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ABSTRACT

Recent experimental studies suggest that ATP-driven molecular chaperones can stabilize protein sub-
strates in their native structures out of thermal equilibrium. The mechanism of such non-equilibrium
protein folding is an open question. Based on available structural and biochemical evidence, I propose
here a unifying principle that underlies the conversion of chemical energy from ATP hydrolysis to
the conformational free energy associated with protein folding and activation. I demonstrate that
non-equilibrium folding requires the chaperones to break at least one of four symmetry conditions.
The Hsp70 and Hsp90 chaperones each breaks a different subset of these symmetries and thus
they use different mechanisms for non-equilibrium protein folding. I derive an upper bound on the
non-equilibrium elevation of the native concentration, which implies that non-equilibrium folding
only occurs in slow-folding proteins that adopt an unstable intermediate conformation in binding to
ATP-driven chaperones. Contrary to the long-held view of Anfinsen’s hypothesis that proteins fold to
their conformational free energy minima, my results predict that some proteins may fold into thermo-
dynamically unstable native structures with the assistance of ATP-driven chaperones, and that the
native structures of some chaperone-dependent proteins may be shaped by their chaperone-mediated
folding pathways.
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1 Introduction

A commonly accepted view on protein folding is Anfinsen’s thermodynamic hypothesis [1]: the native structure of
a protein is uniquely determined by its amino acid sequence and it is the conformation of the lowest free energy.
According to this view, a free energy gap separates the native structure and the denatured conformations, and protein
folding is accompanied by a negative free energy change [2]. A protein, left to its own device and given sufficient time,
will fold spontaneously to its native structure.

We now know that many proteins depend on the assistance of molecular chaperones for folding into their functional
structures inside cells [3–5]. ATP-driven chaperones such as GroEL/GroES [6–8], Hsp70 [9, 10], and Hsp90 [11–17]
represent an important class of chaperones that consume chemical energy in their functions. Biochemical and structural
studies have established that these chaperones undergo a cycle powered by ATP hydrolysis through open and closed
conformations [10,18–22]. These chaperones can rescue their protein substrates from misfolded or aggregated structures
and accelerate their refolding to their native structures [23–27]. This role of ATP-driven chaperones does not contradict
Anfinsen’s thermodynamic hypothesis: proteins still fold into the most thermodynamically stable structures, but the
chaperones enable them to do so within a physiologically reasonable time [28].

Recent experimental studies suggest that ATP-driven chaperones may play a thermodynamic role besides the kinetic
one: they may stabilize proteins in their native structures out of thermal equilibrium, converting the chemical energy
of ATP hydrolysis into the conformational free energy of their substrates [26, 29]. Coincidental to these experimental
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studies, theoretical models were published around the same time that predicted such non-equilibrium stabilization [29–
31]. In addition to quantitatively recapitulating the experimentally observed acceleration in folding kinetics, these
models suggest that ATP-driven chaperones can maintain their protein substrates in their native structures at higher
concentrations than thermodynamically permitted in the chaperone-free equilibrium. They explain why ATP hydrolysis
is indispensable to the cellular functions of these chaperones, and in the case of Hsp70 [30] and Hsp90 [31], the critical
roles of their respective cochaperones.

Here, I define non-equilibrium protein folding to be the phenomenon in which the native fraction of a protein is elevated
by an energy-consuming process above its value in thermal equilibrium. Let fN = [N ]/P0 be the steady state fraction
of the protein substrate in its native structure in the presence of ATP-driven chaperones, and fN,eq = [N ]eq/P0 be the
native fraction in the chaperone-free equilibrium, where P0 is the total protein concentration and [N ] is the concentration
of the protein in its native structure. Non-equilibrium protein folding occurs if fN > fN,eq, which of course requires
energy consumption. I will introduce the gain factor of non-equilibrium folding

g ≡ fN
fN,eq

=
[N ]

[N ]eq
(1)

which measures the extent of out-of-equilibrium stabilization of the native structure. A protein that primarily occupies
the non-native structures in equilibrium (i.e. fN,eq < 0.5) but its native structure in the presence of ATP-driven
chaperones (i.e. fN > 0.5) would contest Anfinsen’s hypothesis.

Note that the native fraction in my definition of non-equilibrium folding includes only the free (i.e. not chaperone-bound)
native protein, because chaperones primarily bind to proteins that are at least partially unfolded [9, 32]. There are,
however, examples in which chaperone-bound proteins retain some native activity. For instance, glucocorticoid receptor
(GR) can bind to its ligand when it is in complex with Hsp90 [33]. In this case, however, GR may still need to dissociate
from Hsp90 to function as an active transcription factor. Thus, in this work I will only consider non-equilibrium folding
to a free, native protein.

Many mechanistic models have been proposed for chaperone-mediated protein folding [27,28,32,34–36]. One prevalent
hypothesis regards the chaperones as unfoldases or holdases [37], in that their primary function is to rescue a misfolded
or aggregated protein substrate and to hold it in an unfolded state. Upon release from the chaperones, the protein
molecule has a certain probability of folding into its native structure [38]. Models based on this hypothesis provide
an explanation of how ATP-driven chaperones accelerate the folding of the substrates to their inherently stable native
structures, but they do not provide an explicit mechanism for the chaperones to transfer the chemical energy from ATP
hydrolysis into the folding free energy of the substrate protein. It has been proposed that the ATP energy is used by the
chaperones to achieve ultra-affinity in substrate binding [36].

It is often unclear whether a model will imply non-equilibrium protein folding (i.e. g > 1), when microscopic
reversibility [31, 39] is rigorously enforced. Based on thermodynamic principles, I have previously established one
requirement of non-equilibrium protein folding: the substrate protein must undergo a conformational change when it is
bound to the chaperone [31]. Supported by biochemical and structural evidence [40–42], this is a key assumption in my
models of chaperone-mediated protein folding that couple the conformational dynamics of the protein substrate with
the ATP-driven, open-close cycle of the chaperones (Fig. 1).

In this work, I introduce an additional requirement that an ATP-driven chaperone must satisfy to perform non-equilibrium
protein folding. Specifically, I demonstrate mathematically that an ATP-driven chaperone must break at least one
of the four kinetic symmetry conditions (Conditions 1–4 in Sec. 3.1) to use the energy from ATP hydrolysis for
out-of-equilibrium stabilization of substrate proteins in their native structures. As discussed below, Hsp70, Hsp90,
and GroEL/GroES each breaks a different subset of the symmetry conditions, thus they use different mechanisms to
perform non-equilibrium folding. Despite the difference in their mechanistic details, I present a unifying principle by
which symmetry breaking translates into non-equilibrium folding to the native structures.

In addition, I derive an upper bound on the extent to which an ATP-driven chaperone can elevate the native fraction of a
substrate above its chaperone-free equilibrium value (Eqn. 56). My results suggest that for substantial non-equilibrium
protein folding (i.e. g ≫ 1) to occur, the chaperone—with the possible exception of chaperonins such as GroEL/GroES—
must bind to an unstable intermediate conformation of the substrate, and the substrate protein must fold slowly on its
own.

