt=hDtiÞ: ð7Þ

The scaling relation in Eq 7 represents a quantitative, mathematical expression of the statis-

tical self-similarity in the profile formed by the quiet times and θ-burst durations shown in Fig

6b. We find that the functional form G is well approximated by the generalized Gamma distri-

bution GðDt=hDti; b; n; pÞ ¼ ðp=bnÞðDt=hDtiÞ
n�1

e�ðDt=hDtibÞp=Gðn=pÞ [61], where in our analysis

Δt/hΔti is a dimensionless quiet time. The Gamma functional form is homogeneous [62], i.e.

rescaling the variable leaves the functional form unchanged. The existence of such scaling

function indicates that the distribution of quiet times between consecutive θ-bursts is indepen-

dent on the scale of observation D0. In the limit of D0 = 0, the quiet time distribution P(Δt; D0)

coincides with the distribution of δ-burst durations Pδ (Eq 2 and Figs 2b, 3b and 3d)—aWei-

bull functional form that belongs to the same class of homogeneous functions as the general-

ized Gamma.

Our data analysis shows that the scaling relation in Eq 7 and the associated Gamma func-

tional form for the quiet times are robust: (i) we find it across the 24-hour sleep-wake cycle (Fig

6) as well as separately during light and dark periods (Fig F in S1 File), and (ii) it does not sig-

nificantly change with lesion of the sleep-promoting neurons in the PZ brain area (compare

Fig 6c and Fig 6d). Further, the presence of self-similar structure in quiet time indicates specific

temporal order in the occurrence of θ-bursts. To explicitly verify this, we randomly reshuffle

the data sequence of θ-burst durations, while preserving the δ-burst durations corresponding
to quiet times atD0 = 0, and we perform the analysis on the reshuffled sequence to obtain quiet

time distributions Prand(Δt;D0) for different thresholds D0. After rescaling the distributions

Prand(Δt; D0) by the average quiet time hDtiD0
, their curves collapse onto an exponential distri-

bution (dashed lines in Fig 6c and 6d)—a hallmark of temporal independence between conse-

cutive events [63]. This clearly demonstrates that temporal correlations are intimately related

to the existence of universal non-exponential scaling functions (Eqs 2 and 7) [63, 64].

Notably, a similar temporal organization characterized by coexistence of power law and

generalized Gamma distribution has been reported for active states and quiet times between

them in a range of non-equilibrium systems self-tuning at criticality [15, 53, 55, 58]. Thus, our

findings are a strong evidence in support of the hypothesis that bursting activity of fundamen-

tal brain rhythms and the associated sleep micro-architecture exhibit critical non-equilibrium

behavior.

Long-range scale-invariant correlations in θ and δ bursts

Physical systems at criticality exhibit high sensitivity to interactions among components [32,

65]. This leads to the emergence of collective cooperative behavior, where interactions span

the entire system across space and time scales [32], leading to long-range correlations. Indeed,

scaling features in such systems often arise in conjunction with long-range spatio-temporal

correlations of power-law (scale-invariant) type, as observed at the critical point of continuous

phase transitions [32]. Notably, physiological systems under neuroautonomic regulation also

exhibit dynamics characterized by long-range power-law correlations—a scale-invariant struc-

ture that undergoes a phase transition with transitions from sleep to wake [66–69], with circa-

dian rhythms [70–73] and under clinical conditions [74–76]. Further, the randomization

procedure in the previous subsection (Fig 6) clearly demonstrates that a self-similar structure
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in quiet times, characterized by a Gamma scaling function (Eq 7), can arise only in the pres-

ence of a certain temporal order in θ-bursts. Thus, we next perform correlation analysis to

quantify long-range features in the temporal organization of δ- and θ-burst durations.
To this end, we utilize the detrended fluctuation analysis (DFA)—a random walk based

method, specially tailored to quantify long-range power-law correlations embedded in non-

stationary signals with various polynomial trends and bursting dynamics [77, 78]. The DFA

method is based on evaluation of the root mean square (r.m.s.) fluctuation function F(n)

(Materials and methods, Data analysis), where n is the scale of analysis expressed in number of

consecutive bursts (Fig 7). A scaling relationship of the form FðnÞ / nad indicates presence of

long-range power-law correlations in the time series of burst durations. Correlation exponent

αd 2 [0, 0.5) indicates anti-correlations (where short burst durations tend to be followed by

longer burst durations), while αd 2 (0.5, 1] indicates positive persistent correlations (long

bursts tend to be followed by longer bursts)—a scale-invariant behavior that is consistent

over several decades of time scale n; αd = 0.5 corresponds to a random walk and absence of

correlations.

We performed DFA on sequences of θ- and δ-burst durations separately, distinguishing
between dark and light periods as well as between control and PZ-lesioned rats (Fig 7). We

find that both θ- and δ-bursts exhibit long-range power-law correlations, with an exponent

αd = 0.60 ± 0.02 and αd = 0.65 ± 0.02, respectively. These exponents are robust and do not

Fig 7. Long-range power-law correlations in sequences of consecutive θ- and δ-burst durations indicate a
dynamical system at criticality.Detrended fluctuation analysis (Materials and methods: Data analysis) for sequences
of θ- and δ-burst durations from control and PZ-lesioned rats. Burst durations are calculated for window size w = 5 s
and threshold Th = 1 on the ratio Rθδ (Fig 1), and are analyzed separately for 12 h dark and light periods. The root
mean square (r.m.s.) fluctuation function F(n) is obtained averaging over all rats in the control (a) and PZ-lesioned
group (b), respectively. Log-log plots of F(n) vs the time scale of analysis n, where n is the number of consecutive burst
durations, show power-law correlations over a broad range of scales n. The scaling exponents are significantly larger
than 0.5, both in light and dark periods, indicating presence of positive (persistent) long-range correlations in θ-bursts
for both control and PZ-lesioned rats. Similar results are found in sequences of δ-bursts for (c) control and (d) PZ-
lesioned rats. The observed difference in the correlation exponents between θ- and δ-bursts is significant for both
control and PZ rats during light and dark periods (t-test, p< 0.05).

https://doi.org/10.1371/journal.pcbi.1007268.g007
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change during dark or light periods, in line with our observations for the duration distribu-

tions (Fig 3). Moreover, our analyses indicate that PZ lesions do not affect the nature and

strength of temporal correlations, and consistently shows that θ- and δ-bursts are long-range
correlated across the sleep-wake cycle (Fig 7).

Anti-correlated coupling between δ- and θ- bursts

Majority of physical and biological systems at equilibrium (homoeostasis) are controlled by

mechanisms that either lead to dynamics with specific space or time scales characterized by

exponential behaviors or to scale-invariant dynamics without characteristic scales following

power laws. Non-equilibrium systems self-organizing at criticality are unique in the sense

that they combine two distinct processes—a scale-invariant process related to the dynamics of

active states and an exponential process related to quiet states—both of which emerge out of a

single regulatory mechanism [13]. In that context, our findings of (i) power-law distribution

for theta-burst durations (scale-invariant dynamics of active states) in coexistence with Wei-

bull distribution for δ-burst durations (characteristic time scale for the dynamics of the quiet

states) shown in Figs 2 and 3, (ii) universal Gamma distribution characterizing the temporal

organization of quiet times across a range of scales (Fig 6), and (iii) long-range power-law cor-

relations in the time sequence of θ- and δ-burst durations (Fig 7)—all these characteristics are

typical for systems at criticality—indicate a common sleep regulatory mechanism for the burst-

ing activity of both θ and δ rhythms and associated sleep micro-architecture. Presence of such

common mechanism would imply coupling between θ- and δ-bursts. Indeed balanced excita-

tion and inhibition in neuronal networks is essential to maintain critical-state dynamics [79–

81]. Further, the concurrent change we find in both power-law andWeibull distribution

parameters with transition from dark to light periods (Fig 3) is an additional indication of

possible coupling between θ- and δ-bursts. Thus, we ask whether there is a cross-correlation
between the durations of consecutive δ- and θ-bursts.

