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ABSTRACT

Context. The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statisti-
cal equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic
shocks. Since the pressure, temperature, and electron density depend sensitively on hydrogen ionization, numerical simulation of the
solar atmosphere requires non-equilibrium treatment of all pertinent hydrogen transitions. The same holds for any diagnostic applica-
tion employing hydrogen lines.
Aims. To demonstrate the importance and to quantify the effects of non-equilibrium hydrogen ionization, both on the dynamical
structure of the solar atmosphere and on hydrogen line formation, in particular Hα.
Methods. We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations
within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone
to the corona.
Results. Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) non-equilibrium
computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within
shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much
larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock tem-
peratures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n= 2 level,
which governs the opacity of Hα, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently
remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the
chromosphere above photospheric magnetic elements and above quiet internetwork. d) The hydrogen n = 2 population and column
density are persistently high in dynamic fibrils, suggesting that these obtain their visibility from being optically thick in Hα also at
low temperature.
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1. Introduction

The chromosphere represents the least understood regime of the
sun (Judge & Peter 1998). In this paper we address the treatment
of hydrogen ionization in simulations of the solar chromosphere.
It is of paramount importance because hydrogen makes up 90%
of the nuclei in the solar atmosphere, is an important and often
dominant electron donor, and contains a large part of the inter-
nal energy of the gas. Hence, the ionization state of hydrogen
strongly influences the temperature, pressure and electron den-
sity. Radiation magnetohydrodynamic (MHD) simulations of the
atmosphere must therefore account properly for hydrogen ion-
ization. This is not only important for the structure of the atmo-
sphere within a simulation, but also for subsequent computation
of the emergent spectrum from the simulation for comparison
with observations.

Klein et al. (1976, 1978) and Kneer (1980) already showed
from idealized one-dimensional (1D) models that the assump-
tion of instantaneous statistical equilibrium (SE) for hydrogen
ionization does not hold in a dynamical atmosphere containing

⋆ Movie and Appendix A are only available in electronic form at
http://www.aanda.org

shock waves. The temperature difference between the hot shocks
and the cool intershock phases produces disparate ionization
and recombination timescales, the latter being far slower than
the former.

Carlsson & Stein (1992, 1995, 2002) computed dynamical
1D simulations of the solar atmosphere including a detailed non-
equilibrium treatment of the hydrogen rate equations including
ionization and recombination (i.e. not instantaneous statistical
equilibrium but employing pertinent time derivatives in the pop-
ulation rate equations, as in Appendix A of the present paper).
In the first paper they showed that the non-equilibrium effects
lead to significant increase in shock temperature compared with
the case of instantaneous LTE ionization and recombination. In
the second paper they supply a detailed analysis of the hydro-
gen ionization in their simulations. They found that the chromo-
spheric hydrogen ionization/recombination timescale is of the
order of 50 s within hot shocks and 103−105 s in the cool in-
tershock regions, and that hydrogen becomes partially ionized
within shocks but, owing to the long recombination timescale,
does not recombine in the subsequent post-shock phase. As a
consequence, the degree of ionization of hydrogen in the chro-
mosphere is rather constant with time, in stark contrast to what
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the classical assumptions of statistical equilibrium or LTE would
predict.

The present limitations on computing power do not yet per-
mit such full-fledged non-equilibrium treatment of hydrogen
ionization including radiative transfer in 2D and 3D simulation
geometry. Therefore, approximations remain necessary to make
the problem computationally tractable. In this work we employ
the method formulated by Sollum (1999).

Sollum showed that in 1D dynamical modeling it is pos-
sible to avoid detailed evaluation of the radiation field in the
relevant hydrogen transitions by prescribing suitable radiative
rates. He found that this approximation works well up to just
below the transition region. Sollum’s method is fast enough for
use in multi-dimensional geometry. It was earlier implemented
in the code CO5BOLD (Freytag et al. 2002) to perform a 3D
non-magnetic hydrodynamical simulation of the chromosphere
by Leenaarts & Wedemeyer-Böhm (2006). This simulation con-
firmed the conclusion obtained by Carlsson & Stein (1992, 2002)
from 1D simulation: the degree of hydrogen ionization in the
middle and upper chromosphere is determined by the passage
of high-temperature shocks, irrespective of the cool intershock
phases. It is relatively constant at about 10−3 to 10−2. However,
Leenaarts & Wedemeyer-Böhm (2006) did not implement back-
coupling of the non-equilibrium ionization into the equation of
state for the gas within the hydrodynamical simulation. This is
difficult to do in the CO5BOLD code because it employs an ap-
proximate Riemann solver for the hydrodynamics.

In this paper we first present our implementation of Sollum’s
method including back-coupling of the non-equilibrium ioniza-
tion into the equation of state in the Oslo MHD code described
by Hansteen (2004) which uses a finite difference scheme for the
hydrodynamics. We then discuss an extensive 2D simulation of
chromospheric fine-structure evolution with this code and ana-
lyze the results in terms of the hydrogen ionization balance, with
separation between the chromospheric behavior above a mag-
netic element and in an area resembling quiet-sun internetwork.
The effects of non-equilibrium hydrogen ionization are demon-
strated quantitatively through comparison with a similar com-
panion simulation. The latter was started with identical initial
conditions but its hydrogen ionization was set to obey LTE, i.e.
instantaneous Saha-Boltzmann partitioning.

