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We investigate the calculation of approximate non-equilibrium quantum time correlation functions
(TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular
dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden
vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium
TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic
potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear
operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions,
both methods retain the connection to Matsubara dynamics that has previously been established for
equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Mat-
subara dynamics at short times reveals the orders in time to which the methods agree. Specifically,
for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD
agree with Matsubara dynamics up to O(t4) and O(t1), respectively; for the position-autocorrelation
function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara
dynamics up to O(t5) and O(t2), respectively. Numerical tests using model potentials for a wide
range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs
with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate
excited-state proton transfer in a system-bath model, and it is compared to numerically exact cal-
culations performed using a recently developed version of the Liouville space hierarchical equation
of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial
conditions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4967958]

I. INTRODUCTION

Quantum time correlation functions (TCFs) play an
important role in the description of chemical dynamics,
which has led to the development of numerous approximate
methods for their calculation.1–23 Two widely used methods
based on imaginary-time path integrals are centroid molecular
dynamics (CMD)24–28 and ring-polymer molecular dynamics
(RPMD).29–32 Although both methods have known artifacts,
such as the spurious-mode effect in RPMD33–35 and the cur-
vature problem35,36 in CMD, they have proven effective for a
vast range of chemical applications including the calculation
of thermal rate constants,30,37–55 diffusion coefficients,31,56–61

and vibrational spectra.33–36,62–65

With only a few exceptions,66–68 RPMD and CMD have
been applied for the characterization of processes with ther-
mal equilibrium initial conditions. The aim of this work is to
systematically investigate whether RPMD and CMD can also
be usefully employed in the context of non-equilibrium TCFs
and expectation values. It is found that nearly all important
properties of RPMD and CMD are preserved when calculat-
ing non-equilibrium TCFs, as are the relationships of the two

a)rwelsch@caltech.edu
b)tfm@caltech.edu

methods to Matsubara dynamics.69,70 Furthermore, the numer-
ical performance of the two methods for the calculation of
non-equilibrium quantum TCFs is tested for a range of model
systems.

The paper is organized as follows. Sec. II describes the
approaches to calculate non-equilibrium TCFs using RPMD
and CMD and also investigates the performance of the
approaches in important limiting cases analytically. Sec. III
investigates the numerical performance of the methods for
one-dimensional potentials and for non-equilibrium proton
transfer in a system-bath model, and conclusions are presented
in Sec. IV.

II. THEORY
A. RPMD and CMD for equilibrium TCFs

Both RPMD and CMD employ the machinery of classical
molecular dynamics to approximate the equilibrium Kubo-
transformed quantum TCF,

C̃AB(t) =
1
β

∫ β

0
dλ

× Tr
[
e−λĤ Âe−(β−λ)ĤeiĤt/~B̂e−iĤt/~

]
, (1)

0021-9606/2016/145(20)/204118/11/$30.00 145, 204118-1 Published by AIP Publishing.
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where

Ĥ =
p̂2

2m
+ V (q̂). (2)

For simplicity, equations are presented in one dimension and
are easily generalized.

In RPMD, C̃AB(t) is approximated using

C̃(RP)
AB (t) =

1

(2π~)N

∫
dq0

∫
dp0 e−βN HN (p0,q0)

× A(p0, q0)B(pt , qt), (3)

where βN =
β
N ,

HN (p, q) =
N∑

i=1

p2
i

2m
+ UN (q) (4)

is the ring-polymer Hamiltonian,

UN (q) =
N∑

i=1

[
m(qi − qi−1)2

2(βN~)2
+ V (qi)

]
, (5)

and q1 = qN . The classical dynamics associated with the
Hamiltonian in Eq. (4) determines the time evolution of the
ring-polymer coordinates (pt , qt), such that

ṗi =
−m

(βN~)2
(2qi − qi−1 − qi+1) −

∂V (qi)
∂qi

, (6)

q̇i =
pi

m
. (7)

In CMD, C̃AB(t) is approximated using

C̃(CMD)
AB (t) =

1
2π~

∫
dQ̄0

∫
dP̄0 e−β(P̄2

0/2m+W (Q̄0))

× A(Q̄0, P̄0)B(Q̄t , P̄t), (8)

where

W (Q̄) = −
1
β

ln



(
m

2π βN~
2

) (N−1)/2

×

∫
dq e−βN UN (q)δ(q̄(q) − Q̄)

}
(9)

is the centroid potential of mean force (PMF), and q̄(q) is
the ring-polymer position centroid. The centroid position and
momenta evolve according to classical dynamics subject to the
centroid PMF as

˙̄P = −

∫
dq e−βN UN (q) ∂UN (q)

∂Q̄
δ(q̄(q) − Q̄)∫

dq e−βN UN (q)δ(q̄(q) − Q̄)
, (10)

˙̄Q =
P̄
m

. (11)

Both RPMD and CMD preserve the quantum Boltzmann
distribution and are exact for the description of C̃AB(t) in
several important limits, including harmonic potentials, high
temperature, and at t = 0 for autocorrelation functions of linear
operators; RPMD is likewise exact at t = 0 for autocorrela-
tion functions of non-linear operators. Several efforts to derive
RPMD and CMD have been undertaken.69–72 In particular, it

has been found that both RPMD and CMD are related to Mat-
subara dynamics,69,70 which approximates C̃AB(t) by a mix-
ture of quantum statistics and classical dynamics. Matsubara
dynamics is derived from first principles and has been shown
to reproduce TCFs more accurately than RPMD, CMD, or the
linearized semiclassical-initial value representation approach,
although its slow numerical convergence makes it less broadly
applicable than these other approximate methods.69,70

B. Application of RPMD and CMD to non-equilibrium
time-correlation functions

Here, we apply RPMD and CMD to non-equilibrium
TCFs of the form

C̃AB(t) =
1
β

∫ β

0
dλ

× Tr
[
e−λĤ

(0)
Âe−(β−λ)Ĥ(0)

eiĤ(1)t/~B̂e−iĤ(1)t/~
]

. (12)

We will consider two different cases for which Ĥ (0) , Ĥ (1),
associated with either a sudden vertical excitation or an ini-
tial momentum impulse. Although these two cases will be
described separately, it is straightforward to apply them in
combination.