To further understand the temporal organization of bursting dynamics in relation to neuro-

nal integrity in the PZ, we next investigate the coupling between consecutive δ- and θ-bursts,
and the role of such coupling in the emergent scaling behavior of duration distributions in

control and PZ-lesioned rats.

We first focus on the relationship between ranks of consecutive δ- and θ-burst durations, dδ

and dθ. We rank burst durations in ascending order, with the shortest duration corresponding

to the smallest rank, and examine the scatter plots between the ranks of consecutive dδ and dθ
(Fig 8a and 8b). We find that δ-bursts of high ranks (i.e. long durations) tend to be followed by
θ-bursts of low ranks (i.e. short durations). This anti-correlated coupling is consistently pres-

ent in both control (Fig 8a) and PZ-lesioned rats (Fig 8b), and appears to be a basic character-

istic of dynamics as it is observed throughout the entire sleep-wake cycle in both dark and

light periods.

To quantify the coupling between consecutive δ- and θ-burst durations we utilize Spear-
man’s correlation coefficient, which assesses monotonic relationships between two variables

(Materials and methods, Data analysis). The Spearman’s cross-correlation is positive when

observations of two variables have similar ranks, and negative if observations of two variables

have opposite ranks. Our analyses show that the cross-correlation coefficient calculated for

consecutive δ- and θ-burst durations is always (24h, dark, light period) significantly negative
(Fig 8c)—a clear sign of anti-correlated coupling. This is verified by a surrogate test where

the sequence of consecutive δ- and θ-burst durations is randomized (Fig 8c; Materials and

methods, Data analysis). We find that the δ-θ anti-correlated coupling is more pronounced for

PZ-lesioned rats, and this is consistently observed in both light and dark periods. Comparing
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light vs dark period, our results show an increase in the anti-correlated coupling during the

light period within each group (Fig 8c).

The presence of anti-correlated coupling between consecutive δ- and θ-bursts is further
supported by conditional probability analysis (Fig G in S1 File). Specifically, we ask how the

conditional probability distribution Pðddi
jdyi�1

> d�Þ of δ-burst durations ddi
depends on the

length of preceding θ-burst duration dyi�1
above a given threshold d�—i.e., we consider the

probability distribution of the subset of δ-bursts which follow θ-burst durations longer than

d�. Note that when no condition is imposed on dyi�1
, i.e. d� = 0, the conditional probability is

equivalent to the Weibull distribution of δ-burst durations, namely Pðddi
jdyi�1

> 0Þ ¼ Pðddi
Þ

(Figs 2 and 3). On the other hand, for threshold d� > 0, Pðddi
jdyi�1

> d�Þ 6¼ Pðddi
Þ implies that

ddi
and dyi�1

are not independent of each other. As discussed in further details in the Supple-

mentary Information, we find that increasing the conditional threshold for dyi�1
the probability

Fig 8. Coupling between δ- and θ-burst durations indicates a commonmechanism regulating the activity of these
rhythms in relation to sleep micro-architecture. Scatter plots and rank correlation analysis demonstrate coupling between
consecutive δ- and θ-burst durations. (a) Scatter plot of δ-burst ranks vs following θ-burst ranks in the 24h period for control
rats. Each dot represents a pair formed by a δ-burst and the following θ-burst, with burst durations separately ranked among
the δ-bursts and the θ-bursts (longest duration corresponding to highest rank). (b) Scatter plot of δ-burst ranks vs following θ-
burst ranks in the 24h period for PZ lesioned rats. For each rat group, ranks are calculated separately for each rat and then
plotted together. (c) Average Spearman’s cross-correlation coefficient for control and PZ-lesioned rats in dark, light and 24h
periods. Anti-correlations between consecutive θ- and δ-bursts are stronger during light than during dark periods in each of
the two rat groups. Comparing dark vs light periods, the Student’s t-test gives p = 0.651 for control rats and p = 0.461 for PZ-
lesioned rats. Importantly, PZ-lesioned rats generally exhibit stronger anti-correlations than the control group, in particular
during dark periods, where the strength of anti-correlated coupling increases with� 30% compared to control rats (control vs
PZ t-test: 24h, p = 0.158; dark, p = 0.121; light, p = 0.064). All correlation coefficients calculated in both groups are significantly
different from the corresponding values obtained in the surrogates (red bars) after randomly reshuffling the original order of θ-
and δ-bursts (t-test: p< 0.001). All durations are calculated using a window w = 5 s and threshold Th = 1 on the ratio Rθδ (as in
Fig 1). This finding of anti-correlated coupling between θ- and δ-bursts durations is further supported by an independent
analysis based on conditional probability (Fig G in S1 File).

https://doi.org/10.1371/journal.pcbi.1007268.g008
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for longer ddi
significantly drops, while the probability for shorter ddi

significantly increases

(Fig G insets in S1 File). This dependence is observed during light and dark periods for both

control and PZ-lesioned groups, and clearly confirms the anti-correlated coupling between the

durations of consecutive δ- and θ-bursts.

Phenomenological model of coupling and criticality in θ- and δ-bursts
dynamics

We next test whether the established anti-correlated coupling between consecutive δ- and θ-
burst durations is essential for the emergent duality of power-law andWeibull distribution as

a basic characteristic of systems at criticality. We develop a phenomenological model (Fig 9)

based on anti-correlated pairing of θ and δ durations randomly drawn from the empirical dis-

tributions of the δ- and θ-burst durations established in our study (Fig 2). The model allows to

control the degree of anti-correlations between consecutive θ- and δ-burst durations, and thus
to examine if and how anti-correlations affect the emerging power-law andWeibull distribu-

tions of burst durations, and the related scale-invariant temporal structure of θ- and δ-bursts.
The basic steps to generate sequences of alternating θ- and δ-burst durations with the

desired degree of correlations are schematically outlined in Fig 9 (Materials and methods,

model of anti-correlated burst coupling.). Specifically: (1) we randomly draw durations dθ and

dδ from their respective power-law andWeibull distributions obtained from our empirical

data analyses (Fig 9a); (2) dθ and dδ are next separately sorted in ascending order, from shortest

to longest, and are assigned a unique rank (Fig 9b); (3) the durations dθ and dδ are then paired

based on their ranks with a certain degree of anti-correlation (defined by and monotonically

depending on a single parameter) to generate an artificial time series of alternating θ- and δ-
burst durations (Fig 9b); (4) the obtained artificial time series is then binarized in windows w

corresponding to the window size used in our EEG spectral power analysis of the original

data (Fig 1a), where ‘+’ is assigned for θ-bursts and ‘−’ for δ-bursts. Finally, the binary series is
coarse-grained at larger time scale Δ (Fig 9c).

