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1 Introduction

An important question in physics is to understand the evolution of out-equilibrium quantum

systems. Gauge/gravity duality provides a new tool to study non-equilibrium dynamics,

mapping this problem to classical gravity in AdS space. More precisely, thermal states

of the dual theory are mapped to AdS black holes and the process of thermalization is

mapped to black hole formation. Close to thermal equilibrium, the long wave-length, late

time behavior of QFT is described by hydrodynamics and, furthermore, this regime has a

corresponding bulk description in terms of solutions constructed in a gradient expansion.

The complete description of non-equilibrium phenomena require global time-dependent
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solutions approaching the (appropriate) AdS black hole at late times. With this in mind,

much effort has been devoted in recent years in obtaining numerical solutions that address

the problem in general terms (see, for instance, [1] and references therein). Here, we aim to

discuss certain aspects of non-equilibrium dynamics using analytic solutions. In particular,

we focus on a class of gravitational solutions provided by the Robinson-Trautman metrics,

which may be regarded as non-linear version of a specific type of perturbations of AdS4

Schwarzschild black holes.

Linear perturbations of the Schwarzschild black hole (with or without cosmological

constant) have been a topic of immense study over the years, reducing their description

to an effective Schrödinger problem. What is perhaps less known is the remarkable fact

that the effective quantum mechanics of all four-dimensional black holes is supersymmetric

in that the Hamiltonian can be written as the square of a supercharge. However, the

boundary conditions imposed by the black hole make the Hamiltonian non-Hermitian and

its spectrum is not even real. The allowed energy levels provide the quasi-normal modes of

the equilibrium state, which turns out to be stable under all kind of perturbations. Under

appropriate boundary conditions, the effective supersymmetry pairs the non-zero modes:

parity even (polar) perturbations are paired with parity odd (axial) perturbation and, as

usual with supersymmetry, the zero modes are special satisfying a first order equation.

These supersymmetric zero energy modes, which are called algebraically special modes

and they correspond to purely dissipative perturbations of black holes, are the focus of our

work. They can be lifted to exact solutions of the full non-linear Einstein equations, giving

rise to the class of Robinson-Trautman metrics. In that respect, our discussion extends

known results to space-times with non-zero cosmological constant.

When the cosmological constant is zero, the solutions we are considering represent

isolated gravitationally radiating systems. The system relaxes to equilibrium by radiating

the excess energy, which escapes to null infinity, and settles to a spherically symmetric

configuration provided by the Schwarzschild solution. One can quantify the energy that

is radiated away by computing the corresponding Bondi mass, [2]: as energy escapes to

infinity, the Bondi mass decreases monotonically (in retarded time) and becomes equal to

the Schwarzschild mass after infinitely long time. The space-time has a naked singularity

in the past, reflecting the fact that the solution does not include the sources generating

the excitation. There is, however, a past apparent horizon which may be regarded as a

surface that surrounds the isolated system. When the cosmological constant is negative,

there are new issues because the asymptotic structure of space-time is different. Since

asymptotically AdS space-times do not have null infinity, the radiation cannot escape.

Instead, it is absorbed at the boundary modifying the boundary metric.

In AdS/CFT correspondence, the boundary conditions represent sources for dual op-

erators and the boundary metric is the source for the energy-momentum tensor of the dual

theory. The energy-momentum tensor is one of main observables that one wishes to extract

and use it to study the approach to thermal equilibrium. The boundary geometry of AdS4

Robinson-Trautman space-times is topologically R × S2, with R representing time, and

the complete non-equilibrium process is governed by the Calabi flow on S2. This flow is

a well-known geometric evolution equation in mathematics describing volume preserving

– 2 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
6

deformations of Kähler manifolds (S2 in our case) given by a fourth order non-linear dif-

fusion process. Starting from a general initial metric on S2, the flow continuously deforms

the metric transforming it to the constant curvature metric after infinitely long time. The

Robinson-Trautman solution provides a space-time interpretation of the two-dimensional

Calabi flow with retarded time playing the role of the deformation parameter. While other

geometric evolution equations, such as the normalized Ricci-flow are also related to linear

perturbations of large AdS4 black holes, as will be seen later, only the Calabi flow is known

to be associated with exact non-linear solutions of Einstein equations for all values of the

cosmological constant.

In the context of gauge/gravity duality, one expects to find that sufficiently close to

equilibrium the energy-momentum tensor takes the form of dissipative hydrodynamics.

We will indeed find that this is the case. One should note, however, that the underlying

physics is very different than in other discussions that appeared in the literature so far.

In most works, the following problem is possed: one creates a non-equilibrium state by

coupling the dual QFT to an external source for a finite time interval. After switching off

the interaction the system loses energy to the black hole and equilibrates. The physical

mechanism for dissipation is black hole absorption. In our case, however, there is only

out-going radiation and nothing is absorbed by the black hole; instead, the dissipation is

due to the external couplings of the system. The fact that the radiation is out-going means

that the perturbation ought to vanish at the horizon, as it does. Expressing the out-going

modes in terms of an in-coming basis, one finds that these modes are not smooth at the

horizon, in general, and for sufficiently low multi-poles of radiation there is no Kruskal

extension at all. While this is in principle a major concern, one may view the solutions as

representing the gravitational field outside an isolated compact object losing its asymmetry

via gravitational radiation until it relaxes to a spherical symmetric state. In that picture,

the complete solution should be described by a matter-filled interior solution joined to the

Robinson-Trautman solution, which is now covering only the exterior region, but it remains

an open problem how precisely to implement it.

In standard treatments of holography, the linearized perturbations around a given

solution satisfy Dirichlet boundary conditions and in-coming boundary conditions at the

horizon yield two-point functions in the dual QFT. From the low energy limit of those

correlation functions one subsequently extracts the transport coefficients via the Kubo

formula. In our case, the algebraically special modes satisfy mixed boundary conditions,

due to the first order equation they obey, which in turn imply unusual boundary conditions

for the metric and, moreover, these modes are purely out-going. Thus, a clean holographic

interpretation of these modes is somewhat challenging. We find that the effective viscosity

depends on the eigenvalues of the Laplacian on S2 (related to the pole of radiation we are

considering) and for sufficiently low harmonics of large AdS4 black holes there is a violation

of the KSS bound on η/s. It should be said right away that non-universality and violation

of the KSS bound have also been observed in higher derivative theories of gravity [3, 4] as

well as in two-derivative gravity coupled to matter in the presence of anisotropy [5, 6] (see,

for instance, [7] for a topical review and further references), but the underlying physics is

different in those studies compared to ours.
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The Bondi mass, which is naturally defined at null infinity of asymptotically flat space-

times, describes the total mass of the system at some given instant of (retarded) time. For

AdS4 Robinson-Trautman there is no null infinity, but one can still define by analogy a

“Bondi mass” that decreases monotonically under the evolution and eventually becomes

equal to the Schwarzschild mass, as in the asymptotically flat case. Moreover, we will

show that it satisfies a Penrose inequality, which is a central condition for the formation of

horizons in general relativity. It turns out that the Bondi mass is greater than a specific

function of the area of the past apparent horizon, hereby extending known results for the

Robinson-Trautman metrics with Λ = 0. A closely related condition for the formation

of horizons is Thorne’s hoop conjecture stating that the mass M gets compacted into a

region whose circumference is bounded in all directions. We will also provide evidence

for a suitable version of this conjecture that holds for Robinson-Trautman space-times

with negative cosmological constant, using the Bondi mass and some appropriately chosen

circumference to surround its past apparent horizon. The two inequalities are independent

from each other, in general, though one follows from the other under some special conditions

that are also discussed in the text.

This paper is organized as follows. In section 2, we introduce the Robinson-Trautman

solutions, as spherical gravitational waves, and show that they are non-linear versions of

special “supersymmetric” perturbations of AdS4 Schwarzschild metric. We also present

their relation to Calabi flow and extract their late time behavior. In section 3, we discuss

a number of global issues, focusing on the (lack of) Kruskal extension and the existence,

uniqueness and explicit construction of the past apparent horizon. We prove a Penrose

inequality for the Bondi mass and formulate as well as provide evidence for Thorne’s hoop

conjecture in the presence of negative cosmological constant. In section 4, we consider

holographic aspects of the solutions by computing the corresponding energy-momentum

tensor. We determine its late time behavior and compute the effective viscosity of the

system. Here, we also define an entropy current of the boundary fluid and show by explicit

computation in late time expansion that there is entropy production upon thermalization.

In section 5, we present our conclusions and outline some open problems. We also collect

a number of useful results in three appendices. In appendix A, we review the derivation of

the Robinson-Trautman solution for the benefit of the readers. In appendix B, we review

the relevant aspects of large and small AdS4 black holes and collect some useful formulae

that are implicitly used in the text. Finally, in appendix C, we review the theory of polar

perturbations of spherical black holes.

In all expressions appearing in the text, Newton’s constant G is normalized to 1,

whereas the gravitational coupling constant 8πG is denoted by κ2, as usual.

2 Spherical gravitational waves

The Robinson-Trautman metrics provide an exact class of radiative solutions of Einstein

equations, which are available for all values of the cosmological constant Λ, including, in

particular, Λ < 0. This class exists in four space-time dimensions and has been thought to

describe the effect of spherical gravitational waves emitted by bounded sources. Although
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such metrics do not capture the general features of gravitational radiation, they are often

interesting to consider in detail at linear and non-linear level. Higher dimensional gener-

alizations of Robinson-Trautman metrics have also been considered in the literature, but

they do not seem to support non-trivial radiative solutions. Here, we summarize some

basic facts about them that will be used later.

2.1 Robinson-Trautman metrics

The Robinson-Trautman metrics are singled out in four space-time dimensions by their

unique geometric property to admit a geodesic null congruence with zero shear and twist

and non-vanishing divergence. Thus, the metric has the following general form, [8, 9] (but

see also the textbooks [10–12] and some early references on the subject [13–15]),

ds2 = 2r2eΦ(z,z̄;u)dzdz̄ − 2dudr − F (r, u, z, z̄)du2 . (2.1)

The variable r is a radial coordinate in space and u is a retarded time coordinate. Closed

surfaces with constant r and u represent distorted two-dimensional spheres in a system of

conformally flat (Kähler) coordinates (z, z̄).

Using Einstein equations, in the presence of a cosmological constant Λ, the form of the

front factor F is uniquely determined in terms of Φ as

F = r∂uΦ−∆Φ− 2m

r
− Λ

3
r2 , (2.2)

where

∆ = e−Φ∂z∂z̄ =
1

2
∇2 (2.3)

denotes the Laplacian on the distorted 2-spheres. The cosmological constant term in F

accounts for the appropriate asymptotic behavior of the metric as r →∞. The parameterm

is an integration constant, which is taken to be positive and it is related to the physical mass

of the configuration. The remaining Einstein equations are completely solved, provided

that Φ(z, z̄;u) satisfies the following parabolic fourth order non-linear differential equation

on S2,

3m∂uΦ + ∆∆Φ = 0 , (2.4)

which is called Robinson-Trautman equation. Note that this equation is insensitive to the

presence of Λ. The essential steps of the derivation are summarized for completeness in

appendix A.