1. Non-equilibrium initial conditions associated
with a vertical excitation

We first consider the case of a sudden vertical excitation,
for which the Hamiltonians differ only in the potential energy,

Ĥ (0) =
p̂2

2m
+ V (0)(q̂), (13)

Ĥ (1) =
p̂2

2m
+ V (1)(q̂), (14)

and we define ∆V (q̂) = V (1)(q̂) − V (0)(q̂). This case is di-
rectly related to the Condon approximation, as is shown in
Appendix A.

The corresponding ring-polymer Hamiltonians are

H (j)
N (p, q) =

N∑
i=1

p2
i

2m
+ U (j)

N (q), (15)

where j = 0,1,

U (j)
N (q) =

N∑
i=1

[
m(qi − qi−1)2

2(βN~)2
+ V (j)(qi)

]
, (16)

and the RPMD approximation is

C̃(RP)
AB (t) =

(
1

2π~

)N ∫
dq

∫
dp

× e−βN H(0)
N (p,q)A(p, q)B(pt , qt), (17)

where the time-evolution of pt and qt is governed by H (1)
N .

The CMD approximation for this case is

C̃(CMD)
AB (t) =

1
2π~

∫
dQ̄0

∫
dP̄0 e−β(P̄2

0/2m+W (0)(Q̄0))

× A(Q̄0, P̄0)B(Q̄t , P̄t), (18)
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with the classical dynamics of the centroid coordinates gov-
erned by the centroid mean force as

F1(Q̄) = −

∫
dq e−βN U(1)

N (q) ∂U(1)
N (q)

∂Q̄
δ(q̄(q) − Q̄)∫

dq e−βN U(1)
N (q)δ(q̄(q) − Q̄)

, (19)

where U (1)
N (q) is the ring-polymer potential associated with

V (1)(q), and W (0)(Q̄0) is the PMF from Eq. (9) associated
with V (0)(q). This non-equilibrium implementation of CMD
is similar to the protocol given in Ref. 67 and corresponds to
instantaneous thermalization of the non-centroid ring-polymer
modes on the potential energy surface V (1)(q).

The RPMD and CMD approximations for non-
equilibrium TCFs given in Eqs. (17) and (18) preserve many
of the formal properties as for the calculation of equilibrium
TCFs. Both methods correctly reduce to the classical limit and
capture the high-temperature regime exactly. Furthermore, in
Appendix B, we use linearization of the difference between the
forward and backward Feynman paths in real time to show that
RPMD and CMD exactly reproduce non-equilibrium TCFs of
linear operators in harmonic potentials, regardless of the initial
potential V (0)(q).

Also unchanged in going from equilibrium to non-
equilibrium initial conditions are the formal relationships of
RPMD and CMD to Matsubara dynamics. To obtain RPMD
from Matsubara dynamics, the Matsubara Liouvillian LM is
written in terms of complex phase space as69,70

LM = L(RP)
M + iL(I)

M , (20)

where the RPMD Liouvillians L(RP)
M and L(I)

M are given in

Ref. 70 and both L(RP)
M and L(I)

M conserve the ring-polymer
Hamiltonian. The RPMD equations of motion are then
obtained by discarding the imaginary component L(I)

M and ana-

lytically continuingL(RP)
M into real space.73 This procedure can

be done independently of the initial conditions, as the Matsub-
ara Liouvillian LM only involves the Hamiltonian governing
the time-evolution of the system (i.e., Ĥ (1) for the present
case). To obtain CMD from Matsubara dynamics, one invokes
a centroid mean-field approximation of the exact force on the
centroid69,70

−
∂ŨM (Q̃)

∂q̄(Q̃)
= F0(q̄(Q̃)) + Ffluct.(Q̃), (21)

where the Matsubara potential ŨM (Q̃) is defined in
Appendix C, q̄(Q̃) is the centroid coordinate, and the fluc-
tuating part of the force, Ffluct.(Q̃), is neglected.70 Again, this
procedure is independent of the initial distribution. Notably,
RPMD leaves the phase θM appearing in Matsubara dynam-
ics invariant during the time evolution for both equilibrium
and non-equilibrium initial conditions, as the action of the
ring-polymer Liouvillian L(RP) on the Boltzmann distribution,

L(RP)e−βN H(0)
N (pt ,qt ) = e−βN H(0)

N (pt ,qt )

×

N∑
j=1

pt,j

m

∂∆V (qt)
∂qt,j

, (22)

does not involve the inter-bead harmonic spring-term, which is
equivalent to preservation of the phase θM .70 Similarly, CMD

leaves the phase θM invariant during the time evolution for
both equilibrium and non-equilibrium initial conditions, as the
action of the CMD Liouvillian on the Boltzmann distribution,

L(CMD)e−β(P̄2
t /2m+W (0)(Q̄t )) = e−β(P̄2

t /2m+W (0)(Q̄t ))

−
P̄t

m

(
∂W (0)(Q̄t)

∂Q̄t
+ F1(Q̄t)

)
, (23)

does not involve the inter-bead harmonic spring-term.70 For
equilibrium initial conditions, preservation of the Matsub-
ara phase θM in RPMD and CMD ensures that the quantum
Boltzmann distribution is preserved in the dynamics; for non-
equilibrium initial conditions, it ensures that for systems with
dissipation, the system correctly relaxes to the equilibrium
thermal distribution associated with Ĥ (1).

