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Abstract. We study the statistical mechanics of a finitedimensional nonlinear Hamiltonian system (a chain of

anharmonic oscillators) coupled to two heat baths (described by wave equations). Assuming that the initial conditions

of the heat baths are distributed according to the Gibbs measures at two different temperatures we study the dynamics of

the oscillators. Under suitable assumptions on the potential and on the coupling between the chain and the heat baths,

we prove the existence of an invariant measure for any temperature difference, i.e., we prove the existence of steady

states. Furthermore, if the temperature difference is sufficiently small, we prove that the invariant measure is unique and

mixing. In particular, we develop new techniques for proving the existence of invariant measures for random processes

on a noncompact phase space. These techniques are based on an extension of the commutator method of Hörmander

used in the study of hypoelliptic differential operators.
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1. Introduction

In this paper, we consider the nonequilibrium statistical mechanics of a finitedimensional non

linear Hamiltonian system coupled to two infinite heat baths which are at different temperatures.

We show that under certain conditions on the initial data the system goes to a unique non

equilibrium steady state.

To put this new result into perspective, we situate it among other results in equilibrium

and nonequilibrium statistical mechanics. First of all, for the case of only one heat bath one

expects of course “return to equilibrium.” This problem has a long history, and a proof of return

to equilibrium under quite general conditions on the nonlinear small system and its coupling to

the heat bath has been recently obtained in [JP14].Viewed from context of our present problem,

the main simplifying feature of the onebath problem is that the final state can be guessed, a

priori, to be the familiar Boltzmann distribution.

For the case of two heat baths, there are no results of such generality available, among other

things precisely because one cannot guess in general what the steady state is going to be. Since

we are dealing with systems on a noncompact phase space and without energy conservation,

there is nothing like an SRB Ansatz for our problem [GC]. Worse, even the existence of any

stationary state is not obvious at all. The only notable exceptions are problems where the small

system and its coupling to the heat baths are linear. Then the problem can be formulated in terms

of Gaussian measures, and approach to a steady state has been proved in this case in [RLL],

[CL] and [OL] for Markovian heat baths and in [SL] for the general case.

Our approach in the present paper will consist in using the spirit of [FKM] and [FK] to give

a microscopic derivation of the equations of motion: under suitable assumptions, we will reduce

the study of the dynamics of the coupled system (an infinite dimensional Hamiltonian system)

to the study of a random finite dimensional dynamical system. However, we will not achieve

the generality of [JP14]. Each heat bath is an infinite dimensional linear Hamiltonian system,

in our case it will be chosen as the classical field theory associated with the wave equation. The

small system is a nonlinear Hamiltonian system with an arbitrary (but finite) number of degrees

of freedom, in our case it is chosen as a chain of anharmonic oscillators with nearest neighbor

couplings. The potential must be of quadratic type near infinite energies. The two heat baths

are coupled respectively to the first and the last particle of the chain. The initial conditions of

the heat baths will be distributed according to thermal equilibrium at inverse temperatures βL,

βR. Integrating the variables of the heat baths leads to a system of random integrodifferential

equations: the generalized Langevin equations. They differ from the Newton equations of

motion by the addition of two kinds of force, on one hand there is a (random) force exerted by

the heat baths on the chain of oscillators and on the other hand there is a dissipative force with

memory which describe the genuine retroaction from the heat bath on the small system. We will

choose the couplings between the baths and the chain such that the random forces exerted by the

baths have an exponentially decaying covariance. With this assumption (see [Tr]), the resulting

equations are quasiMarkovian. By this, we mean that one can introduce a finite number of

auxiliary variables in such a way that the evolution of the chain, together with these variables,

is described by a system of Markovian stochastic differential equations.

With this setup, we are led to a classical problem in probability theory: the study of

invariant measures for diffusion processes. For our problem, the main difficulties are as follows:
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the phase space is not compact and the resulting diffusion process is degenerate and not self

adjoint.1 The standard techniques used to prove the existence of invariant measures do not seem

to work in our case and, in this paper, we develop new methods to solve this problem, which rely

on methods of spectral analysis. Our proof of existence is based on a compactness argument,

as often in the proof of existence of invariant measures. More precisely we will prove that the

generator of the diffusion process, a second order differential operator, given in our problem,

has compact resolvent, in a suitably chosen Hilbert space. This is done by generalizing the

commutator method of Hörmander, [Hö], used in the study of hypoelliptic operators. Similar

methods have been used to study the spectrum of Schrödinger operators with magnetic fields,

see [HM], [He], and [HN].

The restriction to a chain is mostly for convenience. Other geometries can be accommo

dated with our methods, and the number of heat baths is not restricted to two. Furthermore, the

techniques developed in this paper can be applied to other interesting models of nonequilibrium

statistical mechanics, for example, an electric field acting on a system of particles [RB, in prepa

ration].

2. Description of the Model and Derivation of the Effective Equa-
tions

In this section we define a model of two heat baths coupled to a small system, and derive the

stochastic equations which describe the time evolution of the small system. The heat baths

are classical field theories associated with the wave equation, the small system is a chain of

oscillators and the coupling between them is linear in the field.

We begin the description of the model by defining the “small” system. It is a chain of

ddimensional anharmonic oscillators. The phase space of the chain is R2dn with n and d
arbitrary and its dynamics is described by a C∞ Hamiltonian function of the form

HS(p, q) =
n∑

j=1

p2
j

2
+

n∑

j=1

Uj(qj) +
n−1∑

i=1

U
(2)
i (qi, qi+1) ≡

n∑

j=1

p2
j

2
+ V (q) , (2.1)

where q = (q1, . . . , qn), p = (p1, . . . , pn), with pi, qi ∈ Rd.

The potential energy will be assumed “quadratic + bounded” in the following sense. We

let F denote the space of C∞ functions on Rdn such that for all multiindices α and all F ∈ F ,

the quantity ∂αF (q) is bounded uniformly in q ∈ Rdn. Then our hypotheses are

H1) Behavior at infinity: We assume that V is of the form

V (q) = 1
2

(
q − a,Q(q − a)

)
+ F (q) ,

where Q is a positive definite (dn × dn) matrix, a is a vector, and ∂
q
(ν)
i

F ∈ F for

i = 1, . . . , n and ν = 1, . . . , d.

1
The diffusion is nonselfadjoint because the diffusion process is not timereversal invariant. But the generator L

satisfies L
∗

T = TL where T changes the sign of the momenta.
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H2) Coupling: Each of the (d× d) matrices

Mi,i+1(q) ≡ ∇qi
∇qi+1

U
(2)
i (qi, qi+1) , i = 1, . . . , n− 1 ,

is either uniformly positive or negative definite.

Remark. The first hypothesis makes sure the particles do not “fly away.” The second hypothesis

makes sure that the nearest neighbor interaction can transmit energy. As such, this condition is

of the hypoelliptic type.

Example. A typical case (in dimension d) covered by these hypotheses is given by

Uj(q) = q2 + 5 sin
(√

1 + q2
)
, U

(2)
i (q, q′) = (q − q′)2 + sin

(√
1 + (q − q′)2

)
/(2d) .

As a model of a heat bath we consider the classical field theory associated with the d

dimensional wave equation. The field ϕ and its conjugate momentum field π are elements of

the real Hilbert space H = H1
R

(Rd)⊕L2
R

(Rd) which is the completion of C∞
0 (Rd)⊕C∞

0 (Rd)
with respect to the norm defined by the scalar product:

((
ϕ
π

)
,

(
ϕ
π

))

H

=

∫
dx
(
|∇ϕ(x)|2 + |π(x)|2

)
. (2.2)

The Hamilton function of the free heat bath is

HB(ϕ, π) =
1

2

∫
dx
(
|∇ϕ(x)|2 + |π(x)|2

)
,

and the corresponding equation of motion is the ordinary wave equation which we write in the

form (
ϕ̇(t)
π̇(t)

)
= L

(
ϕ
π

)
,

where

L ≡

(
0 1

∆ 0

)
.

Let us turn to the coupling between the chain and the heat baths. The baths will be called

“L” and “R”, the left bath couples to the coordinate q1 and the right bath couples to the other

end of the chain (qn). Since we consider two heat baths, the phase space of the coupled system,

for finite energy configurations, is R2dn ×H×H and its Hamiltonian will be chosen as

H(p, q, ϕL, πL, ϕR, πR) = HS(p, q) +HB(ϕL, πL) +HB(ϕR, πR)

+ q1 ·

∫
dx ρL(x)∇ϕL(x) + qn ·

∫
dx ρR(x)∇ϕR(x) .

(2.3)

Here, the ρj(x) ∈ L1(Rd) are charge densities which we assume for simplicity to be spherically

symmetric functions. The choice of the Hamiltonian Eq.(2.3) is motivated by the dipole
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approximation of classical electrodynamics. For notational purposes we use in the sequel the

shorthand

φi ≡

(
ϕi

πi

)
.

We set αi =
(
α

(1)
i , . . . , α

(d)
i

)
, i ∈ {L,R}, with

α̂
(ν)
i (k) ≡

(
−ik(ν)ρ̂i(k)/k

2

0

)
.

Here and in the sequel the “hat” means the Fourier transform

f̂(k) ≡
1

(2π)d/2

∫
dx f(x)e−ik·x .

With this notation the Hamiltonian becomes

H(p, q, φL, φR) = HS(p, q) +HB(φL) +HB(φR) + q1 · (φL, αL)H + qn · (φR, αR)H ,

where HB(φ) = 1
2
‖φ‖2

H. We next study the equations of motions. They take the form

q̇j(t) = pj(t) , j = 1, . . . , n ,

ṗ1(t) = −∇q1
V (q(t)) − (φL(t), αL)H ,

ṗj(t) = −∇qj
V (q(t)) , j = 2, . . . , n− 1 ,

ṗn(t) = −∇qn
V (q(t)) − (φR(t), αR)H ,

φ̇L(t) = L
(
φL(t) + αL · q1(t)

)
,

φ̇R(t) = L
(
φR(t) + αR · qn(t)

)
.

(2.4)

The last two equations of (2.4) are easily integrated and lead to

φL(t) = eLtφL(0) +

∫ t

0

dsLeL(t−s)αL · q1(s) ,

φR(t) = eLtφR(0) +

∫ t

0

dsLeL(t−s)αR · qn(s) ,

where the φi(0), i ∈ {L,R}, are the initial conditions of the heat baths. Inserting into the first

2n equations of (2.4) gives the following system of integrodifferential equations

q̇j(t) = pj(t) , j = 1, . . . , n ,

ṗ1(t) = −∇q1
V (q(t)) −

(
φL(0), e−LtαL

)
H
−

∫ t

0

dsDL(t− s)q1(s) ,

ṗj(t) = −∇qj
V (q(t)) , j = 2, . . . , n− 1 ,

ṗn(t) = −∇qn
V (q(t)) −

(
φR(0), e−LtαR

)
H
−

∫ t

0

dsDR(t− s)qn(s) ,

(2.5)
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where the d× d dissipation matrices D
(µ,ν)
i (t− s), i ∈ {L,R}, are given by

D
(µ,ν)
i (t− s) =

(
α

(µ)
i , LeL(t−s)α

(ν)
i

)

H

= −
1

d
δµ,ν

∫
dk |ρ̂i(k)|

2|k| sin(|k|(t− s)) .

The last expression is obtained by observing that

eLt =

(
cos(|k|t) |k|−1 sin(|k|t)

−|k| sin(|k|t) cos(|k|t)

)
,

written in Fourier space.