General u-dependent solutions are thought to describe spherical gravitational waves,

in a sense that will be made more precise later, in the full non-linear regime of Einstein

equations. Although equation (2.4) has been studied extensively in physics as well as in

mathematics (for it arises in a seemingly unrelated problem in geometric analysis, namely

the Calabi flow on S2, as well be seen later in more detail), hardly any non-trivial explicit

solutions exist to this day. However, some strong qualitative results are available in the lit-

erature regarding the long time existence of the general solution. For appropriate (smooth)

initial data, the u-dependent solutions converge towards a fixed point, as u→∞, [15–19],

which exhibits stability against small perturbations.
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The fixed point is the u-independent solution of the Robinson-Trautman equation

associated to the round metric of radius 1 on S2 with conformal factor

eΦ0 =
1

(1 + zz̄/2)2 . (2.5)

The corresponding four-dimensional space-time metric reads

ds2 =
2r2

(1 + zz̄/2)2dzdz̄ − 2dudr −
(

1− 2m

r
− Λ

3
r2

)
du2 (2.6)

and it coincides with the Schwarzschild solution in the Eddington-Filkenstein frame in the

presence of cosmological constant Λ. Indeed, by introducing the change of coordinates

u = t− r? , z =
√

2 cot
θ

2
eiφ , (2.7)

where r? is the so called tortoise coordinate of the corresponding Schwarzschild metric,

which is detailed in appendix B together with other useful definitions, we arrive at the

standard form of the solution

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
(2.8)

with the required profile function

f(r) = 1− 2m

r
− Λ

3
r2 . (2.9)

2.2 Linearization of the solutions

The Robinson-Trautman equation can be regarded as non-linear diffusion process (of fourth

order) on S2, which has the topology of the black hole horizon. Since small curvature

perturbations of the round sphere correspond to linear perturbations of the Schwarzschild

metric as the configuration tends towards equilibrium as u → ∞, it is appropriate to

parametrize the fluctuating two-dimensional metric as

ds2
2 = [1 + εl(u)Pl(cos θ)]

(
dθ2 + sin2 θdφ2

)
(2.10)

with small parameters εl(u). Here, we only consider axially symmetric deformations, with-

out loss of generality, using Legendre polynomials Pl(ξ) with l ≥ 2. The cases l = 0 and

l = 1 are omitted, since we are paying attention to quadrupole radiation terms or higher

on physical grounds. This parametrization preserves the area A of S2 to linear order in εl,

since for all l ≥ 1 we have

δεA =
(−1)l

2
V0 εl(u)

∫ +1

−1
dξ Pl(ξ) = 0 . (2.11)

To work out the form of the Robinson-Trautman equation to linear order, we set for

convenience

K(θ, u) = εl(u)Pl(cos θ) . (2.12)
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A simple calculation shows that

3m∂uK = −∆0[(∆0 + 1)K] , (2.13)

where ∆0 denotes the Laplacian of the round S2 whose eigenfunctions Pl(cos θ) have eigen-

values −l(l + 1)/2; likewise, the corresponding eigenvalues of the operator ∆0 + 1 are

−(l − 1)(l + 2)/2. This immediately yields the following evolution for εl(u), [13],

εl(u) = εl(0) exp
(
− u

12m
(l − 1)l(l + 1)(l + 2)

)
≡ εl(0)e−iωsu , (2.14)

where ωs denote collectively the set of purely imaginary frequencies (damping modes)

ωs = −i(l − 1)l(l + 1)(l + 2)

12m
(2.15)

with l ≥ 2. The spectrum of ωs does not depend on the cosmological constant Λ, as for

the Robinson-Trautman equation.

The result, which approximates well the asymptotic behavior of the full non-linear

evolution as u → ∞, shows that all curvature perturbations are damped exponentially

fast until the configuration finally takes its canonical round metric form. All such linear

solutions represent different modes of gravitational radiation in multi-pole expansion, when

elevated to the four-dimensional space-time metric. Higher order poles of radiation are

damped faster than the lower ones, as expected on physical grounds. In more detail, using

small u-dependent perturbations of the form (2.10), the Robinson-Trautman line element

takes the following form in the vicinity of the Schwarzschild solution,

ds2 = −
(

1− 2m

r
− Λ

3
r2 + r∂uK − (∆0 + 1)K

)
du2 − 2dudr

+r2(1 +K)
(
dθ2 + sin2 θdφ2

)
, (2.16)

choosing to work with spherical coordinates (θ, φ) and using K(θ, u) as defined above.

Then, taking into account the dependence of εl upon u and the action of ∆0 on K, it turns

out that

r∂uK − (∆0 + 1)K =
1

2
(l − 1)(l + 2)

(
1− r

6m
l(l + 1)

)
K . (2.17)

Changing variables (u, r) to (t, r) by u = t − r?, so that direct comparison can be

subsequently made with the canonical form of gravitational perturbations of black holes,

it follows that the underlying metric takes the form

gµν = g(0)
µν + δgµν (2.18)

around the static Schwarzschild metric, which is assigned the superscript (0). The pertur-

bations are tabulated in terms of the (t, r, θ, φ) components, as

δgµν =



f(r)H(r) −H(r) 0 0

−H(r) H(r)/f(r) 0 0

0 0 r2 0

0 0 0 r2 sin2 θ


e−iωs(t−r?)Pl(cos θ) , (2.19)
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where

H(r) =
iωs

f(r)

(
r − 6m

l(l + 1)

)
. (2.20)

The integration constant εl(0) represents the freedom to scale the form of the linear per-

turbations δgµν by an overall factor.

These perturbations are the so called algebraically special modes of the black hole,

studied by Chandrasekhar [20] and connected to Robinson-Trautman metrics, upon lin-

earization, for Λ = 0 [21] (but see also [22] for earlier work on the subject). Here, we are

simply extending all that to Λ 6= 0, as in [23]. These modes are special in many respects

as we will discuss shortly and the preceding analysis shows that the class of Robinson-

Trautman metrics are formed by a consistent non-linear superposition of them. Note that

it does not seem possible to truncate the Robinson-Trautman equation to solutions that

encompass a finite number of algebraically special modes, for, otherwise, we would have

simple models of gravitational radiation in our disposal (though at late times this looks

plausible). More general radiative metrics are formed by non-linear superposition of all

quasi-normal modes, not just the algebraically special ones, and hence they are notoriously

more difficult to study, though physically more interesting.

The algebraically special modes are special case of the polar perturbations of spherical

black holes. The theory of perturbations of spherical black holes is a well studied sub-

ject [24–30]. We now briefly summarize some of the relevant aspects of this theory; more

details can be found in appendix C. The perturbations can be split into parity even (polar)

and parity odd (axial) perturbations. It turns out that the study of these perturbations

can be reduced to the effective Schrödinger problems

H±Ψ±(r?) = EΨ±(r?) , (2.21)

where

H± = − d2

dr2
?

+W 2 ± dW

dr?
. (2.22)

The plus sign corresponds to polar perturbations and the minus to axial perturbations.

The function W is given by

W (r) =
6mf(r)

r[(l − 1)(l + 2)r + 6m]
+ iωs (2.23)

and

E = ω2 − ω2
s . (2.24)

Remarkably, despite the fact that the space-time itself has no supersymmetry and there

are not even fermions, the effective Schrödinger problems can be combined as partners

into supersymmetric quantum mechanics with W playing the role of the superpotential.

Indeed, as discussed in appendix C, defining H = diag(H+, H−) and Ψ = (Ψ+,Ψ−)T , one

finds that the two Schrödinger problems combine into one

HΨ = EΨ (2.25)
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and the Hamiltonian is a square of a supercharge, i.e., H = {Q, Q†}, where Q is defined

as in equation (C.19). Due to boundary conditions, the Hamiltonian is only formally

Hermitian and the spectrum is not even real.

The algebraically special modes are the zero energy states of this problem and they

are annihilated by the supercharge Q. Using equations (C.19) and (C.16), we find that

these perturbations satisfy the first order equation,

QΨ
(0)
+ (r?) =

(
− d

dr?
+W (r?)

)
Ψ

(0)
+ (r?) = 0 . (2.26)

This equation can be integrated to yield the corresponding wave-function

Ψ
(0)
+ (r?) = C

r

(l − 1)(l + 2)r + 6m
exp (iωsr?) , (2.27)

where C is an integration constant, which, for later convenience, is chosen to be

C =
6m

l(l + 1)
. (2.28)

Then, in the notation of appendix C, we find that the system of equations for the metric

coefficients of polar perturbations admit the following simple solution at ω = ωs,

H0(r) = H2(r) = −H1(r) = i
ωs

f(r)

(
r − 6m

l(l + 1)

)
K(r) (2.29)

and

K(r) = exp (iωsr?) = exp
( r?

12m
(l − 1)l(l + 1)(l + 2)

)
(2.30)

that yield precisely δgµν for the linearization problem of the Robinson-Trautman met-

rics around the Schwarzschild solution, as given above, for all values of the cosmological

constant.

Note that Ψ
(0)
+ (r?) vanishes on the black hole horizon, irrespective of Λ, complying

with the physical boundary condition that nothing can come out directly of a black hole.

As r → ∞, Ψ
(0)
+ (r?) blows up exponentially when Λ = 0, but when Λ < 0, which is the

case of primary interest here, it reaches a finite value. Thus, for AdS4 black holes, all

algebraically special modes have normalizable wave functions, i.e.,∫ 0

−∞
dr? | Ψ(0)

+ (r?) |2<∞ . (2.31)

Furthermore, the algebraically special modes satisfy mixed boundary conditions at r =∞.

Indeed, using (2.26) and evaluating W (r?) at r =∞ (equivalently at r? = 0) we find

d

dr?
Ψ

(0)
+ (r?) |r?=0 =

(
iωs −

2mΛ

(l − 1)(l + 2)

)
Ψ

(0)
+ (r? = 0) . (2.32)

These non-standard boundary conditions are responsible for some peculiar properties of

the solution that will be derived later.
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2.3 Calabi flow on S2

The Robinson-Trautman equation also arises in mathematics and coincides with the so

called Calabi flow on S2, as was first pointed out by Tod [32], which describes certain type

of geometric deformations of the metric

ds2
2 = 2eΦ(z,z̄;u)dzdz̄ . (2.33)

Recall that the Calabi flow is generally defined for metrics gab̄ on Kähler manifolds M of

arbitrary dimension with local coordinates (za, z̄a) and assumes the form [33, 34] (but see

also [35, 36])

∂ugab̄ =
∂2R

∂za∂z̄b
(2.34)

in terms of the Ricci curvature scalar R of the metric. As such, it provides volume pre-

serving deformations within a given Kähler class of the metric. Specializing to S2, we have

R = −2∆Φ and the identification with the Robinson-Trautman equation follows immedi-

ately, setting 3m = 2 in appropriate units.

The Calabi flow is a parabolic equation of fourth order, and, as such, it is difficult

to study by standard techniques that are mainly applicable to second order equations.

By considering appropriate (smooth) initial data gab̄(z, z̄; 0), the flow deforms the metric

towards its canonical form, which is typically represented by a constant curvature metric

(provided that the Kähler manifold admits one). The quadratic curvature functional on

M , also known as Calabi functional,

C =

∫
M
R2 , (2.35)

where R the curvature scalar, decreases monotonically along that flow, reaching its ex-

tremum at the fixed point (also called extremal metric on M). The fixed point is the fa-

miliar constant curvature metric when M ' S2. Many aspects of the Robinson-Trautman

metrics are derived from the mathematical theory of Calabi flows. The results are qual-

itatively similar to the heat equation on S2, thinking of the Ricci scalar curvature R as

temperature; in that case, the average temperature (viz. the Euler number) remains con-

stant throughout the evolution, whereas the average temperature square (viz. the quadratic

curvature functional) decreases monotonically until thermal equilibrium is reached at the

fixed point, where the temperature is constant everywhere. This framework has also been

used more generally, as tool, to explore the geometrization of Kähler manifolds.

The Calabi flow is one of many geometric evolution equations studied in mathematics.

For later use, we introduce here another geometric evolution equation, known as Ricci flow,

which is of second order and deforms the metric on a Riemannian manifold by the Ricci

curvature tensor. In that case, the volume of space is not preserved under the Ricci flow,

but it is always possible to define a variant of it, known as normalized Ricci flow, which

is volume preserving and will be used for comparison with Calabi flow. The Ricci flow for

the class of conformally flat metrics on S2, (2.33), takes the following form

∂uΦ = ∆Φ , (2.36)
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Figure 1. Curvature perturbations of the round sphere.

whereas the corresponding normalized Ricci flow on S2 with fixed area 4π is given by

∂uΦ = ∆Φ + 1 . (2.37)

The constant curvature metric provides the fixed point for both Calabi and normalized

Ricci flow equations on S2. In either case, the canonical metric is reached from a given

initial data after sufficiently long time.

It is instructive to examine the spectrum of linear perturbations around the equilib-

rium state, using axially symmetric deformations of the round sphere parametrized by

εl(u)Pl(cos θ), as in the linear approximation (2.10) of the Robinson-Trautman equation.

It can be easily verified that as u → ∞, the metric perturbations decay as follows, under

the normalized Ricci flow,

εl(u) = εl(0) exp
(
−u

2
(l − 1)(l + 2)

)
≡ εl(0)e−iΩs , (2.38)

with spectrum of purely imaginary frequencies (damping modes) for all l ≥ 2

Ωs ∼ −i
(l − 1)(l + 2)

2
. (2.39)

Ωs is unique up to a universal factor that depends on the physical scale of the problem.

Later, in section 4, the scale of the Ricci flow will be identified with 3rh/2 to match the

values of some purely dissipative modes in the hydrodynamic description of very large AdS4

black holes, whereas the scale of u of the Calabi flow is provided by 3m. The dependence of

Ωs upon l, being quadratic versus the quartic dependence of ωs for the Calabi flow, reflects

the order of the corresponding geometric evolution equations.