Whether Anfinsen’s hypothesis holds true for an individual protein can be experimentally tested by comparing the
protein’s activity in the presence and in the absence of functional ATP-driven chaperones; I have previously proposed
new experiments that may provide such tests on Hsp70- and Hsp90-mediated folding [30, 31]. In this work, I propose
a potential proteomics-level experiment that may help identify proteins that depend on ATP-driven chaperones for
maintenance of their native structures.
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Figure 1: A mechanistic model of chaperone-mediated non-equilibrium protein folding that couples the state cycle of
the chaperone and the conformational dynamics of its substrate. The chaperone undergoes a cycle of open and closed
conformations, driven by ATP hydrolysis and nucleotide exchange. The protein substrate can transition among four
classes of conformations: Misfolded (M ), Misfold-tending (U ), Native-tending (F ), and Native (N). The lengths of
the reaction arrows signify the corresponding reaction rates. The red arrows indicate the predominant folding pathway.

My models of non-equilibrium protein folding imply that the native structures of some proteins may be shaped by the
chaperone-mediated folding pathways. They raise the possibility of discovering natural proteins—and engineering
novel proteins—that adopt different conformations in the presence and absence of the chaperones.

1.1 Assumptions and notations

To facilitate the exposition, I summarize the assumptions and notations in my model as follows.

• The substrate protein can convert among a set of conformations S, both when it is free in solution and when
it is bound to the chaperone. I will use M to denote the misfolded/aggregated conformation and N the
native conformation. In addition, I will consider two classes of intermediate conformations: the unfolded and
misfold-tending (or aggregation-tending) conformation U , and the non-native but native-tending conformation
F . To avoid a proliferation of symbols and to underscore the mechanistic commonality shared by protein
folding and activation, in the discussion of kinase activation, I will use M to denote the inactive conformation,
N the active conformation, U the inactive-tending conformation, and F the active-tending conformation.

• The chaperone can transition among a set of states I, each state i characterized by its conformational state (e.g.
open or closed) and the numbers and the types (ATP vs ADP) of bound nucleotides.

My model includes the following reactions:

• The substrate in conformation S binds to the chaperone in state i with the association rate constant ka,Si and
the dissociation rate constant kd,Si:

S +Hi

ka,Si−−−⇀↽−−−
kd,Si

SHi (2)

• The free substrate in solution converts between conformation S and conformation S′:

S
kS→S′−−−−⇀↽−−−−
kS′→S

S′ (3)

The corresponding conformational equilibrium constant is

KSS′ =
kS→S′

kS′→S
(4)
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• The substrate bound to the chaperone in state i converts between conformation S and conformation S′:

SHi

kS→S′,i−−−−−⇀↽−−−−−
kS′→S,i

S′Hi (5)

• The chaperone transitions between state i and state j when it is bound to a substrate in conformation S:

SHi

kS,i→j−−−−⇀↽−−−−
kS,j→i

SHj (6)

2 Methods

2.1 Proof that symmetry breaking is required for non-equilibrium protein folding

I will show that under the symmetry conditions (Conditions 1–4 in Sec. 3.1), the steady state concentrations of the
substrate satisfies, for any pair of conformations S and S′,

kS→S′ [S] = kS′→S [S
′] ⇐⇒ [S′]

[S]
=

kS→S′

kS′→S
= KSS′ (7)

where [S] (or [S′]) is the concentration of the free substrate in conformation S (or S′). Thus the steady state ratio
[S′]/[S] is unchanged from that in the chaperone-free equilibrium [S′]eq/[S]eq = KSS′ for any pair of conformations
S and S′, including [N ]/[M ] = [N ]eq/[M ]eq, and the chaperone is unable to increase the native concentration of the
substrate above that in the equilibrium.

Let [Hi] be the concentration of the chaperone in state i, and [SHi] the concentration of the substrate in conformation
S bound to the chaperone in state i. The steady state condition for the reactions in Eqn. 2, 3, 5, and 6 is

0 =
d[S]

dt
=

∑
i

(kd,Si[SHi]− ka,Si[Hi][S]) +
∑
S′

(kS′→S [S
′]− kS→S′ [S])

0 =
d[SHi]

dt
= ka,Si[Hi][S]− kd,Si[SHi] +

∑
j ̸=i

(kS,j→i[SHj ]− kS,i→j [SHi])

+
∑
S′

(kS′→S,i[S
′Hi]− kS→S′,i[SHi]) (8)

According to Condition 1, the ratio ka,S′i/ka,Si does not depend on i. I denote this ratio as

ka,S′i

ka,Si
= γSS′K−1

SS′ (9)

where γSS′ is a number that does not depend on i.

Consider a hypothetical, restricted system in which the substrate bound to the chaperone cannot change conformations
(i.e., setting kS→S′,i = 0 for all i and all pairs of S and S′ in Eqn. 8). Because the reaction S ⇌ S′ is not part of any
energy consuming cycle in this restricted system, [S′]/[S] = KSS′ [31]. Let {[S]}

⋃
{[SHi]|i ∈ I} be the steady state

concentrations of the substrate in conformation S in this restricted system, I will show that

[S′] = KSS′ [S] (10)
[S′Hi] = γSS′ [SHi] (11)

are the steady state concentrations of the substrate in conformation S′, and that [SHi] and [S′Hi] satisfy

kS→S′,i[SHi]− kS′→S,i[S
′Hi] = 0 ∀i ∈ I (12)

for the original kS→S′,i > 0 and kS′→S,i > 0. Thus the steady state concentrations of the restricted system are also the
solutions to the original steady state condition in Eqn. 8, and Eqn. 7 holds (it is equivalent to Eqn. 10).

4

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.05.21.492947doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.21.492947
http://creativecommons.org/licenses/by-nd/4.0/


Non-equilibrium protein folding A PREPRINT

To prove Eqn. 12, consider first an open state i. Thermodynamic cycle closure in the following reaction cycle (which
does not consume chemical energy because the chaperone does not change state),

S
kS→S′−−−−⇀↽−−−−
kS′→S

S′

S′ +Hi

ka,S′i−−−−⇀↽−−−−
kd,S′i

S′Hi

S′Hi

kS′→S,i−−−−−⇀↽−−−−−
kS→S′,i

SHi

SHi

kd,Si−−−⇀↽−−−
ka,Si

S +Hi (13)

implies that
kS′→S,i

kS→S′,i

ka,S′i

kd,S′i

kd,Si

ka,Si
KSS′ = 1 (14)

⇐⇒ kS→S′,i = kS′→S,iKSS′
ka,S′i

ka,Si

kd,Si

kd,S′i
= kS′→S,iγSS′ (Eqn.9 and 37)

=⇒ kS′→S,i[S
′Hi]− kS→S′,i[SHi]

= [SHi] (kS′→S,iγSS′ − kS→S′,i) (Eqn. 11)
= 0 (15)

If i is a closed state such that ka,Si = ka,S′i = kd,Si = kd,S′i = 0, Eqn. 14 no longer holds. According to Condition 4,
however, the chaperone can reversibly transition between i and an open state j without the consumption of chemical
energy, and according to Condition 3, the transition rates between i and j do not depend on the conformational state of
the bound substrate, i.e.