So far we only discussed the finite energy configurations of the heat baths. We will assume

that the two reservoirs are in thermal equilibrium at inverse temperatures βL and βR. This means

that the initial conditions Φ(0) ≡ {φL(0), φR(0)} are distributed according to the Gaussian

measure with mean zero and covariance 〈φi(f)φj(g)〉 = δij(1/βi)(f, g)H. (Recall that the

Hamiltonian of the heat baths is given by
∑

i∈{L,R}(φi, φi)H.) If we assume that the coupling

functionsα
(ν)
i are inH, i ∈ {L,R}, and ν ∈ {1, · · · , d} then the ξi(t) ≡ φi(0)(e−Ltαi) become

ddimensional Gaussian random processes with mean zero and covariance

〈ξi(t)ξj(s)〉 = δi,j
1

βi

Ci(t− s) , i, j ∈ {L,R} , (2.6)

and the d× d covariance matrices Ci(t− s) are given by

C
(µ,ν)
i (t− s) =

(
α

(µ)
i , eL(t−s)α

(ν)
i

)

H

=
1

d
δµ,ν

∫
dk |ρ̂i(k)|

2 cos
(
|k|(t− s)

)
.

The relation

Ċi(t) = Di(t) , (2.7)

which is checked easily by inspection, is known as the fluctuation dissipation theorem. It is

characteristic of the Hamiltonian nature of the system. After these assumptions and transforma

tions, the equations of motion (2.5) become a system of random integrodifferential equations

on R2dn which we will analyze in the sequel.

Finally, we impose a condition on the random force exerted by the heat baths on the chain.

We assume that

H3) The covariances of the random processes ξi(t) with i ∈ {L,R} satisfy C
(µ,ν)
i (t − s) =

δµ,ν

∑M
m=1 λ

2
i,me

−γi,m|t−s|, with γi,m > 0 and λi,m > 0.

This can be achieved by a suitable choice of the coupling functions ρi(x), for example

ρ̂i(k) = const.

M∏

m=1

1

(k2 + γ2
i,m)1/2

,
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where all the γi,m are distinct. To keep the notation from still further accumulating, we choose

M the same on the left and the right. We will call the random process given by Eq.(2.5)

quasiMarkovian if Condition H3 is satisfied. Indeed, using Condition H3 together with

the fluctuationdissipation relation (2.7) and enlarging the phase space one may eliminate the

memory terms (both deterministic and random) of the equations of motion (2.5) and rewrite

them as a system of Markovian stochastic differential equations.

By Condition H3 we can rewrite the stochastic processes ξi(t) as Itô stochastic integrals

ξi(t) =

M∑

m=1

λi,m

√
2γi,m

βi

∫ t

−∞

e−γi,m(t−s)dwi,m(s) ,

where the wi,m(s) are ddimensional Wiener processes with covariance

E
[(
w

(µ)
i,m(t) − w

(µ)
i,m(s)

)(
w

(ν)
j,m′(t

′) − w
(ν)
j,m′(s

′)
)]

= δi,jδµ,νδm,m′ |[s, t] ∩ [s′, t′]| , (2.8)

where s < t and s′ < t′, E is the expectation on the probability space of the Wiener process and

| · | denotes the Lebesgue measure. We introduce new “effective” variables rL,m, rR,m ∈ Rd,

with m = 1, . . . ,M , which describe both the retroaction of the heat bath onto the system and

the random force exerted by the heat baths:

rL,m(t) = λ2
L,mγL,m

∫ t

0

ds e−γL,m(t−s)q1(s) − λL,m

√
2γL,m

βL

∫ t

−∞

e−γL,m(t−s)dwL,m(s) ,

rR,m(t) = λ2
R,mγR,m

∫ t

0

ds e−γR,m(t−s)qn(s) − λR,m

√
2γR,m

βR

∫ t

−∞

e−γR,m(t−s)dwR,m(s) .

We get the following system of Markovian stochastic differential equations

dqj(t) = pj(t)dt , j = 1, . . . , n ,

dp1(t) = −∇q1
V (q(t))dt+

M∑

m=1

rL,m(t)dt ,

dpj(t) = −∇qj
V (q(t))dt , j = 2, . . . , n− 1 ,

dpn(t) = −∇qn
V (q(t))dt+

M∑

m=1

rR,m(t)dt ,

drL,m(t) = −γL,mrL,m(t)dt+ λ2
L,mγL,mq1(t)dt− λL,m

√
2γL,m

βL

dwL,m(t) ,

drR,m(t) = −γR,mrR,m(t)dt+ λ2
R,mγR,mqn(t)dt− λR,m

√
2γR,m

βR

dwR,m(t) ,

(2.9)



Anharmonic Chains Coupled to Two Heat Baths 8

which defines a Markov diffusion process on R2d(n+M). This system of equations is our main

object of study. Our main results are the following:

Theorem 2.1. If Conditions H1H2 hold, there is a constant λ∗ > 0, such that for |λL,m|,
|λR,m| ∈ (0, λ∗) with m = 1, . . . ,M , the solution of Eq.(2.9) is a Markov process which has

an absolutely continuous invariant measure µ with a C∞ density.

Remark. In Proposition 3.6 we will show even a little more. Leth0(β) be the Gibbs distribution

for our system when the heat baths are both at temperature 1/β. If h denotes the density of the

invariant measure found in Theorem 2.1, we find that h/h0(β) is in the Schwartz space S for

all β < min(βL, βR). This mathematical statement reflects the intuitively obvious fact that the

chain can not get hotter than either of the baths.

Concerning the uniqueness and the ergodic properties of the invariant measure, our results

are restricted to small temperature differences. We have the following result.

Theorem 2.2. If Conditions H1H2 hold, there are constants λ∗ > 0 and ε > 0 such that

for |λL,m|, |λR,m| ∈ (0, λ∗) with m = 1, . . . ,M , and |βL − βR|/(βL + βR) < ε, the Markov

process (2.9) has a unique invariant measure and this measure is mixing.

Remark. The restriction on the couplings between the small system and the baths λL,m, λR,m

is nonperturbative: it is a condition of stability of the coupled system small system plus heat

baths. Indeed, the baths have the effect of renormalizing the deterministic potential seen by the

small system. The constant λ∗ depends only on the potential V (q): if the coupling constants

λL,m, λR,m are too large, the effective potential ceases to be stable and, at least at equilibrium

(i.e., for βL = βR), there is no invariant probability measure for the Markov process (2.9),

but only a σfinite invariant measure (see Eq.(3.7) and Eq.(3.9)). This restriction is related to

Condition H1 on the potential: for potentials which grow at infinity faster than quadratically,

this restriction would not be present (see [JP1]). On the other hand, the restriction on the

temperature difference is of perturbative origin.

A more physical formulation of the results of Theorem 2.2 is obtained by going back to

the Eq.(2.5), which expresses all the quantities in terms of the phase space of the small system

and the initial conditions Φ(0) of the heat baths. Let us introduce some notation: For given

initial conditions Φ(0), we let Θt,Φ(0)(p, q) denote the solution of Eq.(2.5). Finally, define

ν(dp, dq) =

∫

r∈R2dM

µ(dp, dq, dr) ,

where µ is the invariant measure of Theorem 2.1.

Corollary 2.3. Under the hypotheses of Theorem 2.2, the system Eq.(2.5) reaches a stationary

state and is mixing in the following sense: For any observablesF ,G ∈ L2(R2dn, ν(dp, dq)) and

for any probability measure ν0(dp, dq) which is absolutely continuous with respect to ν(dp, dq)
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we have

lim
t→∞

∫
ν0(dp, dq)

〈(
F ◦ Θt,Φ0

)
(p, q)

〉
=

∫
ν(dp, dq)F (p, q) ,

lim
t→∞

∫
ν(dp, dq)

〈(
F ◦ Θt,Φ0

)
(p, q)G(p, q)

〉
=

∫
ν(dp, dq)F (p, q)

∫
ν(dp, dq)G(p, q) .

(2.10)
Here, 〈·〉 denotes the integration over the Gaussian measures of the two heat baths, introduced

earlier.

We explain next the strategy to prove these results. Our proof is based on a detailed study

of Eq.(2.9). Let x = (p, q, r). For a Markov process x(t) with phase space X and an invariant

measure µ(dx), its ergodic properties may be deduced from the study of the associated semi

group T t on the Hilbert space L2(X, µ(dx)). To prove the existence of the invariant measure in

Theorem 2.1 we proceed as follows: We consider first the semigroup T t on the auxiliary Hilbert

space H0 ≡ L2(X, µ0(dx)), where the reference measure µ0(dx) is a generalized Gibbs state

for a suitably chosen reference temperature. Our main technical result consists in proving that

the generator L of the semigroup T t on H0 and its adjoint L∗ have compact resolvent. This is

proved by generalizing the commutator method developed by Hörmander to study hypoelliptic

operators. From this follows the existence of a solution to the eigenvalue equation (T t)∗g = g
in H0 and this implies immediately the existence of an invariant measure. To prove Theorem 2.2

we use a perturbation argument, indeed at equilibrium (i.e., for βL = βR) the invariant measure is

unique and 0 is a simple eigenvalue of the generator L in H0. Using the compactness properties

of L, we show that 0 is a simple eigenvalue of the generator L in H0 for |βL − βR|/(βL + βR)
small enough. And this can be used to prove the uniqueness claim of Theorem 2.2, while the

mixing properties will be shown by extending the method of [Tr].

This paper is organized as follows: In Section 3 we prove Theorem 2.1 and Theorem 2.2

except for our main estimates Proposition 3.4 and Proposition 3.5 which are proven in Section

4. In Appendices A, B and C, we prove some auxiliary results.

3. Invariant Measure: Existence and Ergodic Properties

In this section, our main aim is to prove Theorem 2.1 and Theorem 2.2. We first prove

some basic consequences of our Assumptions H1 and H2. In particular, we define the semi

group T t describing the solutions of Eq.(2.9) on the auxiliary Hilbert space H0 described in

the introduction. Furthermore we recall some basic facts on hypoelliptic differential operators.

Once these preliminaries are in place, we can attack the proof of Theorem 2.1 and Theorem 2.2

proper.



Anharmonic Chains Coupled to Two Heat Baths 10

3.1. Existence and fundamental properties of the dynamics

Let X = R2d(n+M) and write the stochastic differential equation (2.9) in the abbreviated form

dx(t) = b(x(t)) + σdw(t) , (3.1)

where

(i) b is a C∞ vector field which satisfies, by Condition H1,

sup
x∈X

|∂αb(x)| < ∞ ,

for any multiindex α such that |α| ≥ 1. In particular

B ≡ ‖div b‖∞ < ∞ . (3.2)

(ii) σ : R2dM → X is a linear map. We also define

D ≡
1

2
σσT ≥ 0 . (3.3)

(iii) w ∈ W ≡ C(R; R2dM ) is a standard 2dM dimensional Wiener process.

The Eq.(3.1) is rewritten more precisely as the integral equation

ξ(t, w; x) = x+

∫ t

0

ds b(ξ(s, w; x)) + σ(w(t)− w(0)) . (3.4)

It follows from an elementary contraction argument (see e.g. [Ne], Thm 8.1) that (3.4) has a

unique solution

R ∋ t 7→ x(t) = ξ(t, w; x) ∈ C(R;X) ,

for arbitrary initial condition x ∈ X and w ∈ W .

The difference w(t) − w(0) has the statistics of a standard Brownian motion and we

denote by E[·] the corresponding expectation. By wellknown results on stochastic differential

equations, this induces on ξ(t, w; x) the statistics of a Markovian diffusion process with generator

∇ ·D∇ + b(x) · ∇ . (3.5)

More precisely (see [Ne] Theorem 8.1): Let C∞(X) denote the continuous functions which

vanish at infinity with the supnorm and let F t be the σfield generated by x and {w(s) −
w(0) ; 0 < s ≤ t}, then for 0 ≤ s ≤ t and f ∈ C∞(X) we have

E
[
f(x(t))|Fs

]
= T t−sf(x(s)) a.s. , (3.6)

where T t is a strongly continuous contraction semigroup of positivity preserving operators on

C∞(X) whose generator reduces to (3.5) on C∞
0 (X).
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In the sequel we denote by L the differential operator (3.5) with domainD(L) = C∞
0 (X).