Finally, for non-equilibrium initial conditions associated
with a sudden vertical excitation, we calculate the orders in
time to which RPMD and CMD agree with Matsubara dynam-
ics, which serves as a proxy for the exact quantum dynamics.
It can be shown that for the case of equilibrium initial condi-
tions, the orders to which RPMD and partially adiabatic CMD
are consistent with Matsubara dynamics are the same orders
to which both methods agree with the exact results.71,74 We
thus expect that Matsubara dynamics is a useful proxy for the
exact quantum results in the current analysis of the short-time
accuracy of RPMD and CMD.

In comparing to Matsubara dynamics, we first consider
the case of RPMD. We expand the Matsubara dynamics time-
evolution operator as

e−LM t =
∑

j

(−(L(RP)
M + iL(I)

M )t)
j

j!
(24)

and obtain the highest power j for which (L(RP)
M )

j
B1(Q̃)B2(P̃)

agrees with (LM )jB1(Q̃)B2(P̃). To this end, we can exploit the
property that L(I)

M B1(Q̃)B2(P̃) = 0, as long as the function L(I)
M

acts on can be written as a product of a pure, permutationally
invariant function of Q̃ (such as the centroid, B1(Q̃) = q̄(Q̃))
times a similarly invariant function of P̃.69 Thus, we need to

identify the lowest order j for which (L(RP)
M )

j
generates a mixed

function in Q̃ and P̃. Specifically, for the calculation of the non-
equilibrium position-autocorrelation function (B1(Q̃)B2(P̃)
= q̄(Q̃)), we find

L(RP)
M q̄(Q̃) =

P̄
m

, (25)

L(RP)2

M q̄(Q̃) = −
1
m
∂ŨM (Q̃)

∂q̄(Q̃)
, (26)

L(RP)3

M q̄(Q̃) = −
1

m2

(M−1)/2∑
n=−(M−1)/2

P̃n
∂2ŨM (Q̃)

∂q̄(Q̃)∂Q̃n

, (27)

where M is the number of Matsubara modes defined in
Appendix C. To obtain the order to which the RPMD
non-equilibrium position-autocorrelation function agrees with
Matsubara dynamics, we can use integration by parts. We find

that acting with L(RP)
M on q̄(Q̃)e−βN H(0)

N (p,q) generates a mixed
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TABLE I. Orders in time to which RPMD and CMD reproduce Matsubara
dynamics for non-equilibrium TCFs C̃AB(t) for a sudden vertical excita-
tion (VE) or an initial momentum impulse (MI). For comparison, results for
equilibrium (Eq) TCFs are given.

CMD RPMD

Â B̂ VE MI Eq VE MI Eq

q̂ q̂ t1 t2 t3 t4 t5 t6

p̂ p̂ t0 t1 t1 t3 t4 t4

A(̂q) B(̂q) . . . . . . . . . t2 t2 t2

function of Q and P (see Eq. (22)). Therefore, for the non-
equilibrium position-autocorrelation function, RPMD agrees
with Matsubara dynamics up to t4, as compared with t6 for
equilibrium initial conditions, which can be derived using the
same scheme outlined above. The same technique can be used
to generate the t → 0 properties of other TCFs of Hermitian
operators that are pure functions of q̂ or p̂, as summarized in
Table I.

To characterize the short-time behavior of CMD for the
calculation of non-equilibrium TCFs, we apply the CMD Liou-
villian to B1(Q̃)B2(P̃) = q̄(Q̃) once, which gives the Mat-
subara result to order t1. The results of using integration by
parts and acting on q̄(Q̃)e−β(P̄2

0/2m+W (0)(Q̄0)) disagree with the
Matsubara dynamics result. Hence, CMD reproduces the non-
equilibrium position-autocorrelation function obtained from
Matsubara dynamics up to t1,75 as compared with t3 for equi-
librium initial conditions, which can be derived using the same
scheme outlined above. The short-time behavior of other TCFs
is summarized in Table I.

Finally, we emphasize that the formal short-time accu-
racy of RPMD and CMD is not necessarily indicative of the
long-time accuracy of the methods for the calculation of a
given TCF;71 for this reason, we supplement the formal anal-
ysis presented here with the numerical examples presented in
Sec. III

2. Non-equilibrium initial conditions associated
with a momentum impulse

We now consider the case for which the system is sub-
jected to an initial momentum impulse, such that the Hamil-
tonians Ĥ (0) and Ĥ (1) in Eq. (12) differ only in terms of their
kinetic energy,

Ĥ (0) =
(p̂ − ∆p)2

2m
+ V (q̂), (28)

Ĥ (1) =
p̂2

2m
+ V (q̂). (29)

Formally, this is a gauge transformation, such that the eigen-
values of Ĥ (0) are unchanged with respect to the eigenvalues
of Ĥ (1), and the eigenfunctions of the two Hamiltonians are
related by a factor of exp(i∆pq/~). Thus, the system described
by Ĥ (0) corresponds to the system described by Ĥ (1) with an
additional ∆p momentum impulse (e.g., as a result of bond-
cleavage). It should be noted that more general changes in the
momentum function can destroy the simple ring-polymer form
of the Hamiltonian Ĥ (1).76,77