kS′,i→j

kS,i→j
=

kS′,j→i

kS,j→i
= 1 (16)

Thus thermodynamic cycle closure in the following reversible reaction cycle

S
kS→S′−−−−⇀↽−−−−
kS′→S

S′

S′ +Hj

ka,S′j−−−−⇀↽−−−−
kd,S′j

S′Hj

S′Hj

kS′,j→i−−−−−⇀↽−−−−−
kS′,i→j

S′Hi

S′Hi

kS′→S,i−−−−−⇀↽−−−−−
kS→S′,i

SHi

SHi

kS,i→j−−−−⇀↽−−−−
kS,j→i

SHj

SHj

kd,Sj−−−⇀↽−−−
ka,Sj

S +Hj (17)

implies
kS′→S,i

kS→S′,i

kS,i→j

kS,j→i

kS′,j→i

kS′,i→j

ka,S′j

kd,S′j

kd,Sj

ka,Sj
KSS′ = 1 (18)

=⇒ kS′→S,i

kS→S′,i

ka,S′j

ka,Sj

kd,Sj

kd,S′j
KSS′ = 1 (Eqn. 16)

=⇒ kS′→S,i

kS→S′,i
γSS′ = 1 (Eqn. 9 and 37)

=⇒ kS′→S,i[S
′Hi]− kS→S′,i[SHi]

= [SHi] (kS′→S,iγSS′ − kS→S′,i) (Eqn. 11)
= 0 (19)
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U
kU→M−−−−⇀↽−−−−
kM→U

M Misfolding and aggregation; KM = kU→M/kM→U

U
kU→F−−−−⇀↽−−−−
kF→U

F Transition between intermediate conformations; KF = kU→F /kF→U

F
kF→N−−−−⇀↽−−−−
kN→F

N Folding to native structure; KN = kF→N/kN→F

S +O
ka,S−−−⇀↽−−−
kd,S

SO Substrate in S = U,F conformations binding to the open chaperone

SO
kS,O→C−−−−−⇀↽−−−−−
kS,C→O

SC Transition of chaperone between open and close states

UH
kU→F,H−−−−−⇀↽−−−−−
kF→U,H

FH Conversion of protein bound to chaperone in H = C,O states

Table 1: The reactions in chaperone-mediated protein folding. These reactions are depicted in Fig. 1. ATP hydrolysis
and nucleotide exchange occur and inject chemical energy in the chaperone cycle.

Thus Eqn. 12 is true for both open and closed states.

To prove that {[S′]}
⋃
{[S′Hi]|i ∈ I} in Eqn. 10 and 11 satisfy the steady state condition Eqn. 8 (swapping S′ and

S), I only need to show that, for the reactions in Eqn. 2 and 6, the flux in each reaction involving the substrate in
conformation S′ is γSS′ times the flux of the corresponding reaction involving the substrate in conformation S, because
{[S]}

⋃
{[SHi]|i ∈ I} satisfy Eqn. 8 and the reactions in Eqn. 3 and 5 have zero flux (Eqn. 10 and 12).

Let JS,ij = kS,i→j [SHi] − kS,j→i[SHj ] be the reactive flux of the state transition for the chaperone bound to a
substrate in conformation S (Eqn. 6) and Ja

Si = ka,Si[Hi][S] − kd,Si[SHi] be the reactive flux of the substrate in
conformation S binding to the chaperone in state i (Eqn. 2). The corresponding reactive fluxes for the substrate in
conformation S′ are

JS′,ij = kS′,i→j [S
′Hi]− kS′,j→i[S

′Hj ]

= γSS′ (kS,i→j [SHi]− kS,j→i[SHj ]) (Eqn. 11 and Condition 3)
= γSS′JS,ij (20)

and

Ja
S′i = ka,S′i[Hi][S

′]− kd,S′i[S
′Hi]

= ka,S′i[Hi]KSS′ [S]− kd,SiγSS′ [SHi] ( Eqn. 10, 11, and 37 )

= γSS′ (ka,Si[Hi][S]− kd,Si[SHi]) (Eqn. 9)
= γSS′Ja

Si (21)

Q.E.D.

2.2 Derivation of the upper bound of the native concentration at the steady state of non-equilibrium folding

To derive the upper bound in Eqn. 51, consider the reactions in Table 1. These are simplifications of the reactions in
Eqn. 2, 3, 5, and 6: only a substrate in intermediate conformations S = U,F can bind to the chaperone (see Sec. 3.2.1),
and only two chaperone states, open (O) and closed (C), are considered. The result holds as long as the substrate binds
to all chaperone open states with the same association and dissociation rate constants, i.e.

ka,Si = ka,S
kd,Si = kd,S ∀ open state i (22)

Let
JFU = kF→U [F ]− kU→F [U ] (23)

be the reactive flux from F to U . At the steady state, there is no net flux into or out of any molecular species, implying

JFU = ka,U [U ][O]− kd,U [UO]

= kd,F [FO]− ka,F [F ][O] (24)
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Because no external chemical energy is consumed in the reaction cycle of

U +O ⇌ UO ⇌ FO ⇌ F +O ⇌ U +O (25)

we have
kF→U,O

kU→F,O
· ka,F
kd,F

· kd,U
ka,U

· kU→F

kF→U
= 1 (26)

Thus
kF→U,O[FO]

kU→F,O[UO]
=

kF→U,O

kU→F,O
· ka,F
kd,F

· kd,U
ka,U

· kU→F

kF→U

· kd,F [FO]

ka,F [F ][O]
· ka,U [U ][O]

kd,U [UO]
· kF→U [F ]

kU→F [U ]

=
kd,F [FO]

kd,F [F ][O]
· ka,U [U ][O]

kd,U [UO]
· kF→U [F ]

kU→F [U ]
(27)

If JFU in Eqn. 23 and 24 is positive, all three ratios on the right hand side of Eqn. 27 are greater than 1; if JFU < 0,
they are all smaller than 1. Thus the reactive flux

JUF,O = kU→F,O[UO]− kF→U,O[FO] (28)

must be of the opposite sign of JFU .