To prove the existence of an invariant measure we will study the semigroup T t or rather

an extension of it on the auxiliary weighted Hilbert space H0 described in the introduction. To

define H0 precisely, we consider the “effective Hamiltonian”

G(p, q, r) = HS(p, q) +

M∑

m=1

(
1

λ2
L,m

r2
L,m

2
+

1

λ2
R,m

r2
R,m

2
− q1 · rL,m − qn · rR,m

)
. (3.7)

We note that, due to Condition H1, G(x) → +∞ as |x| → ∞ as long as |λL,m|, |λR,m| < λ∗

for some λ∗ depending only on the potential V (q).
We choose further a “reference temperature” β0, which is arbitrary subject to the condition

β0 < 2 min(βL, βR) . (3.8)

For example we could take β0 as the inverse of the mean temperature of the heat baths:

β−1
0 = (β−1

L + β−1
R )/2. For the time being, it will be convenient not to fix β0. Then, we let

H0 = L2(X,Z−1
0 e−β0G dx) , (3.9)

and we denote (·, ·)H0
and ‖ · ‖H0

the corresponding scalar product and norm.

Remark. With a proper choice ofZ0, it is easy to check that the quantityZ−1
0 e−β0G(q,p,r) dx is

the invariant measure for the Markov process Eq.(2.9) when βL = βR = β0 and |λL,m|, |λR,m| <
λ∗.

Lemma 3.1. If the potential V satisfies Condition H1 and if β0 < 2 min(βL, βR) there is a

λ∗ > 0 such that if the couplings satisfy |λL,m|, |λR,m| ∈ (0, λ∗), then the semigroup T t given

by Eq.(3.6) extends to a strongly continuous quasi bounded semigroup T t
H0

on H0:

‖T t
H0

‖H0
≤ eαt ,

where α is given by

α = d
M∑

m=1

(
γL,m

(
1

2
−

√
(βL − β0/2)β0/2

βL

)
+ γR,m

(
1

2
−

√
(βR − β0/2)β0/2

βR

))
≥ 0 .

(3.10)
The generator LH0

of T t
H0

is the closure of the differential operator L with domain C∞
0 given by

L =
M∑

m=1

λ2
L,mγL,m

βL

(
∇rL,m

− βLWL,m

)
· ∇rL,m

+

M∑

m=1

λ2
R,mγR,m

βR

(
∇rR,m

− βRWR,m

)
· ∇rR,m

+

M∑

m=1

rL,m · ∇p1
+ LS +

M∑

m=1

rR,m · ∇pn
,

(3.11)
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with the abbreviations

WL,m = λ−2
L,mrL,m − q1 , WR,m = λ−2

R,mrR,m − qn , (3.12)

and where LS is the Liouville operator associated with the Hamiltonian HS(q, p):

LS =
n∑

j=1

pj · ∇qj
− (∇qj

V ) · ∇pj
. (3.13)

Moreover, T t
H0

is positivity preserving:

T t
H0
f ≥ 0 if f ≥ 0 , (3.14)

and

T t
H0

1 = 1 . (3.15)

Remark. We have α = 0 if only if βL = βR = β0.

Proof. The proof uses standard tools of stochastic analysis and is given in Appendix A.

Having shown a priori bounds using Condition H1, we will state one basic consequence

of Condition H2. We recall that a differential operator P is called hypoelliptic if

sing supp u = sing supp Pu for all u ∈ D′(X) .

Here D′(X) is the usual space of distributions on the infinitely differentiable functions with

compact support and for u ∈ D′(X), sing supp u is the set of points x ∈ X such that there is

no open neighborhood of x to which the restriction of u is a C∞ function.

Let P be of the form

P =
J∑

j=1

Y 2
j + Y0 , (3.16)

where Yj , j ∈ {0, . . . , J} are real C∞ vector fields. Then by Hörmander’s Theorem, [Hö], Thm

22.2.1, if the Lie algebra generated by Yj , j ∈ {0, . . . , J} has rank dim X at every point, then

P is hypoelliptic.

Differential operators arising from diffusion problems are of the form (3.16). Let L be the

differential operators given in Eq.(3.11), let LT denote its formal adjoint, then one may easily

check that Condition H2 implies that any of the following operators

L, LT , ∂t + L, ∂t + LT ,

satisfies the condition of Hörmander’s Theorem and thus is hypoelliptic. As an immediate

consequence we have:
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Corollary 3.2. If Condition H2 is satisfied then the eigenvectors of L and LT are C∞

functions.

Next, letP (t, x, E), t ≥ 0, x ∈ X ,E ∈ B denote the transition probabilities of the Markov

process ξ(t, w; x) solving the stochastic differential equation (2.9) with initial condition x, i.e.,

P (t, x, E) = P
(
ξ(t, w : x) ∈ E

)
,

where P denotes the probability associated with the Wiener process. Then by the forward and

backward Kolmogorov equations we obtain

Corollary 3.3. If Conditions H1 and H2 are satisfied then the transition probabilities of the

Markov Process ξ(t, w; x) have a smooth density

P (t, x, y) ∈ C∞((0,∞)×X ×X) .

3.2. Proof of Theorem 2.1 and Theorem 2.2

After these preliminaries we now turn to the study of spectral properties of the generator LH0

of the semigroup T t
H0

.

The proof of the existence of the invariant measure will be a consequence of the following

key property which we prove in Section 4.

Proposition 3.4. If the potential V satisfies Conditions H1, H2 and if β0 < 2 min(βL, βR)
there is a λ∗ > 0 such that if the couplings satisfy |λL,m|, |λR,m| ∈ (0, λ∗) then both LH0

and

L∗
H0

have compact resolvent.

A useful byproduct of the proof Proposition 3.4 are some additional smoothness and

decay properties of the eigenvalues of LH0
and L∗

H0
on H0.

Proposition 3.5. Let g denote an eigenvector of LH0
or L∗

H0
. If the assumptions of

Proposition 3.4 are satisfied then we have

ge−β0G/2 ∈ S(X) ,

where S(X) denotes the Schwartz space.

Using these results, we come back to the Markov process defined by the Eqs.(2.9), and

whose semigroup T t was defined in Eq.(3.6). We prove the existence of an invariant measure

with a smooth density and give a bound which shows that, in some sense, the chain does not get

hotter than the hottest heat bath.

Proposition 3.6. Under the assumptions H1–H2 there is a λ∗ > 0 such that if the couplings

satisfy |λL,m|, |λR,m| ∈ (0, λ∗) the Markov process T t has an invariant measure µ which is
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absolutely continuous with respect to the Lebesgue measure. Its densityh satisfies the following:

h exp(βG) ∈ S(X) for all β < min(βL, βR).

Proof. The function 1 is obviously a solution of Lf = 0 with L defined in Eq.(3.11). Note

next that the function 1 is in H0, as is seen from Eq.(3.9) (if |λL,m| and |λR,m| are sufficiently

small). Since, by Proposition 3.4, the operator LH0
has compact resolvent on H0, it follows

that 0 is also an eigenvalue of L∗
H0

. Let us denote the corresponding eigenvector by g. We will

choose the normalization (g, 1)H0
= 1. We assume first that g ≥ 0. Then the function

h(x) = Z−1
0 g(x)e−β0G(x) , (3.17)

with β0 andG defined in Eqs.(3.8) and (3.7), is the density of an invariant measure for the process

T t: Indeed, we note first that ‖h‖L1(X,dx) = (1, g)H0
is finite and thus µ(dx) is a probability

measure.

Let E be some Borel set. Then the characteristic function χE of E belongs to H0. We

have ∫
µ(dx)T tχE = Z−1

0

∫
dx e−β0G(x)g(x)T tχE

= Z−1
0

∫
dx e−β0G(x)(T t

H0
)∗g(x)χE

= µ(E) ,

and therefore µ(dx) is an invariant measure for the Markov process (2.9).

To complete the first part of the proof of Proposition 3.6 it remains to show that g ≥ 0. We

will do this by checking that h ≥ 0. We need some notation. Let LT denote the formal adjoint

of L. Then one has LTh = 0. This follows from the identities

∫
dx fLTh = Z−1

0

∫
dx fLT

(
ge−β0G

)

= Z−1
0

∫
dx
(
Lf)ge−β0G

=
(
Lf, g)H0

= (f, L∗
H0
g)H0

= (f, 0)H0
= 0 ,

which hold for all f ∈ C∞
0 (X). Consider now the semigroup T t acting on the space C∞(X)

defined at the beginning of Section 3. Since T t is a Markovian semigroup, we have T t1 = 1

and T t is positivity preserving. The operator T t induces an action (T t)∗ defined on the dual

space C∗
∞(X) which consists of finite measures. Since T t is Markovian, (T t)∗ maps probability

measures to probability measures. Furthermore, if a measure ν has a density f in L1(X, dx),
then (T t)∗ν is a measure which has again a density in L1(X, dx): Indeed, by Corollary 3.3 the

transition probabilities of the Markov process P (t, x, y) are in C∞
(
(0,∞)×X ×X

)
. If we

denote by (T t)T the induced action of (T t)∗ on the densities, we have for g ≥ 0,

(T t)∗
(
g(x)dx

)
=

∫
dy g(y)P (t, y, dx) = dx

∫
dy g(y)P (t, y, x) =

(
(T t)Tg

)
(x)dx ,
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and ‖(T t)Tg‖L1 = ‖g‖L1 .

Coming back to the invariant density h, we know that

(T t)Th = h .

We next show (T t)T|h| = |h|. Since |h| ± h ≥ 0, we have (T t)T(|h| ± h) ≥ 0. This can be

rewritten as ∣∣(T t)Th
∣∣ ≤ (T t)T|h| .

Therefore,

|h| =
∣∣(T t)Th

∣∣ ≤ (T t)T|h| .

Since (T t)T preserves the L1norm, we conclude that

|h| = (T t)T|h| . (3.18)

This shows the existence of an invariant measure.

Now, by Proposition 3.5, we have h exp(βG/2) ∈ S(X) for all β < 2 min(βL, βR) and so

for β < min(βL, βR) it follows that h exp(βG) ∈ S(X). This concludes the proof of Proposition

3.6.

We next prove the uniqueness of the invariant measure and the ergodic properties of the

Markov process. We start by fixing an inverse temperature β0. If βL = βR = β0, the two

heat baths are at the same temperature, and the equilibrium state of the system is known, since

it is given by the generalized Gibbs distribution Z−1
0 e−β0G. For the equilibrium case, this

distribution is the unique invariant measure. The existence is obvious from what we showed

for the case of arbitrary temperatures. To show uniqueness, assume that there is a second

invariant measure. Since LT is hypoelliptic, then by Corollary 3.2 this measure has a smooth

density. Since different smooth invariant measures have mutually disjoint supports and e−β0G

has support everywhere, uniqueness follows. If the invariant measure is unique, it is ergodic

and hence, (see [Yo] and [Ho]) 0 is a simple eigenvalue of LH0
.

The case of different temperatures will be handled by a perturbation argument around the

equilibrium situation we just described. This perturbation argument will take place in the fixed

Hilbert space H0 defined in Eq.(3.9). Thus, we will consider values of βL and βR such that

1

β0

=
1

2

( 1

βL

+
1

βR

)
,

|βL − βR|

βL + βR

< ε , (3.19)

for some small ε > 0 (which does not depend on β0).

We first show that 0 remains a simple eigenvalue of the generatorLH0
when the temperature

difference satisfies (3.19) for a sufficiently small ε.