2. Method

In this section we describe our implementation of Sollum’s
method in the MHD code developed in Oslo (Hansteen 2004).
This code is based on the staggered grid code described in
Dorch & Nordlund (1998), Mackay & Galsgaard (2001) and
by Galsgaard & Nordlund1. It includes the multi-group opacity-
binning method of Nordlund (1982) and the treatment of scatter-
ing of Skartlien (2000) for radiative transfer in the photosphere
and chromosphere. In the transition region and corona it em-
ploys optically thin radiative cooling. In addition, it treats radia-
tive losses in strong lines and continua of hydrogen and Ca II in
the upper chromosphere and transition region using an approxi-
mation based on detailed 1D computation with the RADYN code
of Carlsson & Stein (1992). Thermal conduction along magnetic
field lines is taken into account (Hansteen 2004).

In this section we first summarize the temporal evolution
scheme of the MHD algorithm and then specify the modifica-
tions through which we insert non-equilibrium hydrogen ioniza-
tion, the boundary conditions, and our simulation setup.

1 See http://www.astro.ku.dk/∼kg/

2.1. MHD evolution scheme

The MHD solver is the explicit third-order predictor-corrector
scheme developed by Hyman (1979) but modified to allow vari-
able timesteps. Its fundamental variables are the density ρ, mo-
mentum p, internal energy density ei and the magnetic field B.
The evolution equations for the fundamental variables depend
only on the variables themselves, the temperature, the gas pres-
sure, and their spatial derivatives. These derivatives are com-
puted using a sixth-order scheme. The temperature and pressure
are looked up in precomputed tables as function of density and
internal energy. This table is computed assuming LTE except
where the density and internal energy have typical coronal val-
ues. There coronal equilibrium is assumed.

The evolution equation for fundamental variable f is

∂ f (t)

∂t
= ḟ (1)

where ḟ only depends on quantities known at time t. Hyman’s
scheme solves this equation from timestep n to timestep n+ 1 as
follows: the predictor step is

f
(∗)
n+1
= a1 fn−1 + (1 − a1) fn + b1 ḟn, (2)

and the corrector step

fn+1 = a2 fn−1 + (1 − a2) fn + b2 ḟn + c2 ḟ
(∗)
n+1
, (3)

where a1, a2, b1, b2 and c2 are coefficients that depend on the
current and previous timestep sizes.

2.2. Implementation of non-equilibrium hydrogen ionization

In order to compute non-equilibrium hydrogen ionization one
has to solve the hydrogen rate equations

∂ni

∂t
+ ∇ · (niu) =

nl
∑

j, j�i

n jP ji − ni

nl
∑

j, j�i

Pi j, (4)

where ni is the population of hydrogen level i, u the macroscopic
velocity, nl the number of levels and Pi j the transition rate co-
efficient between levels i and j. The left-hand side represents a
continuity equation for the hydrogen populations, the right-hand
side a source term describing the transitions between the hydro-
gen levels. These equations are solved using operator splitting.
The continuity part

∂ni

∂t
= −∇ · (niu) (5)

is solved using Hyman’s scheme in tandem with the fundamen-
tal variables. It is not possible to use sixth-order spatial deriva-
tives for the hydrogen populations because negative populations
then arise occasionally from the steep gradients in the population
densities. Instead, a positive-definite first-order upwind scheme
is used to ensure positivity of the populations.

After the predictor step, the rate part of the equations,

∂ni

∂t
=

nl
∑

j, j�i

n jP ji − ni

nl
∑

j, j�i

Pi j, (6)

is integrated over the timestep ∆t while enforcing charge conser-
vation, hydrogen nuclei conservation, energy conservation and
instantaneous chemical equilibrium between atomic and molec-
ular hydrogen. This yields predicted values of the hydrogen
populations, temperature and pressure. Subsequently, the cor-
rector step is performed for the fundamental variables and the
advection part of the hydrogen populations. After this step the
rate equations, charge, energy and particle conservation and
chemical equilibrium are solved again to obtain the hydrogen
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populations, temperature and pressure for the new timestep. The
algorithm can be summarized as follows:

– predict the fundamental variables and advection of hydrogen
populations;

– solve the rate equations and the conservation equations for
the predicted temperature and pressure;

– correct the fundamental variables and advection of hydrogen
populations;

– solve the rate equations and the conservation equations
for the corrected hydrogen populations, temperature and
pressure.

The radiative rate coefficients Ri j that enter in the total rate co-
efficients Pi j are computed using Sollum’s method. For each ra-
diative transition a depth-dependent radiation temperature Trad is
prescribed. It is set equal to the local gas temperature in the deep
layers of the atmosphere, ensuring LTE populations there. Above
a certain height the radiation temperature follows a smooth
transition to a predefined value and then becomes constant at
that value. The latter values were determined by requiring that
Sollum’s method reproduces the non-equilibrium hydrogen pop-
ulations obtained in 1D modeling of the solar chromosphere with
the RADYN code. All radiative Lyman transitions are set to obey
detailed balancing. Further detail is given in Sollum (1999) and
Leenaarts & Wedemeyer-Böhm (2006).