A schematic representation of curvature perturbations on S2 is depicted in figure1. All

modes of perturbation dissipate faster under Calabi flow when the radius of the sphere is

sufficiently small. For spheres of large radius, however, the situation is partially reversed,

as perturbations with sufficiently small l dissipate faster under the normalized Ricci flow,

whereas modes with large enough l are still dissipating faster under Calabi flow.

2.4 Late-time behavior of solutions

Next, we describe the late time behavior of solutions to the Robinson-Trautman (Calabi

flow) equation including non-linear effects. Let us parametrize the conformal factor of the

– 11 –
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S2 line element as

eΦ(z,z̄;u) =
1

σ2(z, z̄;u) (1 + zz̄/2)2 , (2.40)

so that σ(z, z̄;u) describes the deviations away from the static black hole solution. First,

it was established that for any sufficiently smooth initial data σ(z, z̄;u0) solutions of the

Robinson-Trautman equation exist for all u ≥ u0, [16, 17]; the short time existence of

solutions was established earlier using the parabolic nature of the equation in u, [15].

Second, it was found that there is an asymptotic expansion of σ(z, z̄;u) for large u of the

following form, [37],

σ(z, z̄;u) = 1 +
∑

p≥1, q≥0

σp,q(z, z̄)u
qe−2pu/m , (2.41)

where σp,q(z, z̄) are appropriately chosen smooth functions on S2 with σ0,0 normalized to 1

without loss of generality. Thus, by exponential damping, the Robinson-Trautman metrics

approach asymptotically fast the Schwarzschild solution, σ = 1, as u → ∞. These results

are quite general and they are valid irrespective of Λ for the Robinson-Trautman equation

is insensitive to the presence of cosmological constant.

The above series expansion of σ(z, z̄;u) captures the linear as well as the non-linear

effects of gravitational radiation at late retarded times. Linear effects are solely described

by the system of algebraically special modes, which take the values

iωs =
2

m
,

10

m
,

30

m
, · · · (2.42)

for l = 2, 3, 4, · · · , respectively. They only contribute to the terms σ1,0, σ5,0, σ15,0, · · · ,
which in this case are described by the corresponding spherical harmonics on S2, depending

on l. Other coefficients in the series are naturally related to non-linear gravitational effects;

they include contributions to all terms with p > 1 as well as to terms with q 6= 0.

Although some coefficients σp,q(z, z̄) may vanish, it has already been established that

there exist generic solutions with non-vanishing coefficient σ15,1(z, z̄) - the first possible

such term with q 6= 0 - so that the asymptotic expansion assumes the following form,

σ(z, z̄;u) = 1 + σ1,0(z, z̄)e−2u/m + σ2,0(z, z̄)e−4u/m · · ·+ σ14,0(z, z̄)e−28u/m

+[σ15,0(z, z̄) + σ15,1(z, z̄)u]e−30u/m +O
(
e−32u/m

)
. (2.43)

Of course, there might be higher order terms p ≥ 16 with q 6= 0, but their effect is

subdominant.

Following Chruściel and collaborators, [37], we consider axially symmetric deforma-

tions, so that all coefficients depend on the angle θ and not φ, and further impose antipodal

symmetry for simplicity. It implies that only even values of l contribute to the general

solution. Then, in that case, the first few coefficients in the series turn out to be

σ1,0(x) = a

(
x2 − 1

3

)
, (2.44)

σ2,0(x) = −a2

(
23

78
x4 − 47

39
x2 +

49

234

)
, (2.45)

σ3,0(x) = a3

(
997

5226
x6 − 36697

47034
x4 +

25309

15678
x2 − 8899

47034

)
(2.46)
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and so on, where x = cos θ. The functions above are uniquely determined and they can

be rewritten in terms of the even Legendre polynomials P2(x) = (3x2 − 1)/2, P4(x) =

(35x4 − 30x2 + 3)/8 and so on.

The first term σ1,0(x) represents the quadrupole gravitational radiation, as in the

linear approximation, and is set equal to (2a/3)P2(x) using an arbitrary constant a. All

other terms up to σ5,0(x) represent non-linear effects of gravitational radiation. One could

add to σ5,0(x) a term proportional to P3(x), with a new coefficient independent of a,

which represents the effect of eighth-pole radiation in the linear approximation and shows

up at order exp(−10u/m). However, such term will be excluded, if antipodal symmetry

is imposed. Higher order terms up to σ15,0(x) are also uniquely determined in terms

of a and they also represent non-linear effects of quadrupole radiation. One can also

add to σ15,0(x) a term proportional to P4(x) that represents the effect of sixteenth-pole

radiation in the linear approximation and shows up at order exp(−30u/m). Such a term

is compatible with the antipodal symmetry. There is an additional non-linear effect that

appears to this order attributed to the presence of σ15,1(x), which is relatively very small

but definitely not zero; it was determined numerically in terms of a to be σ15,1(x) '
(0.2155750672866a)15P4(x), [37]. Compared to the typical coefficients of σp,0(x) with 1 ≤
p ≤ 15, σ15,1(x) is smaller by nine orders of magnitude. The pattern repeats itself for

higher values of p although it has not been studied exhaustively by numerical methods to

the best of our knowledge.

The late time expansion of solutions to the Robinson-Trautman equation has impli-

cations for the global structure of the corresponding space-times when considering the

Kruskal extension across the horizon H+. It will also be used to provide the late time

expansion of the associated holographic energy-momentum tensor that is constructed later

in section 4.

3 Global aspects

The global structure of Robinson-Trautman space-time is sensitive to the cosmological

constant Λ (see [37] for Λ = 0, [38] for Λ > 0, [39] for Λ < 0). For Λ < 0, it also turns out

to depend on the relative size of AdS4 black holes. This might look surprising at first sight

for the the Robinson-Trautman equation depends only on m and not on Λ.

3.1 Kruskal extension

Let us introduce Kruskal-type coordinates in the bulk space-time, which are generally

defined as

ũ = −e−u/2δh , ṽ = ev/2δh , (3.1)

using the retarded and advanced time coordinates, u = t− r? and v = t+ r?, respectively.

The parameter δh is defined for all values of Λ, which is taken here to be non-positive, as

δh =
r2

h

2(3m− rh)
, (3.2)
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using the radius rh of the horizon of the static solution, and it reduces to the familiar choice

δh = 2m when Λ = 0; otherwise, it varies in the interval 2m > δh > 0 as Λ changes from 0

to −∞, keeping m fixed. The surface gravity κgr and the temperature T of the equilibrium

black hole state are related to δh as follows,

κgr =
f ′(rh)

2
= 2πT =

1

2δh
. (3.3)

In these coordinates, the line element of the Robinson-Trautman metric becomes

ds2 = 2r2eΦdzdz̄ − 4δ2
hf(r)e−r?/δhdũdṽ − 4δ2

h(F − f(r))
dũ2

ũ2
, (3.4)

where

F − f(r) = r∂uΦ−∆Φ− 1 . (3.5)

The static AdS4 black hole has F = f(r) and always admits smooth extension across the

event horizon. Time-dependent solutions, however, have F 6= f(r) and the regularity of the

Kruskal extension is questionable. Are the extensions through the null hypersurface H +

given by u =∞ (equivalently ũ = 0) smooth or not? If not, it will imply, in particular, that

an observer can determine by local measurements whether he/she has crossed the event

horizon.

It turns out that the asymptotic series expansion of the function σ(z, z̄;u), which

describes the deviation of the metric from the canonical form, as Φ = Φ0 − 2logσ, takes

the following form in terms of the Kruskal coordinate ũ, [37],

σ(z, z̄; ũ) = 1 + σ1,0(z, z̄)(−ũ)4δh/m + σ2,0(z, z̄)(−ũ)8δh/m + · · ·+ σ14,0(z, z̄)(−ũ)56δh/m

+[σ15,0(z, z̄)− 2δhσ15,1(z, z̄)log | ũ |](−ũ)60δh/m +O
(

(−ũ)64δh/m
)
. (3.6)

Due to the presence of the log|ũ| term, the function σ is not smooth at ũ = 0 but it is at

most C [a]-differentiable with [a] being the integer part of

a =
60δh

m
− 1 . (3.7)

In turn, it implies that the Robinson-Trautman metric, which is now written in the

form (3.4), is at most C [a]−2-differentiable at ũ = 0, because the coefficient in front of

the dũ2 term contains an additional factor 1/ũ2. As will be seen shortly, the regularity of

the metric may be even lower, depending on the size of δh. As a result, the extension of

the Robinson-Trautman metric across the horizon H + can not be smooth in general. The

degree of differentiability depends crucially on Λ. When Λ = 0, δh = 2m and a = 119,

i.e., the full four-dimensional metric is only C117-differentiable and not C∞, [37]. When

Λ < 0, which is the case of primary interest here, the degree of differentiability decreases

simply because δh < 2m. In fact, the parameters m and Λ can be easily arranged so that

the metric is not even C1; it may also very well be that ∂σ/∂ũ diverges at H +.

Actually, there is a striking difference between Λ = 0 and Λ < 0 black holes, which

is already seen at the linear level. Retaining only the contribution of the algebraically
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special modes in the asymptotic expansion of σ(z, z̄; ũ), one observes that F − f(r) is of

order O(ũ4δh/m) as ũ approaches 0, receiving the most dominant contribution from the

quadrupole radiation term. As a result, the overall coefficient of the dũ2 term of the metric

is of order O(ũ(4δh/m)−2). Thus, for Λ = 0 black holes, this coefficient is of order O(ũ6)

and the extension through the horizon appears to be smooth at the linear level, as noticed

in reference [32]; of course, we know better now that the smoothness breaks down due to

non-linear effects attributed to the presence of the non-vanishing term σ15,1(z, z̄), [37]. On

the other hand, for Λ < 0 black holes, it may happen that (4δh/m)−2 is negative, in which

case there are divergences at H + already appearing at the linear level, [39]. For example,

one may consider large AdS4 black holes with m > rh, [40], which actually have 4δh/m < 1,

as can be easily verified. By the same token, small AdS black holes have 4δh/m > 1 and

in fact the lower bound exceeds the value 2 for sufficiently small (i.e., not of intermediate

size) black holes. For the relevant definitions of large versus small black holes we refer the

reader to appendix B.

Thus, the Kruskal extension of the Robinson-Trautman metric breaks down completely

for large AdS4 black holes because the coefficient of dũ2 becomes singular at ũ = 0. This

is induced perturbatively by the first algebraically special mode (associated to quadrupole

radiation) and signals an instability towards the formation of a null singularity at H +. It

is intriguing that this perturbative instability appears only for large black holes. Note that

in the original work [39] the authors did not describe the result in thermodynamic terms,

distinguishing large from small AdS black holes, [40].

More generally, within the linear approximation, each algebraically special mode gives

a contribution to the dũ2 term of the Kruskal extension of the metric of order O(ũ2iωsδh−2),

since

F − f(r) =
(l − 1)(l + 2)

2

(
1− l(l + 1)

6m
r

)
Pl(cos θ) (−ũ)2iωsδh . (3.8)

Thus, for large black holes and sufficiently low l satisfying the bound1

m

rh
>
l(l + 1)

6
, (3.9)

we have the relation

2iωsδh =
(l − 1)l(l + 1)(l + 2)r2

h

12m(3m− rh)
< 1 (3.10)

generalizing the effect of the quadrupole term to all other potentially dangerous terms

arising in the multi-pole expansion. For higher values of l we have 2iωsδh > 1, but the

lower bound may still not exceed the value 2. It can also be verified that large black holes

with sufficiently large values of l, so that

√
2
m

rh
<
l(l + 1)

6
, (3.11)

always satisfy the higher bound 2iωsδh > 2. It is rather odd behavior of large AdS4 black

holes, which are favored thermodynamically, [40]. Sufficiently small black holes, on the

other hand, satisfy the bound 2iωsδh > 2 for all values of l.

1Note that the (tt) and (rr) components of the algebraically special perturbations δgµν of large AdS4

black holes become negative close to rh for precisely those values of l (see equations (2.19) and (2.20)).
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H +

u
=
∞

I
r = ∞

u
=
u0

r = 0

Figure 2. Penrose diagram of Robinson-Trautman space-times with Λ < 0.

One should note, however, that the curvature invariants are smooth at H+. In fact, all

invariants formed by powers of the Riemann tensor (without taking covariant derivatives)

have the same value as the invariants evaluated on the Schwarzschild solution; this was

shown in reference [16, 17] when Λ = 0 and we checked it for the Kretschmann invariant

when Λ < 0. On the other hand, the authors of reference [37] argued that at least one

component of the Riemann tensor (or any power of covariant derivatives acting on it) will

blow up at H+ in any coordinate system. This indicates that there is a null singularity at

the future horizon.