Lemma 3.7. Under the assumptions H1–H2 there are constants λ∗ > 0 and ε > 0 such that

if the couplings satisfy |λL,m|, |λR,m| ∈ (0, λ∗) and moreover βL, βR satisfy (3.19), then 0 is a

simple eigenvalue of the generator LH0
.

Proof. It will be convenient to work in the flat Hilbert space L2(X, dx). Note that K =
exp (−β0G/2)L exp (+β0G/2) is a function K ≡ K(βL, βR, β0). We write this as

K(βL, βR, β0) = K(β0, β0, β0) + δZ ,
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where

δ =
βR − βL

βR + βL

.

One finds

K(β0, β0, β0) =

M∑

m=1

λ2
L,mγL,m

2

(
2

β0

∇2
rL,m

−
β0

2
W 2

L,m +
d

λ2
L,m

)

+
M∑

m=1

λ2
R,mγR,m

2

(
2

β0

∇2
rR,m

−
β0

2
W 2

R,m +
d

λ2
R,m

)

+

M∑

m=1

rL,m · ∇p1
+ LS +

M∑

m=1

rR,m · ∇pn
,

and

Z =

M∑

m=1

λ2
L,mγL,m

2

(
2

β0

∇2
rL,m

+WL,m · ∇rL,m
+ ∇rL,m

·WL,m +
β0

2
W 2

L,m

)

−
M∑

m=1

λ2
R,mγR,m

2

(
2

β0

∇2
rR,m

+WR,m · ∇rR,m
+ ∇rR,m

·WR,m +
β0

2
W 2

R,m

)
.

Furthermore, by Proposition 3.4, R0 ≡ (1 − K(β0, β0, β0))
−1 is a compact operator, and

therefore the simple eigenvalue 1 of R0 is isolated. From now on we assume for convenience

that α ≡ α(βL, βR) is strictly smaller than one. Note that this is no restriction of generality: if

α ∈ [n− 1, n) with n > 1, we replace (1 −K)−1 by (1 − 1
nK)−1 in the following discussion.

We show next that the resolvent R(βL, βR, β0) ≡ (1 −K(βL, βR, β0))
−1 depends analyti

cally on the parameter δ. It is convenient to write the perturbation Z as

Z =

N∑

j=1

EjFj ,

where the Ej and Fj are of the form const.∂
r
(ν)
i,m

or const.W
(ν)
i,m, i ∈ {L,R}, m = 1, . . . ,M ,

and N = 8dM . With the matrix notation

F =



F1

...

FN


 , ET =

(
E1, . . . , EN

)
,

we can write Z as Z = ETF . We will use the following resolvent formula

R(βL, βR, β0) = R0

(
1 + δR0E

T
(
1 − δFR0E

T
)−1

FR0

)
. (3.20)
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To justify Eq.(3.20) we have to show that for δ small enough the operatorvalued matrix(
1 − δFR0E

T
)

is invertible. It is enough to show that FjR0Ek is a bounded operator, for

all j, k. For this we decompose 1 −K(β0, β0, β0) into its symmetric and antisymmetric parts:

1 −K(β0, β0, β0) = X + iY ,

where

X = 1 +

M∑

m=1

λ2
L,mγL,m

2

(
−

2

β0

∇2
rL,m

+
β0

2
W 2

L,m − d
1

λ2
L,m

)

+
M∑

m=1

λ2
R,mγR,m

2

(
−

2

β0

∇2
rR,m

+
β0

2
W 2

R,m − d
1

λ2
R,m

)
.

From the simple estimates

‖Ejf‖
2 ≤ (f,Xf) ,

‖Fjf‖
2 ≤ (f,Xf) ,

which hold for f ∈ C∞
0 (X), and since X is a strictly positive operator we see that EjX

−1/2

and FjX
−1/2 are bounded operators. From the identity

EjR0Fk = Ej(X + iY )−1Fk

= EjX
−1/2(1 + iX−1/2Y X−1/2)−1X−1/2Fk ,

we see that EjR0Fk are bounded operators for all j, k. Therefore the r.h.s of Eq.(3.20) is well

defined for sufficiently small δ. An immediate consequence of the resolvent formula (3.20) is

that for sufficiently small δ the spectrum of R(βL, βR, β0) has the same form as the spectrum

R0: 1 is an eigenvalue and there is a spectral gap and, in particular 1 is a simple eigenvalue.

This concludes the proof of Lemma 3.7.

Next we use this lemma to prove uniqueness of the invariant measure. We have the

following

Theorem 3.8. Under the assumptions H1–H2 there are constantsλ∗ > 0 and ε > 0 such that

if the couplings satisfy |λL,m|, |λR,m| ∈ (0, λ∗) and the temperatures satisfy |βR − βL|/(βL +

βR) < ε, the Markov process T t has a unique (and hence ergodic) invariant measure.

Proof. The proof uses a dynamical argument. By Proposition 3.4 we have in the Hilbert space

H0 (with β0 given as in (3.19)) the eigenvalue equation T t
H0

1 = 1 and (T t
H0

)∗g = g. Let the

eigenvectors be normalized such that (g, 1)H0
= 1. By Lemma 3.7, 0 is a simple eigenvalue of

the generator LH0
if (βR − βL)/(βL + βR) is small enough and by Proposition 3.6, the measure

µ(dx) = Z−1
0 g exp (−β0G) is an invariant measure for the Markov process. It is absolutely

continuous with respect to the Lebesgue measure which we denote by λ.

Assume now that ν is another invariant probability measure. By the hypoellipticity of L
it must have a smooth density. Therefore there is a Borel set A ⊂ X , which we may assume
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bounded, with the following properties: we have ν(A) > 0 and λ(A) > 0 but µ(A) = 0,

because the measures have disjoint supports. Let χA denote the characteristic function of the set

A. By the pointwise ergodic theorem, see [Yo] and [Ho], we have, denoting σs(x) the ergodic

average σs(x) = (1/s)
∫ s

0
dt T tχA(x),

lim
s→∞

σs(x) = ν(A) , ν–a.e. . (3.21)

Since T t is a contraction semigroup on B(X,B), and χA ≤ 1 we find ‖σs‖∞ ≤ 1, for all

s > 0. From the easy bound

‖σs‖H0
≤ ‖σs‖∞ ,

we see that the set {σs , s > 0} is a bounded subset of H0 and hence weakly sequentially

precompact. Therefore there is a sequence sn ↑ ∞ such that

w–lim
n→∞

σsn
= σ∗

where w–lim denotes the weak limit in H0. Since Tu is a bounded operator for all u > 0, we

have

w–lim
n→∞

Tuσsn
= Tuσ∗ .

We next show

Tuσ∗ = σ∗ . (3.22)

Indeed,

Tuσsn
(x) =

1

sn

∫ sn+u

u

dt T tχA(x)

= σsn
−

1

sn

∫ u

0

dt T tχA(x) +
1

sn

∫ sn+u

sn

dt T tχA(x) .

(3.23)

The last two terms in (3.23) are bounded by u/sn and we obtain Tuσ∗ = σ∗ for all u > 0 by

taking the limit n→ ∞ in (3.23).

Therefore, σ∗ is in the eigenspace of the eigenvalue 1 of T t
H0

, t > 0 and so, by Lemma 3.7

σ∗ = c1. To compute c we note that c = (g, σ∗)H0
and, using the invariance of the measure,

we get

c = lim
n→∞

(
g,

1

sn

∫ sn

0

dt T t
H0
χA

)

H0

= lim
n→∞

1

sn

∫ sn

0

dt

∫
µ(dx)T tχA = µ(A) .

So we have c = µ(A) and µ(A) = 0 by hypothesis. Using this information, we consider

(χA, σsn
)H0

. We have, on one hand,

lim
n→∞

(χA, σsn
)H0

= (χA, σ
∗)H0

= 0 ,
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and on the other hand we have, by Eq.(3.21) and by the dominated convergence theorem,

lim
n→∞

(χA, σsn
)H0

=

∫
dx ν(A)χAZ

−1
0 e−β0G > 0 ,

and this is a contradiction. This shows that there is a unique invariant measure for the Markov

process T t and as a consequence the measure is ergodic.

We will now strengthen the last statement by showing that the invariant measure is in fact

mixing. This will be done by extending the proof of return to equilibrium given in [Tr].

Proposition 3.9. Assume that the conditions of Theorem 3.8 are satisfied. Then the invariant

measure µ(dx) for the Markov process T t is mixing, i.e.,

lim
t→∞

∫
µ(dx)f(x)T tg(x) =

∫
µ(dx)f(x)

∫
µ(dx)g(x) ,

for all f, g ∈ L2(X, µ(dx)).

Proof. We denote H = L2(X, µ(dx)) and its scalar product by (·, ·)H and by ‖ · ‖H its norm.

By [Yo], Chap XIII.1, Thm 1, T t defines a contraction semigroup on H. Since T t is a strongly

continuous semigroup on C∞(X) (see [Ne]) and since C∞(X) is dense in H, we can extend

T t to a strongly continuous semigroup T t
H on H. The property of mixing is equivalent to

w–lim
t→∞

T t
Hf = (1, f)H for all f ∈ H . (3.24)

By a simple density argument it is enough to show (3.24) for a dense subset of H. Let C2(X)
denote the bounded continuous function whose first and second partial derivatives are bounded

and continuous. Then— [GS], Part II, §9—if f ∈ C2(X), then T t
Hf ∈ C2(X) and for any

τ <∞, T t
Hf is uniformly differentiable w.r.t. t ∈ [0, τ ] and

∂

∂t
T t
Hf = Lf ,

where L is the differential operator given in (3.11). Let f ∈ C2(X). Using the fact, see

Proposition 3.5 and Proposition 3.6, that the density of the invariant measure is of the form

h(x) = g̃e−β0G/2 with g ∈ S(X), we may differentiate under the integral and integrate by parts

and using the invariance of the measure we obtain

d

dt
‖T t

Hf‖
2
H = (LT t

Hf, T
t
Hf)H + (T t

Hf, LT
t
Hf)H = −

∑

i∈{L,R}
m∈{1,...,M}
ν∈{1,...,d}

2λ2
i,mγi,m

βi

‖∂
r
(ν)
i,m

T t
Hf‖

2
H ,

(3.25)
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where ∂
r
(ν)
i,m

is the differential operator with domain C2(X). Thus ‖T t
Hf‖

2
H is decreasing,

bounded below and continuous and so limt→∞ ‖T t
Hf‖

2
H exists. As a consequence we find

‖∂
r
(ν)
i,m

T t
Hf‖

2
H ∈ L1([0,∞), dt) . (3.26)

Following [Tr] and [Br], we call a sequence {tn} a (∗)sequence if tn ↑ ∞ and

lim
n→∞

‖∂
r
(ν)
i,m

T tn

H f‖2
H = 0 . (3.27)

The existence of (∗)sequences for our problem follows easily from (3.26). Further we define

an almost (∗)sequence as a sequence sn ↑ ∞ for which there exists a (∗)sequence {tn} with

|sn − tn| → 0 as n→ ∞. As in [Tr] we next show that w–limn→∞ T tn

H f = w–limn→∞ T sn

H f .

Indeed, let us choose τ < min(t1, s1). From the inequality

‖
d

dt
T t
Hf‖H = ‖T t−τ

H LT τ
Hf‖H ≤ ‖LT τ

Hf‖H ,

which holds for t > τ , we have

‖(T sn

H − T tn

H )f‖H ≤ |sn − tn| ‖LT
τ
Hf‖H → 0, n→ ∞ ,

which shows that T tn

H f and T sn

H f have the same weak limit.

The set {T t
Hf, t ≥ 0} is bounded and hence sequentially weakly precompact, so that by

passing to a subsequence, we may assume that

w–lim
n→∞

T tn

H f = γ , γ ∈ H .

Next we show that for all (∗)sequences w–limn→∞ T tn

H is a locally constant function

µ− a.e. We begin by showing that γ does not depend on the variables r.