The ring-polymer Hamiltonian corresponding to Eqs. (28)
and (29) can be derived using the usual Trotter splitting
to give

H (0)
N (p, q) =

N∑
i=1

(pi − ∆p)2

2m

+

N∑
i=1

[
m(qi − qi−1)2

2(βN~)2
+ V (qi)

]
, (30)

H (1)
N (p, q) =

N∑
i=1

p2
i

2m

+

N∑
i=1

[
m(qi − qi−1)2

2(βN~)2
+ V (qi)

]
. (31)

Note that shifting the momentum operator in Ĥ (0) leads to a cor-
responding shift in the momentum of the centroid in H (0)

N (p, q).
The RPMD approximation for this case is given in Eq. (17),
and the equations of motion are given in Eqs. (6) and (7).

The CMD approximation for this case is

C̃(CMD)
AB (t) =

1
2π~

∫
dQ̄0

∫
dP̄0 e−β[(P̄0−∆p)2

/2m+W (Q̄0)]

× A(Q̄0, P̄0)B(Q̄t , P̄t). (32)

The centroid position and momenta evolve according to the
equations of motion given in Eqs. (10) and (11).

Following the same steps outlined for the case of sudden
vertical excitation, one can show that RPMD and CMD cor-
rectly reduce to the classical limit, reproduce non-equilibrium
TCFs of linear operators in harmonic potentials, and retain
their formal relation to Matsubara dynamics. The t → 0 behav-
ior of RPMD and CMD compared to Matsubara dynamics for
an initial momentum impulse is given in Table I.

III. RESULTS AND DISCUSSION
A. 1D test systems

In this section, we provide numerical tests of RPMD and
CMD for the calculation of non-equilibrium TCFs in one-
dimensional potentials. Beginning with the case of sudden
vertical excitation, we consider mildly anharmonic potentials
of the form

V (0)(q) =
1
2

(q − ∆q)2 +
1

10
(q − ∆q)3 +

1
100

(q − ∆q)4, (33)

V (1)(q) =
1
2

q2 +
1

10
q3 +

1
100

q4, (34)

and strongly anharmonic quartic oscillators of the form

V (0)(q) =
1
4

(q − ∆q)4, (35)

V (1)(q) =
1
4

q4. (36)

Note that reduced units (~ = 1, m = 1, and kB = 1) are used
throughout this section. Non-equilibrium initial conditions are
simulated by shifting the initial potential V (0) by ∆q with
respect to the final potential V (1). The inverse temperature β
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is chosen as either 1 or 8, and converged path-integral results
are obtained with n = 4 and n = 48 beads, respectively. For
RPMD, a modified velocity-Verlet scheme31 is used to inte-
grate the equations of motion using a time step of 0.05 a.u., and
5 × 105 trajectories are used to converge each set of results.
Initial distributions are obtained by running a long trajec-
tory and periodically resampling the ring-polymer momenta
from the Maxwell-Boltzmann distribution. Classical results
are obtained by running 5 × 105 trajectories, and CMD results
are obtained by running 1 × 106 trajectories.

Fig. 1 presents the non-equilibrium position-autocorrelation
function C̃qq(t) for the mildly anharmonic potential at low tem-
peratures and a shift of ∆q = 0.3 a.u. For comparison, the
equilibrium (∆q = 0.0 a.u.) position-autocorrelation functions
are also provided, which have been previously studied.27,29,78

While the classical mechanical results for the non-equilibrium
TCFs do not match the exact quantum mechanical results at
t = 0 and do not capture the correct oscillation frequency, both
RPMD and CMD agree with the exact results. Overall, the
accuracy for calculating the non-equilibrium TCFs is similar
to the equilibrium case.

For the case of the quartic oscillator (Fig. 2), RPMD
and CMD again perform similarly for equilibrium and non-
equilibrium TCFs. As RPMD and CMD neglect the real-time
coherences needed to fully treat the dynamics in this poten-
tial, they both diverge from the exact results after several
oscillations. CMD captures more of the long-time behav-
ior, which has been studied previously for equilibrium initial
conditions.79

To quantify the results over a larger range of non-
equilibrium initial conditions, we introduce a measure for the
error of a given approximate method with respect to the exact
quantum mechanical results,

EAB (β∆E) =

∫ T

0
dt

(
C̃(exact)

AB (t) − C̃(X)
AB (t)

)2

∫ T

0
dt

(
C̃(exact)

AB (t)
)2

, (37)

FIG. 1. Non-equilibrium (top) and equilibrium (bottom) position-autocorre-
lation function at low temperature (β = 8) for the mildly anharmonic potential.
Quantum results are shown in solid black, classical results as green long-
dashed lines, RPMD results as blue short-dashed lines, and CMD results
as orange dotted lines. Non-equilibrium initial conditions are introduced by
sudden vertical excitation using ∆q = 0.3 a.u.

FIG. 2. Same as Fig. 1, but for the strongly anharmonic quartic oscillator
potential.

where X indicates the approximate method. The term β∆E is
a measure of how far the system is initially out of equilibrium;
it is defined by the energy difference

∆E = 〈Ĥ (1)〉Ĥ(0) − 〈Ĥ (1)〉Ĥ(1) , (38)

where 〈. . .〉Ĥ(j) indicates equilibrium thermal averaging with
the indicated Hamiltonian Ĥ (j). This energy difference is scaled
by β to provide a unitless quantity. Note that β∆E = 0
corresponds to the results for equilibrium initial conditions.