We utilize this model to test our hypothesis that coupling between δ- and θ-bursts is essen-
tial for the emergent duality of power-law andWeibull behavior across time scales as a hall-

mark of system at criticality. We test to what extent δ-θ coupling strength plays role in the

emergent scale-invariant organization of sleep micro-architecture. Our simulations show that

the generated distributions of δ- and θ-burst durations depend on the degree of anti-correla-

tion introduced in the model. When the Spearman’s cross-correlation coefficient of burst

durations generated by the model corresponds to the empirical values found in real data, the

distributions obtained from the model approximate the empirical distributions (Fig 10), and

scale-invariant temporal organization in burst durations emerges over a range of coarse-grain-

ing scales Δ. In contrast, absence of anti-correlated coupling in our model (i.e. random pairing

of δ and θ durations in the generated time series) leads to exponential distribution for both δ-
and θ-bursts, significantly different from real data (Fig 10).

Discussion

We show that transient bursts in both the θ and δ cortical rhythms continuously occur during

the sleep-wake cycle and exhibit a complex temporal organization that is invariant across a

range of time scales, from seconds to minutes, and underlies sleep micro-architecture. We

discover a remarkable duality of scale-invariant power-law distribution for θ-burst durations

(active states) and a Weibull distribution with a exponential characteristic time scale for the δ-
burst durations (quiet states) (Fig 2)—a behavior which is typically observed in non-equilib-

rium systems self-organizing at criticality, where a quiescent phase with exponential dynamics
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coexists with active events following power-law distributed sizes and durations [15, 34, 35, 57].

Further, we identify presence of coupling between θ- and δ-bursts dynamics which is charac-

terized by significant anti-correlation in consecutive θ- and δ-burst durations (Fig 8), and we

demonstrate through both empirical and modeling approaches that this anti-correlated cou-

pling is essential part of the mechanism responsible for the emergent duality of power-law and

Weibull behavior across time scales (Figs 9 and 10). Importantly, we find that sequences of

consecutive θ- or δ-burst durations are long-range power-law correlated, indicating a scale-

invariant organization in the temporal order of burst durations and a unique underlying pro-

cess with persistent ‘memory’ spanning over a wide range of scales that statistically couples the

Fig 9. Schematic diagram of a phenomenological model to generate sequences of θ- and δ-burst durations with
varied degree of anti-correlated coupling. (a) First, burst durations dθ and dδ are randomly drawn from the
empirically obtained distributions (power law andWeibull, Fig 2) and separately ranked. Durations d = n � w are a
multiple of the scale of analysis (window size w = 2 s). (b) Ranks of θ- and δ-burst durations are then paired to form an
anti-correlated sequence: if the rank(dθ) of a θ-burst is large, than the rank(dδ) of the following dδ-burst is selected to
be smaller, and vice versa. Repeating this process leads to a sequence of generated dθ and dδ durations with a certain
degree of anti-correlation. (c) This newly generated anti-correlated time series is binarized, i.e. ‘+’/’-’ is assigned to
each window w that belongs either to a dθ (red, ‘+’) or dδ (blue, ‘-’) duration, respectively. The binary time series is then
coarse grained according to a majority rule applied over a window Δ = 5w. From the resulting coarse-grained (CG)
binary series, consecutive θ durations, dCG

y
, and δ durations, dCG

d
, are extracted. Details of the model are given in

Materials and methods: Model of anti-correlated burst coupling.

https://doi.org/10.1371/journal.pcbi.1007268.g009
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Fig 10. Anti-correlations between consecutive θ- and δ-bursts durations are essential for emerging critical
behavior with duality of power-law andWeibull dynamics. Probability distributions of θ- and δ-burst durations
from 24 h control and PZ-lesioned rat data coarse-grained (CG) over a window Δ = 10 s, are compared with the
distributions obtained from the model-generated coarse-grained binary time series of θ- and δ-bursts durations with
anti-correlations and without correlations (random pairing of θ- and δ-bursts, Fig 9). (a) Distributions Pθ(d) of θ-burst
durations for: (i) 24 h control rats data (red diamonds), (ii) model-generated time series of θ- and δ-bursts durations
with anti-correlations (green circles), and (iii) model-generated time series with random pairing of θ- and δ-bursts
durations (magenta dashed line). Inset shows results from same analysis on Pθ(d) for the group of PZ-lesioned rats. (b)
Distribution Pδ(d) of δ-burst durations for: (i) 24h control rats data (blue diamonds), (ii) model-generated time series
with anti-correlations (green circles), and (iii) model-generated time series with random pairing of θ- and δ-bursts
durations (magenta dashed line). Inset shows results from same analysis on Pδ(d) for the group of PZ-lesioned rats. In
both (a) and (b), durations are in units of Δ, which is the window size used to coarse grain the sequences of θ- and δ-
bursts durations. The distributions obtained from the model using anti-correlated dθ and dδ pairing (green circles)
closely match the duration distributions for the original data (diamonds)—power law for Pθ(d) andWeibull for Pδ(d)
—for both control and PZ-lesioned rats. In contrast, a random pairing of dθ and dδ produces duration distributions
following the Poisson functional form (magenta dashed lines) that significantly deviates from the original data.

https://doi.org/10.1371/journal.pcbi.1007268.g010
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duration of a given burst with the durations of hundreds of following bursts (Fig 7). Presence

of complex temporal organization and coupling in cortical rhythms is also manifested through

the self-similar structure we uncover in the quiet times separating consecutive θ-busts (active

events) above a given duration (Fig 6)—described by a homogeneous generalized Gamma dis-

tribution [61]. This self-similar structure links, across time scales, the duration of a given θ-

burst with the time of its occurrence.

Our empirical analyses show that the characteristics of θ- and δ-bursts dynamics do not

depend on the scale of observation or on the threshold used to separate θ- from δ-bursts, and
remain continuously present during dark and light periods (Figs 4, 5 and Figs B, C, D, E in S1

File), under different dominant physiologic states, and both in control rats and rats where all

PZ neurons are lesioned. Thus, our findings indicate that the discovered scale-invariant orga-

nization in the bursting activity of θ and δ cortical rhythms is independent of behavioral fac-

tors across the sleep-wake cycle, and is not affected by the loss of neuronal inputs from the PZ,

a major component of the sleep-promoting circuitry. Further, the presence of multiple scale-

invariant characteristics related to distributions, correlations, coupling and timing of bursting

events is a strong evidence of critical self-organization in θ and δ cortical rhythms—a signature

of collective behavior over a range of time scales that emerges from neuronal interactions

across brain areas which is essential to maintain system’s susceptibility and flexibility for

abrupt sleep-stage and arousal transitions. The reported self-organization at the integrated cor-

tical level, with dynamics spontaneously driven at criticality by active and quiet states, indicates

that a non-equilibrium mechanism regulates sleep micro-architecture on time scales from sec-

onds to minutes—a behavior which is in contrast to the homeostatic (equilibrium) regulation

that controls consolidated sleep and wake, ultradian and circadian rhythms at large horizons

of hours and days.

Our observations provide new insights about the role of PZ. Previous studies have demon-

strated that PZ lesions cause a significant decrease of NREM sleep during the light period,

without affecting the distribution of EEG spectral power among different brain rhythms [6,

51]. Our results suggest that such stability of the spectral power distribution results from the

robust temporal organization and cross-talk of δ and θ rhythms, which seems not to be signifi-

cantly altered by lesion of the PZ neurons. Furthermore, our findings show that the decrease

in NREM sleep is not associated with significant changes in the dynamic characteristics and

temporal organization of δ rhythms.

Sleep and wake are under control of complex regulatory circuitry involving multiple neuro-

nal assemblies and specialized brain areas. GABAergic neurons from the PZ, together with

other NREM sleep-promoting neurons, inhibit wake-promoting populations and arousal path-

way which are crucial for cortical activation and wakefulness. During the past few years multi-

ple NREM sleep promoting neuronal populations have been described [82–85].