If the chaperone drives the substrate toward the native structure, we have [F ]/[U ] > KF = kU→F /kF→U , implying
JFU > 0 and JUF,O < 0. Because the flux from conformation F to U in free substrates must balance the total flux
from conformation U to F in chaperone-bound substrates, the steady state reactive flux of the reaction UC ⇌ FC

JUF,C = kU→F,C [UC]− kF→U,C [FC] (29)

satisfies
JFU = JUF,C + JUF,O < JUF,C (30)

Thus

kF→U [F ]− kU→F [U ] < kU→F,C [UC]− kF→U,C [FC]

=⇒ kF→U [F ] < kU→F

(
[U ] +

kU→F,C

kU→F
[UC]

)
≡ kU→F ([U ] + α[UC])

=⇒ [F ] < KF ·max(1, α) · ([U ] + [UC]) (31)

We also have, per Eqn. 23 and 24,

JFU = kF→U [F ]− kU→F [U ] = ka,U [O][U ]− kd,U [UO] < ka,U [O][U ]

=⇒ (kU→F + ka,U [O])[U ] > kF→U [F ] (32)

At the steady state, there is no net flux in M ⇌ U or in F ⇌ N , thus

[M ] = KM [U ]

[N ] = KN [F ] (33)

Because
[M ] + [U ] + [UC] + [F ] + [N ] < P0 (34)

where P0 is the total protein concentration, we have

P0 > (K−1
F max(1, α)−1 + 1)[F ] + [M ] + [N ] ( Eq. 31)

= (K−1
F max(1, α)−1 + 1)[F ] +KM [U ] +KN [F ]

> (K−1
F max(1, α)−1 + 1)[F ] +KM

kF→U

kU→F + ka,U [O]
[F ] + kN [F ] ( Eq. 32) (35)

Thus

[F ] <

(
KMK−1

F

(
1 +

ka,U [O]

kU→F

)−1

+K−1
F max(1, α)−1 + 1 +KN

)−1

P0 (36)

and plugging in Eqn. 33 yields the upper bound in Eqn. 51.
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3 Results

3.1 Non-equilibrium folding requires kinetic symmetry breaking

I present a set of four symmetry conditions, if all satisfied, forbids an ATP-driven chaperone from elevating the native
concentration [N ] of its substrate above the chaperone-free equilibrium concentration [N ]eq . A chaperone must break
at least one of these symmetry conditions to be able to convert chemical energy into non-equilibrium stabilization of
the native structure of the substrate. As I discuss below, different chaperones break different symmetry conditions,
corresponding to different mechanisms of non-equilibrium protein folding and activation. The symmetry conditions are
as follows:

1. The ratio of association rate constants ka,S′i/ka,Si does not depend on the chaperone state i for all pair of
substrate conformations S and S′ and for all open state i.

2. The dissociation rate constant kd,Si does not depend on the substrate conformation S, i.e.

kd,Si = kd,i (37)

for all open state i and for all conformation S.

3. The transition rates between chaperone states is independent of the conformation of the bound substrate, i.e.
kS,i→j does not depend on S for all pair (i, j).

4. For every closed state i of the chaperone, there is an open state j, such that the chaperone can reversibly
transition between states j and i without consuming chemical energy.

In Sec. 2.1 of Materials and Methods, I prove that if these four symmetry conditions are all satisfied, the ratio
between the concentrations of the free substrate in any two conformations—say, S and S′—at the chaperone-mediated
steady state is unchanged from that in the chaperone-free equilibrium, i.e. [S′]/[S] = [S′]eq/[S]eq, which implies
[N ]/[M ] = [N ]eq/[M ]eq. Because chaperone-binding reduces the total concentration of the free substrate, the native
concentration of the free substrate will be lower in the presence of chaperones than in the absence of chaperones, i.e.
g < 1. (As noted in the Introduction, I only consider non-equilibrium folding to a free native protein.)

The above results regarding symmetry conditions hold for an arbitrary number of substrate conformations. For simplicity,
I will assume only four representative conformations in the substrate, S = {M ≡ misfolded, U ≡ misfold-tending, F ≡
native-tending, N ≡ native}, in the following discussion.

3.1.1 Requisites for breaking the binding and unbinding symmetries (Conditions 1 and 2)

The binding symmetry, Condition 1, is trivially satisfied if there is only one open chaperone state to which the substrate
binds, or if the substrate binding rate does not depend on the chaperone state, i.e. ka,Si = ka,S . Note that the substrate
in different conformations S may bind to the chaperone at different rates ka,S , e.g. the substrate in an unfolded structure
may bind to the chaperone faster than the substrate in a near-native structure, which is a common assumption in models
of chaperone-mediated folding [34], but this conformation-selective binding alone does not permit non-equilibrium
folding (defined by g > 1).

Condition 1 is approximately satisfied if the substrate in different conformations and the chaperone in different states
bind using the same interface. In this case, the association rate constant is approximately

ka,Si = pS × fi × ka (38)

where pS is the probability that the binding surface on the substrate becomes accessible in conformation S, fi is the
probability that the binding surface on the chaperone is accessible in state i, and ka is the intrinsic binding rate between
the two binding surfaces once exposed (Eqn. 38 assumes that the conformational fluctuations exposing and occluding
the binding surfaces are fast compared to the overall binding). The ratio

ka,S′i

ka,Si
=

pS′

pS
(39)

thus satisfies Condition 1.

Condition 1 is violated if the substrate binds to different binding surfaces on the chaperone depending on both the
substrate conformation and the chaperone (open) state. This requires that the chaperone possesses multiple open states
in which different binding surfaces are exposed. There has not been experimental demonstration of any ATP-driven
chaperone breaking this symmetry condition.
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The unbinding symmetry, Condition 2, is approximately satisfied if the chaperone binds to the substrate in different
conformations using the same binding interface. The symmetry is broken if the substrate in different conformations
form different protein-protein interactions with the chaperone.

In one limit of such binding interface change, the substrate in the misfold-tending conformation U with a slow
dissociation rate kd,U may bind to the open chaperone and, after the chaperone closes, change to the native-tending
conformation F in which its chaperone-binding surface is lost, so that when the chaperone opens again after the ATP-
driven cycle the substrate unbinds rapidly with a fast dissociation rate kd,F ≫ kd,U . This may happen in chaperones
that can retain a substrate without a contact interface while allowing the bound substrate to change conformation from
U to F . Hsp90 and GroEL/ES are two such examples: Hsp90 clamps its client kinase between its closed homo dimer
with a central hole that may accommodate substantial conformational changes in the client [31, 42], and GroEL/ES
holds the substrate in its cavity inside which the substrate may fold [43]. These two chaperones may break Condition 2
by this mechanism and thus perform non-equilibrium protein folding.

Cochaperones that simultaneously bind to the chaperone and to the misfold-tending, but not the native-tending,
conformation of the substrate may help break Condition 2. When the substrate in the misfold-tending conformation is
bound to the cochaperone, the substrate-cochaperone complex together has an extended chaperone-binding surface with
contributions from both the substrate and the cochaperone, which decreases the substrate’s dissociation rate from the
chaperone. Binding to and unbinding from the cochaperone, a substrate in the misfold-tending conformation has, in
effect, a slower dissociation rate than the substrate in the native-tending conformation. One case in point may be that of
Cdc37-assisted kinase activation by Hsp90, as discussed in the following.