In Fig. 3, the error of the approximate methods is shown
for the mildly anharmonic potential and non-equilibrium initial
conditions associated with vertical excitation (Fig. 3(a)) or a
momentum impulse (Fig. 3(b)). Up to ten times the thermal
energy of the system is added via the non-equilibrium initial
conditions. First, the case of a sudden vertical excitation is
discussed (Fig. 3(a)). In the high temperature case (β = 1), all
methods yield very small errors. For all non-equilibrium cases
the error is lower than that for the equilibrium case, as the error
decreases as a function of β∆E. In the low temperature regime,
the results for the various approximate methods coalesce at
high β∆E, but RPMD and CMD perform consistently better
than the classical results over the range of non-equilibrium
initial conditions. For all non-equilibrium initial conditions
considered, the approximation error for RPMD and CMD is
similar or lower than for equilibrium initial conditions. The
same is true for an initial momentum impulse (see Fig. 3(b)).

Finally, an example of a non-linear TCF is considered.
Fig. 4 displays the q2 autocorrelation function for the mildly
anharmonic potential at low temperature. Non-equilibrium ini-
tial conditions are introduced by a sudden vertical excitation
and ∆q = 0.3 a.u. Again, RPMD performs similarly for the
non-equilibrium and equilibrium cases, and it is correct in the
short-time limit. For this case, CMD performs more similarly
to classical dynamics, although various methods to alleviate
this problem have been proposed.25,80

B. Excited-state proton transfer

To further test the applicability of RPMD for non-
equilibrium reactions in the condensed phase, the dynamics of
a double-well system coupled to a dissipative bath is studied.
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FIG. 3. Approximation error for position-autocorrelation functions (see.
Eq. (37)) for the mildly anharmonic potential as a function of the energy
added to the system due to the non-equilibrium initial conditions (see Eq.
(38)). (a) Initial conditions introduced by sudden vertical excitation (∆q , 0).
(b) Initial conditions introduced by an initial momentum impulse.

The potentials V (0) and V (1) take the following form:

V (j)(q, x) = V (j)
s (q) + Vb(q, x), (39)

where

V (0)
s (q) =




− 1
2 mω2

bq2 +
m2ω4

b

16V‡0
q4 if q < 0

∞ otherwise
, (40)

V (1)
s (q) = −

1
2

mω2
bq2 +

m2ω4
b

16V‡1
q4, (41)

Vb(q, x) =
N∑

j=1

1
2
ω2

j
*
,
xj −

cjq

mω2
j

+
-

2

, (42)

m = 1836 a.u., the barrier frequency is ωb = 500 cm−1, and
the barrier height in the excited potential V‡1 is chosen such
that the zero-point corrected barrier height remains approxi-
mately 7 kBT. As the locations of the potential minima depend

on the barrier height, xmin = ±

√
4V‡j /mω

2
b, different values

FIG. 4. Same as Fig. 1, but for the q2 autocorrelation function.

FIG. 5. System potentials V (0)
s (q) and V (1)

s (q) employed in the system-bath
model for V‡0 = 3000 cm−1 and V‡1 = 1500 cm−1 (see Eqs. (40) and (41)). For
better visibility the potentials are shifted vertically, and the arrow illustrates
sudden vertical excitation from the ground-state reactant.

of V‡0 and V‡1 create non-equilibrium initial conditions during
the sudden vertical excitations from V (0) to V (1). As shown
in Fig. 5, the potential energy surfaces differ both in shape
and in the position of the reactant minima; see Table II for the
employed parameters. For comparison, calculations with equi-
librium initial conditions (i.e., V‡0 = V‡1 ) are also performed.
The system potentials are coupled to a dissipative bath with a
Debye spectral density,

JD(ω) =
η γ ω

ω2 + γ2
, (43)

a low system-bath coupling of η = 0.2mωb, and a bath cutoff
frequency of γ = 500 cm−1 taken from the DW1 model.81

This system-bath coupling value is chosen to be low enough
to exhibit substantial non-equilibrium effects, but high enough
to limit the number of trajectory recrossings.81 The bath is
discretized as82

ωj = γ tan

(
π

2
j

N + 1

)
, (44)

cj = ωj

√
mηγ
N + 1

. (45)

TABLE II. Parameters employed in the excited-state proton transfer simula-
tions. Energies reported in units of cm−1.

T (K) β∆E V‡0 V‡1

230 0 1500 1500
230 6 2600 1500
230 9 3000 1500
77 0 700 700
77 6 1150 700
77 9 1300 700
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FIG. 6. Non-equilibrium side expectation value for a double well system
coupled to harmonic bath at T = 230 K. The system is initialized in one of
the two wells and reaction to the other well is monitored. Quantum results are
shown in solid black, classical results as green short-dashed lines, and RPMD
results as blue long-dashed lines. The numbers indicate the transfer time τ in
ps. (a) Equilibrium initial conditions, (b) non-equilibrium initial conditions
adding 6 kBT of energy to the system, (c) non-equilibrium initial conditions
adding 9 kBT of energy to the system.