Understanding the specific role of PZ sleep-promoting neurons and how they interact with

other sleep- and wake-promoting brain areas to influence cortical activity is crucial to develop

an integrated picture of sleep-wake control. For example, it is likely that other neuronal assem-

blies compensate for the loss of PZ neurons, e.g. the sleep-promoting neurons located in the

ventrolateral preoptic area (VLPO) [86]. Our findings of scale-invariant features of θ- and δ-
bursts dynamics which remain present after lesioning the PZ neurons, while at the same time

total NREM sleep declines [6, 51], are a strong indication that the function of PZ neurons

relates to sleep initiation, and may not be actively involved in regulating the dynamics once a

sleep episode is initiated—i.e., lesioning the PZ reduces sleep initiation, and thus leading to

decline in total NREM sleep; however, once sleep is initiated the dynamics and micro-architec-

ture of θ- and δ-bursts are not significantly altered, raising the hypothesis that another sleep-
promoting center (possibly the VLPO) may be involved in the dynamic aspects of sleep
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regulation. Moreover, our empirical findings of increased anti-correlation between durations

of consecutive θ- and δ-bursts under PZ lesion (Fig 8) and model simulations demonstrating

that such θ-δ coupling is essential for the emerging scale-invariant temporal organization in

these cortical rhythms (Figs 9 and 10), indicate that PZ neurons may have dual role for both

sleep and arousal/brief wake activation.

Importantly, the uncovered complex dynamics in θ and δ cortical rhythms do not depend

on the time scales of observation, and share striking similarities with the dynamical character-

istics of natural phenomena exhibiting non-equilibrium behavior of active and quiet states,

and self-organization at criticality. Our analyses and findings are based on the interpretation

of θ-bursts as active states and δ-bursts as quiet states, and on the hypothesis that the observed

scale-invariant temporal organization of θ and δ rhythms emerges out of a common sleep reg-

ulatory mechanism, in analogy to the cooperative mechanisms underlying the dynamics of

non-equilibrium systems at criticality. This approach is consistent with the basic neurophysio-

logical understanding of δ rhythm as the quiet state cortical default mode—indeed, lesion and

transection experiments have reported that interruption of sensory inputs to the cortex results

in a cortical EEG similar to that in NREM sleep [87–89]. In contrast, oscillations in the θ band

are associated with REM, arousals and wakefulness [10, 11]. Due to the respective amount of

wakefulness and REM sleep in our data [50], most of the analyzed θ-bursts are likely associated

with arousals and wake. Further, during wakefulness cortical θ activations are desynchronized

with a wide range of burst durations, and correspondingly our analyses show that collective

cortical neuronal activity follows robust universal scaling laws: power-law distribution for

burst durations, long-range power-law correlations in the sequence of burst durations, and a

self-similar structure in quiet times between bursts, all reminiscent of the dynamic characteris-

tics and temporal organization of active states found in avalanche and earthquake dynamics

[59, 60].

The presented findings provide a general picture unifying previous empirical observations

of criticality in spontaneous brain dynamics at different levels—from networks of dissociated

cortical neurons [90] and local field potentials (LFP) in cortex slice cultures [45], human

EEG and fMRI resting state dynamics [48, 49, 91, 92], awake monkeys [93] and resting

magnetoencephalography of the human brain [46], to the dynamics of sleep-stage and

arousal transitions across species [13, 26, 27, 31, 94]—where either distributions or temporal

correlations of active events have been studied and discussed in the context of self-organiza-

tion at criticality. Several models based on statistical physics have also shown that the func-

tional properties of the healthy brain resemble those of systems at criticality, and that altered

physiologic states may correspond to super-critical or sub-critical states [95, 96]. In particu-

lar, models including disorder and frustration [47, 97]—essential features of spin glasses as

well as of multi-layer cortical networks where neurons may be frustrated by receiving both

excitatory and inhibitory inputs—provide critical exponents in good agreement with those

observed experimentally depending on the balance between excitatory and inhibitory neu-

rons and their distributions among cortical layers [81]. Crucially, here we show that impor-

tant physiologic functions may benefit from underlying critical dynamics, and demonstrate

presence of the full spectrum of scaling characteristics typical for non-equilibrium systems

self-organizing at criticality. Furthermore, we link our observations to the collective behavior

of a key sleep-promoting neuronal population leading to emerging cortical rhythms in rela-

tion to physiological alternation of sleep and wake. We find that the power-law scaling expo-

nent of the distribution for θ-burst durations is α ’ 2.35, a robust temporal organization in

bursting activity across the sleep-wake cycle in both control and PZ lesioned rats. Notably,

this scaling exponent is close to the power-law exponent α ’ 2 for the distribution of neuro-

nal avalanches in cortex slice cultures [45] and dissociated cortical neurons [90], to α ’ 2.2
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reported for arousal/wake episodes in coarse-grained sleep-stage recordings in humans [13,

31] and other species [26, 27, 30, 94].

In summary, our findings of scaling features for a full spectrum of dynamic characteristics

in the bursting activity of cortical θ and δ rhythms strongly support the hypothesis of an

underlying critical dynamics for sleep regulation [26, 65]. In systems far from equilibrium,

emerging bursting activity described by power laws and exhibiting long-range spatio-temporal

correlations has been proposed as an indication of self-organized criticality (SOC) [16, 17, 45].

In this context, bursts do not have a characteristic duration, and short as well as long bursts are

expression of the same underlying dynamics [17]. Consecutive bursts are separated by quies-

cence periods whose distribution depends on the details of the system and generally exhibit an

exponential tail [55, 58, 98, 99], and is an exponential for the paradigmatic sandpile model of

SOC [17, 35]. Thus, in systems exhibiting self-organized criticality power-law and exponential

dynamics for active and quiet states coexists, and emerge out of the same regulatory mecha-

nism. The robust duality of power-law (scale invariant) andWeibull (exponential tail) distri-

bution for the bursting dynamics of θ and δ rhythms is closely reminiscent of this scenario,

where scale-free θ-bursts in cortical activity can be seen as avalanches or earthquakes [17, 55],

while δ-bursts can be interpreted as the quiet periods between active states. Notably, the Wei-

bull functional form for the distribution of quiet periods represents an extreme (minimal)

event statistics. In the proposed here criticality framework of cortical rhythm dynamics and

sleep micro-architecture, one can interpret the Weibull distribution as realization of shortest

quiet periods between spontaneous initiation of active states (θ-bursts). Since such activations

are spontaneously initiated at multiple brain locations, what one measures at the EEG probe is

the closest (fastest arriving) activation. Following the analogy with SOC systems, we further

demonstrated that the organization (occurrence in time) of θ-bursts is coupled with their

durations, forming a scale-invariant structure for the quiet times between consecutive θ-burst

above a given duration described by a universal Gamma distribution (also observed in earth-

quake dynamics [55]).

Overall, the combined empirical observations and modeling simulations reported here lay

the foundation for a new paradigm for the investigation of sleep dynamics and sleep-stage

transitions mechanisms, considering sleep micro-architecture as result of a non-equilibrium

process and self-organization among neuronal assemblies to maintain a critical state—a behav-

ior which is in stark contrast to the traditional homeostasis paradigm of sleep regulation at

large time scales. Within this criticality paradigm arousals/brief wake and sleep-stage dynamics

emerge out of a common regulatory mechanism, where arousals play an essential part in main-

taining a non-equilibrium behavior at criticality, as evidenced by our observations of coupling

between consecutive θ- and δ-bursts durations. Systems at criticality exhibit high susceptibility

and sensitivity to interactions, leading to cooperative behaviors over a range of space/time

scales, and thus, maintaining a critical state through self-organization is important for system’s

flexibility and for generating spontaneous transitions [100, 101]. Such transitions can not

occur intrinsically in a homeostatic (equilibrium) systems. In the context of sleep micro-archi-

tecture, the proposed criticality-based paradigm may provide new insights on the origin and

mechanisms underlying the dynamics of sleep-stage and arousal transitions, and offers a unify-

ing picture of sleep and wake.