3.1.2 Cdc37 enables Hsp90 to differentiate between the active-tending and inactive-tending conformations of a
client kinase

Cdc37 is a cochaperone that specializes in assisting Hsp90 to activate client kinases [32, 44, 45]. Experimental evidence
suggests that Cdc37 binds to a locally unfolded conformation of the client kinase [46], and that Cdc37 can simultaneously
bind to a client kinase and Hsp90 [42,47,48]. Based on the cryo-EM structure of the Hsp90-kinase-Cdc37 complex [42]
(Fig. 2A), I have previously proposed a simple mechanism for Cdc37 to distinguish between the inactive-tending
(U ) and active-tending (F ) kinase conformations, binding to the former with higher affinity than to the latter: in the
inactive-tending conformation, the disordered DFG-loop of the kinase does not interfere with Cdc37 binding, whereas
in the active-tending conformation, the DFG-loop may be ordered into a configuration that results in steric clashes with
Cdc37 [31] (Fig. 2B,C). Thus, Cdc37 can help Hsp90 retain an inactive-tending client more than an active-tending
client, and the effective rate of dissociation from Hsp90 is higher for a client in the active-tending conformation than for
a client in the inactive-tending conformation (Fig. 2D,E), breaking symmetry Condition 2.

This mechanism implies the following reaction path of Hsp90-mediated kinase activation:

U
+Cdc37−−−−−⇀↽−−−−− U · Cdc37

+Hsp90open−−−−−−−⇀↽−−−−−−− Hsp90open · U · Cdc37 ⇌ Hsp90closed · U · Cdc37

−Cdc37−−−−−⇀↽−−−−− Hsp90closed · U ⇌ Hsp90closed · F
ATP→ADP+Pi−−−−−−−−−−⇀↽−−−−−−−−−− Hsp90open · F

−Hsp90open−−−−−−−⇀↽−−−−−−− F

(40)

Clearly, this mechanism requires that Cdc37 can dissociate from the Hsp90-kinase complex after Hsp90 closes. This
requirement is indeed consistent with the observed structure of the Hsp90-kinase-Cdc37 complex: the closed Hsp90
clamps the client kinase between its N- and C-lobes to prevent the kinase from unbinding, but Cdc37 wraps around the
exterior of Hsp90 so that it can disengage from the closed Hsp90 (Fig. 2A).

Both the N-terminal domain (NTD) and the C-terminal domain (CTD) of Cdc37 bind to the partially unfolded
kinase [49, 50]. Individually NTD and CTD bind to the kinase with low affinities [50] (on the order of 100 µM), but
the bipartite interaction between the complete Cdc37 and the kinase results in sub-micromolar affinity. Based on the
cryo-EM structure of the Hsp90-kinase-Cdc37 complex, the bipartite interaction may lead to the encirclement of a
Hsp90 protomer by the kinase-Cdc37 binary complex, thus preventing the kinase from slipping off Hsp90 (Fig. 2D).
As discussed above, the NTD of Cdc37 may not bind to the active-tending conformation of the kinase. This not only
substantially diminishes the affinity of Cdc37 to the kinase (CTD alone binds with over two-hundred-fold lower affinity),
it also breaks the encirclement of the Hsp90 protomer by the Cdc37-kinase binary complex, potentially allowing the
latter to dissociate rapidly from Hsp90 (Fig. 2F), followed by the conversion of the kinase to the active conformation.

A puzzling observation is that Cdc37 binds to both the inactive B-Raf kinase and the active B-Raf mutant B-RafV600E

(which has the valine at position 600 mutated to a glutamate) with similar affinities [51]: KD = 1.0 µM for the wild-
type B-Raf and KD = 0.4 µM for the mutant B-RafV600E [50]. This can be explained by the above proposal that Cdc37
binds with high affinity to the inactive-tending conformation of the kinase but with comparatively negligible affinity to
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Figure 2: Cochaperone Cdc37 enables a client kinase in different conformations to unbind from Hsp90 at different
rates. A. The Hsp90-Cdk4-Cdc37 complex structure (PDB: 5FWM). The closed Hsp90 homo dimer clamps a partially
unfolded Cdk4 kinase, and Cdc37 simultaneously binds to Cdk4 and Hsp90. B. Cdc37 can bind to the kinase in
the inactive-tending conformation. C. Steric clashes prevent Cdc37 from binding to the kinase in the active-tending
conformation, due to its DFG-loop configuration and other conformational features. D. Cdc37 helps to retain an
inactive-tending kinase molecule inside the open Hsp90, resulting in slow unbinding of the kinase from the Hsp90. The
bipartite interaction by NTD and CTD of Cdc37 with the kinase may result in the encirclement of a Hsp90 protomer by
the Cdc37-kinase complex, preventing the latter from slipping off Hsp90. E. Without Cdc37, an active-tending kinase
molecule unbinds rapidly from the open Hsp90. F. Alternatively, the loss of the interaction between the NTD of Cdc37
and the C-lobe of an active-tending kinase breaks the bipartite interaction between Cdc37 and the kinase, resulting in
the release of the Cdc37-kinase complex from Hsp90.

the other conformations. Consider the conformational equilibrium among the inactive (M ), the inactive-tending (U ),
the active-tending (F ), and the active (N ) conformations :

M
K−1

M−−−⇀↽−−− U
KF−−⇀↽−− F

KN−−⇀↽−− N (41)

If Cdc37 binds to the inactive-tending conformation U with a conformation-specific dissociation constant K∗
D, the

apparent experimentally measured dissociation constant of Cdc37 binding to the kinase is

KD =
[P ][Cdc37]

[U · Cdc37]

=
[P ]

[U ]
· [U ][Cdc37]

[U · Cdc37]

=
KMK−1

F +K−1
F + 1 +KN

K−1
F

·K∗
D (42)

where P represents the kinase in any conformation.

The equilibrium active fraction, on the other hand, is

[N ]eq/P0 =
KN

KMK−1
F +K−1

F + 1 +KN

(43)
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KM KF KN K∗
D (µM) [N ]eq/P0 KD (µM)

wild-type 100 0.1 80 0.0092 0.07 1.0
V600E 10.24 0.4 80 0.0092 0.73 0.4

Table 2: A hypothetical set of equilibrium constants that are consistent with the measured Cdc37 affinities of the
wild-type B-raf and the V600E mutant. The dissociation constants are similar between the inactive wild-type and the
active mutant.

Thus it is possible for the wild-type and the mutant kinase to have very different active fractions [N ]eq/P0 yet similar
KD’s. For example, the hypothetical sets of equilibrium constants in Table. 2 would be consistent with the observed
Cdc37 affinities of the wild-type B-Raf and the V600E mutant and with the mechanistic hypothesis [52] that the
mutation destablizes the inactive and—less so—the inactive-tending conformation (thus decreasing KM and increasing
KF ).

3.1.3 Cochaperone Hsp40 enables differential ATP hydrolysis by Hsp70 bound to a substrate in different
conformations

Hsp70-mediated protein folding is an example of breaking symmetry Condition 3. The Hsp70 chaperones, such as
the bacterial DnaK, adopts an open conformation when its nucleotide binding domain (NBD) is occupied by ATP.
Upon ATP hydrolysis, Hsp70 changes to a closed conformation [53, 54] (Fig. 3A). By itself, Hsp70 has low basal ATP
hydrolysis rate, but the J domain from the Hsp40 cochaperones—also known as J proteins—can stimulate Hsp70 and
drastically increase its ATP hydrolysis rate [55, 56].