Summarizing, the Kruskal extension of the Robinson-Trautman metric breaks down

completely for AdS4 black holes when the coefficient of the dũ2 term becomes singular

at ũ = 0. The radiative solutions settle down to AdS4 Schwarzschild black hole at late

retarded times, and, sometimes, depending on l, they can be extended across the horizon

to include the black hole interiors. In those cases, the interior of a static black hole can be

jointed to an external Robinson-Trautman space-time across H + located at ũ = 0, but the

extension is not smooth. The Penrose diagram in figure2 does not include the extension

across the horizon. The situation resembles the behavior of out-going modes of a scalar

field in AdS4 black hole background, which are not smooth near the future horizon, as

pointed out in reference [41]. Fortunately, the smoothness of I at r = ∞ is not affected

at all by possible discontinuities across the horizon.

3.2 Past apparent horizon

The Robinson-Trautman space-time exhibits a past apparent horizon. The construction

we present here generalizes previously known results for Λ = 0, [32], to the case Λ < 0.

Let us define a 2-surface Σ in space-time by the following embedding relations,

u = const. , r = U(z, z̄) . (3.12)
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The unit tangent vectors to Σ with (u, r, z, z̄) components are

mµ =
1

reΦ/2

(
0, ∂̄U, 0, 1

)
, m̄µ =

1

reΦ/2
(0, ∂U, 1, 0) (3.13)

and the induced metric on Σ is

gzz̄ = r2eΦ |r=U, u=const.= U2eΦ |u=const. . (3.14)

There is also a complementary set of two null vectors that are both orthogonal to those

tangent vectors,

nµ =

(
1 , − F

2
+
∂U ∂̄U

r2eΦ
,

∂̄U

r2eΦ
,

∂U

r2eΦ

)
, (3.15)

lµ = (0 , 1 , 0 , 0) . (3.16)

All together they form a null tetrad (mµ, m̄µ, lµ, nν), which is used in the Newman-Penrose

formalism to cast the inverse Robinson-Trautman metric into the simple form

gµν = mµm̄ν + m̄µmν − lµnν − nµlν . (3.17)

Next, using these definitions, we compute the convergence of the two null vectors and

find, respectively,

mµm̄νn(µ;ν) =
1

2U

(
2∆(logU) + ∆Φ +

2m

U
+

Λ

3
U2

)
, (3.18)

mµm̄ν l(µ;ν) =
1

r
. (3.19)

The geodesic null congruence of Robinson-Trautman metrics is generated by the vector field

lµ = (−1, 0, 0, 0), which has zero shear and twist by definition. Setting the convergence

of the null vector field nµ equal to zero,

2∆(logU) + ∆Φ +
2m

U
+

Λ

3
U2 = 0 , (3.20)

makes Σ a marginally past trapped 2-surface and provides the differential equation that

Υ(z, z̄) has to satisfy at each instant u = const. Condition (3.20) is the generalization of

the so called Penrose-Tod equation to all values of Λ.

It turns out that Σ is the unique marginally trapped 2-surface on the hypersurface of

constant u and it is the outer boundary of past-trapped surfaces on this hypersurface, thus

making Σ the past apparent horizon of space-time. The proof is outlined below in three

steps, generalizing Tod’s proof, [32], to Λ ≤ 0. The case Λ > 0 is different and it will not

be addressed here.

First, one has to establish the existence of one strictly positive solution of the general-

ized Penrose-Tod equation (3.20). For Λ = 0, the proof of existence follows from a theorem

of Aubin, [42], as outlined in reference [32]. For Λ < 0, the proof of existence is based

on the so called sub- and super-solution method adapted to Riemannian manifolds. It is

outlined in the more recent papers [43, 44] that construct the past apparent horizon as
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we do here. Second, we note that the uniqueness of the construction follows immediately

from equation (3.20) provided that at least a strictly positive solution of this differential

equation exists, as it does. Indeed, if U1 and U2 are two such distinct solutions, their ratio

R = U1/U2 will satisfy the equation

2∆(logR) +
2m

U1
(1−R)− Λ

3
U2

2 (1−R2) = 0 . (3.21)

Multiplying by 1−R and integrating over the sphere with metric ds2
2 = 2(exp Φ)dzdz̄, one

obtains the relation

2

∫
S2

(1−R)∆(logR) + 2m

∫
S2

(1−R)2

U1
+

(
−Λ

3

)∫
S2

U2
2 (1 +R)(1−R)2 = 0 . (3.22)

The first term is non-negative as can be easily seen after integration by parts,

2

∫
S2

(1−R)∆(logR) =

∫
S2

| ∇R |2

R
. (3.23)

The other two terms are also non-negative when −Λ is non-negative, since U1 and U2 are

assumed to be strictly positive. Thus, we necessarily have R = 1, i.e., U1 = U2, establishing

the uniqueness of the solution when Λ ≤ 0. Clearly, this argument does not apply when

Λ > 0. Finally, as in Tod [32], we may express any other 2-surface Σ(λ) on the hypersurface

of constant u as r = λU , where λ is a strictly positive function. The convergence of the

null vector nµ(λ) associated to the 2-surface Σ(λ) turns out to be

mµ
(λ)m̄

ν
(λ)n

(λ)
(µ;ν) =

1

2λU

[
2∆λ+

2m

λU
(1− λ) +

(
−Λ

3

)
U2(1− λ2)

]
. (3.24)

All three terms on the right hand side are negative for Λ ≤ 0 when λ > 1, i.e., when

Σ(λ) extends to larger values of r than Σ itself. Then, it follows that Σ is the outermost

boundary of past-trapped surfaces on the hypersurface of constant u, completing the proof.

The line element of Σ takes the following form

ds2(Σ) =

(
U

σ

)2 (
dθ2 + sin2 θdφ2

)
, (3.25)

where σ is given by Φ = Φ0 − 2 logσ. The area of Σ is determined by taking the integral

over the unit round sphere,

Area(Σ) =

∫
S2

dµ0

(
U

σ

)2

, (3.26)

where dµ0 = sin θdθdφ. Clearly, Area(Σ) depends on u.

Using the late time expansion of solutions to the Robinson-Trautman equation, one

can determine the late time expansion of the function U , and, hence, of the area of Σ.

Using the first few terms of the late time expansion of axisymmetric deformations of S2

characterized by

σ(θ;u) = 1 +
a

3
(3x2 − 1)e−2u/m − a2

234
(69x4 − 282x2 + 49)e−4u/m + · · · (3.27)
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with x = cos θ, we find

U

σ
(θ;u) = rh −

amrh

2rh + 3m
(3x2 − 1)e−2u/m +

a2mrh

78(2rh + 3m)2(3rh +m)
×(

(909m2 + 2967mrh + 716r2
h)x4 − 6

657m3 + 2601m2rh + 2046mr2
h + 472r3

h

2rh + 3m
x2

+
2025m4 + 7470m3rh + 4275m2r2

h + 142mr3
h − 408r4

h

(2rh + 3m)(3m− rh)

)
e−4u/m + · · · . (3.28)

The result is complicated and becomes even more so to order O(e−6u/m). However, the

final result for the area takes very simple form

Area(Σ) = 4πr2
h

[
1 +

16a2mr2
h

15(3m− rh)(2rh + 3m)2
e−4u/m +O

(
e−6u/m

) ]
, (3.29)

providing the leading behavior of its u-dependence at very late retarded times for all Λ ≤ 0.

Area(Σ) receives no corrections at the linearized level, since the integral of the Legendre

polynomials vanishes. Also, the leading contribution of non-linear effects comes with posi-

tive sign which indicates that the area decreases at later retarded times, irrespective of the

size of the black hole (recall that in all cases rh cannot exceed 2m).

An interesting open question is whether the area of the past apparent horizon decreases

monotonically in u to all orders in the expansion, thus providing a new entropy functional

for the Calabi flow on S2. Some results already exist in this direction for Λ = 0, [45], and

we expect them to generalize to other values of Λ. We hope to return to this problem

elsewhere with more details.

3.3 Penrose inequality

A natural quantity in Robinson-Trautman space-times is provided by the so called Bondi

mass, [2], which is defined as follows

MBondi =
m

4π

∫
S2

dµ0
1

σ3
, (3.30)

taking the integral with respect to the unit round metric on S2. It incorporates the effect

of gravitational radiation in space-time.

The Bondi mass is a function of the retarded time u, enjoying two important properties.

First, MBondi ≥ m, which follows immediately from Holder’s inequality(∫
S2

dµ0
1

σ3

)2/3(∫
S2

dµ0

)1/3

≥
∫
S2

dµ0
1

σ2
, (3.31)

using also the fact that the evolution of the metric

ds2(S) =
1

σ2

(
dθ2 + sin2 θdφ2

)
, (3.32)

preserves the volume of S2, i.e., ∫
S2

dµ0
1

σ2
= 4π . (3.33)
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Second, using the Robinson-Trautman equation it follows that [18, 19]

d

du
MBondi ≤ 0 . (3.34)

MBondi decreases monotonically along the flow, reaching its minimal value m at u =∞.

Using the late time expansion of the solutions to the Robinson-Trautman equation, as

before, we find the following leading behavior of MBondi,

MBondi = m
[
1 +

2a2

15
e−4u/m +O

(
e−6u/m

) ]
. (3.35)

The Bondi mass equals m at the linearized level, since the integral of the Legendre poly-

nomials vanishes, as before. Also, the leading contribution of non-linear effects comes

with positive sign so thatMBondi decreases at later retarded times, in agreement with the

general relation (3.34).

The Bondi mass is subsequently used to formulate and test the validity of Penrose

inequality [46] in Robinson-Trautman space-time. In fact, we will prove the following

generalized version of Penrose inequality in the presence of cosmological constant Λ ≤ 0,

as first stated by Gibbons [47] (but see also reference [48] for an overview of the subject),

16πM2 ≥ Area(Σ)

(
1− Λ

3

Area(Σ)

4π

)2

, (3.36)

using the area of the past apparent horizon Σ and letting

M =MBondi . (3.37)

We admit, however, that we do not yet have complete justification for choosing the same

MBondi for all Λ ≤ 0 other than it works for Robinson-Trautman space-times.

It is convenient for our purpose to rewrite the differential equation for Σ in the form

2m

σ3
=
U

σ

[
1− 2∆0

(
log

U

σ

)]
− Λ

3

(
U

σ

)3

, (3.38)

where ∆0 = e−Φ0∂∂̄ provides the Laplacian on the unit round sphere. Upon integration

over the unit sphere with measure dµ0, we obtain

8πMBondi =

∫
S2

dµ0
U

σ

[
1− 2∆0

(
log

U

σ

)]
− Λ

3

∫
S2

dµ0

(
U

σ

)3

. (3.39)

Since for a function f on the unit sphere we have the relation 2f∆0(logf) = 2∆0f−|∇f |2/f ,

we arrive to the following identity∫
S2

dµ0

(
f +
|∇f |2

f

)
=

∫
S2

dµ0 f (1− 2∆0(logf)) , (3.40)

dropping the contribution of ∆0f to the integral (it is a total derivative term on the

round S2). Furthermore, as was shown by Tod, [49], using a combination of Sobolev and
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Holder inequalities, one has the following relation for all functions f , provided that they

are nowhere vanishing,∫
S2

dµ0

(
f +
|∇f |2

f

)
≥
(

4π

∫
S2

dµ0 f
2

)1/2

. (3.41)

To prove Penrose inequality for Robinson-Trautman space-times, it suffices to choose

f =
U

σ
(3.42)

so that the first integral on the right hand-side of equation (3.39) is bounded from below

by the square root of the area functional, as

∫
S2

dµ0
U

σ

[
1− 2∆0

(
log

U

σ

)]
≥

(
4π

∫
S2

dµ0

(
U

σ

)2
)1/2

≡
√

4πArea(Σ) . (3.43)

The second integral on the right hand-side of equation (3.39) is also bounded from below,

as can be easily seen using Holder’s inequality(∫
S2

dµ0

(
U

σ

)3
)2/3(∫

S2

dµ0

)1/3

≥
∫
S2

dµ0

(
U

σ

)2

. (3.44)

Then, for Λ < 0 we have the inequality

− Λ

3

∫
S2

dµ0

(
U

σ

)3

≥ −Λ

3
4π

(√
Area(Σ)

4π

)3

, (3.45)

which when combined with (3.43) yields the Penrose inequality in the form (3.36) with

M = MBondi. This derivation extends the proof of Penrose inequality for Robinson-

Trautman space-times with Λ = 0, as described in reference [49], to the more general case

Λ ≤ 0.