The pressure and temperature are explicitly computed in this
modification; the equation of state tables are not used except
at the lower and upper boundaries (Sect. 2.3). The radiative
losses due to hydrogen are still computed time-independently
using Skartlien’s multi-group scheme which employs tabulated
group-mean opacities, scattering probabilities and Planck func-
tions based on LTE populations.

The rate equations, the energy, charge and nucleus conser-
vation equations and the chemical equilibrium equation together
form a set of coupled non-linear equations that are solved using a
Newton-Raphson scheme. These equations and their derivatives
are specified in the Appendix.

2.3. Boundary conditions

The lower boundary condition enforces LTE hydrogen popula-
tions by solving for Saha-Boltzmann equilibrium instead of the
rate equations. The hydrodynamic conditions regulate the mass
flow across the boundary. Consistency between the total hydro-
gen number density and the mass density is automatically en-
forced through the equation of hydrogen nucleus conservation.
Thus, it is not necessary to specify hydrogen level population
flows across the lower boundary, and the population continuity
equations do not have to be solved in the grid cells at the lower
boundary.

The upper boundary, located in the corona, uses the same
approach but here the non-equilibrium rate equations are solved
instead of the Saha-Boltzmann equations. Consistency between
the mass density and the hydrogen density is enforced by adding
or removing protons. This boundary condition produces coronal
equilibrium because the ionization relaxation timescale of 0.1 s
is small compared to the dynamical timescale in the corona (see
Fig. 6 of Carlsson & Stein 2002).

The equation of state tables are used for the boundary
conditions on the hydrodynamic variables. The tabulated val-
ues are accurate at the boundaries, because they are based on
LTE or coronal equilibrium consistent with the local hydrogen
populations.

2.4. Simulation setup

We have performed a two-dimensional simulation including
non-equilibrium hydrogen ionization in a setup similar to the
one used by Hansteen et al. (2006) and De Pontieu et al. (2007).
It has a horizontal extent of 16.64 Mm with a resolution of
32.5 km and 512 cells in the horizontal direction. The vertical
extent is 11.1 Mm with 150 cells. The vertical resolution varies
from 32 km in the convection zone to 440 km in the corona.
Continuum optical depth unity is located about 1.5 Mm above
the lower boundary. The horizontal boundary condition is peri-
odical. Both the lower and upper boundary conditions are open,
allowing flows to leave and enter the box. The upper bound-
ary strives to maintain the temperature there at 800 000 K be-
cause the current two-dimensional models do not have suffi-
cient magnetic dissipation to maintain a corona self-consistently
(De Pontieu et al. 2007). We use a five-level plus continuum hy-
drogen model atom to compute the non-equilibrium hydrogen
ionization. A heating term is added to the energy equation that
drives the temperature back to 2400 K when it falls below that
value. This value has no physical meaning but is present for sta-
bility reasons.

The simulation was started from a relaxed snapshot of a pre-
vious simulation which employed LTE ionization and ran for
30 min of solar time. The effects of the LTE ionization dis-
appeared in approximately 5 min of solar time (see Fig. 1 of
Leenaarts & Wedemeyer-Böhm 2006).

3. Results

Figure 1 shows a snapshot of the simulation. Panel a displays
the temperature. Some magnetic field lines that extend into the
corona have been overplotted. All coronal field lines are rooted
in two photospheric magnetic field concentrations at x = 4 and
x=11 Mm. Henceforth we refer to these concentrations as mag-
netic elements and to the areas between them as internetwork.

The areas without field lines are not field free, as can be
seen in panel b which shows the magnitude of the magnetic
field strength. The temperature panel displays granulation at
z= 0 Mm, a shock-ridden chromosphere up to 2−4 Mm height,
and a hot corona reaching peak temperatures of 106 K. The
height and shape of the transition region strongly depend on the
magnetic field configuration, with the corona reaching deeper
down above the magnetic elements. Panel c shows the mass den-
sity. It reaches minimum values in the transition region above
internetwork, which consists of extended high-rising arcs (black
in the panel).

Panel d shows the non-equilibrium hydrogen ionization de-
gree. It has a minimum between 0 and 0.5 Mm and smoothly
increases upward to the completely ionized corona. The chro-
mospheric ionization degree does not follow the local gas tem-
perature. Panel e shows the fraction of hydrogen nuclei bound
in H2 molecules, which peaks in cool chromospheric regions be-
tween 0.5 and 2 Mm. The black-purple noise above z = 2 Mm
is a numerical artifact caused by the single precision output of
the code. The code itself uses double precision to avoid such ar-
tifacts. Panel f shows the population density of hydrogen in the
n = 2 level, the lower level of the Hα line. It roughly follows
the density structure, with the exception of the transition region
where it shows a sharp increase at the locations of the arcs of
minimum mass density.

Panel g shows the non-LTE population departure coefficient
of the ground state of hydrogen b1. The ground state population
remains close to LTE throughout most of the photosphere and
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Fig. 1. Snapshot cutouts from the simulation, showing various quantities in a vertical plane after 8.5 min of solar-time evolution. Panel a): gas
temperature, with magnetic field lines that extend into the corona overplotted in black; b): magnetic field strength; c): mass density d: non-
equilibrium ionization degree of hydrogen; e): fraction of hydrogen atoms in the form of H2 molecules; f): hydrogen n = 2 level population;
g): departure coefficient for the hydrogen n = 1 level population; h): departure coefficient for the hydrogen n = 6 level population; i): departure
coefficient for the hydrogen n=2 level population. The columns used in Figs. 2 and 3 are indicated by dotted lines in panel d).

chromosphere, except in strong chromospheric shocks where
there is under-ionization compared to LTE. The ground state is
strongly overpopulated in the transition region and is in coronal
equilibrium in the corona.