Both Hsp40 and Hsp70 bind to exposed hydrophobic sites on a substrate protein [57, 58] (Fig. 3A-C). Consequently, a
substrate with multiple exposed hydrophobic sites may simultaneously bind to an Hsp70 and an Hsp40. This induces
the proximity between the chaperone and the cochaperone, resulting in accelerated ATP hydrolysis in Hsp70 and its
transition to the closed state. Because a substrate in the misfold-tending conformation often exposes more hydrophobic
sites than a substrate in the native-tending conformation [59], an Hsp70 bound to the former is more likely to be
stimulated by a nearby Hsp40 bound to the same substrate molecule than an Hsp70 bound to the latter. By recruiting
Hsp40 to accelerate the ATP hydrolysis in Hsp70, a substrate in the misfold-tending conformation induces a higher rate
of transition by Hsp70 from the open state to the closed state than a substrate in the native-tending conformation, i.e.
kU,open→closed > kF,open→closed, breaking symmetry Condition 3 (Fig. 3D,E).

As a result of this symmetry breaking, an Hsp70 bound to a substrate in the misfold-tending conformation is more
likely to be closed than one bound to a substrate in the native-tending conformation. Thus, a substrate is on average
more quickly released from the Hsp70 if it is in the native-tending conformation than if it is in the misfold-tending
conformation. This difference biases the substrate toward the native conformation [30].

3.1.4 Hsp70 and Hsp90 perform non-equilibrium folding by preferentially releasing substrate proteins in
native-tending conformations

The cochaperone Cdc37 helps break symmetry Condition 2 in Hsp90-mediated kinase activation. The cochaperone
Hsp40 helps break symmetry Condition 3 in Hsp70-mediated protein folding. Despite breaking different symmetries,
Hsp70 and Hsp90 share the same kinetic consequence: both chaperones release a bound substrate in the native-tending
(F ) conformation faster than a bound substrate in the misfold-tending (U ) conformation.

To see how this kinetic asymmetry promotes the native concentration, consider first a system in which the symmetry
conditions are satisfied (Fig. 4A). A substrate in the U conformation binds to the chaperone faster than a substrate in
the F conformation. As a result, the reactive flux through the ATP-driven cycle of a chaperone bound to a substrate in
the U conformation is higher than that through the cycle of a chaperone bound to a substrate in the F conformation.
But kinetic symmetry ensures that, at the steady state, the flux of U binding to the chaperone is the same as the flux of
U unbinding from the chaperone, the same holds true for F binding to and unbinding from the chaperone, and there is
no net flux between U and F . Under the symmetry conditions, there are two parallel, independent chaperone cycles
with respective reactive fluxes:

JS+Hsp = (S → S ·Hsp → S · {states of Hsp · · · } → S ·Hsp → S) for S = U,F, (44)

and
JU+Hsp > JF+Hsp (45)

But there is no net flux between U and F :

JUF = kU→F [U ]− kF→U [F ] = 0 (46)
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Figure 3: Cochaperone Hsp40 enables Hsp70 to change the balance between its open and closed states in response
to the conformation of a bound substrate. A. The ATP-bound, open state of Hsp70, which allows rapid binding and
unbinding of the substrate. B. The ADP-bound, closed state of Hsp70, with slow binding and unbinding of the substrate.
SBD: substrate binding domain. C. The structure of the Hsp40 cochaperone, including CTD that can bind to exposed
hydrophobic sites on a substrate and the J domain that can stimulate the ATP hydrolysis of Hsp70. D. An Hsp70 bound
to a misfold-tending substrate molecule with many exposed hydrophobic sites is likely to be in proximity to an Hsp40
bound to the same substrate molecule, thus the Hsp70 will be stimulated in ATP hydrolysis, which drives the Hsp70 to
its ADP-bound, closed state. E. An Hsp70 bound to a native-tending substrate molecule with few exposed hydrophobic
sites is unlikely to have a nearby Hsp40 and thus unlikely to be stimulated in ATP hydrolysis, and nucleotide exchange
drives the Hsp70 toward its ATP-bound, open state.

And the ratio between F and U is unchanged from the chaperone-free equilibrium:

[F ]

[U ]
=

kU→F

kF→U
= KUF =

[F ]eq
[U ]eq

(47)

Symmetry breaking disrupts the independence between this pair of chaperone cycles. The release of a substrate in the
U conformation from the chaperone is inhibited: in the case of Hsp90, Cdc37 helps the chaperone retain the bound
client kinase; in the case of Hsp70, Hsp40-stimulated ATP hydrolysis and closure in Hsp70 diminishes the reactive flux
to re-open the chaperone (Fig. 4B). This forces part of the reactive flux in JU+HSP after the binding of the substrate to
be diverted into the reactive flux of conformation conversion in the bound substrate:

JU ·Hsp→F ·Hsp > 0 (48)

This in turn leads to a corresponding increase in the reactive flux of the chaperone’s release of the substrate in the F
conformation, which increases [F ] such that

[F ]

[U ]
>

[F ]eq
[U ]eq

(49)

Thus symmetry breaking biases the substrate toward the native-tending conformation and elevates the native concentra-
tion.
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Figure 4: Reactive flux in chaperone-mediated non-equilibrium protein folding. A. Under the symmetry conditions, there
are two independent ATP-driven chaperone cycles: one with a higher reactive flux for a substrate in the misfold-tending
(U ) conformation (left) and one with a lower reactive flux for a substrate in the native-tending (F ) conformation (right).
There is no net flux between the substrate’s two conformations, and the ratio [F ]/[U ] is the same as its chaperone-free
equilibrium value. B. Cochaperones break the kinetic symmetry. The release of a substrate in the U conformation
from the chaperone is inhibited: Cdc37 assists Hsp90 to retain the substrate and Hsp40 stimulates ATP hydrolysis
and closure of Hsp70. This restricts the reactive flux to release a substrate in the U conformation, forcing a partial
diversion of the flux to the conformation conversion from U · Hsp to F · Hsp and resulting in a net reactive flux of
U → U ·Hsp → F ·Hsp → F → U (red cycle), which elevates the ratio [F ]/[U ] above its chaperone-free equilibrium
value.

3.1.5 The potential role of sequential hydrolyses of multiple ATPs in the chaperone cycle

Breaking symmetry Condition 4 permits a net reactive flux along the following path that promotes the native-tending
conformation F over the misfold-tending conformation U :

U
+Hspopen−−−−−−→ U ·Hspopen|closed

ATP→ADP+Pi−−−−−−−−−−→ U ·Hspclosed → F ·Hspclosed

ATP→ADP+Pi−−−−−−−−−−→ F ·Hspopen
−Hspopen−−−−−−→ F (50)

A non-zero net flux of U ·Hspclosed → F ·Hspclosed does not violate thermodynamic cycle closure in this case because
the reaction cycle in Eqn. 17 is no longer reversible—ATP hydrolysis occurs and chemical energy is consumed in that
cycle—and thus Eqn. 18 and 19 no longer hold.