As consistency check, one may use the late time expansion of MBondi and Area(Σ)

obtained above to verify the validity of Penrose’s inequality for AdS4 Robinson-Trautman

space-times up to order exp(−4u/m). To zeroth order we get the identity m = m and to

order exp(−4u/m) we get the inequality

m ≥
4mr2

h

(2rh + 3m)2
, (3.46)

which is certainly true for black holes of all sizes. Similar results hold to higher order.

3.4 Thorne’s hoop conjecture

Another mass inequality in space-times containing a black hole is provided by the so called

hoop conjecture due to Thorne, [50], stating that

4πM≥ C (3.47)
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for appropriately defined massM and circumference C. We expect that the hoop conjecture

admits a suitable generalization in the presence of negative cosmological constant. We

propose that for AdS4 Robinson-Trautman space-times the following inequality holds

4πMBondi ≥ C(Σ)

(
1− Λ

3

(
C(Σ)

2π

)2
)
, (3.48)

where C(Σ) is the length of a hoop around the past apparent horizon Σ. For definiteness,

one may adopt Gibbons’ proposal [51, 52] for the optimal hoop (but see also reference [53]

for some important related work), choosing

C(Σ) = β(Σ) (3.49)

given by the so called Birkhoff’s invariant [54] of Σ. Recall that β(Σ) is a geometric

invariant providing the minimum length of a hoop (closed inextensible string) one can slip

over a spherical two-dimensional surface Σ. There always exists a closed geodesic on Σ -

though not necessarily the shortest - with length equal to β(Σ). However, β(Σ) encodes

the notion of “least circumference” in all directions.

In general, it is not possible to construct β(Σ) analytically. Instead, we begin by

considering the length of the equatorial and meridional (polar) geodesic curves, using for

simplicity axisymmetric metrics on Σ. The line element (3.25) yields, respectively,

le(Σ) = 2π
U

σ
(θ = π/2) , lp(Σ) = 2

∫ π

0
dθ

U

σ
(θ) , (3.50)

where the factor of 2π in le(Σ) arises from integration over the angle φ. We further set

C(Σ) = min(le(Σ), lp(Σ)) . (3.51)

Using the late time behavior of the solutions of the Robinson-Trautman equation, in

particular the expansion (3.28) for U/σ, we find the following result as u→∞,

le(Σ) = 2πrh

[
1 +

am

2rh + 3m
e−2u/m +O

(
e−4u/m

) ]
(3.52)

and

lp(Σ) = 2πrh

[
1− am

2(2rh + 3m)
e−2u/m +O

(
e−4u/m

) ]
. (3.53)

The leading order corrections to le and lp are provided by the linear quadrupole radiation

terms. The coefficient a is an arbitrary constant of either sign that determines the size of

le relative to lp. In either case, we have to leading order,

C(Σ) = min(le(Σ), lp(Σ)) < 2πrh . (3.54)

At the same time, as noted earlier, MBondi does not receive any corrections to order

exp(−2u/m) and therefore inequality (3.48) is obviously valid. Of course, there are correc-

tions to le(Σ) and lp(Σ) appearing to order exp(−4u/m), as in the Bondi mass, but their
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effect is subdominant and cannot change the result. Note that C(Σ) increases with u at

late times.

For higher poles of gravitational radiation, the spherical part of the Robinson-Trautman

metric assumes the form (2.10),

ds2
2 = [1 + εl(0)Pl(cos θ)e−iωsu](dθ2 + sin2 θdφ2) , (3.55)

to linear approximation. Such terms become relevant when all other subleading poles of

radiation are absent from the solution. The corresponding conformal factor of the past

apparent horizon has

U

σ
= rh

(
1 +

3εl(0)m

(l − 1)(l + 2)rh + 6m
Pl(cos θ)e−iωsu

)
(3.56)

for all l ≥ 2 (we set ε2(0) = −4a/3 to compare with the previous discussion). We can

still use (3.51) to define a hoop C(Σ), as for the quadrupole radiation. The equatorial and

meridional closed geodesic curves, le(Σ) and lp(Σ), are still given by equation (3.50). The

integral of Pl(cos θ) showing up in lp(Σ) is always positive. Note, however, that the sign of

Pl(0) appearing in le(Σ) depends upon l: it is negative for l = 4k − 2, positive for l = 4k

and it vanishes for odd l. Consequently, C(Σ) is definitely less than 2πrh for l = 4k − 2,

as for l = 2, and less or equal to 2πrh for odd l. For l = 4k, comparison of C(Σ) to 2πrh

depends on the sign of the arbitrary constant εl(0), making the definition (3.51) of C(Σ)

inappropriate. Then, in that case, one has to consider lassoing Σ sideways, trying to find

better ways to satisfy the inequality (3.48), which to linear order reads

C(Σ)

(
1− Λ

3

(
C(Σ)

2π

)2
)
≤ 2πrh

(
1− Λ

3
r2

h

)
= 4πm . (3.57)

We will not pursue this calculation here, since there is a systematic way to prove the

inequality for l = 4k, as for l = 4k − 2, at linear as well as non-linear level, as will be seen

next. The Birkhoff length need not be equal to any one of the choices described above.

For Robinson-Trautman space-times that are axisymmetric and also admit antipodal

symmetry, so that only terms with even l appear in the linearized approximation, it is

possible to give a general proof of the hoop conjecture (3.48) for appropriate choice of

C(Σ). The proof puts in context the previous discussion and it is applicable to the full

non-linear regime of Einstein equations. In that case, Σ also has antipodal symmetry by

construction and, thus, its area is bounded from below

Area(Σ) ≥ l2(Σ)

π
(3.58)

in terms of the length l(Σ) of the shortest non-trivial closed geodesic on Σ (the area

and length are both computed with respect to a given metric on Σ). This is a rather

old mathematical result due to Pu, [55], which is applicable to all metrics on 2-spheres

with antipodal symmetry. Then, the hoop inequality (3.48) follows immediately from the

generalized form of Penrose inequality (3.36) that was proved before, choosing C(Σ) = l(Σ).
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As such, it generalizes the relation between Penrose and Thorne inequalities described

in [51, 52], but now in the presence of cosmological constant Λ ≤ 0. Gibbon’s version of

the hoop conjecture provides a more stringent lower bound, since the Birkhoff invariant is

not necessarily the length of the shortest closed geodesic, i.e., β(Σ) ≥ l(Σ), but we do not

yet have a general proof of it for Robinson-Trautman space-times.

A related interesting open question is whether the length of the hoop, being l(Σ)

or β(Σ), exhibits monotonicity under Calabi flow that governs the evolution of the past

apparent horizon.

4 Holographic aspects

In this section, we briefly review the construction of the energy-momentum tensor for

AdS gravity, based on holography [56–65], and apply it to the general class of Robinson-

Trautman metrics with negative cosmological constant. Then, the resulting energy-momen-

tum tensor is specialized to the Schwarzschild solution and its perturbations with respect

to the algebraically special modes and determine their effective viscosity. The complete

expression also includes non-linear effects of gravitational radiation, which can be described

systematically at late times.

4.1 Energy-momentum tensor

The AdS4 Robinson-Trautman solution is an example of an asymptotically locally AdS

space-time.2 For these space-times the metric near the conformal boundary I takes the

Fefferman-Graham form

ds2 = − 3

Λ

[d%2

%2
+

1

%2

(
g(0)ab(x) + %2g(2)ab(x) + %3g(3)ab(x) + · · ·

)
dxadxb

]
, (4.1)

where
√
−3/Λ is the AdS radius and % = 0 is the location of the conformal boundary. If the

conformal boundary is topologically R×S2 and g(0) is conformally flat then the space-time

is asymptotically AdS, otherwise it is only asymptotically locally AdS. Asymptotically

locally AdS space-times come equipped with a conserved symmetric tensor, Tab, which in

even dimensions is also traceless, i.e.,

∇bTab = 0, T aa = 0 , (4.2)

where ∇a is the covariant derivative associated to g(0)ab. This tensor can be extracted from

the asymptotics of the solution, [62],

Tab = − 3

2κ2

(
− 3

Λ

)
g(3)ab (4.3)

2We refer the reader to section 3 of the original work [64] for the precise definition. Note, however, that

asymptotically locally AdS space-times were called asymptotically AdS in that reference. Here, as in most

of the literature, we reserve the terminology asymptotically AdS only for space-times that look like AdS

close to the boundary.
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and is called the holographic energy-momentum tensor because it also represents the ex-

pectation value of the energy-momentum tensor in the dual QFT, [59–62, 64], as

〈Tab〉 =
2√

−detg(0)

δSren

δgab(0)

. (4.4)

Sren is the on-shell gravitational action supplemented by covariant counter-terms to re-

move the infinite volume divergences, [59–62]. It provides a well defined prescription for

implementing the Brown-York proposal for quasi-local energy, [66], without using a refer-

ence space-time. One can show that if the space-time possesses asymptotic Killing vectors,

there will be conserved charges, which one can compute using Tab, [65] (but see also ref-

erences [61, 63]). Specializing to asymptotically AdS space-times, which is the only case

that was discussed in all generality in earlier works, one recovers previous prescriptions for

the computation of conserved charges.

Thus, in order to compute the holographic energy-momentum tensor, it suffices to

change to Fefferman-Graham coordinates near the conformal boundary and then extract

the coefficient g(3). The Fefferman-Graham coordinates are Gaussian normal coordinates

centered at the conformal boundary. To reach these coordinates we need to ensure that

g%% = 1/%2 and the off-diagonal terms between % and xa are zero up to sufficiently high

order. In practice, we first change variables u = t − r?, introducing explicit r-dependence

into the function Φ(z, z̄;u) so that the evolution is taken with respect to the real time

t rather than the retarded time u; of course, we have ∂uΦ = ∂tΦ. Since the conformal

boundary is located at r? = 0, we are led to perform the following change of variables,

r? → %− 1

2
(∂tΦ̂)%2 +

[Λ

9
+

3

16
(∂tΦ̂)2 +

1

4
∂2
t Φ̂ +

Λ

12
∆̂Φ̂
]
%3 − 1

48

[
3(∂tΦ̂)3 (4.5)

+8∂tΦ̂(3 + ∂2
t Φ̂) + 4(2m+ ∂3

t Φ̂) + 4(3∆̂Φ̂ ∂tΦ̂ + 2∂t(∆̂Φ̂))
]
%4 +O(%5) ,

t → t− 1

2
(∂tΦ̂)%2 +

1

6

[2Λ

3
+ (∂tΦ̂)2 + ∂2

t Φ̂ +
2Λ

3
∆̂Φ̂
]
%3 − 1

32

[
2(∂tΦ̂)3 (4.6)

+∂tΦ̂

(
16Λ

3
+ 5∂2

t Φ̂

)
+ 2∂3

t Φ̂ +
2Λ

3
(4∆̂Φ̂ ∂tΦ̂ + 3∂t(∆̂Φ̂))

]
%4 +O(%5) ,

z → z + e−Φ̂∂z̄

[
− Λ

18
(∂tΦ̂)%3 +

Λ

48

(
∂2
t Φ− 1

4
(∂tΦ̂)2 +

Λ

3
∆̂Φ̂

)
%4
]

+O(%5) , (4.7)

z̄ → z̄ + e−Φ̂∂z

[
− Λ

18
(∂tΦ̂)%3 +

Λ

48

(
∂2
t Φ− 1

4
(∂tΦ̂)2 +

Λ

3
∆̂Φ̂

)
%4
]

+O(%5) , (4.8)

where Φ̂ is the boundary value of Φ,

Φ̂(z, z̄; t) = lim
r?→0

Φ(z, z̄;u). (4.9)

Note that Φ̂ has the same functional form as Φ, since u = t − r?, and it satisfies the

fourth-order diffusion equation in real time,

3m∂tΦ̂ + ∆̂∆̂Φ̂ = 0 , (4.10)
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where ∆̂ is the Laplacian on the spherical spatial slices of the three-dimensional bound-

ary I ,

∆̂ = e−Φ̂∂z∂z̄ . (4.11)

After this change of variables, the space-time metric takes the form (4.1) with the

metric components g(0), g(2) and g(3) given by

ds2
(0) = −dt2 − 6

Λ
eΦ̂dzdz̄ (4.12)

ds2
(2) =

1

2

[1

4
(∂tΦ̂)2 + ∂2

t Φ− Λ

3
∆̂Φ̂
]
dt2 +

[ 3

4Λ
(∂tΦ̂)2 + ∆̂Φ̂

]
eΦ̂dzdz̄ + [(∂z∂tΦ̂)dtdz]c.c.

ds2
(3) = −4mΛ2

27
dt2 +

4mΛ

9
eΦ̂dzdz̄ − 1

3

[2Λ

3
∂z(∆̂Φ̂)dtdz + ∂t

(
1

2
(∂zΦ̂)2 − ∂2

z Φ̂

)
dz2
]

c.c.

where c.c. means that one has to add the complex conjugate to the corresponding bracketed

terms.