Panel h shows the departure coefficient of the hydrogen ion
density b6. It is much larger than unity in chromospheric cool
intershock regions and smaller than unity within chromospheric
shocks. This demonstrates that the non-equilibrium ionization
degree is higher than in LTE in intershock areas and lower in
shocks.

The departure coefficient of the n= 2 level in panel i shows
the same structure in the photoshere and chromosphere as b6 due
to the strong coupling of the continuum and the excited neutral
levels. In the corona, b2 is around 5 × 104, its coronal equilib-
rium value.

Figure 2 shows the behavior of atomic hydrogen along the
two columns marked in Fig. 1. These were selected to sample
a magnetic element (left-hand column) and quiet internetwork
(right-hand column). Panels a and b show the temperature and
mass density. The corona starts much lower above the magnetic
element than above the internetwork. Panel a shows a strong
shock at 1 Mm which will become a dynamic fibril when it
reaches the corona, pushing it upward. In contrast, internetwork
panel b shows no strong shocks. The density at the transition
region is much lower in this case.

Panels c and d show the non-equilibrium degree of ion-
ization of hydrogen as thick curves. It reaches a minimum of
10−5 at around 0.5 Mm and increases smoothly towards com-
plete ionization in the corona. The corresponding LTE ioniza-
tion, obtained from the simulation temperature and electron den-
sity stratifications with the Saha-Boltzmann equations, is shown
as a thin curve. The dramatic differences between the curves
demonstrate the failure of instantaneous LTE ionization in the
chromosphere and transition region. In the non-equilibrium
case, the slowness of ionization and recombination prevents
total ionization in the shocks and full recombination in their
wakes, producing far smoother ionization behavior with time
than LTE would predict (see Carlsson & Stein 2002; Leenaarts &
Wedemeyer-Böhm 2006). Note that the LTE curves reach com-
plete ionization in the transition region at slightly lower heights
than the non-equilibrium ionization curves. Since hydrogen be-
comes the dominant electron provider already at 10−4 ionization,
the electron density equals the proton density except in the tem-
perature minimum.

Panels e and f show the non-equilibrium (thick) and LTE
(thin) proton densities. Since hydrogen becomes the dominant
electron provider already at 10−4 ionization, the electron den-
sity equals the proton density except in the ionization minimum
around 0.5 Mm (panels c and d).

Panels g and h show the population density of the n=2 level
of hydrogen n2 (thick: non-equilibrium; thin: LTE). It shows the
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Fig. 2. Properties of the simulation along a column in
a magnetic element (left-hand column) and in the inter-
network (right-hand column). Panels a) and b): tempera-
ture (solid) and mass density (dashed, right-hand scale);
c) and d): non-equilibrium (thick) and LTE ionization de-
gree (thin); e) and f): non-equilibrium (thick) and LTE pro-
ton density (thin); g) and h): population of the n= 2 level
for the non-equilibrium (thick) and LTE (thin) case.

same trend as the proton population, because all excited hydro-
gen levels are strongly coupled to the proton population reser-
voir. Thus, the small temporal variation of the ionization is fol-
lowed by the n=2 population, and, therefore, the Hα opacity. In
particular, the peaks in n2 in the transition region in both panels,
at z= 1.8 Mm and z= 4.2 Mm, respectively, provide significant
Hα visibility.

Figure 3 shows the temporal evolution of the temperature
in a magnetic element and in the internetwork. The magnetic
element acts as a wave guide, in which shocks travel upward
with a period of three minutes. When they reach the corona they
push it upward. With time, these motions produce characteristic
parabolic height variation. The same behavior is observed in so-
called Hα dynamic fibrils. The recent papers by Hansteen et al.
(2006) and De Pontieu et al. (2007) show that Hα dynamic fibrils
are the observational signature of such magneto-acoustic shocks.
Notice that the material in the wake of the shocks can be as cool
as 2400 K.

The internetwork temperature is less structured. A movie of
the gas temperature (available in the online material for this ar-
ticle) shows that the internetwork chromosphere is pervaded by
shocks which originate in the photosphere but often travel side-
ways, away from the magnetic elements, and sometimes even
downward. The transition region is located higher than above
a magnetic element and exhibits relatively small and irregular
temporal variations in height.

The second row shows the ionization degree of hydrogen.
It is rather constant in time in the chromosphere. Above 1 Mm
height, it stays at about 1% ionization, both in the magnetic el-
ement and the internetwork. The transition to coronal temper-
atures is smoother in the internetwork and the increase in ion-
ization is correspondingly smoother. The third row displays the
population of hydrogen in the n=2 level n2. It is very low in the
almost completely ionized corona. The transition region shows a
local maximum, which is persistent in time. The n=2 population
is higher in the transition region of the magnetic element than in
the internetwork. The width of the transition region maximum

in the upward phase of the dynamic fibrils decreases suddenly
when the fibril descends again.