Materials andmethods

Experimental setup

Animals. Pathogen-free adult male Sprague Dawley rats (Harlan; 275-300 g; n = 20) were

used in this study. Care of these animals in the experiments met National Institutes of Health
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standards, as set forth in the Guide for the Care and Use of Laboratory Animals, and all proto-

cols were approved by the Beth Israel Deaconess Medical Center and Harvard Medical School

Institutional Animal Care and Use Committees.

Surgery. For details on brain injection and implantation for polysomnographic recording

in rats, see Anaclet et al., 2012 [50]. To perform cell-specific lesions, 10 rats received brain

microinjections of 0.1% anti-orexin-B IgG saporin (OX-SAP; 130-330 nl; Advanced Targeting

Systems) within the PZ [AP, -10.3 mm; L, ±2.1 mm; DV, -6.6 mm, as per the rat atlas of Paxi-

nos and Watson (2005)]. The rat control group included five rats that received saline brain

injections and five rats without brain injection. After the brain injections, the rats were

implanted with polysomnographic electrodes. Four electroencephalogram (EEG) screw elec-

trodes (Plastics One, stock # E363/20/4.8/SP) were implanted into the skull, in the frontal (2)

and parietal bones (2) of each side. Two flexible electromyogram (EMG) wire electrodes (Plas-

tics One, stock # E363/76) were placed in the neck muscles. After EEG/EMG implantation,

rats were single housed until the end of the experiments.

Sleep-wake recording. Ten days after surgery, the rats were moved in an insulated sound-

proofed recording chamber maintained at an ambient temperature of 22 ± 1 C and on a 12-h

light/dark cycle (lights-on at 7 a.m.) with food and water available ad libitum. They were con-

nected via flexible recording cables and a commutator (Plastics One, stock # 363-363) to an

analog amplifier (A-M Systems, Model 3500) and computer, with an analog-to-digital con-

verter card and running Vital Recorder (KISSEI COMTEC CO., LTD., Japan). After 3-5 day

habituation period, EEG/EMG were recorded for 48 h, beginning at 7:00 P.M. Cortical EEG

and EMG signals were amplified and digitalized with a resolution of 256 Hz. Recordings used

in this study have already been subjected to sleep-wake analysis and published [50].

Histology. At the end of the experiments, rats were perfused under deep anesthesia (200

mg per kg of chloral hydrate) with 50-ml saline, followed by 200-ml of neutral phosphate-buff-

ered formalin (4%, vol/vol, Fischer Scientific). After perfusion, the brains were removed, post-

fixed in neutral phosphate-buffered formalin for 2 hr, equilibrated in PBS containing sodium

azide (0.02%) (PBS-azide) and sucrose (20%) for at least 1 day, and then sectioned at 40 μm on

a freezing microtome into four series. For verification of OX-SAP-induced brain lesions, one

series of tissue was processed for Nissl staining as done previously (Lu et al., 2000). PZ lesion

for each rat has previously been published (see Fig. 2 in [50]).

Data recording and analysis

Ten control rats and ten rats with PZ lesion were used for this study. Cortical EEG signals

were recorded continuously for 48 h from the left and right hemisphere with a resolution

of 256 Hz. Two electrodes, one frontal and one parietal, were placed on each hemisphere.

Cortical EEG is the differential potential between a frontal electrode (for δ frequencies) and a

parietal electrode (for θ frequencies). The parietal electrode picks up θ rhythm from the hip-

pocampus during REM sleep; both the frontal and parietal electrodes pick up θ rhythm dur-

ing wakefulness. Hippocampal θ rhythm can be also present during wakefulness, mainly

during cognitive wakefulness. The signal analyzed in this study is the difference between

frontal and parietal EEG electrode potentials (frontal − parietal EEG) from one hemisphere

(ipsilateral).

Data pre-processing

EEG recordings were first normalized to zero mean, μ = 0, and unit standard deviation, σ = 1.

For each rat, EEG signals were visually inspected and noisy segments were discarded. Only

clean segments were finally included in the analysis.
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Data filtering. Data were bandpass filtered in the range 0.5 − 25 Hz using a FIR (Finite

Impulse Response) filter designed in Matlab.

Data analysis

Spectral analysis. The clean EEG signal is divided in N non-overlapping windows of size

w and the spectral power in the δ band (0.5 − 4 Hz), Sδ, and in the θ band (4 − 8 Hz), Sθ, is esti-

mated in each window using Welch’s method [102]. The analysis is performed for several val-

ues of the window size w, from 2 s to 10 s. Results are generally independent of w, as shown in

Fig 5, as well as Fig D and Fig E in S1 File, and extensively discussed in the main text.

θ- and δ-burst detection and definition. The ratio Rθδ = Sθ/Sδ between θ and δ power is

calculated in each window k, with k = 1, 2, . . ., N, and a time series Rθδ(k) is obtained. Given a

threshold Th� 1, a θ-burst is defined as a sequence of n consecutive windows where Rθδ > Th,

while a δ-burst consists in a sequence of n consecutive windows where Rθδ < 1/Th (Fig 1). The

duration of a burst is given by d = n � w. Durations of θ (δ) bursts are denoted by dθ (dδ). The

threshold Th is set equal to 1 throughout the analysis. Results are independent of Th, as shown

in Fig 4, as well as Fig B and Fig C in S1 File, and extensively discussed in the main text.

Surrogate test for θ- and δ-burst duration distributions (Fig A in S1 File). For each rat,

the time series Rθδ(k) is randomly reshuffled to obtain a surrogate R�
yd
ðk0Þ. Surrogate θ- and δ-

bursts durations are then calculated from R�
yd
ðk0Þ following the procedure illustrated in the pre-

vious paragraph. The corresponding θ- and δ-burst duration distributions are shown in the

Fig A in S1 File, together with distributions from original data.

Definition of quiet time Δt. A quiet time Δt is defined as the time interval between the

ending time of a burst tej and the starting time tsjþ1
of the following one, namely Dtj ¼ tsjþ1

� tej .

Data binning. Probability distributions of θ-burst durations are calculated using logarith-

mic binning, i.e. linear binning in logarithmic scale. Denoting a set of bin boundaries as B =

(b1, b2, . . ., bk) and fixing b1 = 0.5w, the logarithmic bins fulfill the relation bi+1 = bi � 10
c,

which implies that the bin size is constant in logarithmic scale, i.e. logbi+1 − logbi = c. The fol-

lowing bin size c have been used in this study: Figs 2, 3, 5, Fig D and Fig E in S1 File, c = 0.2;

Fig 4, 10, Fig B and Fig C in S1 File, c = 0.18.

Probability distributions of δ-burst durations are calculated using the following binning pro-
cedure. Given a window size w, the bin boundaries e1, e2, . . ., en, . . ., ek are obtained using the

recursive relation en ¼ e1 þ w
P

n

i¼2

bi�1, with e1 = 0.5w and n� 2. The following values of the

parameter b have been used in this study: Fig 6, Fig G in S1 File, b = 1.6; All other figures, b = 1.2.