Let ∂∗
r
(ν)
i,m

denote the adjoint of ∂
r
(ν)
i,m

in H and let ψ ∈ C∞
0 (X). By the smoothness

properties of the density of the invariant measure we see that the function ψ is in the domain of

∂∗
r
(ν)
i,m

and we have, using (3.27)

(γ, ∂∗
r
(ν)
i,m

ψ)H = lim
n→∞

(T tn

H f, ∂∗
r
(ν)
i,m

ψ)H = lim
n→∞

(∂
r
(ν)
i,m

T tn

H f, ψ)H = 0 .

Written explicitly,

∫
dp dq dr γ(p, q, r)∂

r
(ν)
i,m

(
ψ(p, q, r)h(p, q, r)

)
= 0 , (3.28)

for any ψ ∈ C∞
0 (X). Since γ ∈ H, we may set γ = 0 on the set A ≡ {x ∈ X ; h(x) = 0} and

γ is locally integrable and thus defines a distribution in D′(X). By Eq.(3.28) the support of the
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distribution ∂
r
(ν)
i,m

γ(p, q, r) does not intersect the set A and thus γ(p, q, r) is µa.e. independent

of r.

Let t > 0. Then w–limn→∞ T tn+t
H f = T t

Hγ. Since t + tn ↑ ∞, it is easy to show, see

[Br], that tn + t has an almost (∗)subsequence sn and from the above arguments we conclude

that T t
Hγ is independent of r.

Next we show inductively, using Condition H2 that γ does not depend on the variables p,

q. Let (T t
H)∗ denote the semigroup dual to T t

H on H and denote Z its generator.

Note that for ψ ∈ C∞
0 (X) we have, upon integrating by parts

d

dt
(ψ, T t

Hf)H = (ψ, LT t
Hf)H

=

∫
dp dq dr

∑

i∈{L,R}
m∈{1,...,M}

λ2
i,mγi,m

βi

[
∇ri,m

·
(
∇ri,m

+ βiWi,m

)
ψh
]
T t
Hf

−

∫
dp dq dr

(
L0(ψh)

)
T t
Hf ,

(3.29)
where L0 is given by

L0 =

M∑

m=1

rL,m · ∇p1
+

M∑

m=1

rR,m · ∇pn
+

n∑

j=1

pj · ∇qj
− (∇qj

V ) · ∇pj
.

Since C∞
0 (X) is in the domain of Z, we get

d

dt
(ψ, T t

Hγ)H = (Zψ, T t
Hγ)H = lim

n→∞
(Zψ, LT tn+t

H f)H

= (Zψ, T t
Hγ)H = −

∫
dp dq dr

(
L0(ψh)

)
T t
Hγ .

The last equality follows from (3.29) since T t
Hγ is independent of r.

We next choose ψ(p, q, r) ∈ C∞
0 (X) of the form ψ(r, p, q) = ϕ1(r)ϕ2(p, q)h

−1(p, q, r)
with supp(ϕ1(r)ϕ2(p, q)) ∩A = ∅ and

∫
drϕ1(r) = 0. For this choice of ψ we have

(ψ, T t
Hγ)H =

∫
dp dq

(
T t
Hγ
)
(p, q)ϕ2(p, q) ·

∫
drϕ1(r) = 0 ,

and therefore

0 =

∫
dp dq dr γ(p, q)L0(ϕ1(r)ϕ2(p, q))

=

∫
dp dq γ(p, q)∇p1

ϕ2(p, q) ·

∫
dr

M∑

m=1

rL,mϕ1(r)

+

∫
dp dq γ(p, q)∇pn

ϕ2(p, q) ·

∫
dr

M∑

m=1

rR,mϕ1(r) .
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Since ϕ1(r) is arbitrary, it follows that

∫
dp dq γ(p, q)∇p1

ϕ2(p, q) =

∫
dp dq γ(p, q)∇pn

ϕ2(p, q) = 0 ,

and thus, by a similar argument as above, γ(p, q) must be µa.e. independent of p1 and pn: Thus

γ is a function γ(p2, . . . , pn−1).
Using this information, we choose now

ψ(p, q, r) = ϕ1(p1, pn)ϕ2(p2, . . . , pn−1, q)ϕ3(r)h
−1(p, q, r) ,

with supp(ϕ1ϕ2ϕ3) ∩ A = ∅ and
∫

dp1dpn ϕ1(p1, pn) = 0. For such a choice of ψ we obtain

0 =

∫
dp dq drL0(ϕ1ϕ2ϕ3)γ

=

∫
dp2 · · · dpn−1dq γ(∇q1

ϕ2) ·

∫
dp1 dpn p1 ϕ1

∫
drϕ3

+

∫
dp2 · · · dpn−1 dq γ(∇qn

ϕ2) ·

∫
dp1dpn pnϕ1

∫
drϕ3 ,

and from the arbitrariness of ϕ1, ϕ2, ϕ3 we conclude that γ is independent of q1, qn (all our

statements hold µa.e.). Finally, choose

ψ(p, q, r) = ϕ1(q1, qn)ϕ2(p2, . . . , pn−1, q2, . . . , qn−1)ϕ3(p1, pn, r)h
−1(p, q, r) ,

with supp(ϕ1ϕ2ϕ3) ∩ A = ∅ and
∫

dq1dqn ϕ1(q1, qn) = 0. Then we obtain

0 =

∫
dp2 . . . dpn−1dq2 . . . dqn−1 γ(∇p2

ϕ2) ·

∫
dq1dqn (∇q2

V )ϕ1

∫
dp1dpndrϕ3

+

∫
dp2 . . . dpn−1dq2 . . . dqn−1 γ(∇pn−1

ϕ2) ·

∫
dq1dqn (∇qn−1

V )ϕ1

∫
dp1dpndrϕ3 .

From the arbitrariness of the ϕi we conclude in particular that

0 =

∫
dp2 . . .dpn−1dq2 . . .dqn−1 γ(∇p2

ϕ2) ·

∫
dq1dqn (∇q2

V )ϕ1 . (3.30)

We may choose ϕ1(q1, qn) = ∂
q
(ν′)
1

ϕ̃(q1, qn) for some ν′ ∈ {1, . . . , d} and a positive ϕ̃(q1, qn).

By Condition H2 we see that

Xν,ν′

(q2) ≡

∫
dq1dqn (∂

q
(ν)
2

V )ϕ1(q1, qn) = −

∫
dq1dqn (∂

q
(ν′)
1

∂
q
(ν)
2

V )ϕ̃1(q1, qn)

is uniformly positive or negative. We can rewrite (3.30) as

0 =
∑

ν∈{1,...,d}

∫
dp2 . . . dpn−1dq2 . . . dqn−1 γ∂p

(ν)
2

Xν,ν′

(q2)ϕ2 ,
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and we conclude that γ is independent of p2. A similar argument shows that γ is independent

of qn−1 and iterating the above procedure we conclude that γ is locally constant µa.e.

So far, we have shown that for all (∗)sequences {tn} one has w–limn→∞ T tn

H f = γ =
const. From the invariance of the measure µ and its ergodicity we conclude that

γ = (1, f)H =

∫
µ(dx)f(x) .

We conclude as in [Tr]: suppose that w–limt→∞ T t
Hf 6= (1, f)H. Then by the weak sequential

precompactness of {T t
Hf ; t ≥ 0}, there exists a sequence un ↑ ∞ for which w–limt→∞ T t

Hf =
η 6= (1, f)H. But, referring again to [Br], the sequence {un} has an almost (∗)subsequence

{sn}. This implies that there is a (∗)sequence {tn} such that w–limn→∞ T tn

H f = η. This is a

contradiction, since we have seen that w–limn→∞ T tn

H f = (1, f)H for all (∗)sequences. By a

simple density argument this implies that

lim
t→∞

∫
µ(dx)f(x)T t

Hg(x) =

∫
µ(dx)f(x)

∫
µ(dx)g(x) ,

for all f, g ∈ H and the proof of Proposition 3.9 is complete.

With Proposition 3.9 the proof of Theorem 2.2 is now complete.

4. Commutator Estimates and Spectral Properties of LH0

In this section, we prove Proposition 3.4 and Proposition 3.5. We generalize the commu

tator method of Hörmander to study the spectral properties of the operator LH0
which is, by

Lemma 3.1, the closure of the differential operator L with domain C∞
0 (X) which we defined in

Eq.(3.11). We recall the definition:

L =

M∑

m=1

λ2
L,mγL,m

βL

(
∇rL,m

− βLWL,m

)
· ∇rL,m

+

M∑

m=1

λ2
R,mγR,m

βR

(
∇rR,m

− βRWR,m

)
· ∇rR,m

+
M∑

m=1

rL,m · ∇p1
+ LS +

M∑

m=1

rR,m · ∇pn
,

(4.1)

with the abbreviations

WL,m = λ−2
L,mrL,m − q1 , WR,m = λ−2

R,mrR,m − qn , (4.2)

and where LS is the Liouville operator associated with the Hamiltonian HS(q, p):

LS =
n∑

j=1

pj · ∇qj
− (∇qj

V ) · ∇pj
. (4.3)
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For the following estimates it will be convenient to work in the flat Hilbert space L2(X, dx).
The differential operator L is unitarily equivalent to the operator K on L2(X, dx) with domain

C∞
0 (X) given by

K = e−β0G/2 L eβ0G/2

= α−
M∑

m=1

λ2
L,mγL,m

βL

R∗
L,mRL,m −

M∑

m=1

λ2
R,mγR,m

βR

R∗
R,mRR,m + Kas ,

(4.4)

where α is given by (3.10) and

RL,m = ∇rL,m
+
√

(βL − β0/2)β0/2WL,m ,

RR,m = ∇rR,m
+
√

(βR − β0/2)β0/2WR,m ,

Kas =

M∑

m=1

rL,m · ∇p1
+ LS +

M∑

m=1

rR,m · ∇pn

−
βL − βR

βL + βR

M∑

m=1

λ2
L,mγL,m

2

(
∇rL,m

·WL,m +WL,m · ∇rL,m

)

+
βL − βR

βL + βR

M∑

m=1

λ2
R,mγR,m

2

(
∇rR,m

·WR,m +WR,m · ∇rR,m

)
.

All subsequent estimates will be valid for any f ∈ S(X) and thus for all functions in the domain

of K.

It is convenient to introduce the following notations: We introduce new variables, and

recall some earlier definitions: Let n′ = [n/2] denote the integer part of n/2. We define

Pj = ∇pj
+ aLpj , j = 1, . . . , n′ ,

Pj = ∇pj
+ aRpj , j = n′ + 1, . . . , n ,

Qj = ∇qj
+ aLWj(q, r) , j = 1, . . . , n′ ,

Qj = ∇qj
+ aRWj(q, r) , j = n′ + 1, . . . , n ,

RL,m = ∇rL,m
+ aLWL,m(q, r) , m = 1, . . . ,M ,

RR,m = ∇rR,m
+ aRWR,m(q, r) , m = 1, . . . ,M ,
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where

aL =
(
(βL − β0/2)β0/2

)1/2
,

aR =
(
(βR − β0/2)β0/2

)1/2
,

W1(q, r) = ∇q1
V (q) −

M∑

m=1

rL,m ,

Wj(q, r) = ∇qj
V (q) , j = 2, . . . , n− 1 ,

Wn(q, r) = ∇qn
V (q) −

M∑

m=1

rR,m ,

WL,m(q, r) = λ−2
L,mrL,m − q1 , m = 1, . . . ,M ,

WR,m(q, r) = λ−2
R,mrR,m − qn , m = 1, . . . ,M .