To break symmetry Condition 4, at least one closed state of the chaperone must be separated from all the open states by
ATP hydrolysis. This requires at least two ATP to be hydrolyzed sequentially—not synchronously—per chaperone cycle,
and the substrate has to change conformation between two ATP hydrolyses. Examples include Hsp90 that hydrolyzes
two ATP molecules sequentially in its cycle [60] and the group II chaperonins in eukaryotes, such as TRiC/CCT, that
hydrolyzes up to eight ATPs sequentially [61, 62]. The role of such sequential ATP hydrolyses—and the consequent
symmetry breaking of Condition 4—in non-equilibrium protein folding is an open question.
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3.2 An upper bound of non-equilibrium protein folding and its implications

Having established the symmetry breaking requirements for non-equilibrium folding, I now derive an upper bound on
the folding capacity of an ATP-driven chaperone. The key result is

[N ] <
KN

KMK−1
F

(
1 +

ka,U [O]
kU→F

)−1

+K−1
F max(1, α)−1 + 1 +KN

P0 (51)

where [O] is the concentration of free chaperone in the open state, the equilibrium constants KN , KM , KF , the kinetic
rate constants kU→F and ka,U , and their corresponding reactions are summarized in Table 1, and

α ≡ kU→F,C

kU→F
(52)

is an acceleration factor to indicate any potential rate change in conformation conversion when the substrate is bound to
the closed chaperone. The proof of Eqn. 51 is given in Sec. 2.2 of Methods and Materials.

Eqn. 51 gives a general upper bound applicable to any ATP-driven chaperone. The folding capacity of a specific type of
chaperone need to be calculated by detailed models [30, 31], but it cannot exceed that given by Eqn. 51. This result
allows an analysis of the common key factors in non-equilibrium folding without considering the mechanistic details of
specific chaperones.

Introducing a combined equilibrium constant for the reaction U
K̃F−−⇀↽−− (F +N)

K̃F ≡ [F ]eq + [N ]eq
[U ]eq

= (1 +KN )KF (53)

The upper bound in Eqn. 51 can be written as

[N ] <
1

KMK̃−1
F

(
1 +

ka,U [O]
kU→F

)−1

+ K̃−1
F max(1, α)−1 + 1

· KN

1 +KN
P0 (54)

Compare this to the native concentration in the chaperone-free equilibrium

[N ]eq =
KN

KMK−1
F +K−1

F + 1 +KN

P0

=
1

KMK̃−1
F + K̃−1

F + 1
· KN

1 +KN
P0 (55)

The non-equilibrium gain factor is thus bounded by

g =
[N ]

[N ]eq
<

KMK̃−1
F + K̃−1

F + 1

KMK̃−1
F

(
1 +

ka,U [O]
kU→F

)−1

+ K̃−1
F max(1, α)−1 + 1

(56)

3.2.1 Chaperones bind to unstable intermediate conformations of substrates to drive non-equilibrium folding

An implication of Eqn. 56 is that ATP-driven chaperones must bind to an intermediate unfolded conformation (U ) of the
substrate, not to the misfolded conformation (M ) itself, to perform non-equilibrium folding, unless the conformation
conversion of a substrate is accelerated when bound to the chaperone (i.e. kU→F,C > kU→F hence α > 1). This can
be demonstrated by contradiction. If the substrate does not have an intermediate misfold-tending conformation and the
chaperone directly binds to the misfolded conformation, i.e. M and U are the same, Eqn. 51 reduces to (by setting
KM = 0)

[N ] <
(
K̃−1

F max(1, α)−1 + 1
)−1

· KN

1 +KN
P0 (57)

and the upper bound of the non-equilibrium gain factor becomes

g <
K̃−1

F + 1

K̃−1
F max(1, α)−1 + 1

(58)
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In the absence of a mechanism for the substrate to accelerate its conformation conversion when it is bound to the
chaperone (α ≤ 1), g ≤ 1, the chaperone cannot elevate the native concentration.

To my knowledge, accelerated folding of protein substrates when bound to a chaperone has only been reported for the
GroEL/ES chaperonins [43, 63–67]. In general, steric hindrance from the chaperone is more likely to impede rather
than to accelerate conformation conversions in a bound substrate; this impedance was observed for the rhodanese
protein trapped in GroEL/GroES by a single-molecule experiment [68]. For Hsp90 and Hsp70, there has not been any
experimental demonstration that a substrate exhibits faster conformation conversions when bound to the chaperone than
when free in the solution. This suggests that chaperones, with the potential exceptions of chaperonins, must bind to
intermediate unfolded conformations of the substrate proteins to drive non-equilibrium protein folding.

Assuming α ≤ 1, the upper bound on the non-equilibrium gain factor becomes

g < gmax =
KM

(
K̃F + 1

)−1

+ 1

KM

(
K̃F + 1

)−1 (
1 +

ka,U [O]
kU→F

)−1

+ 1
(59)

For the gain factor to substantially exceed 1, the following must be true:

KM

(
K̃F + 1

)−1

≫ 1 =⇒ KM ≫ 1 (60)

Eqn. 60 implies that the intermediate conformation U to which the chaperone binds must be intrinsically unstable
and it will predominantly convert to the misfolded conformation M in the absence of the chaperone. This result is
intuitive: if the chaperone binds to a dominant conformation of the substrate, it will trap a substantial fraction of the
substrate and hinder its folding to the native structure. As a result, the chaperone will be unable to elevate the native
concentration. The difficulty to observe the chaperone-binding conformations in biophysical experiments [69] attests to
their transiency.

3.2.2 Chaperones stabilize the native structures of slow-folding proteins

Non-equilibrium folding also requires, as implied by Eqn. 59 and g ≫ 1,

ka,U [O]

kU→F
≫ 1 ⇐⇒ kU→F ≪ ka,U [O] (61)

Taken together, Eqn. 60 and 61 suggest that chaperones stabilize the native structures of slow-folding proteins. Assuming
the binding rate constant to be on the order of ka,U ∼ 106 /M/s, the spontaneous (i.e. without chaperones) refolding rate
of the protein, which is approximately K−1

M kU→F , should be much slower than 1 /s to admit of effective non-equilibrium
folding by chaperones at a concentration of [O] ∼ 1 µM.

3.2.3 ATP-driven chaperones buffer destabilizing mutations

About 18% of protein molecules in the cell harbor at least one missense mutation due to errors in translation [70]. In
addition, proteins incur mutations due to germline and somatic gene polymorphism [71]. Given that about 30-40%
of random substitutions disrupt protein functions [72, 73], most probably by loss-of-folding [74, 75], it is likely that
many cellular protein molecules have compromised thermal stability and the native structures of some will not be the
free energy minima. ATP-driven chaperones may buffer such destabilizing mutations [76, 77] and maintain the native
concentrations of these proteins by non-equilibrium folding [30].