Fit of burst duration distributions. Power-law exponents are estimated by fitting the θ-

burst duration distributions with the functional form log(P(d)) = −αlog(d)+ C, using the least

square method. The Weibull parameters are estimated by fitting the observed duration distri-

bution to P(d) = (β/λ)(d/λ)β−1exp − (d/λ)β, utilizing the Levenberg-Marquardt non-linear least

squares algorithm [103], where the error variance at P(d) is estimated asMSE(1/W), where

W = 1/Pδ(d)
2 is the weight.”

Error bars. Error bars δP on each value of the distribution presented in Figs 2 and 3 are

given by

dP ¼
1

dD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ

N

r

; ð8Þ

where p = P(D)dD is the probability to observe a duration D in the range [D, D + dD] and N is

the total number of bursts and dD is the corresponding bin size.
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Spearman’s correlation. Given to variables X and Y, the Spearman’s correlation coeffi-

cient is defined as

rs ¼
covðrgX; rgYÞ

srgX
srgY

; ð9Þ

where rgX and rgY are the tied rankings of X and Y [104], respectively, srgX
and srgY

their stan-

dard deviations, and cov(rgX, rgY) indicates the covariance between rgX and rgY.

Surrogate test for correlations between consecutive θ- and δ-burst duration. To

test significance of correlations between consecutive θ- and δ-burst durations, a surrogate
sequence of burst durations is generated for each rat by randomly reshuffling the original

order of θ- and δ-bursts. The Spearman’s correlation coefficient ρs between consecutive θ-

and δ-bursts is calculated for each surrogate. The average Spearman’s correlation coefficient

obtained from all surrogates is then compared with the average correlation coefficient calcu-

lated from the original sequences of burst durations via t − test (Section Results, Fig 8). Corre-

lation coefficients for surrogate data for both control and PZ-lesioned rats during dark, light

and 24h are all with value |ρs|< 10−3.

Detrented Fluctuations Analysis (DFA). The DFA is a method based on random walk

[105]. It improves the classical fluctuation analysis (FA) for non-stationary signals where

embedded polynomial trends mask the intrinsic correlation properties in the fluctuations

[105]. The performance of DFA for signals with different types of non-stationarities and arti-

facts has been extensively studied and compared to other methods of correlation analysis [78,

106–108]. The DFA method is briefly described by the following steps [105]:

1. A given signal ui (i = 1, . . ., N, where N is the length of the signal) is integrated to obtain

yðkÞ �
Pk

i¼1
½uðiÞ � hui�, where hui is the mean of ui.

2. The integrated signal y(k) is divided into boxes of equal length n.

3. In each box of length n we fit y(k) using a first order polynomial function which represents

the trend in that box. The y coordinate of the fit curve in each box is denoted by yn(k).

4. The integrated profile y(k) is detrended by subtracting the local trend yn(k) in each box of

length n

YðkÞ � yðkÞ � ynðkÞ ð10Þ

5. For a given box length n, calculate the root-mean-square (r.m.s.) fluctuation function for

this integrated and detrended signal

FðnÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

k¼1

½YðkÞ�
2

s

ð11Þ

6. Repeat the above computation over a broad range of box lengths n, where n represents a

specific space or time scale, to obtain a functional relationship between F(n) and n.

For a power-law correlated time series, the average r.m.s. fluctuation function F(n) and

the box size n are connected by a power-law relation, that is FðnÞ � nad . The exponent αd is a

parameter which quantifies the long-range power-law correlation properties of the signal. Val-

ues of αd< 0.5 indicate the presence of anti-correlations in the time series, αd = 0.5 absence of

correlations (white noise), and αd> 0.5 indicates the presence of positive correlations in the

time series.
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Conditional probability distributions

The conditional probability of an eventH for a given event X is defined as

PðHjXÞ ¼
PðH \ XÞ

PðXÞ
; ð12Þ

where P(H \ X) is the probability thatH and X jointly occur, and P(X)> 0 is the probability of

the event X. The condition X reduces the statistics and increases the fluctuations of the distri-

bution P(H|X) as compared to P(H). For this reason one associates the following error to each

bin of the densities [56]:

�H ¼
1

dH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ

N

r

; ð13Þ

where p = P(H)dH is the probability to observe aH in the range [H,H + dH] and N is the total

number of events.

It is a basic result of probability theory that P(H|X) = P(X) if and only ifH does not depend

on X. On the contrary, P(H|X) 6¼ P(X) implies thatH and X are not independent of each other,

and their relation can be quantified by a suitable correlation measure. In the analysis of burst

coupling,H and X are considered significantly correlated if P(H|X) − P(X)> �H.

To obtain a detailed picture of temporal correlations and coupling between consecutive

bursts, we investigated how the individual δ-burst durations are influenced by the preceding θ-

bursts. To this end, we evaluated the conditional probability density Pðdi
d
jXði� 1ÞÞ for differ-

ent conditions X(i − 1) on preceding burst durations di�1
y

(Fig G in S1 File). If di
d
is independent

of preceding bursts, then Pðdi
d
jXÞ ¼ PðddÞ. On the other hand, Pðdi

d
jXði� 1ÞÞ 6¼ Pðdi

d
Þ implies

that the duration di
d
depends on the property of the preceding bursts specified by the condition

X(i − 1). We focused on the conditions di�1

y
> d�, and evaluated the conditional probability

Pðdi
d
jdi�1

y
> d�Þ for different d�. The analysis of the conditional probability distribution

Pðdi
d
jdi�1

y
> d�Þ for different d� values clearly confirms the existence of θ/δ anti-correlated cou-

pling across the entire sleep/wake cycle (Fig G in S1 File). Selecting only longer preceding θ-

bursts, the probabilities for long lasting δ-bursts systematically decrease, while very short δ-
bursts become more and more likely (Fig G in S1 File). Importantly, the analysis of conditional

probabilities shows that increasing the threshold d�, i.e. progressively retaining only longer and

longer preceding θ-bursts, produces a selective increase only in the probabilities of very short

δ-bursts, a feature that could not be captured by the Spearman’s correlation coefficient.

Model of anti-correlated burst coupling

The model consists of the following steps.

Random drawing and ranking. N durations dθ and dδ are randomly drawn from the

empirical distributions previously obtained using a specific window size w. dθ and dδ are sepa-

rately sorted in ascending order, i.e. from shortest to longest, and get a distinct ordinal num-

bers from k = 1, 2, . . ., N, which corresponds to their rank. This procedure ensures that each

duration has a unique rank. The ranked dθ and dδ are then paired with a tunable degree of

anti-correlation and a new time series of alternating θ- and δ-burst durations is thus generated.
The coarse-grained properties of the resulting time series depends on the degree of anti-corre-

lations used in the pairing.

Correlated pairing. Once dθ and dδ are ranked and a distinct, unique ordinal number

is associated to them, one randomly choose a dθ with rank k1 between 1 and N. To choose

the following dδ, one draws a random number k2 from a Gaussian distribution with mean
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μ = 1 + N − k1 and standard deviation σ, and takes dδ as the duration corresponding to rank

k2. This procedure is iterated N times, and at each iteration i the mean of the Gaussian from

which one draws the next random rank, ki, depends on ki−1, i.e. μ = 1 + N − ki−1. At each itera-

tion, ki will correspond to a duration dδ from the sorted δ-burst durations if the preceding
burst was a θ-burst with duration dθ, whereas ki will select a duration dθ from the sorted θ-

burst durations if the preceding burst was a δ-burst with duration dδ. As a result one obtains a

sequence of dθ and dδ whose degree of anti-correlations is controlled by a single parameter, σ.