The fourth row displays the column density of n2, which is
proportional to the vertical optical depth in the Hα line. In the
internetwork, the column density starts to increase higher in the
atmosphere than in the magnetic elements, because the chromo-
sphere extends to larger heights in the internetwork. However,
the column density at the top of the dynamic fibrils (the top
of the light blue bulges) is 1013 cm−2, two orders of magnitude
larger than the internetwork column density at equal height. The
same column density in the internetwork is reached at a height
of 0.8 Mm.

3.1. Comparison with companion LTE simulation

Figure 4 presents a comparison between the simulation with
non-equilibrium hydrogen ionization and a simulation with the
old code which employs LTE ionization. Both simulations were
started at t = 0 min from the same relaxed snapshot computed
with LTE ionization.

The bottom panels of 4 show that at height z=1 Mm the dif-
ferent treatments of ionization produce only a slight difference in
temperature variation. The wave pattern is almost identical, but
with non-equilibrium ionization the fluctuations are larger. At
larger heights, the differences between the simulations are large
(upper two rows). The shock patterns (thin hot threads) differ
markedly. The shock temperatures are much larger in the non-
equilibrium simulation. They typically are 10 000 K and some-
times reach 13 000 K, whereas the LTE shock temperatures do
not exceed 8000 K. These high temperatures are due to the com-
parative lack of ionization. Because the internal energy of the gas
is not stored as hydrogen ionization energy, it remains as kinetic
energy of the gas particles, raising the temperature (Carlsson &
Stein 1992).

The temperatures also differ greatly in the cool intershock
regions. In LTE, they are between 3000 and 5000 K whereas
the non-equilibrium simulation reaches intershock temperatures
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Fig. 3. Time slices of the gas temperature (first row), the ionization degree of hydrogen (second row), number density of hydrogen in the n=2 level
(third row), and the n=2 column density (fourth row) in a magnetic element (left-hand column) and in the internetwork (right-hand column). The
upper-left magnetic element panel shows dynamic fibrils pushing the corona upward with 3 min periodicity. The upper-right internetwork panel
shows rather unstructured shocks and a slowly varying height of the transition region. The snapshot used in Figs. 1 and 2 is indicated by a black
dotted line.

of about 2500 K. These low values result from the reverse pro-
cess: over-ionization compared with LTE. More energy remains
stored as ionization energy, leaving less kinetic energy for the
gas particles.

4. Discussion and conclusions

4.1. Limitations of the simulation

Our implementation of non-equilibrium hydrogen ionization has
various limitations.

First, the assumption that all Lyman transitions are in de-
tailed balance is justified up to the transition region (Sollum
1999). However, the transition region is optically thin in most
Lyman features, requiring detailed radiative transfer modeling
to evaluate their influence on the hydrogen populations.

Second, the multi-group radiative transfer within the sim-
ulation, which sets the radiative cooling and heating, employs
LTE ionization. For given internal energy and mass density, the

radiative transfer uses the group-mean opacity, scattering prob-
ability and Planck function based on the corresponding LTE (or
coronal equilibrium) temperature and electron density. The ra-
diative cooling in the chromosphere and transition region, where
deviations from equilibrium are largest, is thus inconsistent with
the non-equilibrium temperature and electron density as com-
puted in the simulation.

Third, the cool parts of the simulation chromosphere often
reach the limiting temperature of 2400 K allowed in the simu-
lation. It is not clear how low the actual chromospheric minima
may reach because radiative heating in the hydrogen continua
and other strong spectral features is not taken into account in the
simulation, only their radiative cooling.

4.2. Discussion

From the analysis of our simulation we obtain the following
picture. The internetwork chromosphere is irregularly pervaded
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Fig. 4. Time slices of the gas temperature at 2, 1.5 and 1 Mm height (top to bottom). Left-hand column: simulation with LTE ionization; right-hand
column: with non-equilibrium ionization. Both simulations were started with the same snapshot at t=0 min. The intermittently present red patches
are caused by the corona, whose lower boundary is moved up and down by shocks traveling upward above the magnetic elements. The snapshot
used in Fig. 1 is indicated with the horizontal dotted line; the columns used in Figs. 2 and 3 with vertical dotted lines.

by shocks. The temperature is typically 10 000 K in shocks
and can be lower than 2500 K in cool intershock areas. The
transition region is arc-shaped, with the arc footpoints situated
above the magnetic elements, and reaches a maximum height of
4 Mm. The chromosphere above magnetic elements shows up-
ward propagating shocks at about 3 min periodicity, which push
the corona upward from 1.5 Mm to 3 Mm height.

The chromospheric hydrogen ionization degree increases
smoothly from 10−5 at 0.5 Mm to complete ionization in the
corona and does not respond to temperature changes because of
the slow recombination behind shocks. The hydrogen n=2 pop-
ulation in the chromosphere is coupled to the proton population
and, as a consequence, varies only weakly with time too. The
n=2 population in dynamic fibrils above the magnetic elements
is higher than in the internetwork chromosphere. The n= 2 col-
umn density, a measure of the optical depth of the Hα line, is
two orders of magnitude larger in dynamic fibrils than at equal
height in the internetwork. The same column density as at the top
of the fibrils is only reached at a smaller height, about 0.8 Mm,
in the internetwork.