The metric g(0) is the representative of the boundary conformal structure. Thus, we set

ds2
I = −dt2 − 6

Λ
eΦ̂dzdz̄ . (4.13)

To check whether this metric is conformally flat, we compute its Cotton tensor. Recall

that the Cotton tensor of a three-dimensional metric γab is defined as follows,

Cab =
1

2
√
−detγ

(
εacd∇cRbd + εbcd∇cRad

)
=

εacd√
−detγ

∇c
(
Rbd −

1

4
δbdR

)
, (4.14)

letting εtzz̄ = i (equivalently, εtθφ = 1 in spherical coordinates). It is a symmetric and

traceless tensor that is covariantly conserved identically, without employing the classical

equations of motion. The density
√

detγ Cab remains invariant under local conformal

changes of the metric γab and it vanishes if and only if the metric is conformally flat. In

our case, it takes the form

Czz = − i
4
∂t

(
(∂zΦ̂)2 − 2∂2

z Φ̂
)
, Ctz = −iΛ

6
∂z(∆̂Φ̂) (4.15)

and

Cz̄z̄ = −C̄zz , Ctz̄ = −C̄tz , (4.16)

whereas all other components vanish identically. Thus, g(0) is not conformally flat for gen-

eral Robinson-Trautman solutions; these solutions are indeed only asymptotically locally

AdS.

The asymptotic analysis of reference [62] implies that the g(2) should be given by

g(2)ab = −Rab +
1

4
Rg(0)ab , (4.17)
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where Rij ,R are the Ricci and scalar curvatures of g(0). Indeed, using

Rtt = −∂2
t Φ̂− 1

2
(∂tΦ̂)2, Rzz̄ = −1

2
eΦ̂

(
3

Λ

(
∂2
t Φ̂ + (∂tΦ̂)2

)
+ 2∆̂Φ̂

)
,

Rtz = −1

2
∂t∂zΦ̂ , Rtz̄ = −1

2
∂t∂z̄Φ̂ , R = 2∂2

t Φ̂ +
3

2
(∂tΦ̂)2 +

2Λ

3
∆̂Φ̂ , (4.18)

one can check that this is the case.

Finally, the energy-momentum tensor follows from g(3) via equation (4.3). We obtain

κ2Ttt = −2mΛ

3
, κ2Ttz = −1

2
∂z(∆̂Φ̂) , (4.19)

κ2Tzz̄ = meΦ̂, κ2Tzz = − 3

4Λ
∂t

(
(∂zΦ̂)2 − 2∂2

z Φ̂
)
, (4.20)

whereas

Ttz̄ = T̄tz , Tz̄z̄ = T̄zz . (4.21)

Note that the energy-momentum tensor is traceless and conserved using the classical equa-

tions of motion, T aa = 0 and ∇aTab = 0, as required on general grounds.

Note also the following relations between the components of the energy-momentum

and the Cotton tensor,

Czz = i
Λ

3
κ2Tzz , Cz̄z̄ = −iΛ

3
κ2Tz̄z̄ , (4.22)

Ctz = i
Λ

3
κ2Ttz , Ctz̄ = −iΛ

3
κ2Ttz̄ . (4.23)

Despite appearances, all components of the energy-momentum as well as the Cotton tensor

are real when written in spherical coordinates (θ, φ).

4.2 Linearization of Tab

We first apply the formulae to the simple example of staticAdS4 Schwarzschild solution that

serves as reference frame to study the effect of linear (as well as non-linear) perturbations.

In this case, the three-dimensional metric on I describes an Einstein universe, which is

conformally flat, written in spherical coordinates as

ds2
I = −dt2 − 3

Λ
(dθ2 + sin2 θdφ2) . (4.24)

The renormalized energy-momentum tensor has the following non-vanishing components

κ2T
(0)
tt = −2mΛ

3
, κ2T

(0)
θθ = m, κ2T

(0)
φφ = m sin2 θ , (4.25)

reproducing the expressions already known in the literature. The superscript (0) is used

for reference to the static background.

Next, we consider the algebraically special modes with purely imaginary frequencies

ωs = −i(l − 1)l(l + 1)(l + 2)

12m
(4.26)
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that arise to linear order as perturbations of AdS4 Schwarzschild metric and compute

their contribution to the energy-momentum tensor. Assuming, for simplicity, that the

perturbations are axially symmetric, so that

Φ̂(θ; t) = e−iωstPl(cosθ) + 4log

(
sin

θ

2

)
, (4.27)

the three-dimensional metric on I takes the form

ds2
I = −dt2 − 3

Λ
[1 + e−iωstPl(cos θ)](dθ2 + sin2 θdφ2) , (4.28)

whereas Tab is

Tab = T
(0)
ab + δTab . (4.29)

We have δTtφ = 0 = δTθφ, as consequence of axial symmetry, and δTtt = 0. The remaining

components turn out to be

κ2δTθθ = m

(
1 +

3iωs

4mΛ
l(l + 1)

)
e−iωstPl(cos θ) +

3iωs

2Λ
e−iωstcotθ ∂θPl(cos θ) (4.30)

κ2δTφφ = m

(
1− 3iωs

4mΛ
l(l + 1)

)
e−iωst sin2 θ Pl(cos θ)−

3iωs

2Λ
e−iωst sin θ cos θ ∂θPl(cos θ) (4.31)

κ2δTtθ =
1

4
(l − 1)(l + 2)e−iωst∂θPl(cos θ) . (4.32)

4.3 Effective viscosity

We are now in position to examine whether the algebraically special models admit an

effective hydrodynamic representation.

Given a conserved energy-momentum tensor with non-negative energy density, i.e,

assuming Tabu
aub ≥ 0 for all time-like vectors, it is always possible to solve the eigenvalue

problem

Tabu
b = −ρua (4.33)

in terms of a unique time-like vector ua that is normalized as uaua = −1. This vector defines

a frame, usually called the energy or Landau frame, which we adopt in the following. The

energy-momentum tensor of a fluid admits the decomposition

T ab = ρuaub + p∆ab + Πab , (4.34)

where

∆ab = uaub + gab (4.35)

and ρ, p are the energy density and pressure, respectively, in the local rest frame. For

conformal fluids in three space-time dimensions ρ and p obey the equation of state ρ = 2p.
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Πab is a transverse tensor, uaΠ
ab = 0, that describes the viscous part of the energy-

momentum tensor of a fluid and it admits an expansion in derivatives of ua,

Πab = Πab
(1) + Πab

(2) + · · · . (4.36)

First order hydrodynamics is concerned with the structure of Πab
(1) and is well studied

(see, for instance, the classic reference [67]). For notational purposes, we use the bracketed

tensor associated to any second rank tensor Aab in three dimensions,

A<ab> =
1

2

(
∆ac∆bd(Acd +Adc)−∆ab∆cdAcd

)
, (4.37)

which is transverse, uaA
<ab> = 0, and traceless, gabA

<ab> = 0. Then, the viscosity tensor

has the following general form in relativistic first order hydrodynamics,

Πab
(1) = −ησab − ζ∆ab(∇cuc) , (4.38)

where

σab = 2∇<aub> (4.39)

expresses the symmetric, transverse and traceless part of Πab up to first derivatives in

ua. The coefficients η and ζ depend, in general, on ρ and they are called shear and bulk

viscosity, respectively. Conformal fluids have ζ = 0, the speed of sound in three dimensions

is 1/
√

2 and η is non-zero. This is precisely the case we are considering here.

The energy-momentum tensor associated to the static AdS4 black hole represents a

perfect fluid with velocity vector ua = (−1, 0, 0) and energy density

κ2ρ = −2mΛ

3
. (4.40)

Switching on perturbations, due to algebraically special modes, yield a velocity vector in

the energy frame with components

ut = −1 , uφ = 0 , (4.41)

as before, whereas uθ changes to

uθ =
1

4mΛ
(l − 1)(l + 2)e−iωst∂θPl(cos θ) . (4.42)

The energy density ρ is not affected by the perturbations. Then, it is straightforward to

compute the deviation from the perfect fluid form. The corresponding viscosity tensor has

components

κ2Π
(1)
θθ =

1

16mΛ
(l − 1)l(l + 1)(l + 2)e−iωst[l(l + 1)Pl(cos θ) + 2cotθ ∂θPl(cos θ)] , (4.43)

whereas

Π
(1)
φφ = − sin2 θ Π

(1)
θθ . (4.44)

All other components vanish identically.
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The shear viscosity associated to the l-th algebraically special mode turns out to be

κ2η =
1

4
l(l + 1) , (4.45)

as can be easily verified. The dependence of η upon l implies that the ratio of shear viscosity

to the entropy density of an AdS4 black hole,

η

s
=

4

r2
h

(
− 3

Λ

)
η =

l(l + 1)

8π

rh

2m− rh
, (4.46)

also depends upon l and thus η/s differs from the celebrated KSS value 1/4π, [68–70]. In

fact, large black holes with sufficiently low l, so that

m

rh
>
l(l + 1) + 2

4
, (4.47)

appear to violate the KSS bound, since

η

s
<

1

4π
. (4.48)

Large black holes with higher values of l satisfy η/s ≥ 1/4π. On the other hand, small

black holes satisfy the inequality η/s > 1/4π for all values of l.

In AdS/CFT correspondence, linear perturbations around AdS black black satisfying

Dirichlet boundary conditions at the conformal boundary and incoming boundary condi-

tions at the horizon compute retarded thermal correlators. From those one can compute

the shear viscosity via the Kubo formula. For such fluctuations there is a holographic

derivation of the KSS bound. To obtain the correct physical interpretation of the results

for the algebraically special modes one would need to understand first what exactly are

these fluctuation computing in the dual QFT.

Note also that there is some correlation between the global structure of Robinson-

Trautman space-times and the violation of the KSS bound by the algebraically special

modes. As explained before, the algebraically special perturbations of large AdS4 black

holes do not have a Kruskal extension across the horizon for sufficiently small values of

l. In fact, for the values of l constrained by inequality (4.47) we have 2iωsδh < 1, in the

notation of section 3.1, and this leads to divergencies on the null hypersurface H + that are

correlated with the result η/s < 1/4π. The divergencies on H + wash away for very high

values of l, since 2iωsδh > 2, in which case η/s > 1/4π. However, there are intermediate

values of l that lead to divergencies on H +, though milder, but they are still capable to

produce η/s > 1/4π.

We can rewrite the result for the ratio η/s in simple form that is applicable to very

large AdS4 black holes. It has been observed in the literature, as result of numerical

investigations, that very large AdS4 black holes exhibit another set of purely dissipative

modes with frequencies

Ωs = −i(l − 1)(l + 2)

3rh
(4.49)
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for all l ≥ 2, [71, 72] (but see also reference [73] for a derivation). They correspond to axial

perturbations, satisfying perfectly reflecting Dirichlet boundary conditions.3 Also, they

are true hydrodynamic modes of very large AdS4 black holes, saturating the KSS bound

η/s = 1/4π, [74]. Then, using Ωs, the ratio of shear viscosity to the entropy density of the

algebraically special modes ωs of very large (flat) black holes takes the following form

η

s
=

1

4π

ωs

Ωs
. (4.50)

The deviations from the KSS bound depend on the size of ωs relative to Ωs for any given

l. Actually, as pointed out in section 2, the values Ωs provide the characteristic inverse

time scale, call it τR, for the decay of linear perturbations of a round sphere under the

normalized Ricci flow in the multi-pole expansion.4 Likewise, ωs provide the characteristic

inverse time scale, call it τC, for the decay of linear perturbations of a round sphere under

the Calabi flow, and, therefore,
ωs

Ωs
=
τR

τC
. (4.51)

This ratio is used to compare how fast the curvature perturbations dissipate under the two

curvature flows. For large black holes it becomes less than 1 for low lying l.

We emphasize that the late time asymptotic expansion of the energy-momentum tensor

is not the same as the derivative expansion of the viscosity tensor Πab. Recall that first

order hydrodynamics captures effects to first order in the derivatives while higher order

hydrodynamics associated to Πab
(n) terms captures terms of order n in the derivatives. Each

of Πab
(n) can be expanded in a basis of independent tensors and the coefficients of these

tensors defined the n-th order transport coefficients. When we evaluate Πab using the

late time expansion of the metric higher order Πab
(n) may become degenerate with Πab

(1)

and the effective viscosity computed via the late time expansion would then be equal to

the true viscosity plus a combinations of higher order transport coefficients. Thus, the

hydrodynamic representation of the linear gravitational perturbations at late times is not

in general sufficient in order to extract the true shear viscosity of the system.