The smaller σ, the stronger anti-correlations are.

Binary series and coarse-graining. To characterize the coarse-grained properties, the

time series is first converted in a binary sequence, namely a sequence of ‘+’ and ‘-’. Since each

duration is by definition a multiple n of the unit window w, namely d = nw, the n windows

belonging to a dθ are populated with ‘+’, while the n windows belonging to a dδ with ‘-’

(Fig 9c). As a results one has a sequence of windows populated with ‘+’ and ‘-’. This binary

sequence is then coarse-grained grouping a given number Δ of consecutive windows, with Δ
odd number, and assigning ‘+’ or ‘-’ to the new windows of size Δ according to a majority rule,

i.e. one assign ‘+’ (’-’) if the number of ‘+’ is larger (smaller) than the number of ‘-’ (Fig 9c). A

Coarse-Grained Binary Sequence (CGBS) is thus obtained, and dCG coarse-grained durations

are calculated as shown in Fig 10.

Supporting information

S1 File. Supporting information presenting tests to validate reported empirical results for

recordings during 12-hour light and 12-hour dark periods and for different parameter values:

(i) surrogate test to confirm physiological origin of the power-law distribution for θ-burst and

Weibull distribution for δ-burst durations (Fig. A); (ii) range of threshold values Th for the

ratio Rθδ(t) between δ and θ spectral power (Fig. B and Fig. C); (iii) different window sizes w

for the EEG spectral power analysis (Fig. D and Fig. E); (iv) different threshold values D0 defin-

ing quite times between consecutive θ-bursts to test for scale-invariant organization in quiet

times (Fig. F); and (v) conditional probabilities P(dδi | dθi−1) of δ-burst durations dδi for differ-

ent values of the preceding θ-burst duration dθi−1 to confirm robustness of anti-correlated cou-

pling between consecutive δ- and θ-bursts (Fig. G).
(PDF)

Author Contributions

Conceptualization: Plamen Ch. Ivanov.

Data curation: Christelle Anaclet.

Formal analysis: Jilin W. J. L. Wang, Fabrizio Lombardi, Xiyun Zhang, Plamen Ch. Ivanov.

Funding acquisition: Plamen Ch. Ivanov.

Investigation: Jilin W. J. L. Wang, Fabrizio Lombardi, Xiyun Zhang, Christelle Anaclet, Pla-

men Ch. Ivanov.

Methodology: Fabrizio Lombardi, Plamen Ch. Ivanov.

Project administration: Plamen Ch. Ivanov.

Resources: Plamen Ch. Ivanov.

Software: Jilin W. J. L. Wang, Fabrizio Lombardi, Xiyun Zhang.

Supervision: Plamen Ch. Ivanov.

Non-equilibrium critical dynamics in brain waves define sleep and wake micro-architecture

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007268 November 14, 2019 29 / 35

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007268.s001
https://doi.org/10.1371/journal.pcbi.1007268


Validation: Jilin W. J. L. Wang, Fabrizio Lombardi, Xiyun Zhang, Christelle Anaclet, Plamen

Ch. Ivanov.

Visualization: Jilin W. J. L. Wang, Fabrizio Lombardi, Plamen Ch. Ivanov.

Writing – original draft: Fabrizio Lombardi, Plamen Ch. Ivanov.

Writing – review & editing: Jilin W. J. L. Wang, Xiyun Zhang, Christelle Anaclet.

References
1. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004; 304:1926–1929.

https://doi.org/10.1126/science.1099745 PMID: 15218136

2. Buzsaki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive
content and neuropsychiatric disease. Dialogues Clin Neurosci. 2012; 14(4):345–367. PMID:
23393413

3. Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for
sleep stages of human subjects. Bethesda, MD: U.S. Dept. of Health, Education, andWelfare; 1968.

4. Steriade M, Nunez A, Amzica F. A novel slow (< 1Hz) oscillation of neocortical neurons in vivo: Depo-
larizing and hyperpolarizing components. Journal of Neuroscience. 1993; 13:3252. https://doi.org/10.
1523/JNEUROSCI.13-08-03252.1993 PMID: 8340806

5. Crunelli V, David F, Lorincz ML, Hughes SW. The thalamocortical network as a single slow wave-gen-
erating unit. Curr Opin Neurobiol. 2015; 31:72–80. https://doi.org/10.1016/j.conb.2014.09.001 PMID:
25233254

6. Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, et al. The GABAergic parafacial zone is a
medullary slow wave sleep–promoting center. Nature neuroscience. 2014; 17(9):1217–1224. https://
doi.org/10.1038/nn.3789 PMID: 25129078

7. Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, et al. Basal forebrain control of
wakefulness and cortical rhythms. Nature Communications. 2015; 6:8744. http://dx.doi.org/10.1038/
ncomms9744 PMID: 26524973

8. Chen L, Yin D, Wang TX, GuoW, Dong H, Xu Q, et al. Basal Forebrain Cholinergic Neurons Primarily
Contribute to Inhibition of ElectroencephalogramDelta Activity, Rather Than Inducing Behavioral
Wakefulness in Mice. Neuropsychopharmacology. 2016; 41:2133–2146. http://doi.org/10.1038/npp.
2016.13 PMID: 26797244

9. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of Sleep andWakefulness.
Physiological Reviews. 2012; 92:1087–1187. https://doi.org/10.1152/physrev.00032.2011 PMID:
22811426

10. Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron. 2017;
93:747–765. https://doi.org/10.1016/j.neuron.2017.01.014 PMID: 28231463

11. Boyce R, Glasgow SD, Williams S, Adamantidis A. Causal evidence for the role of REM sleep theta
rhythm in contextual memory consolidation. Science. 2016; 352:812–816. https://doi.org/10.1126/
science.aad5252 PMID: 27174984

12. Halasz P. Hierarchy of micro-arousals and the microstructure of sleep. Neurophysiologie Clinique/
Clinical Neurophysiology. 1998; 28(6):461–475. https://doi.org/10.1016/S0987-7053(99)80016-1
PMID: 9894227

13. Lo CC, Amaral LN, Havlin S, Ivanov PC, Penzel T, Peter JH, et al. Dynamics of sleep-wake transitions
during sleep. Europhysics Letters. 2002; 57(5):625. https://doi.org/10.1209/epl/i2002-00508-7

14. Hirshkowitz M. Arousals and anti-arousals. Sleep Medicine. 2002; 3:203–204. https://doi.org/10.1016/
S1389-9457(02)00018-7 PMID: 14592208

15. MunozMA. Colloquium: Criticality and dynamical scaling in living systems. Reviews of Modern Phys-
ics. 2018; 90(3):031001. https://doi.org/10.1103/RevModPhys.90.031001

16. Bak P. How nature works: the science of self-organized criticality. Copernicus, New York; 1996.

17. Bak P, Tang C, Wiesenfeld K. Self-organized criticality. Physical review A. 1988; 38(1):364. https://
doi.org/10.1103/PhysRevA.38.364

18. Saper CB, Cano G, Scammell TE. Homeostatic, circadian, and emotional regulation of sleep. Journal
of Comparative Neurology. 2005; 493(1):92–98. https://doi.org/10.1002/cne.20770 PMID: 16254994

19. Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during
sleep. Science. 1996; 271:216–219. https://doi.org/10.1126/science.271.5246.216 PMID: 8539624

Non-equilibrium critical dynamics in brain waves define sleep and wake micro-architecture