The non-equilibrium time-dependent side expectation
value is calculated as

〈h〉 (t) =
1
Z

Tr
[
e−βĤ(0)

e−iĤ(1)t/~h(̂q)eiĤ(1)t/~
]

, (46)

where h is a Heaviside function,

h(q) =

{
1 if q < 0
0 else

(47)

The transfer time τ for the proton transfer reaction is obtained
from a linear fit of the side expectation value between
t1 = 200 fs and t2 = 600 fs. Calculations are performed at
two different temperatures (77 K and 230 K), such that the

TABLE III. Transfer times τ (in ps) and corresponding standard errors at
230 K obtained from linear fits to the non-equilibrium side expectation value
to f (t) = A

(
1 − t

τ

)
between 200 fs and 600 fs. The number in parenthe-

sis indicates the error in the last reported digit. Standard errors are obtained
from fitting to non-equilibrium side expectation values obtained from ten
independent subsets of trajectories.

β∆E Classical RPMD HEOM

0 8.2(1) × 102 2.89(4) × 102 2.82 × 102

6 2.33(1) × 102 1.31(3) × 102 1.25 × 102

9 2.35(2) × 102 1.7(1) × 102 1.39 × 102

FIG. 7. Same as Fig. 6, but for T = 77 K.

system is either above or below the cross-over temperature of
Tc = 115 K. N = 50 bath modes are used to converge the bath
discretization. The RPMD trajectories are propagated using a
step size of ∆t = 0.2 fs and either n = 16 (T = 230 K) or n
= 64 (T = 77 K) ring-polymer beads. For each reported result,
106 RPMD trajectories are performed, with initial conditions
sampled via Monte Carlo.

For comparison, numerically exact quantum mechan-
ical results are obtained using a newly developed ver-
sion of the Liouville space hierarchical equation of motion
(HEOM) method.83–85 The HEOM approach is both non-
perturbative and capable of describing non-Markovian
effects of the bath.86–88 The present simulations employ
a tolerance filter for the auxiliary density operators89

and the [R− 1/R] Padé decomposition scheme.90 It was
found that the calculations converge at R = 4 for the
T = 230 K case and R = 5 for the T = 77 K case.

Fig. 6 presents the time-dependent non-equilibrium
side expectation value for the proton-transfer reaction at
T = 230 K > Tc; the corresponding reaction transfer times
are given in Table III. For the equilibrium case (Fig. 6(a),
β∆E = 0), good agreement between the RPMD and the exact

TABLE IV. Same as Table III but for 77 K.

β∆E Classical RPMD HEOM

0 2.5(1) × 104 3.23(7) × 101 8.3 × 100

6 2.19(6) × 103 3.3(1) × 101 9.9 × 100

9 1.50(4) × 103 4.2(3) × 101 1.1 × 101
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HEOM results is found. The transfer time obtained from clas-
sical dynamics differs by a factor of three. These findings are
consistent with previous studies of thermal rate constants of
double-well systems using RPMD.30 Reasonable agreement
between RPMD and exact results is also found for two cases
with non-equilibrium initial conditions (Figs. 6(b) and 6(c),
β∆E > 0). The amount of initial population transfer, as well
as the subsequent transfer times, compare well for both cases.
The classical transfer times differ from the exact results by
approximately a factor of two, while the RPMD results agree
to within 20%.

Fig. 7 and Table IV present the result for the deep tun-
neling regime, T = 77 K < Tc. For the equilibrium initial
conditions (Fig. 7(a)), the classical transfer time deviates by
over three orders of magnitude from the exact results. How-
ever, the RPMD transfer time remains within a factor of four of
the exact results. The degree to which RPMD overestimates the
transfer time in this equilibrium deep-tunneling case is consis-
tent with earlier analysis.44 For the two non-equilibrium cases
shown in Figs. 7(b) and 7(c), the RPMD results again com-
pare well with the exact results. The initial population transfer
is accurately reproduced, and the RPMD transfer times agree
with the exact results to within a factor of four. As seen for the
equilibrium case, the classical transfer times deviate from the
exact results by over two orders of magnitude.

IV. CONCLUDING REMARKS

In this paper, we demonstrate that both RPMD and
CMD can be used to approximate non-equilibrium TCFs and
non-equilibrium time-dependent expectation values associ-
ated with a sudden vertical excitation or an initial momentum
impulse. Both methods are exact at high-temperatures and
in the classical limit. For the calculation of non-equilibrium
TCFs of linear operators, both methods are exact for t = 0 and
for harmonic potentials; RPMD is also exact for the calcula-
tion of TCFs of general non-linear operators for t = 0. For
both methods, the connection to Matsubara dynamics found
for equilibrium initial conditions69,70 is preserved for non-
equilibrium initial conditions. Furthermore, the orders in time
to which RPMD and CMD agree with Matsubara dynamics
are determined. Specifically, for the position-autocorrelation
function associated with sudden vertical excitation, RPMD and
CMD agree with Matsubara dynamics up to O(t4) and O(t1),
respectively; for the position-autocorrelation function asso-
ciated with an initial momentum impulse, RPMD and CMD
agree with Matsubara dynamics up to O(t5) and O(t2), respec-
tively. Similarly, the short-time comparison of RPMD and
CMD to Matsubara dynamics is derived for more general TCFs
as presented in Table I. Extensive numerical tests employing
one-dimensional models show that RPMD and CMD give sim-
ilar accuracy for calculating equilibrium and non-equilibrium
correlation functions. Furthermore, the applicability of RPMD
to non-equilibrium excited-state proton transfer processes is
assessed using a system-bath model. Both above and below
the cross-over temperature for deep tunneling of the trans-
ferring proton, good agreement is found between RPMD and
numerically exact quantum dynamical results, even for cases in
which the corresponding classical results are in error by over

two orders of magnitude. The accuracy of RPMD for non-
equilibrium initial conditions is found to be similar to that
for equilibrium initial conditions. The results provided here
indicate that the path-integral based methods allow for the
approximate quantum dynamical study of photo-excited reac-
tions in complex systems.91 In future work, it will be worth
determining whether non-adiabatic extensions of RPMD92–96

are similarly successful for the calculation of non-equilibrium
TCFs.
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APPENDIX A: CONNECTION TO CONDON
APPROXIMATION