The missense mutations may alter one or more of the transition rates and the equilibrium constants in protein folding
dynamics: e.g. it may decrease the thermal stability of the protein by increasing KM , decreasing kU→F or increasing
kF→U (hence decreasing KF = kU→F /kF→U ), or decreasing KN . Assuming α ≤ 1 as discussed above, the maximum
native concentration mediated by a chaperone is

[N ]max = gmax[N ]eq

=
1

KM (K̃F + 1)−1
(
1 + ka[O]

kU→F

)−1

+ 1

1

1 + K̃−1
F

KN

1 +KN
P0 (62)

Eqn. 62 suggests that the capacity of ATP-driven chaperones to buffer a destabilizing mutation depends on both the wild-
type substrate’s folding kinetics and how the mutation alters the kinetic parameters (Fig. 5). For instance, chaperones
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Figure 5: The capacity of ATP-driven chaperones to maintain elevated native fractions in response to destabilizing
mutations in a protein substrate. The kinetic parameters of the wild-type protein are KM = 102, KF = 10, KN = 102,
kU→F = 0.1s−1, and ka = 106M−1 · s−1; the concentration of the open chaperone is set to [O] = 1µM.

may be more effective in buffering mutations that slows down the transition from the misfold-tending conformation (U )
to the native-tending conformation (F )—i.e. decreasing kU→F by e.g. stabilizing the U conformation—than mutations
that destabilize the native state by decreasing KN . Such differential buffering may play a role in selecting tolerated
genetic variations and shaping their consequences in human disease [78].

4 Discussion

Breaking the symmetry conditions 1–4 is necessary but on its own insufficient for non-equilibrium folding. g > 1 often
requires both substantial deviation from the symmetry conditions and other enabling kinetic conditions, as exemplified
by Eqn. 56. Detailed mechanistic models [30, 31] are needed to quantitatively predict the extent of non-equilibrium
folding. Nonetheless, these symmetry conditions can help assess whether a proposed mechanism of chaperone function
will imply non-equilibrium folding.

Unlike equilibrium protein folding, the native yield of non-equilibrium protein folding depends not only on the
equilibrium constants but also on the kinetic parameters of the folding reactions and the chaperone cycle. The native
concentration of a substrate may change in response to the modulation of the step-wise kinetics of the chaperone
cycle [30, 31, 79] by cochaperones [80], by mutations [81, 82] and post-translational modifications [83, 84] in the
chaperones, and by pharmacological molecules [85]. Such modulations may be used by the cell to regulate proteostasis.
They may also offer therapeutic opportunities.

Given both the theoretical models and the experimental evidence suggesting that ATP-driven chaperones can stabilize
the native or active structures of substrate proteins out of the thermal equilibrium, Anfinsen’s hypothesis does not
need to be true for protein folding in cells. ATP-driven chaperones may not only kinetically accelerate the folding of
proteins to thermodynamically stable native structures, but also actively fold some proteins to native structures that are
thermodynamically unstable.

Most proteins have evolved to be marginally stable [86, 87]. If ATP-driven chaperones can indeed buffer destabilizing
mutations and maintain the native structures and functions of unstable mutants, as discussed in Sec. 3.2.3, it is then
plausible that the native structures of some proteins may have become thermodyanmically unstable as a consequence
of this chaperone-buffered evolution. They may not stay folded on their own, but depend on the energy-consuming
chaperones to maintain their native structures.

How many proteins in a cell take exception to Anfinsen’s hypothesis and depend on non-equilibrium folding by a
particular ATP-driven chaperone? Emerging proteomics techniques may help answer this question. For example,
cell lysates may be subject to proteolytic digestion [88] and the resulting products analyzed by mass spectrometry
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Figure 6: An ATP-driven chaperone (Hsp) may favor the protein folding pathway that exposes few cochaperone binding
sites and drive the protein to a different conformation (N ) than its most stable conformation (M ) in the absence of the
chaperone.

(MS), identifying proteins with permissible digestion sites, which approximately reflect their state of folding [89].
This proteolysis-MS assay may be repeated for lysates incubated with chaperone inhibitors [90, 91] or chaperone
agonists [85]. Proteins more susceptible to proteolysis in the presence of chaperone inhibitors—and less susceptible in
the presence of chaperone agonists—are candidates that may depend on the chaperone for non-equilibrium folding to
their native structures. The lysates should be incubated in the presence of protein synthesis inhibitors so that the analysis
can isolate the chaperone’s effects on maintaining the native structures of its substrates from its effects on the folding of
their nascent chains; the former demonstrates non-equilibrium stabilization of thermodynamically unfavorable native
structures while the latter may be attributable to kinetic acceleration of protein folding. This analysis may be more
applicable to GroEL/ES and Hsp70 than to Hsp90, because the latter mediates the late-stage folding and activation of
its substrates [33, 92], which may not be associated with significant changes in the protein disorder detectable by the
proteolysis-MS assay.

4.1 Implications for protein native structures and their folding pathways

My model of non-equilibrium protein folding and activation suggests the tantalizing possibility that ATP-driven
chaperones may play a role in shaping the native structures of some proteins. Consistent with a previous experimental
demonstration that chaperones alter the folding pathway of a substrate protein [93], my model implies that an ATP-
driven chaperone may bias a substrate protein to fold along pathways that expose few cochaperone binding sites during
folding, with consequences on the resulting structures.

Consider two conformations M and N of a substrate protein, where M is the free energy minimum but associated with
a folding pathway inhibited by the chaperone, and N has a higher free energy but can be reached through a folding
pathway uninhibited by the chaperone (Fig. 6). The protein will fold into its free energy minimum conformation
M in the absence of the chaperone, but if the chaperone-induced pathway bias is sufficiently strong, it will fold
into the alternative conformation N in the presence of the chaperone. Note that M can be an ensemble of rapidly
inter-converting conformations, such as in intrinsically disordered proteins (IDP) or intrinsically disordered protein
regions [94–98]. Can ATP-driven chaperones fold some IDPs into well-ordered structures?
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It has been proposed that some proteins may fold into native structures that are more kinetically accessible than
conformations of the lowest free energy [99]. Indeed, experimental observations have been reported that synonymous
codon substitutions result in conformational changes in the translated proteins, due to kinetic changes in the co-
translational folding of the nascent chain on the ribosome [100–103]. These results are consistent with the idea that
the native structures of some proteins may be determined by kinetics rather than thermodynamics. One implication
is that the solution to the structure prediction problem for such proteins in cell may depend on the solution to the
protein folding problem, and in-cell protein folding may be an active, energy-dependent process [104]. Predicting the
cellular conformation of these proteins—in the presence of ATP-driven chaperones—may require the search for folding
pathways that limit the exposures of cochaperone-binding, e.g. hydrophobic, sites.

5 Conclusions

In this work, I have proposed a theoretical framework to analyze non-equilibrium protein folding by ATP-driven
chaperones. The symmetry breaking conditions may help determine whether a chaperone—by a proposed mechanism
of action—can convert the energy from ATP hydrolysis to the out-of-equilibrium stabilization of the native structures
of its substrate proteins. I have discussed how Hsp70 and Hsp90 may have broken different symmetries and how the
symmetry breaking enables them to perform non-equilibrium protein folding and activation. My models predict that
some proteins may fold to native structures that do not correspond to the free energy minima, and that their native
structures may be shaped by the chaperone-mediated folding pathways. These predictions may be tested by experiments,
some of which I have suggested above.
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