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007268 November 14, 2019 30 / 35

https://doi.org/10.1126/science.1099745
http://www.ncbi.nlm.nih.gov/pubmed/15218136
http://www.ncbi.nlm.nih.gov/pubmed/23393413
https://doi.org/10.1523/JNEUROSCI.13-08-03252.1993
https://doi.org/10.1523/JNEUROSCI.13-08-03252.1993
http://www.ncbi.nlm.nih.gov/pubmed/8340806
https://doi.org/10.1016/j.conb.2014.09.001
http://www.ncbi.nlm.nih.gov/pubmed/25233254
https://doi.org/10.1038/nn.3789
https://doi.org/10.1038/nn.3789
http://www.ncbi.nlm.nih.gov/pubmed/25129078
http://dx.doi.org/10.1038/ncomms9744
http://dx.doi.org/10.1038/ncomms9744
http://www.ncbi.nlm.nih.gov/pubmed/26524973
http://doi.org/10.1038/npp.2016.13
http://doi.org/10.1038/npp.2016.13
http://www.ncbi.nlm.nih.gov/pubmed/26797244
https://doi.org/10.1152/physrev.00032.2011
http://www.ncbi.nlm.nih.gov/pubmed/22811426
https://doi.org/10.1016/j.neuron.2017.01.014
http://www.ncbi.nlm.nih.gov/pubmed/28231463
https://doi.org/10.1126/science.aad5252
https://doi.org/10.1126/science.aad5252
http://www.ncbi.nlm.nih.gov/pubmed/27174984
https://doi.org/10.1016/S0987-7053(99)80016-1
http://www.ncbi.nlm.nih.gov/pubmed/9894227
https://doi.org/10.1209/epl/i2002-00508-7
https://doi.org/10.1016/S1389-9457(02)00018-7
https://doi.org/10.1016/S1389-9457(02)00018-7
http://www.ncbi.nlm.nih.gov/pubmed/14592208
https://doi.org/10.1103/RevModPhys.90.031001
https://doi.org/10.1103/PhysRevA.38.364
https://doi.org/10.1103/PhysRevA.38.364
https://doi.org/10.1002/cne.20770
http://www.ncbi.nlm.nih.gov/pubmed/16254994
https://doi.org/10.1126/science.271.5246.216
http://www.ncbi.nlm.nih.gov/pubmed/8539624
https://doi.org/10.1371/journal.pcbi.1007268


20. Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness.
Trends in neurosciences. 2001; 24(12):726–731. https://doi.org/10.1016/s0166-2236(00)02002-6
PMID: 11718878

21. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron. 2010;
68:1023–1042. https://doi.org/10.1016/j.neuron.2010.11.032 PMID: 21172606

22. Roopun AK, Kramer MA, Carracedo LM, Kaiser M, Davies CH, Traub RD, et al. Temporal interactions
between cortical rhythms. Frontiers in neuroscience. 2008; 2:34. https://doi.org/10.3389/neuro.01.
034.2008

23. Kopell N, Kramer MA, Malerba P, Whittington MA. Are different rhythms good for different functions?
Frontiers in human neuroscience. 2010; 4:187. https://doi.org/10.3389/fnhum.2010.00187 PMID:
21103019

24. Bashan A, Bartsch RP, Kantelhardt JW, Havlin S, Ivanov PCh. Network physiology reveals relations
between network topology and physiologic function. Nature Communications. 2012; 3:702. https://doi.
org/10.1038/ncomms1705 PMID: 22426223

25. Liu KK, Bartsch RP, Lin A, Mantegna RN, Ivanov PC. Plasticity of brain wave network interactions and
evolution across physiologic states. Frontiers in neural circuits. 2015; 9:62. https://doi.org/10.3389/
fncir.2015.00062 PMID: 26578891

26. Lo CC, Chou T, Penzel T, Scammell TE, Strecker RE, Stanley HE, et al. Common scale-invariant pat-
terns of sleep–wake transitions across mammalian species. Proceedings of the National Academy of
Sciences of the United States of America. 2004; 101(50):17545–17548. https://doi.org/10.1073/pnas.
0408242101 PMID: 15583127

27. Blumberg MS, Seelke AMH, Lowen SB, Karlsson KA. Dynamics of sleep–wake cyclicity in developing
rats. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102
(41):14860. https://doi.org/10.1073/pnas.0506340102 PMID: 16192355

28. Behn CGD, Brown EN, Scammell TE, Kopell NJ. Mathematical model of network dynamics governing
mouse sleep-wake behavior. J Neurophysiol. 2007; 97(6):3828–3840. https://doi.org/10.1152/jn.
01184.2006 PMID: 17409167

29. Behn CGD, Kopell N, Brown EN, Mochizuki T, Scammell TE. Delayed Orexin Signaling Consolidates
Wakefulness and Sleep: Physiology and Modeling. J Neurophysiol. 2008; 99(6):3090. https://doi.org/
10.1152/jn.01243.2007

30. Dvir H, Elbaz I, Havlin S, Appelbaum L, Ivanov PC, Bartsch RP. Neuronal noise as an origin of sleep
arousals and its role in sudden infant death syndrome. Sci Adv. 2018; 4(eaar6277). https://doi.org/10.
1126/sciadv.aar6277 PMID: 29707639

31. Lo CC, Bartsch RP, Ivanov PC. Asymmetry and basic pathways in sleep-stage transitions. Europhy-
sics Letters. 2013; 102(1):10008. https://doi.org/10.1209/0295-5075/102/10008 PMID: 24653582

32. Stanley HE. Introduction to Phase Transitions and Critical Phenomena. International Series of
Monogr. Oxford University Press; 1987.

33. Stoop R, Peinke J, Parisi J. Phase transitions in experimental systems. Physica D: Nonlinear Phenom-
ena. 1991; 50(3):405–411. https://doi.org/10.1016/0167-2789(91)90007-V

34. Chialvo D. Emergent complex neural dynamics. Nature Physics. 2010; 6. https://doi.org/10.1038/
nphys1803

35. Boffetta G, Carbone V, Giuliani P, Veltri P, Vulpiani A. Power laws in solar flares: self-organized criti-
cality or turbulence? Physical review letters. 1999; 83(22):4662. https://doi.org/10.1103/PhysRevLett.
83.4662

36. Kanders K, Lorimer T, Stoop R. Avalanche and edge-of-chaos criticality do not necessarily co-occur in
neural networks. Chaos. 2017; 27(4):047408. https://doi.org/10.1063/1.4978998 PMID: 28456175

37. Comte JC, Ravassard P, Salin PA. Sleep dynamics: A self-organized critical system. Physical Review
E. 2006; 73:056127. https://doi.org/10.1103/PhysRevE.73.056127

38. Bonnet M, Carley D, CarskadonM, Easton P, Guilleminault C, Harper R, et al. ASDA Report. EEG
arousals: scoring rules and examples. Sleep. 1992; 15(2):173–184. https://doi.org/10.1093/sleep/15.
2.173

39. Thomas R. Sleep fragmentation and arousals from sleep—time scales, associations, and implications.
Clinical Neurophysiology. 2006; 117(4):707–711. https://doi.org/10.1016/j.clinph.2005.12.014 PMID:
16500146

40. Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus C, Vaughn B, et al. The AASMmanual for the
scoring of sleep and associated events. Rules, Terminology and Technical Specifications, Darien, Illi-
nois, American Academy of Sleep Medicine. 2012;.
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1935; 118:1235–1241.

89. Bremer F. L’ activite cerebrale au cours du sommeil et de la narcose. Contribution à l’étude mécanis-
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