Let |Ψj〉 be the jth vibrational eigenstate of the Hamil-
tonian of the ground electronic state Ĥ (0) = T̂ + V̂ (0).
The state-resolved expectation value of an arbitrary operator
Â is

〈A〉(j) =
〈
Ψj

���Â
���Ψj

〉
, (A1)

and the equilibrium thermal expectation value of operator Â is
given by

〈A〉 =
1
Z

∑
j

e−βEj
〈
Ψj

���Â
���Ψj

〉
=

1
Z

∑
j

e−βEj 〈A〉(j)

=
1
Z

Tr
(
e−βĤ(0)

Â
)

. (A2)

Invoking the Condon approximation (i.e., vertical excitation),
the time-dependent expectation value of operator Â following
the excitation of the initial thermal distribution to V (1) is

〈A〉 (t) =
1
Z

∑
j

e−βEj

〈
Ψj

����e
iĤ(1)t/~ Â e−iĤ(1)t/~����Ψj

〉
=

1
Z

Tr
(
e−βĤ(0)

eiĤ(1)t/~Âe−iĤ(1)t/~
)

, (A3)

with Ĥ (1) being the Hamiltonian of the excited electronic state,
Ĥ (1) = T̂ + V̂ (1). The relation given in Eq. (A3) corresponds
to the case of the non-equilibrium correlation function C̃1A(t)
from Eqs. (12)–(14).
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Similarly, we can take

C̃AB(0) =
1
βZ

∫ β

0
dλ

∑
i,j

〈
Ψj

����e
−λĤ(0)

Âe−(β−λ)Ĥ(0) ����Ψi

〉
×

〈
Ψi

���B̂
���Ψj

〉
=

1
βZ

∫ β

0
dλ Tr

(
e−λĤ

(0)
Âe−(β−λ)Ĥ(0)

B̂
)

(A4)

and invoke the Condon approximation to give the non-
equilibrium TCF

C̃AB(t) =
1
βZ

∫ β

0
dλ

∑
i,j

〈
Ψj

����e
−λĤ(0)

Âe−(β−λ)Ĥ(0) ����Ψi

〉
×

〈
e−iĤ(1)t/~

Ψi
���B̂

��� e−iĤ(1)t/~
Ψj

〉
=

1
βZ

∫ β

0
dλTr

(
e−λĤ

(0)
Âe−(β−λ)Ĥ(0)

eiĤ(1)t/~B̂e−iĤ(1)t/~
)

.

(A5)

The relation given in Eq. (A5) corresponds to the case
of the non-equilibrium Kubo-transformed correlation func-
tion C̃AB(t) from Eqs. (12)–(14). There is currently no
general transformation between Kubo-transformed non-
equilibrium TCFs and standard non-equilibrium TCFs.80

However, this poses no problem for the calculation of
time-dependent non-equilibrium expectation values, as is
often of interest for the study of non-equilibrium chemical
processes.

APPENDIX B: HARMONIC LIMIT

First the case of a vertical excitation is considered with
H (0) = T + V (0) and H (1) = T + V (1), such that V (0) is
arbitrary and V (1) = 1

2 k2q2. The Kubo-transformed position-
autocorrelation function can be written as

C̃qq(t) =
1
Z

lim
N→∞

∫
dq

∫
d∆

1
N

N−1∑
k=0

qk

×

N−1∏
j=0

〈
qj−1 −

∆j−1

2

����e
−βN Ĥ(0) ���� qj +

∆j

2

〉

×

〈
qj +
∆j

2

����e
iĤ(1)t/~ q̂ e−iĤ(1)t/~���� qj −

∆j

2

〉
. (B1)

Using linearization of the difference between the forward and
backward Feynman paths in real time, which is exact for a
harmonic potential V (1),2,97 one obtains

C̃qq(t) =
1
Z

lim
N→∞

1

(2π~)N

∫
dq

∫
dp

∫
d∆

×
1

N2

N−1∑
k=0

qk

N−1∑
l=0

(
ql cos (kt) +

pl

mk
sin (kt)

)

×

N−1∏
j=0

e−ipj∆j/~

〈
qj−1 −

∆j−1

2

����e
−βN Ĥ(0) ���� qj +

∆j

2

〉
.

(B2)

Following Hele and Althorpe,98 we transform to normal
modes and do the integration over the N−1 delta functions

in D1 . . .DN−1, obtaining

C̃qq(t) =
1
Z

lim
N→∞

1

(2π~)N

∫
dq

∫
dP0

1

N2

N−1∑
k=0

qk

×

N−1∑
l=0

ql cos (kt) +

√
NP0

mk
sin (kt)

×

√
2π βN~

2

m
e
−βN
2m P2

0

N−1∏
j=0

〈
qj−1

����e
−βN Ĥ(0) ���� qj

〉
. (B3)

In the limit of N → ∞,〈
qj−1

����e
−βN Ĥ(0) ���� qj

〉
=

√
m

2π βN~
2

× e
−βN

(
m

2β2
N ~

(qj−qj−1)2
+ 1

2 (V (0)(qj)+V (0)(qj−1))
)
. (B4)

Furthermore, each term
√

m
2πβN~

2 can be rewritten as (2π~)−1

∫ dpj e
−βN
2m P2

j ; inserting these N - 1 terms into Eq. (B3) and
back-transforming from normal modes yields

C̃qq(t) = lim
N→∞

1
ZN

1

(2π~)N

∫
dq

∫
dp

1

N2

N−1∑
k=0

qk

×

N−1∑
l=0

(
ql cos (kt) +

pl

mk
sin (kt)

)

×

N−1∏
j=0

e
−βN *

,

p2
j

2m+
m

2β2
N ~

2 (qj−qj−1)2
+V (0)(qj)+

-. (B5)

This exactly matches the RPMD result presented in Eq. (17)
of the main text.