4.4 Late time expansion of Tab

The late time expansion of solutions to Robinson-Trautman equation, as described in

section 2.4, can be used to obtain a similar expansion for the energy-momentum tensor and

the boundary metric. In principle, one can compute recursively all higher order corrections

to the energy-momentum tensor away from the static black hole solution, going beyond the

linear approximation, but the expansion will be truncated here to order exp(−4m/t) for

3Obviously, the same set of modes also arise for polar perturbations satisfying mixed boundary conditions

that are supersymmetric partner to those particular axial perturbations of very large AdS4 black holes.
4Note, however, that unlike the Robinson-Trautman metric, which provides a non-linear extension of

the algebraically special modes, there is no such extension known for the Ωs modes. An interesting question

is whether the normalized Ricci flow can be embedded into Einstein equations with cosmological constant

Λ < 0, thus providing a new class of exact radiative metrics that settle down to very large black holes (at

least up to 1/r2h corrections). If so, there will be an analytic explanation for the spectrum Ωs.
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illustration. The result captures the effect of the most dominant non-linear terms beyond

the linear quadrupole approximation. We have

Tab = T
(0)
ab −

4a

3
δT

(1)
ab +

8a2

39
δT

(2)
ab , (4.52)

where δT
(1)
ab is the contribution of the lowest lying algebraically special mode, l = 2,

which is of order exp(−2t/m), and δT
(2)
ab denotes the first non-linear corrections of order

exp(−4t/m).

Keeping a arbitrary and using spherical coordinates we have the following non-vanishing

quadrupole perturbations, specializing our previous results to l = 2,

κ2δT
(1)
θθ =

m

2

(
3 cos2 θ − 1− 9

m2Λ
sin2 θ

)
e−2t/m , (4.53)

κ2δT
(1)
φφ =

m

2

(
3 cos2 θ − 1 +

9

m2Λ
sin2 θ

)
sin2 θ e−2t/m , (4.54)

κ2δT
(1)
tθ = −3 sin θ cos θ e−2t/m . (4.55)

The first non-linear terms contributing to the renormalized energy-momentum tensor are

κ2δT
(2)
θθ =

m

2

(
35 cos4 θ − 43 cos2 θ +

22

3

)
e−4t/m +

18

mΛ

(
9 cos4 θ − 14 cos2 θ + 5

)
e−4t/m , (4.56)

κ2δT
(2)
φφ =

m

2

(
35 cos4 θ − 43 cos2 θ +

22

3

)
sin2 θ e−4t/m −

18

mΛ

(
9 cos4 θ − 14 cos2 θ + 5

)
sin2 θ e−4t/m , (4.57)

κ2δT
(2)
tθ = 2 sin θ cos θ

(
21 sin2 θ + 1

)
e−4t/m. (4.58)

Since axial symmetry has been used in the calculation, the (tφ) and (θφ) components of

T
(2)
ab are zero. Also, δT

(2)
tt vanishes. As for the three-dimensional metric on I , it takes the

following form, up to this order,

ds2
I = −dt2 − 3

Λ

[
1− 2a

3

(
3 cos2 θ − 1

)
e−2t/m +

4a2

39

(
35 cos4 θ − 43 cos2 θ +

22

3

)
e−4t/m

]
(dθ2 + sin2 θdφ2) . (4.59)

Subleading non-linear corrections of order exp(−6m/t) or higher are more cumbersome to

compute explicitly.

The Calabi flow on S2 incorporates all higher viscosity terms in closed geometric form.

One should note that these higher order corrections need not capture purely hydrodynamic

modes.
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4.5 Entropy production

In this subsection we discuss entropy production as the system approaches equilibrium. As

is well known [67], a dissipative system with positive shear viscosity has an entropy current

with non-negative divergence given by

sa = sua (4.60)

where s is the local entropy density.

In the hydrodynamic regime the system is in local thermal equilibrium and the local

proper energy ρ, the pressure p, the local temperature T and the local entropy density s

satisfy the standard thermodynamic relations,

ρ+ p = T s, dρ = T ds, dp = s dT . (4.61)

Since we have a conformal fluid, the thermodynamic relations easily integrate to yield

s = γT 2, ρ = 2p =
2γ

3
T 3. (4.62)

The bulk solutions need to approach large AdS black holes at late times, for which rh �
L =

√
−3/Λ, in order to be in the hydrodynamic regime [75]. In this limit, the equilibrium

values of ρ, p, T and s are

ρ0 =
1

κ2
r3
h

(
−Λ

3

)2

= 2p0, T0 =
3

4π
rh

(
−Λ

3

)
s0 =

1

4
r2
h

(
−Λ

3

)
, (4.63)

fixing γ = −4π2/3Λ. In this limit, we also have r3
h = −6m/Λ, as discussed in appendix B.

To work out the leading order corrections to the equilibrium values (4.63), we set

ρ = ρ0 + ρ1, p = p0 + p1, s = s0 + s1, T = T0 + T1 . (4.64)

A short computation based on (4.61) shows that s1 and T1 are determined in terms of

ρ1, as

s1 =
ρ1

T0
,

T1

T0
=

1

3

ρ1

ρ0
, (4.65)

whereas the correction to the pressure is obtained using p = ρ/2.

Using the late time expansion of Tab found in section 4.4 together with the boundary

metric (4.59), we solve Tabu
b = −ρua to find,

ρ1 = − 16a2

3mκ2
sin2 θ cos2 θ e−4t/m (4.66)

The components of the normalized time-like unit vector ua are given to the same order by

ut = −1 +
8a2

3m2Λ
sin2 θ cos2 θ e−4t/m , (4.67)

uθ =
4a

mΛ
sin θ cos θ e−2t/m +

8a2

39mΛ
sin θ cos θ

(
2 + 42 sin2 θ − 39

m2Λ
sin2 θ

)
e−4t/m ,

uφ = 0
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and it turns out that there is a non-vanishing divergence

∇aua =
8a2

3m3Λ
sin2 θ

(
9 cos2 θ − 1

)
e−4t/m . (4.68)

Actually, these particular results hold for all value of rh, large or small compared to the

AdS radius L, but they will be used next only in the limit of large rh.

Using the equilibrium temperature of large AdS black holes T0, it follows from (4.66)

that

s1 =
ρ1

T0
= −16a2

9r4
h

(
− 3

Λ

)2

sin2 θ cos2 θ e−4t/m . (4.69)

We observe that s1 is negative and so the entropy s increases and becomes equal to that

of the Schwarzschild solution in the limit t→∞, showing that there is entropy production

in the problem at hand. We also compute the divergence of the entropy current, keeping

leading order terms in the large rh limit, and find

∇asa =
∂s1

∂t
+ s0∇aua =

16a2

9r7
h

(
− 3

Λ

)3

sin4 θ e−4t/m . (4.70)

Thus, the entropy current has a non-negative divergence. Finally, one may check, using

equations (4.43)–(4.44), that the divergence of the entropy current can be cast in the form

∇asa =
η

2T0
σabσ

ab , (4.71)

as required on general grounds. This last step makes use of the form for σab for quadrupole

radiation to linear order, which was determined earlier in section 4.3,

κ2ησθθ = − 6a

mΛ
sin2 θ e−2t/m , σφφ = − sin2 θ σθθ (4.72)

setting κ2η = 3/2 (for l = 2) and taking proper account of the normalization of δT
(1)
ab

(factor of −4a/3) appearing in the late time expansion (4.52). The expressions for σab
shown in (4.72) are valid for black holes of all sizes, but we are applying them here only to

the case of large rh, rh �
√
−3/Λ letting m = −Λr3

h/6.

We have obtained the entropy current using local thermodynamics. One may wonder

whether this current can also be obtained directly from a bulk computation, as in [76]. In

a time dependent context one expects the entropy current to be associated with a future

apparent horizon [77]. Future apparent horizons lie behind the event horizons and in our

case a bulk surface whose area would give the corrected entropy would also have to lie

behind the horizon at some r < rh. However, as we discussed earlier, the Robinson-

Trautman solutions do not extend smoothly across r = rh and, thus, one does not expect

to be able to geometrize this entropy current.

5 Conclusions and discussion

We discussed various aspects of the AdS4 Robinson-Trautman space-times. This particular

class of solutions may be thought to describe the gravitational field outside a compact source
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that radiates away its asymmetry and settles to a spherically symmetric configuration,

which is the AdS4 Schwarzschild solution. The corresponding asymptotically flat solution

is well-studied and its global properties are well-known. In this paper we extended the

analysis to the case of negative cosmological constant and also discussed holographic aspects

of the solutions.

There is a number of similarities and differences between Robinson-Trautman metrics

with zero and negative cosmological constant Λ. In either case there is a naked singularity

in the past, as well as a past apparent horizon, which can be regarded as a surface sur-

rounding the compact source. The evolution is governed by the Calabi flow on S2, which

is a geometric evolution equation that describes certain volume preserving deformations

of S2, and it is independent of Λ. At late times, the metric on S2 approaches the con-

stant curvature metric and the four-dimensional Robinson-Trautman solution becomes the

Schwarzschild solution. More precise, as the retarded time u tends to infinity, the future

horizon H+ of Schwarzschild space-time is reached. The deviation from Schwarzschild met-

ric at linear order is described by algebraically special modes. Remarkably, these modes

are supersymmetric zero energy states of the effective quantum mechanics problem for the

linear perturbations of the Schwarzschild solution.

The algebraically special modes describe out-going gravitational radiation and they

vanish at H+. One may ask whether these modes, as well as the Robinson-Trautman solu-

tion, admit a Kruskal extension across the horizon. The result depends on the cosmological

constant. When Λ = 0, all individual modes have a smooth extension, but this is severely

affected by non-linear effects. When Λ < 0, the low lying multi-pole modes of large AdS4

Schwarzschild black holes do not appear to have a Kruskal extension at all. The curvature

invariants are smooth at H+, but it is expected that at least one of the component of

(covariant derivatives of) the curvature tensor blows up at H+ in all smooth coordinate

systems that extend through H+. This indicates that there is a null singularity at the

future horizon.

We also considered the Bondi mass, which is a characteristic physical quantity of ra-

diative solutions that decreases monotonically at late times. We proved that it satisfies a

Penrose inequality and formulated and provided evidence for a version of the hoop conjec-

ture for Λ < 0. While the Bondi mass is a natural concept in asymptotically flat gravity,

measuring the mass at null infinity, its meaning is less clear with AdS asymptotics, since

there is no null infinity in that case. In this paper, we assigned a Bondi mass to the

AdS4 Robinson-Trautman space-times in exact analogy with the Λ = 0 case. It would be

interesting to understand whether the analogue of Bondi mass can be defined in general

asymptotically locally AdS space-times from first principles.

The space-time has a holographic interpretation when the cosmological constant is

negative. In that context, the relaxation to AdS4 Schwarzschild describes the approach

to equilibrium in the dual QFT. One of the basic observables is the holographic energy-

momentum tensor Tab. It encodes the ADM conserved charges from the bulk perspective

and it computes the expectation value of the energy and momentum in the system from

the dual QFT perspective. Near thermal equilibrium, Tab takes the form of dissipative

hydrodynamics. It turns out that the effective shear viscosity is not universal and for low
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multi-poles the KSS bound is violated. The modes, however, are out-going rather than in-

coming at the horizon, they do not satisfy Dirichlet boundary conditions at the conformal

boundary and they do not have a Kruskal extension across the future horizon. In that case,

dissipation is due to the coupling to external sources. Thus, the physics of the system is

very different from those studied in the literature (it is well known that the KSS bound

can be violated by perturbations that become singular at the horizon, but the nature of

the singularity is different here).

It would be interesting to understand better the gauge/gravity duality of these solu-

tions, focusing on the meaning of the unusual boundary condition imposed by the alge-

braically special modes. It would also be interesting to understand the meaning of the

Bondi mass from the perspective of the dual QFT as well as the boundary manifestation

of the Penrose inequality and the hoop conjecture. Finally, it would be interesting to in-

vestigate whether one can produce a smooth metric by joining the Robinson-Trautman

solution to matter-filled interior. This could lead to the exciting possibility of describing

holographically compact sources. We hope to return to these problems elsewhere.