We next define the operators K0, K, and Λ which will be used in the statement of our

main bound:

Λ =

(
1 +

n∑

j=1

P ∗
j Pj +

n∑

j=1

Q∗
jQj +

M∑

m=1

(
R∗

L,mRL,m +R∗
R,mRR,m

))1/2

,

K0 = Kas ,

K = α−K = −K0 +

M∑

m=1

(bL,mR
∗
L,mRL,m + bR,mR

∗
R,mRR,m) .

(4.5)

Here, we use

bL,m = λ2
L,mγL,m/βL , bR,m = λ2

R,mγR,m/βR .

Our main estimate is

Theorem 4.1. Under the Assumptions H1, H2 on V , there are an ε > 0 and a C <∞ such

that for all f ∈ S(X) one has

‖Λεf‖ ≤ C
(
‖Kf‖ + ‖f‖

)
. (4.6)

Proof. The proof will be an easy consequence of the following

Proposition 4.2. There are finite constants Cj , C′
j , and C such that for all f ∈ S(X) one

has with n′ = [n/2],

‖Λεj−1Pjf‖ ≤ Cj

(
‖Kf‖ + ‖f‖

)
, j = 1, . . . , n′ , (4.7)

‖Λεj−1Pn+1−jf‖ ≤ Cj

(
‖Kf‖ + ‖f‖

)
, j = 1, . . . , n− n′ , (4.8)

‖Λε′
j−1Qjf‖ ≤ C′

j

(
‖Kf‖ + ‖f‖

)
, j = 1, . . . , n′ , (4.9)

‖Λε′
j−1Qn+j−1f‖ ≤ C′

j

(
‖Kf‖ + ‖f‖

)
, j = 1, . . . , n− n′ , (4.10)

‖RL,mf‖ + ‖RR,mf‖ ≤ C
(
‖Kf‖ + ‖f‖

)
, m = 1, . . . ,M , (4.11)
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where εj = 41−2j and ε′j = 4−2j .

Proof of Proposition 4.2. For the Ri,m, we have the easy estimate

‖Ri,mf‖
2 = (f, R∗

i,mRi,mf) ≤ b−1
i,mRe (f,Kf) ≤ b−1

i,m‖Kf‖ ‖f‖ ≤ b−1
i,m

(
‖Kf‖+‖f‖

)2
.

(4.12)
This proves Eq.(4.11) for these cases.

For the other cases, the proof will proceed by induction: It will proceed by bounds on P1,

Q1, P2, . . . , Qn′ , and a totally symmetric argument, which is left to the reader, can be used from

the other end of the chain, proceeding over Pn, Qn, Pn−1, until the bounds reach the “center”

of the chain. We next prepare the inductive proof. To make the result of this calculation clearer,

we define the matrices

Mj,k = ∇qj
∇qk

V , j, k = 1, . . . , n .

In components, this means, for µ, ν ∈ {1, . . . , d},

M(µ,ν)
j,k = ∇

q
(µ)
j

∇
q
(ν)

k

V , j, k = 1, . . . , n .

By our choice of potentialV all theMj,k vanish, exceptMj,j , with j = 1, . . . , n andMj+1,j =

Mj,j+1, with j = 1, . . . , n− 1. Furthermore, by Condition H1, all the M
(µ,ν)
j,k are uniformly

bounded functions of q. Finally, by Assumption H2, the matrices Mj,j+1 are definite, with

uniformly bounded inverse.

One verifies easily the relations:

[RL,m, K0] = P1 + cmRL,m ,

[P1, K0] = Q1 ,

[Q1, K0] = −M1,1P1 −M2,1P2 +

M∑

m=1

c′m(RL,m +R∗
L,m) ,

[Pj , K0] = Qj , j = 2, . . . , n− 1 ,

[Qj , K0] = −Mj−1,jPj−1 −Mj,jPj −Mj+1,jPj+1 , j = 2, . . . , n− 1 ,

(4.13)

where
cm = γL,m(βL − β0)/βL ,

c′m = bL,maL(βL − β0) .

Symmetrical relations hold at the other end of the chain. With these notations, we can rewrite

(among several possibilities):

P1 = [RL,1, K0] − c1RL,1 ,

Q1 = [P1, K0] ,

P2 = −M−1
2,1

(
[Q1, K0] + M1,1P1 −

M∑

m=1

c′m(RL,m +R∗
L,m)

)
,

Qj = [Pj , K0] , j = 2, . . . , n ,

Pj+1 = −M−1
j+1,j

(
[Qj , K0] + Mj−1,jPj−1 + Mj,jPj

)
, j = 2, . . . , n′ ,

(4.14)
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with symmetrical relations at the other end of the chain. We can streamline this representation

by defining Q0 = RL,1, and M1,0 = −1. Then we can write, for j = 1, . . . , n′:

Pj = −M−1
j,j−1

(
[Qj−1, K0] + Sj

)
, (4.15)

Qj = [Pj , K0] , (4.16)

where the operators Sj depend linearly on {P1, . . . , Pj−1}, {Q1, . . . , Qj−1}, and theRL,m. The

relations Eqs.(4.15) and (4.16) will be used in the inductive proof.

Such relations are of course reminiscent of those appearing in the study of hypoelliptic

operators. The novelty here will be that we obtain bounds which are valid not only in a compact

domain, but in the unbounded domain of the p’s and q’s.

The following bounds will be used repeatedly:

Proposition 4.3. Let Z denote one of the operators Qj , Q∗
j , Pj , or P ∗

j . Let M denote one

of the Mj,k. Assume that α ∈ (0, 2). Then the following operators are bounded in L2(X, dx):

1) Λβ[M,Λ−α]Λγ , if β + γ ≤ α+ 1 ,

2) ΛβZΛγ , if β + γ ≤ −1 ,

3) Λβ[K0, Z]Λγ , if β + γ ≤ −1 ,

4) Λβ[Z,Λ−α]Λγ , if β + γ ≤ α+ 1 ,

5) Λβ[Λ−α, K0]Λγ , if β + γ ≤ α .

Proof. The proof will be given in Appendix B.

Because we are working in an infinite domain, and work with nonlinear couplings, we

will not bound the l.h.s of Eq.(4.7) directly, but instead the more convenient quantity2:

Rj(f) = (Λεj−1Mj,j−1Pjf , Λεj−1Pjf) .

We have the

Lemma 4.4. There is a constant C such that for all j ∈ {1, . . . , n} and all f ∈ S(X) one has

the inequality

‖Λεj−1Pjf‖
2 ≤ C

(
|Rj(f)|+ ‖f‖2

)
.

Therefore, to prove Eq.(4.7), it suffices to prove the corresponding inequality for the Rj .

Proof of Lemma 4.4. Let M = Mj,j−1, ε = εj , and P = Pj . Then, by our Assumption

H2, there is a constant m > 0 for which M > m. Therefore,

‖Λε−1Pf‖2 = (Λε−1Pf , Λε−1Pf)

≤ m−1|(MΛε−1Pf , Λε−1Pf)|

≤ m−1|(Λε−1MPf , Λε−1Pf)| +m−1|([Λε−1,M]Pf , Λε−1Pf)|

≤ m−1|Rj(f)| +m−1
∣∣((Λε[Λε−1,M]Λ)(Λ−1P )f , (Λ−1P )f

)∣∣ .

2
For readers familiar with the method of Hörmander, we wish to point out that this device seemed necessary

because we do not have good bounds on [K0, [Q1, K0]].
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The proof of Lemma 4.4 is completed by using the bounds 1) and 2) of Proposition 4.3.

The inductive step. We begin by the induction step for the Pj . We assume now that the

bounds (4.7) and (4.9) have been shown for all j ≤ k. We want to show (4.7) for j = k + 1.

Using Eq.(4.15) and Lemma 4.4, we start by writing

Rk+1(f) ≡

(
Λεk+1−1Mk+1,kPk+1f , Λεk+1−1Pk+1f

)

=

(
Λ2εk+1−1[K0, Qk]f , Λ−1Pk+1f

)

−

(
Λ2εk+1−1Sk+1f , Λ−1Pk+1f

)

≡ X1 −X2 .

We first boundX2. Note that Sk+1 is a sum of terms of the form MT where T is equal to Pj or

Qj with j ≤ k, and M is either a constant or equal to one of the Mk,ℓ. Therefore we obtain,

using Proposition 4.3, the inductive hypothesis, and the choice 2εk+1 ≤ minj≤k(εj , ε
′
j) = ε′k:

|(Λ2εk+1−1MTf , Λ−1Pk+1f)|

≤
∣∣(MΛ2εk+1−1Tf , Λ−1Pk+1f

)∣∣+
∣∣(([Λ2εk+1−1,M]Λ) (Λ−1T )f , Λ−1Pk+1f

)∣∣

≤ O(1)
(
‖Kf‖ + ‖f‖

)
‖f‖ + O(1)‖f‖2 ≤ O(1)

(
‖Kf‖ + ‖f‖

)2
.

This proves the desired bound.

We now come to the “interesting” term X1. The commutator is rewritten as

[K0, Qk] = −QkK −K∗Qk + 1
2

(
Qk(K +K∗) + (K +K∗)Qk

)

≡ X3 +X4 +X5 .

We discuss the 3 corresponding bounds:

Term X3. In this case, we are led to bound, with ε = εk+1,

T3 ≡ |(QkKf , Λ2ε−2Pk+1f)| = |(Kf , Q∗
kΛ2ε−2Pk+1f)|

= |(Kf , (Q∗
kΛ2ε−1)(Λ−1Pk+1)f)|

≤ |(Kf , (Λ−1Pk+1)(Q
∗
kΛ2ε−1)f)|+ |(Kf , [Q∗

kΛ2ε−1,Λ−1Pk+1]f)|

≡ X3,1 +X3,2 .

(4.17)

We start by bounding X3,1. Since Λ−1Pk+1 is bounded by Proposition 4.3, it suffices to show

that

‖Q∗
kΛ2ε−1f‖ ≤ C

(
‖Kf‖ + ‖f‖

)
. (4.18)
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To see this we first write, using Q = Qk,

‖Q∗Λ2ε−1f‖2 = (f , Λ2ε−1QQ∗Λ2ε−1f)

= ‖Λ2ε−1Qf‖2 + (f , [Λ2ε−1Q,Q∗Λ2ε−1]f) .

The first term is bounded by the inductive hypothesis by O(1)
(
‖Kf‖+ ‖f‖

)2
and the choice of

εk+1, while the second can be bounded by O(1)‖f‖2 by expanding the commutator (and using

Proposition 4.3):

[Λ2ε−1Q,Q∗Λ2ε−1] = (Λ2ε−1Q∗Λ−2ε)Λ2ε[Q,Λ2ε−1]

+Λ2ε−1[Q,Q∗]Λ2ε−1 +
(
[Λ2ε−1, Q∗]Λ2ε

)
Λ−1Q .

This proves Eq.(4.18).

To bound X3,2, we use [P ∗
k+1, Qk] = 0 and we write

[Q∗
kΛ2ε−1,Λ−1Pk+1] =

(
Q∗

kΛ−1
)
[Λ2ε−1, Pk+1] +

(
[Q∗

k,Λ
−1]Λ2ε

)(
Λ−2εPk+1Λ

2ε−1
)
.

Since each factor above is bounded by Proposition 4.3, the desired bound follows:

T3 ≤ O(1)
(
‖Kf‖ + ‖f‖

)2
.

Term X4. Here, we want to bound T4 ≡ |(K∗Qkf , Λ2ε−2Pk+1f)|. We get

T4 = |(K∗Qkf , Λ2ε−2Pk+1f)| = |(Qkf , KΛ2ε−2Pk+1f)|

≤ |(Λ2ε−1Qkf , Λ−1Pk+1Kf)| + |(Qkf , [K,Λ2ε−2Pk+1]f)|

≡ X4,1 +X4,2 .

(4.19)

Using the inductive hypothesis, and the bound ‖Λ−1Pk+1‖ ≤ O(1), the term X4,1 is bounded

by

‖Λ2ε−1Qkf‖ ‖Λ
−1Pk+1Kf‖ ≤ O(1)

(
‖Kf‖ + ‖f‖

)2
.