Similarly, for the case of a momentum impulse with
H (0) = 1

2mσp

(̂
p − ∆p

)2
+ 1

2 mk2q̂2 and H (1) = 1
2m p2 + 1

2 mk2q̂2,
we find for the non-equilibrium momentum-autocorrelation
function

C̃pp(t) =
1
Z

lim
N→∞

1

(2π~)N

∫
dq

∫
dp

1

N2

N−1∑
k=0

pk

×

N−1∑
l=0

(
−kmql sin (kt) +

pl

m
cos (kt)

)

×

N−1∏
j=0

e
−βN *

,
(pj−∆p)2

2mσp
+

mσp

2β2
N ~

2 (qj−qj−1)2
+ 1

2 mk2q2
j

+
-
.

(B6)

This exactly matches the RPMD approach presented in
Sec. II B 2 of the main text.

Similar steps can be taken to show that CMD is exact for
harmonic potentials, as the centroid and non-centroid modes
decouple for harmonic potentials.24

APPENDIX C: REVIEW OF MATSUBARA DYNAMICS

We briefly review the relevant aspects of Matsubara
dynamics for the analysis of RPMD and CMD in the current
paper. Full details are available in Ref. 69.
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Matsubara dynamics approximates the quantum Kubo-
transformed time-correlation function of Eq. (1) by

CMats
AB (t) = lim

M→∞
C(M)

AB (t), (C1)

where

C(M)
AB (t) =

αM

2π~

∫
dP̃

∫
dQ̃ A(Q̃)e−β(H̃M (P̃,Q̃)−iθM (P̃,Q̃))

× eLM tB(Q̃) (C2)

and αM = ~
(1−M) ((M − 1)/2)!2. The position coordinates

Q̃≡ {Q̃n}, with n = −(M − 1)/2, . . ., (M − 1)/2, are the M
Matsubara modes defined as69

Q̃n = lim
N→∞

1
√

N

N∑
l=1

Tlnql, n = 0,±1, . . .±(M − 1)/2,

(C3)

where M is odd69 and satisfies M � N ; q ≡ {ql}, l = 1, . . ., N
are a set of discrete path-integral coordinates distributed at
equally spaced intervals β~/N of imaginary time, and

Tln =




N−1/2 n = 0
√

2/N sin(2πln/N) n = 1, . . ., (M − 1)/2
√

2/N cos(2πln/N) n = −1, . . .,−(M − 1)/2
. (C4)

The Matsubara phase θM is given by

θM (P̃, Q̃) =
(M−1)/2∑

n=−(M−1)/2

P̃nω̃nQ̃−n.

The momentum coordinates P̃ are similarly defined in terms of
p. Q̃0 = q̄(Q̃) and P̃0 = p̄(P̃) are the position and momentum
centroid coordinates. The associated Matsubara frequencies
are ω̃n = 2nπ/β~.

The functions A(Q̃) and B(Q̃) in Eq. (C2) are obtained by
making the substitutions

ql =
√

N
(M−1)/2∑

n=−(M−1)/2

TlnQ̃n (C5)

into the functions

A(q) =
1
N

N∑
l=1

A(ql) and B(q) =
1
N

N∑
l=1

B(ql)

(C6)

The Matsubara potential ŨM (Q̃) is obtained similarly by
substituting for ql into the ring-polymer potential

UN (q) =
1
N

N∑
l=1

V (ql). (C7)

The propagator e−LM t contains the Matsubara Liouvillian

LM =

(M−1)/2∑
n=−(M−1)/2

P̃n

m
∂

∂Q̃n

−
∂ŨM (Q̃)

∂Q̃n

∂

∂P̃n

, (C8)

The formulas presented above result from just one approx-
imation: decoupling the Matsubara modes from the non-
Matsubara modes in the exact quantum Liouvillian (which
causes all Liouvillian terms of O(~2) to vanish).69 Within this

assumption, the dynamics conserves the Hamiltonian H, and
also the phase θM (P̃, Q̃), and hence the quantum Boltzmann
distribution.

One can similarly obtain Matsubara dynamics for non-
equilibrium initial conditions for the two cases discussed in
the main text. In the case of a sudden vertical excitation, the
Matsubara Liouvillian reads

L(1)
M =

(M−1)/2∑
n=−(M−1)/2

P̃n

m
∂

∂Q̃n

−
∂Ũ (1)

M (Q̃)

∂Q̃n

∂

∂P̃n

, (C9)

where Ũ (1)
M is obtained from the excited-state potential

U (1)
N (q) =

1
N

N∑
l=1

V (1)(ql). (C10)

In the case of an initial momentum impulse, TCFs are obtained
as in Eq. (C2) with

H̃ (0)
M (P̃, Q̃) =

(P̃0 + ∆p)
2

2m
+

1
2m

(M−1)/2∑
n=−(M−1)/2

n,0

P̃2
n + UM (Q̃).

(C11)

For the non-equilibrium initial conditions, the phase θM (P̃, Q̃)
is still conserved.
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