Note added: while this paper was in final states we received [78] which contains related

material. In particular, the authors analyze the time-reversed Robinson-Trautman solution

and present a thorough analysis of hydrodynamics. Their results for the energy-momentum

tensor of Robinson-Trautman and the boundary Cotton tensor (after taken into account

the time reversal) are identical to ours.
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A Derivation of Robinson-Trautman equation

The Robinson-Trautman metric (1.1) with front factor F given by (1.2) involves a param-

eter m, which, in general, can be taken to depend upon u. Then, the Robinson-Trautman

equation assumes the following general form, irrespective of the cosmological constant Λ,

which can be positive, negative or zero,

3m(u)∂uΦ + ∆∆Φ + 2∂um(u) = 0 . (A.1)
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The derivation is done by successive integration of Einstein equations Rµν = Λgµν
after computing the components of the Ricci curvature tensor,

Ruz =
1

2
∂z (∂rF − ∂uΦ) , (A.2)

Ruz̄ =
1

2
∂z̄ (∂rF − ∂uΦ) , (A.3)

Rzz̄ = 2reΦ(∂uΦ)− ∂z∂z̄Φ− eΦ∂r(rF ) , (A.4)

Rur =
1

2
∂2
rF +

1

r
(∂rF − ∂uΦ) , (A.5)

Ruu = −∂2
uΦ− 1

2
(∂uΦ)2 +

1

2
F

(
∂2
rF +

2

r
∂rF

)
−1

2
(∂rF )(∂uΦ) +

1

r
∂uF +

1

r2
∆F , (A.6)

whereas all other components vanish identically.

First, we integrate the (uz) and (uz̄) components of Einstein equations and obtain

that ∂rF − ∂uΦ is independent of z and z̄. Thus, we have

∂rF − ∂uΦ = λ(r, u) , (A.7)

where λ(r, u) will be determined shortly. Next, we integrate the (zz̄) component of Einstein

equations and use the previous result to determine F as follows,

F = r(∂uΦ)−∆Φ− rλ(r, u)− Λr2 . (A.8)

Taking the above into account, the (ur) component of Einstein equations yields a differen-

tial equation for λ(r, u),

∂2
r (rλ(r, u)) =

2

r
λ(r, u) , (A.9)

whose general solution is

λ(r, u) = α(u)r +
β(u)

r2
. (A.10)

Finally, using the (uu) component of Einstein equations, we arrive after some manipulation

to the following equation,[
∂uα(u) + (∂uΦ)

(
Λ +

3

2
α(u)

)]
r +

[
∂uβ(u) + ∆∆Φ +

3

2
β(u)(∂uΦ)

] 1

r2
= 0 , (A.11)

which is valid for all r. Thus, the coefficients of the r and 1/r2 should vanish separately

and one obtains, respectively, the system of equations

∂uα(u) + (∂uΦ)

(
Λ +

3

2
α(u)

)
= 0 , (A.12)

∂uβ(u) + ∆∆Φ +
3

2
β(u)(∂uΦ) = 0 . (A.13)

Since Φ depends upon z and z̄, apart from u, the first equation implies automatically that

α(u) = −2

3
Λ , (A.14)
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whereas the second equation, setting

β(u) = 2m(u) , (A.15)

implies the Robinson-Trautman equation (A.1) with u-dependent mass term m, in general.

Note, however, that the Robinson-Trautman line element, as we have it so far, is

form-invariant under the following class of coordinate transformations,

u′ = ρ(u) , r′ =
r

∂uρ(u)
, z′ = f(z) , z̄′ = f̄(z̄) (A.16)

provided that

eΦ′(z′,z̄′;u′) =
(∂uρ(u))2

| ∂f |2
eΦ(z,z̄;u) (A.17)

and

m′(u′) =
m(u)

(∂uρ(u))3
. (A.18)

Thus, by appropriate choice of ρ(u) one can fix m(u) to a constant and transform the RT

equation to the familiar form. This analysis also shows how Φ(z, z̄;u) should transform

under changes of z and z̄ coordinates.

B Large and small AdS4 black holes

Einstein equations in four space-time dimensions with cosmological constant Λ admit the

Schwarzschild metric as spherically symmetric static solution,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (B.1)

with profile function

f(r) = 1− 2m

r
− Λ

3
r2 (B.2)

that gives the appropriate asymptotic behavior, as r →∞, for all values of Λ.

Here, we mainly consider AdS4 Schwarzschild metric, having Λ < 0. The Schwarzschild

radius of AdS4 black holes is provided by the real root of f(r) = 0 occurring at

rh =
1√
−Λ

[(√
1− 9m2Λ + 3m

√
−Λ

)1/3
−
(√

1− 9m2Λ− 3m
√
−Λ

)1/3
]
. (B.3)

Thus, the black hole radius takes values 0 < rh < 2m depending on the size of Λ. When Λ

approaches zero, rh tends to 2m, whereas for Λ� 0, rh comes close to 0.

It is also useful to introduce the tortoise coordinate r?, which is defined by

dr? =
dr

f(r)
. (B.4)

When Λ = 0, r? ranges from −∞ to +∞ as r ranges from the black hole horizon located at

r = rh to infinity. But when Λ < 0, which is the case of interest here, r? ranges from −∞
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up to some finite value that can be set equal to zero by appropriate choice of integration

constant. For AdS4 black holes, in particular, we have explicitly

r? =
rh

4(rh − 3m)

(
rh log

(2r + rh)2 + a2

4(r − rh)2
+ 2a

rh − 6m

rh + 6m

[
arctan

2r + rh

a
− π

2

])
, (B.5)

setting for notational convenience

a =

√
− 3

Λ

(
1 +

6m

rh

)
. (B.6)

AdS black holes come in different sizes and their thermodynamic properties depend

crucially on the magnitude of rh relative to the AdS radius L =
√
−3/Λ, [40]. Large

black holes have rh > L and become the dominant configurations at high temperatures,

whereas small black holes have rh < L and they are always unstable decaying either to

pure thermal radiation or to black holes with larger mass. In general, we have the following

relation among the parameters of the AdS4 Schwarzschild background

m− rh =
1

2L2
rh

(
r2

h − L2
)
. (B.7)

Thus, large black holes have rh < m, whereas small black holes have rh > m.

Finally, we recall that very large black holes are naturally associated to the limit

rh →∞, in which case f(r) is simply replaced by

f(r) = −2m

r
− Λ

3
r2 , (B.8)

dropping the constant term. Then, the black holes become essentially flat and their horizon

is related to the other parameters by the simple expression

r3
h = −6m

Λ
. (B.9)

C Polar perturbations of spherical black holes

This is a particular class of metric perturbations of Schwarzschild solution (in the presence

of cosmological constant), which have the parity of Legendre polynomial Pl(cos θ), i.e.,

(−1)l. For simplicity, we only consider axisymmetric perturbations, which are parametrized

by four arbitrary radial functions and they assume the general form

δgµν =



f(r)H0(r) H1(r) 0 0

H1(r) H2(r)/f(r) 0 0

0 0 r2K(r) 0

0 0 0 r2K(r) sin2 θ


e−iωtPl(cos θ) . (C.1)
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They correspond to the so called sound modes in the dictionary of AdS/CFT correspon-

dence. As such, they should be contrasted to the axial perturbations of spherical black

holes, also called shear modes in the context of AdS/CFT, which form a complementary

set of perturbations with opposite parity, i.e., (−1)l+1, but their explicit form is not needed

for the purposes of the present work. We refer the reader to the original papers [24, 25],

the textbook [26], the review article [27] as well as the more recent papers [28–30] for

generalizations in the presence of cosmological constant.

We require l ≥ 2 to describe physical modes of gravitational radiation in the linearized

approximation (recall that there is no dipole radiation in general relativity). The study of

polar perturbations δRµν = Λδgµν about the Schwarzschild background yields

H0(r) = H2(r) . (C.2)

Tedious computation also shows that the (tr) (rθ) and (tθ) components of the perturbation

yield the following equations, respectively,

rK ′(r) +

(
1− rf ′(r)

2f(r)

)
K(r)−H0(r)− i l(l + 1)

2ωr
H1(r) = 0 , (C.3)

(f(r)H0(r))′ − f(r)K ′(r) + iωH1(r) = 0 , (C.4)

(f(r)H1(r))′ + iω (H0(r) +K(r)) = 0 . (C.5)

Together they form a coupled system of first order differential equations for the three

unknown functions H0(r), H1(r) and K(r). The other components of the perturbation

either yield second order equations or else δRµν vanishes identically. Note, however, that

there is an additional algebraic condition among the three radial functions(
2f(r)− rf ′(r)− l(l + 1)

)
H0(r) +

i

2ω

(
4ω2r − l(l + 1)f ′(r)

)
H1(r) =(

2f(r) + rf ′(r)− l(l + 1) + 2Λr2 +
r2

2f(r)

(
4ω2 + f ′

2
(r)
))

K(r) , (C.6)

which follows from consistency of the various second order equations with the first order

system above; it can also be viewed as integral of the first order system above.

Following Zerilli, [25], we define the following function,

Ψ+(r) =
r2

(l − 1)(l + 2)r + 6m

(
K(r)− if(r)

ωr
H1(r)

)
, (C.7)

which turns out to satisfy an effective Schrödinger equation with respect to the tortoise

coordinate r?, (
− d2

dr2
?

+ V+(r)

)
Ψ+(r) = ω2Ψ+(r) , (C.8)

where the potential is only determined implicitly in terms of r? via

V+(r) =
f(r)

[(l − 1)(l + 2)r + 6m]2

(
l(l + 1)(l − 1)2(l + 2)2 − 24m2Λ

+
6m

r
(l − 1)2(l + 2)2 +

36m2

r2
(l − 1)(l + 2) +

72m3

r3

)
. (C.9)
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The solutions determine the quasi-normal mode spectrum ω of the polar perturbations

under appropriate boundary conditions and lead to expressions for the three unknown

radial functions described above.

It turns out that the Zerilli potential admits the following representation

V+(r) = W 2(r) +
dW (r)

dr?
+ ω2

s (C.10)

in terms of the following (real) function

W (r) =
6mf(r)

r[(l − 1)(l + 2)r + 6m]
+ iωs , (C.11)

where

ωs = − i

12m
(l − 1)l(l + 1)(l + 2) . (C.12)

There is parallel story to be told about the parity odd (axial) perturbations, but we

skip details that are not relevant to the present work. In that case, the important thing is

that there is an effective Schrödindger problem for the perturbations with corresponding

potential, called Regge-Wheeler potential, [24], which is also written in terms of W as

V−(r) = W 2(r)− dW (r)

dr?
+ ω2

s . (C.13)

Thus, black hole perturbations in four space-time dimensions are neatly described by two

complementary Schrödinger problems, for all Λ,

H±Ψ± = EΨ± , (C.14)

where the Hamiltonian are given by

H± = − d2

dr2
?

+W 2 ± dW

dr?
. (C.15)

The energy E = ω2 − ω2
s is not bounded from below by zero (in fact, it is not even real, in

general) due to the particular boundary conditions imposed on the wave functions at the

black hole horizon.

Remarkably, the system (C.14) has the structure of supersymmetric quantum mechan-

ics (see, for instance, [31]). Introducing the first order operators (analogue of annihilation

and creation operators of a harmonic oscillator)

Q = − d

dr?
+W (r?) , Q† =

d

dr?
+W (r?) , (C.16)

we have a pair of Hamiltonians

H+ = Q†Q = − d2

dr2
?

+W 2 +
dW

dr?
, H− = QQ† = − d2

dr2
?

+W 2 − dW

dr?
(C.17)

corresponding to the two Schrödinger problems (C.14). They give rise to a supersymmetry

algebra,

{Q, Q†} = H , {Q, Q} = 0 = {Q†, Q†} , (C.18)
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in terms of supercharges

Q =

 0 0

Q 0

 , Q† =

 0 Q†

0 0

 (C.19)

and

H =

H+ 0

0 H−

 . (C.20)

Defining

Ψ =

(
Ψ+

Ψ−

)
, (C.21)

the two Schrödinger problems (C.14) take the form

HΨ = EΨ . (C.22)

The Hamiltonian is only formally Hermitian because of the physical boundary conditions

that give rise to the quasi-normal mode spectrum of the black hole.

The algebraically special modes, which are discussed in the text, are special case of

polar perturbations, satisfying the first order equation

QΨ(r?) =

(
− d

dr?
+W (r?)

)
Ψ(r?) = 0 . (C.23)

As such, they are supersymmetric zero energy states of H+ having no partner in the

complementary set of axial perturbations.

It is a mystery up to this day why the two complementary sets of perturbations of

four-dimensional black holes form supersymmetric partner potentials although the space-

time itself has no supersymmetry. This observation was first made by Chandrasekhar for

Λ = 0 [26] (but see also earlier references therein) and subsequently generalized to Λ 6= 0

(see, for instance, [30]).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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