In the observations of Hansteen et al. (2006) and De Pontieu
et al. (2007) dynamic fibrils appear as dark “fingers” extend-
ing and retracting on top of a brighter background. They seem
to be optically thick. Combining this observational appearance
with the results of our simulation suggests that dynamic fib-
rils are optically thick in the Hα line core, whereas optical
depth unity is reached far deeper in the internetwork atmosphere
(equal column density in the lower panels of Fig. 3) so that the

internetwork chromosphere adjacent to dynamic fibrils is op-
tically thin. This explains that dynamic fibrils are observable
along a slanted line of sight through the internetwork chromo-
sphere. We also suggest that their low temperature combined
with the effects of NLTE resonance scattering produces their
low emergent intensity. The bright background is formed much
deeper in the internetwork, where the higher temperature leads
to higher emergent intensity. In summary, slow recombination
and strong coupling of the n = 2 population to the ion popula-
tion makes these fibrils opaque and therefore visible even when
they are cool, regardless of the large n = 2 excitation energy.
Hα interpretation assuming a static atmosphere with instanta-
neous ionization and recombination, as frequently done in cloud
modeling and inversions based on cloud modeling, is likely to
be erroneous for such dynamic structures. Obviously, detailed
radiative transfer computation based on time-dependent simula-
tion with non-equilibrium ionization as done here is needed to
properly assess Hα formation in dynamic fibrils.

4.3. Conclusions

We have presented an algorithm to compute non-equilibrium hy-
drogen ionization with back-coupling to the equation of state in
multidimensional radiation MHD simulations of the solar atmo-
sphere. We performed a 2D simulation from the convection zone
to the corona that employed this algorithm. From its analysis and
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comparison with a companion LTE simulation we conclude the
following:

– Inclusion of non-equilibrium hydrogen ionization is essential
in simulations of the solar atmosphere because the resulting
temperature structure and hydrogen populations differ dra-
matically from their LTE values.

– The degree of ionization of hydrogen in the chromosphere
does not follow the local temperature, as described already by
Carlsson & Stein (2002) and Leenaarts & Wedemeyer-Böhm
(2006). Hydrogen is partially ionized in shocks but does not
recombine in the cool shock wakes, owing to the slow recom-
bination rate at low temperature (Figs. 1–3).

– Non-equilibrium hydrogen ionization causes more profound
temperature variations in the chromosphere than would occur
if LTE were valid (Fig. 4). The shock temperatures are higher
and the intershock temperatures are lower, caused by the in-
sensitivity of the hydrogen ionization degree to variations of
the state parameters of the gas.

– The population of the hydrogen n = 2 level in the chromo-
sphere is strongly coupled to the ion population. It therefore
behaves approximately as the latter. Its value is set by the
high shock temperatures and subsequently remains high in
the cool aftershock phases (Fig. 2). This is quite contrary to
the LTE prediction.

– The simulation shows large differences in temperature struc-
ture and hydrogen level populations between magnetic ele-
ments and internetwork (Figs. 2 and 3).

– The Hα line opacity is proportional to the n = 2 level pop-
ulation; the Hα optical depth scales with the n = 2 column
density. Both are appreciably larger in dynamic fibrils than
in the internetwork chromosphere at equal height (Fig. 3). We

suggest that dynamic fibrils are optically thick in Hα and that
their low temperature combined with scattering make them
appear dark against the deeper-formed bright internetwork
background.

The next step is to compute Hα in detail from this simulation.
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Appendix A: The equations and their derivatives

The solution scheme requires partial derivatives with respect
to the independent variables. The formulation is similar to the
RADYN code of Carlsson & Stein (1992) but since no detailed
specification has been published so far, we supply the complete
derivative list here.

The present code solves the equations of chemical equi-
librium, charge, energy and hydrogen nucleus conservation to-
gether with the rate equations or with the Saha-Boltzmann
equilibrium equations. These equations depend on the gas
temperature T , the electron density ne, the hydrogen popula-
tion densities ni, where n1 is the ground state, n2−5 the four ex-
cited states and n6 the ionized hydrogen (proton) density, and the
molecular hydrogen density nH2. These are ten equations and
nine unknowns. We use only five of the six rate equations and
eliminate the molecular hydrogen density, reducing the number
of equations and variables to eight. The equations are labeled Fi

with i = 1, . . . , 8.

The physical constants have their usual meaning: h, k, c, e
and me are Planck’s constant, Boltzmann’s constant, the velocity
of light, the electron charge and the electron mass.

As the mass density of the gas is known, the total number of
hydrogen nuclei, whether in the form of H, H2 or bare protons is
known and given by

ntot
H =ρ nH per g (A.1)

where nH per g is the number of hydrogen nuclei per gram solar
gas. We denote the number density of nuclei of elements other
than hydrogen as nnoH = nnuclei per H ntot

H
, where nnuclei per H is the

number of nuclei from elements other than hydrogen per hy-
drogen nucleus. The number of electrons due to elements other
than hydrogen per hydrogen nucleus is nnoH

e . The internal en-
ergy of elements other than hydrogen per hydrogen nucleus is
enoH. These quantities and their derivatives are determined nu-
merically from tables as function of T and ne. The molecular hy-
drogen density is nH2 and the internal energy of H2 per molecule
is eH2. The latter is computed using polynomial approximations
by Vardya (1965).