We write the commutator of X4,2 as

[K,Λ2ε−2Pk+1] = Λ2ε−1
(
Λ−1[K,Pk+1] + Λ−1[K0,Λ

2−2ε]Λ2ε−1(Λ−1Pk+1)
)
,

since K −K0 commutes with Λ. Using Proposition 4.3 and the inductive hypothesis this leads

to the following bound for X4,2:

X4,2 ≤ |(Λ2ε−1Qkf , Λ−1[K,Pk+1]f)|

+
∣∣(Λ2ε−1Qkf , (Λ−1[K0,Λ

2−2ε]Λ2ε−1)(Λ−1Pk+1)f
)∣∣

≤ O(1)(‖Kf‖ + ‖f‖)(‖f‖) .
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This completes the bounds involving X4.

Term X5. Here, we bound

T5 ≡ 1
2

((
Qk(K +K∗) + (K +K∗)Qk

)
f , Λ2ε−2Pk+1f

)
.

Assume first k > 1 (and in any case we have k < n). Looking at the definition of K, we see

that in this case Qk commutes with 1
2
(K +K∗) = ReK, and we can rewrite T5 as

T ′
5 = 2

(
(ReK)f , Q∗

kΛ2ε−2Pk+1f

)
.

Using the Schwarz inequality and the positivity of ReK, we get a bound

|T ′
5| ≤

(
(ReK)f , f

)1/2(
(ReK)Q∗

kΛ2ε−2Pk+1f , Q
∗
kΛ2ε−2Pk+1f

)1/2

=
(
Re (Kf , f)

)1/2(
Re (KQ∗

kΛ2ε−2Pk+1f , Q
∗
kΛ2ε−2Pk+1f)

)1/2

=
(
Re (Kf , f)

)1/2(
Re (Λ−2εKQ∗

kΛ2ε−2Pk+1f , Λ2εQ∗
kΛ2ε−2Pk+1f)

)1/2

≡
(
Re (Kf , f)

)1/2
(Re (f1 , f2))

1/2 .

The first factor is clearly bounded by
(
‖Kf‖ + ‖f‖

)1/2
. To bound f1, we expand again:

f1 = Λ−2εKQ∗Λ2ε−2Pf = (Λ−2εQ∗Λ2ε−1)(Λ−1P )Kf

+ Λ−2ε[K,Q∗]Λ2ε−2Pf + Λ−2εQ∗[K,Λ2ε−2]Pf

+ Λ−2εQ∗Λ2ε−2[K,P ]f .

The norm of the first term is bounded by O(1)
(
‖Kf‖+ ‖f‖

)
. Using Proposition 4.3, the other

terms are bounded by O(1)‖f‖. To bound f2 we write

f2 = Λ2εQ∗Λ2ε−2Pf = Λ−1PQ∗Λ4ε−1f

+ Λ2εQ∗Λ−2ε−1[Λ4ε−1, P ]f

+ Λ2ε[Q∗,Λ−2ε−1]PΛ4ε−1f .

We control the first term using the inductive hypothesis (it is here that we use the factor

4εk+1 ≤ ε′k) and the two others by Proposition 4.3. Combining these bounds, we finally get the

bound T5 ≤ O(1)
(
‖Kf‖ + ‖f‖

)2
, and hence the inequality (4.7) is shown for all j.

It remains to discuss the cases k = 0, 1 for the term X5. The commutators of ReK with

Q0 ≡ RL,1 or withQ1 do not vanish and hence there are additional terms in T ′
5. They are of the

form
M∑

m=1

bL,m([R∗
L,mRL,m, RL,1]f , Λ2ε−2Pk+1f) ,

M∑

m=1

bL,m([R∗
L,mRL,m, Q1]f , Λ2ε−2Pk+1f) .
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Since [R∗
L,mRL,m, RL,1] = const.RL,1δm,1 and [R∗

L,mRL,m, Q1] = const.RL,m, this is obvi

ously bounded by O(1)
(
‖Kf‖ + ‖f‖

)
‖f‖.

We have discussed now all the cases for the inductive bound on the Pj . The discussion of

this step for the Qj is the same, except that some simplifications appear because of the simpler

relations Qj = [Pj , K0]. The proof of Proposition 4.2 is complete.

Proof of Theorem 4.1. Let ε ≤ ε′n+1. We rewrite

Λ2ε = Λ2ε−2
(
1 +

n+1∑

j=0

Q∗
jQj +

n∑

j=1

P ∗
j Pj

)
. (4.20)

Note now that for Q = Qj ,

Λ2ε−2Q∗Q = Q∗Λ2ε−2Q+ [Λ2ε−1, Q∗]Q .

Using Proposition 4.2 and Proposition 4.3, we get a bound

(f , Λ2ε−2Q∗Qf) ≤ O(1)
(
‖Kf‖ + ‖f‖

)2
+ O(1)‖f‖2 .

Of course, the P satisfy analogous relations. Since ‖Λ2ε−2f‖ ≤ O(1)‖f‖, the assertion (4.6)

follows by summing the terms in Eq.(4.20). The proof of Theorem 4.1 is complete.

Using Theorem 4.1 we can now prove Proposition 3.4. We have

Proposition 4.5. If the potential V satisfies Conditions H1, H2 and if β0 < 2 min(βL, βR)
there is a λ∗ > 0 such that if the couplings satisfy |λL,m|, |λR,m| ∈ (0, λ∗) then both LH0

and

L∗
H0

have compact resolvent.

Proof. We show that the operator K on L2(X, dx) has compact resolvent. From Theorem 4.1

we get the bound

‖Λεf‖ ≤ C
(
‖(K − α− 1)f‖ + ‖f‖

)
, (4.21)

for all f ∈ S(X). Since, by Lemma 3.1, C∞
0 (X) is a core of K, we see, by taking limits, that

the estimate (4.21) holds for all f in D(K).
We note that Λ2 has compact resolvent. Indeed, recall the definition Eq.(3.7) of the

effective Hamiltonian G. It is easily checked that, first of all, G grows quadratically in every

direction of R2d(n+M), for sufficiently small |λi,m|. Second, it is also easily verified that

Λ2 = 1 −
n∑

j=1

(∆pj
+ ∆qj

) +
M∑

m=1

(∆rL,m
+ ∆rR,m

) + W(p, q, r) ,

and, by construction

W(p, q, r) ≈
n′∑

j=1

a2
L

(
(∇pj

G)2 + (∇qj
G)2
)

+
n∑

j=n′+1

a2
R

(
(∇pj

G)2 + (∇qj
G)2
)

+

M∑

m=1

(
a2

L(∇rL,m
G)2 + a2

R(∇rR,m
G)2
)
,
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up to bounded terms. Thus W(p, q, r) diverges in all directions of R2d(n+M). Using the Rellich

criterion (see [RS], Thm XII.67) we conclude that Λε has compact resolvent for every ε > 0.

Therefore, Eq.(4.21) implies, using again the Rellich criterion, that (K − α − 1)∗(K −
α − 1) has compact resolvent. We claim this implies that K itself has compact resolvent.

Indeed, since K − α − 1 is strictly maccretive, its inverse exists, and therefore the operator(
(K−α− 1)∗(K−α− 1)

)−1
= ((K−α− 1)∗)−1(K−α− 1)−1 exists and is compact. This

implies that (K − α− 1)−1 is compact and hence K has compact resolvent as asserted.

Finally, we prove Proposition 3.5. We have the following

Proposition 4.6. Let g denote an eigenvector of LH0
or L∗

H0
. If the assumptions of

Proposition 3.4 are satisfied then g exp(β0G/2) is in the Schwartz space S(X).

Proof. We prove the corresponding statement for the operator K on L2(X, dx). We consider

the set of C∞ vectors of eKt, i.e the set

C∞(K) ≡ {f ∈ L2(X, dx) ; eKt ∈ C∞(R+,L2(X, dx))} .

The set C∞(K) obviously contains all eigenvectors of K. Therefore Proposition 4.6 is a direct

consequence of the following Proposition.

Proposition 4.7. C∞(K) = S(X).

Proof. By Theorem 1.43 in [Da] we have the following characterization of C∞(K):

C∞(K) = ∩n≥0D(Kn) ,

where D(Kn) = {f ∈ D(Kn−1),Kn−1f ∈ D(K)}.

Since S(X) ⊂ D(K) and KS(X) ⊂ S(X), we have the easy inclusion

S(X) ⊂ ∩nD(Kn) = C∞(K) .

To show the inclusion in the other direction we will need the following Theorem which we

will prove in Appendix C. This is a (slight) generalization of the core Theorem, [Da], Thm 1.9.

Theorem 4.8. Let B be a Banach space. Let A : D(A) → B be maccretive. For all

n = 1, 2, . . ., if D is a subset of D(An) and is dense in B and furthermore D is invariant under

the semigroup eAt, then D is a core for An.

Given this result we first show that S(X) is invariant under eKt. For s ≥ 0 we consider

the scale of spaces Ns given by Ns = D(Λs), with the norm ‖f‖(s) = ‖Λsf‖. For s ≤ 0 we let

Ns be the dual of N−s. From the definition of Λ2, it is easy to see that {‖ · ‖(s) ; s = 0, 1, · · ·}
is a system of seminorms for the topology of S(X) and hence S(X) = ∩sNs.

To show that S(X) is left invariant by the semigroup eKt generated by K, it is enough to

show that

eKtNs ⊂ Ns for all s ≥ 0 .
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For f , g in S(X) we have the identity

(
Λ−seK

∗tΛsf , g
)

=
(
f , ΛseKtΛ−sg

)

=
(
f , g

)
+

∫ t

0

dτ
(
f , ΛsKeKτΛ−sg

)

=
(
f , g

)
+

∫ t

0

dτ
(
f , (K +B)ΛseKτΛ−sg

)

=
(
f , g

)
+

∫ t

0

dτ
(
Λ−seK

∗τΛs(K∗ +B∗)f , g
)
,

(4.22)

where

B = [Λs , K]Λ−s ,

is a bounded operator by Proposition 4.3. From (4.22) we see that

d

dt
Λ−seK

∗tΛsf = Λ−seK
∗tΛs(K∗ +B∗)f . (4.23)

NowK∗ is the generator of a strongly continuous quasibounded semigroup,B∗ is bounded and

so, [Ka], Chap.9, Thm 2.7, K∗ +B∗ with domainD(K∗) is the generator a strongly continuous

quasibounded semigroup e(K
∗+B∗)t with ‖e(K

∗+B∗)t‖ ≤ e(α+‖B∗‖)t. From (4.23) we see

that

e(K
∗+B∗)t = Λ−seK

∗tΛs .

Thus we obtain

‖Λ−seK
∗tΛs‖ ≤ e(α+‖B∗‖)t ,

and so eK
∗t : N−s → N−s, s > 0, is bounded. By duality eKt : Ns → Ns, s > 0, is also

bounded. This implies that

eKtNs ⊂ Ns , s > 0 ,

and therefore S(X) is invariant under eKt.

We now use Theorem 4.1. Let f ∈ S(X), then replacing f by Λmf in Eq.(4.6), we obtain

‖f‖(m+ε) ≤ O(1)
(
‖KΛmf‖ + ‖f‖(m)

)

≤ O(1)
(
‖Kf‖(m) + ‖[K,Λm]f‖ + ‖f‖(m)

)
.

Since

‖[K,Λm]f‖ = ‖Λm[K,Λ−m]Λmf‖ ,

and since Λm[K,Λ−m] is bounded by Proposition 4.3 we obtain the bound

‖f‖(m+ε) ≤ O(1)
(
‖Kf‖(m) + ‖f‖(m)

)
. (4.24)
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Using (4.24) it is easy to see, by induction, that, for n = 1, 2, · · · we have

‖f‖(nε) ≤ O(1)

n∑

j=0

(
n

j

)
‖Kjf‖ . (4.25)

Since S(X) is a core for Kn by Theorem 4.8, we see, by taking limits, that

D(Kn) ⊂ Nnε .