Chemical equilibrium. The equation of chemical equilibrium
between neutral atomic hydrogen and molecular hydrogen is
given by

nH2 =

(

∑5
i=1 ni

)2

K
, (A.2)

where K is the chemical equilibrium constant whose value and
its temperature derivative are given by polynomial approxima-
tions as function of T by Tsuji (1973). The molecular hydrogen
density depends on T and ni (i = 1, . . . , 5). The derivatives are

∂nH2

∂T
= −
⎛

⎜

⎜

⎜

⎜

⎝

∑5
i=1 ni

K

⎞

⎟

⎟

⎟

⎟

⎠

2
∂K

∂T
, (A.3)

∂nH2

∂ni

=
2
(

∑5
i=1 ni

)

K
· (A.4)

Charge conservation. The electron density is given by

ne = n6 + ntot
H nnoH

e , (A.5)

which we rewrite in a form suitable for Newton-Raphson
iteration:

F1 = 1 − 1

ne

(

n6 + ntot
H nnoH

e

)

= 0. (A.6)

The functional F1 depends on ne, n6 and T . The partial deriva-
tives are

∂F1

∂ne

=
n6 + ntot

H
nnoH

e

n2
e

−
ntot

H

ne

∂nnoH
e

∂ne

, (A.7)

∂F1

∂n6

= − 1

ne

, (A.8)

∂F1

∂T
= −

ntot
H

ne

∂nnoH
e

∂T
· (A.9)

Internal energy. The second functional specifies the distribu-
tion of the internal energy ei over the various contributions:

F2 = 1 − 1

ei

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3kT

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ne + nnoH + nH2 +

6
∑

i=1

ni

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ ntot
H enoH + nH2 eH2 +

6
∑

i=1

ni χi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0, (A.10)

with χi the energy of hydrogen level i. This functional depends
on ne, ni and T . The partial derivatives are

∂F2

∂ne

= − 1

ei

(

3kT

2
+ ntot

H

∂enoH

∂ne

)

, (A.11)

∂F2

∂ni

= − 1

ei

(

3kT

2

[

∂nH2

∂ni

+ 1

]

+ eH2

∂nH2

∂ni

+ χi

)

, (A.12)

∂F2

∂T
= − 1

ei

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3k

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ne + nnoH + nH2 + T
∂nH2

∂T
+

6
∑

i=1

ni

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ntot
H

∂enoH

∂T
+ nH2

∂eH2

∂T
+ eH2

∂nH2

∂T

)

· (A.13)

Particle conservation. The conservation of the total number of
hydrogen nuclei ntot

H
is given by:

F3 = 1 − 1

ntot
H

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

6
∑

i=1

ni − 2nH2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0. (A.14)

This functional depends on ni and T . The partial derivatives are:

∂F3

∂ni

= − 1

ntot
H

(

1 + 2
∂nH2

∂ni

)

, i = 1, . . . , 5, (A.15)

∂F3

∂n6

= −
1

ntot
H

, (A.16)

∂F3

∂T
= − 2

ntot
H

∂nH2

∂T
· (A.17)

LTE populations. LTE is imposed to start up a new computation
and at the lower boundary. The LTE hydrogen populations then
obey the Saha-Boltzmann equations (i = 1, . . . , 5)

F3+i = 1 − 1

ne

ni

n6

2g6

gi

(

2πmekT

h2

)3/2

e−(χ6−χi)/kT = 0, (A.18)

where gi is the statistical weight of level i. These equations de-
pend on n6, ni, ne and T . Defining

Ki =
1

ne

ni

n6

2g6

gi

(

2πmekT

h2

)3/2

e−(χ6−χi)/kT , (A.19)

the partial derivatives are given by

∂F3+i

∂n6

=
Ki

n6

, (A.20)
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∂F3+i

∂ni

= −Ki

ni

, (A.21)

∂F3+i

∂ne

=
Ki

ne

, (A.22)

∂F3+i

∂T
= −Ki

(

χ6 − χi

kT 2
+

3

2T

)

· (A.23)

Rate equations. Outside LTE, the change of the hydrogen pop-
ulations n1 . . .n6 over a timestep ∆t can be expressed as

ni(t0 + ∆t) − ni(t0) =

∫ t0+∆t

t0

6
∑

j, j�i

n j

(

R ji +C ji

)

−ni

6
∑

j, j�i

(

Ri j +Ci j

)

dt, (A.24)

with Ri j and Ci j the radiative and collisional rate coefficients
from level i to level j. Defining

Pi j = Ri j +Ci j, (A.25)

Pii = −
6
∑

j, j�i

(

Ri j +Ci j

)

(A.26)

and writing ni = ni (t0+∆t) and n
t0
i
= ni (t0) yields the discretized,

implicit form of Eq. (A.24)

F3+i =
ni

n
t0
i

− ∆t

n
t0
i

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

6
∑

j=1

n jP ji

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

− 1 = 0. (A.27)

The equations are dependent on ni, n j ( j � i), ne and T . The
partial derivatives are

∂F3+i

∂ni

=
1 − ∆t Pii

n
t0
i

, (A.28)

∂F3+i

∂n j

= −
∆t P ji

n
t0
i

, (A.29)

∂F3+i

∂ne

= −∆t

n
t0
i

⎛
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⎜
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⎝

6
∑

j=1

n j

∂P ji

∂ne
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⎟

⎟

⎟

⎟

⎟

⎠

, (A.30)

∂F3+i

∂T
= −∆t

n
t0
i

⎛

⎜
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⎜

⎜
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⎝

6
∑

j=1

n j

∂P ji

∂T

⎞
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⎟
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⎟

⎟

⎟

⎠

· (A.31)

Only five of the six equations (A.24) are used to avoid overspec-
ification through ignoring the one with the largest value of n

t0
i

.

LTE population ratios. Evaluation of the rate coefficients in-
volving the continuum level n6 often involve the LTE population
ratio n∗

i
/n∗

6
(i = 1, . . . , 5) given by

n∗
i

n∗
6

= ne

gi

2g6

(

2πmekT

h2

)−3/2

e(χ6−χi)/kT , (A.32)

with the derivatives

∂

∂T

(

n∗
6

n∗
i

)

= −
(

χ6 − χi

kT 2
+

3

2T

)

n∗
i

n∗
6

, (A.33)

∂

∂ne

(

n∗
i

n∗
6

)

=
1

ne

n∗
i

n∗
6

· (A.34)

Collisional rate coefficients. The expressions for the collisional
rate coefficients contain temperature-dependent coefficients Cexc

and Cion for excitation and ionization. Their values and deriva-
tives are determined from a table based on Johnson (1972).

The collisional rate coefficients for bound-bound transitions
are, with j > i and Ci j the upward rate coefficient:

C ji =
gi

g j

neCexc

√
T , (A.35)

Ci j =
n∗

j

n∗
i

C ji = neCexc

√
T e−(χ j−χi)/kT , (A.36)

with derivatives
∂C ji

∂ne

=
C ji

ne

, (A.37)

∂C ji

∂T
=
gi

g j

ne

√
T

(

∂Cexc

∂T
+

Cexc

2T

)

, (A.38)

∂Ci j

∂ne

=
Ci j

ne

, (A.39)

∂Ci j

∂T
= ne

√
Te−(χ j−χi)/kT

(

∂Cexc

∂T
+Cexc

[

χ j − χi

kT 2
+

1

2T

])

· (A.40)

For bound-free transitions the collision rate coefficients are, with
Ci6 the upward rate coefficient:

Ci6 = neCion(T )
√

Te−(χ6−χi)/kT , (A.41)

C6i =
n∗

i

n∗
6

Ci6, (A.42)

with derivatives
∂Ci6

∂ne

=
Ci6

ne

, (A.43)

∂Ci6

∂T
= ne

√
Te−(χ6−χi)/kT

(

∂Cion

∂T
+Cion

[

χ6 − χi

kT 2
+

1

2T

])

(A.44)

∂C6i

∂ne

= 2
C6i

ne

, (A.45)

∂C6i

∂T
=

(

∂Ci6

∂T
−C6i

[

3

2T
+
χ6 − χi

kT 2

])

n∗
6

n∗
i

· (A.46)

Radiative rate coefficients. The derivation of the radiative rate
coefficients can be found in Sollum (1999). The rate coefficients
for bound-bound transitions are, with j > i and Ri j the upward
rate coefficient:

Ri j =
4π2e2

hν0mec
flu

2hν3
0

c2

1

ehν0/kTrad − 1
, (A.47)

R ji =
gi

g j

4π2e2

hν0mec
flu

2hν3
0

c2

1

1 − e−hν0/kTrad
, (A.48)

where flu, ν0 and Trad are the oscillator strength, the line cen-
ter frequency and the prescribed radiation temperature. In areas
where Trad = T , i.e., deep in the atmosphere, the temperature
derivatives are:

∂Ri j

∂T
=

8π2e2hν3
0

mec3kT 2
fi j

e−hν0/kT

(1 − e−hν0/kT )2
, (A.49)

∂R ji

∂T
=
gi

g j

8π2e2hν3
0

mec3kT 2
fi j

ehν0/kT

(ehν0/kT − 1)2
· (A.50)

In areas where Trad � T , but constant, the temperature deriva-
tives are zero.

The upward radiative rate coefficient for bound-free transi-
tions is:

Ri6 =
8π

c2
α0ν

3
0

∞
∑

n=1

E1

(

n
hν0

kTrad

)

, (A.51)
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where α0 is the radiative absorption cross section at the ioniza-
tion edge frequency ν0 and E1(x) the first exponential integral
with argument x. Its temperature derivative is:

∂Ri6

∂T
=

8π

c2
α0ν

3
0

1

T

1

ehν0/kT − 1
where Trad=T, (A.52)

∂Ri6

∂T
= 0 where Trad � T. (A.53)

The downward bound-free radiative rate coefficient is:

R6i =
8π

c2
α0ν

3
0

n∗
i

n∗
6

∞
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n=1

E1
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n
T

Trad

+ 1

]

hν0

kT

)

· (A.54)

The derivatives are:
∂R6i

∂ne

=
R6i

ne

, (A.55)

∂R6i

∂T
=
∂Ri6

∂T

n∗
i

n∗
6

− R6i

(

3

2T
+

hν0

kT 2

)

where Trad=T, (A.56)
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where Trad � T. (A.57)