Therefore

C∞(K) = ∩nD(Kn) ⊂ ∩nNnε = S(X) .

And this concludes the proof of Proposition 4.7.

Appendix A: Proof of Lemma 3.1

If x(t) = ξ(t, w; x) denotes the solution of (3.1), it has the cocycle property

ξ(t, τ sw; ξ(s, w; x)) = ξ(t+ s, w; x) ,

which holds for all t, s ∈ R, x ∈ X and w ∈ W . Here we have introduced the shift

(τ tw)(s) = w(t + s) on W . In particular the map x 7→ ξ(t, w; x) is a bijection with inverse

x 7→ ξ(−t, τ tw; x). A standard argument shows that these maps are actually diffeomorphisms

(see e.g., [IW], Ch. V.2). The Jacobian of ξ(t, w; ·) is given by

J(t, w; ·) = |detDxξ(t, w; ·)| = e

∫
t

0
ds div b◦ξ(s,w;·)

,

and according to (3.2) the Jacobian satisfies

e−B|t| ≤ J(t, w; x) ≤ eB|t| .

Remark. In our case we have in fact

div b = −d
∑

i,m

γi,m ≡ −Γ < 0 ,

so that

J(t, w; ·) = e−Γt .

The Lemma 3.1 is an immediate consequence of the following lemmata.
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Lemma A.1. T t extends to a strongly continuous, quasibounded semigroup of positivity

preserving operators on L2(X, dx). Its generator is the closure of L.

Proof. Let f ∈ C∞
0 , then we have

‖T tf‖2 = lim
R→∞

∫

|x|<R

dx |T tf(x)|2 = lim
R→∞

∫
dxχ{|x|<R}

∣∣E
[
f ◦ ξ(t, w; x)

]∣∣2

≤ lim
R→∞

∫
dxχ{|x|<R}E

[
|f |2 ◦ ξ(t, w; x)

]

≤ lim
R→∞

E
[∫

dxχ{|x|<R}|f |
2 ◦ ξ(t, w; x)

]

≤ lim
R→∞

E
[∫

dyχ{|x|<R} ◦ ξ(−t, τ
tw; y)|f |2(y)J(−t, τ tw; y)

]

≤ lim
R→∞

E
[∫

dy 1|f |2(y)eBt
]

= eBt‖f‖2 .

Thus T t extends to a bounded operator on L2(X, dx) by continuity. A simple approximation

argument shows that T t is weakly continuous at t = 0, and hence, since it is obviously a

semigroup, strongly continuous. Positivity is evident. Now let f ∈ C∞
0 (X), then

[(1/t)(T t − 1)f − Lf ](x) =

∫ t

0

ds(1/t)(T s − 1)Lf(x) ,

from which we conclude that the generator L̃ of T t on L2(X, dx) satisfies L ⊂ L̃.

From the inequality Re (f, Lf) = − 1
2
‖σT∇f‖2 − (f , div bf) ≤ B‖f‖2, and the fact

that C∞
0 ⊂ D(L∗) and Re (f, L∗f) = − 1

2
‖σT∇f‖2 + (f , div bf) ≤ B‖f‖2, one concludes

that:

(i) L is accretive.

(ii) The range of (λ− L) is dense for Re (λ) > B.

Hence, by the LumerPhillips Theorem (see for example [Da], Theorem 2.25), the closure

L generates a quasibounded semigroup on L2(X, dx). Since such generators are maximal

accretive, we conclude that L̃ = L.

We shall now consider the Markov semigroup on weighted L2spaces (such as H0) of the

form

HS = L2(X, e−Sdx) ,

where S ∈ C∞(X), and e−S ∈ L1(X, dx) is normalized (‖e−S‖1 = 1). We also assume that

bS ≡ D∇S

with D as in Eq.(3.3) satisfies the condition

‖div bS‖∞ < ∞ . (A.1)
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The action of T t on HS is obviously equivalent to that of e−S/2T teS/2 on L2(X, dx). For

f ∈ C∞
0 (X), Ito’s formula gives

(e−S/2T teS/2)f(x) = E
[
e(S(x(t))−S(x(0)))/2f(x(t))|x(0) = x

]

= E
[
e

1
2

∫
t

0
ds (LS)(x(s))+ 1

2

∫
t

0
dw(s)(σT∇S)(x(s))

f(x(t))|x(0) = x
]

= E
[
D(t)e

1
2

∫
t

0
ds RS(x(s))

f(x(t))|x(0) = x
]
,

where

D(t) = e

∫
t

0
dw(s) 1

2
(σT ∇S)(x(s))− 1

2

∫
t

0
ds | 1

2
σT ∇S|2(x(s))

RS(x) = (LS)(x) +
1

2
(∇S ·D∇S)(x) = div (bS) + (b+

1

2
bS) · ∇S .

By the Girsanov formula we obtain

(e−S/2T teS/2f)(x) = E
[
e

1
2

∫
t

0
ds RS(y(s))

f(y(t))|y(0) = x
]
,

where y(t) is the Markovian diffusion process defined by the equation

y(t) = y(0) +

∫ t

0

ds (b+ bS)(y(s)) + σ(w(t) − w(0)) .

Assuming that RS is bounded above:

ΣS = sup
x∈X

RS(x) < ∞ ,

and denoting by T t
S the semigroup on L2(X, dx) associated with the process y(t), by Lemma

A.1 we get

|(e−S/2T teS/2f)(x)| ≤ e
1
2
ΣSt(T t

S |f |)(x) ,

from which one concludes that e−S/2T teS/2 extends to a strongly continuous, quasibounded

semigroup of positivity preserving operators on L2(X, dx).
By the FeynmanKac formula (or CameronMartin) we can conclude that the generator of

this semigroup is given, on C∞
0 (X), by

LS = ∇ ·D∇ + (b+ bS) · ∇ +
1

2
RS = e−S/2LeS/2 .

Repeating the argument of Lemma A.1 we conclude that LS is the generator. Since C∞
0 (X) is

invariant by e±S/2 we get

Lemma A.2. Let S ∈ C∞(X) be such that

(i) bS = D∇S satisfies Condition (A.1),
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(ii) supx∈X(b+ 1
2
bS) · ∇S(x) <∞.

Then the semigroup T t extends to a strongly continuous quasibounded semigroup on HS .

Moreover C∞
0 (X) is a core for its generator.

Now Lemma 3.1 is a direct consequence of Lemma A.2. Indeed we apply Lemma A.2 to

S(x) = β0G(p, q, r) ,

where G is given by (3.7). We see that Condition (i) of Lemma A.2 is satisfied, since G(p, q, r)
is of the form quadratic + bounded. An explicit computation shows that the assumption

β0 < 2 min(βL, βR) ,

implies that Condition (ii) of Lemma A.2 is satisfied and that the semigroup satisfies the bound

‖T t‖ ≤ eαt where α is given by Eq.(3.10).

Appendix B: Proof of Proposition 4.3

To prove the claims it is useful to introduce some machinery which replaces the pseudo

differential calculus, which seems unavailable for the class of operators we want to consider.

This may be useful in its own right.

Let F , as in the Hypotheses H1, H2 denote the class of functions of q ∈ Rdn which are

bounded together with all their derivatives. Let Y denote the linear space of operators spanned

by

f(q)qm∂m′

q pn∂n′

p rℓ∂ℓ′

r , (B.1)

where f ∈ F . (The notation is sloppy, we really mean components ν = 1, . . . , d of each of these

quantities.) We shall say that the quantities in Eq.(B.1) are of degreem+m′ +n+n′ + ℓ+ ℓ′.
We let Ys denote the subspace of Y spanned by the expressions of degree less than or equal to

s. Clearly, the operators Z and M of Proposition 4.3 are in Y1 and Y0, respectively, while K0

and Λ2 are in Y2. Below, we shall use this, but also an additional property of the potential V .

We have

Lemma B.1. One has the inclusion

[Λ2,Ys] ⊆ Ys+1 . (B.2)

Furthermore, Y ∈ Y0 defines a bounded operator.

Proof. By inspection.

Proposition B.2. Assume that Y ∈ Yj , for some j ∈ {0, 1, . . .}. Then

ΛβY Λγ (B.3)
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defines a bounded operator on L2(X, dx), when

β + γ ≤ −j .

Let Z be an operator in Y . Assume that [Λ2, Z] ∈ Yj , for some j ∈ {0, 1, . . .}. Then

Λβ[Λ−α, Z]Λγ (B.4)

defines a bounded operator on L2(X, dx) for all α, β and γ satisfying

β + γ ≤ α− j + 2 .

We will give bounds on various quantities involving Ys. For this, we will use throughout

the following device:

Lemma B.3. Let Az be a bounded continuous operatorvalued function of z and let F (λ, z)
be a real, positive continuous bounded function. Then

‖

∫ ∞

0

dz AzF (Λ, z)u‖ ≤ sup
y≥0

‖Ay‖ ‖u‖

∫ ∞

0

dz sup
λ≥1

F (λ, z) . (B.5)

If furthermore A = Az is independent of z, one has the bound

‖

∫ ∞

0

dz AF (Λ, z)u‖ ≤ ‖A‖ ‖u‖ sup
λ≥1

∫ ∞

0

dz F (λ, z) . (B.6)

Proof. Note first that

‖

∫ ∞

0

dz AzF (Λ, z)u‖ ≤

∫ ∞

0

dz ‖Az‖ ‖F (Λ, z)u‖ .

Since Λ, as an operator, satisfies Λ ≥ 1 we also have from the spectral theorem:

‖F (Λ, z)‖ ≤ sup
λ≥1

F (λ, z) .

Thus, Eq.(B.5) follows. In a similar way:

‖

∫ ∞

0

dz AF (Λ, z)u‖ ≤ ‖A‖ ‖

∫ ∞

0

dz F (Λ, z)‖ ‖u‖ ≤ ‖A‖ ‖u‖ sup
λ≥1

∫ ∞

0

dz F (λ, z) ,

which is (B.6). The proof of Lemma B.3 is complete.

We shall also make use of the following identity, valid for α ∈ (0, 2), [Ka] Thm. V.3:

Λ−α =
sin(πα/2)

π

∫ ∞

0

dz z−α/2(z + Λ2)−1 . (B.7)
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We also let C−α = sin(πα/2)/π.

Proof of Proposition B.2. It is obvious that if we show the claim for β + γ = −j, then it

also follows for β + γ < −j. By the definition of Yj , and observing that f(q) is bounded, and

by the explicit form of Λ2, we see that the claim holds when γ = 0. We next consider the case

β + γ ≤ 0, −1 ≤ γ < 0. In this case we write

ΛβY Λγ = Y Λβ+γ + Λβ[Y,Λγ] .

The first term is clearly bounded as in the case γ = 0, by considering adjoints. The second term

can be written as

Λβ[Y,Λγ] = Cγ

∫ ∞

0

dz zγ/2Λβ

[
Y,

1

z + Λ2

]

= Cγ

∫ ∞

0

dz zγ/2 Λβ

z + Λ2
[Y,Λ2]

1

z + Λ2
.

(B.8)

By Lemma B.1, we see that [Y,Λ2] ∈ Yj+1 and thus, we get, using Eq.(B.5),

∥∥Λβ[Y,Λγ]
∥∥ ≤ Cγ sup

y≥0

∥∥ Λβ

y + Λ2
[Y,Λ2]

∥∥
∫ ∞

0

dz zγ/2 sup
λ≥1

1

z + λ2
.

The norm is bounded because γ ∈ [−1, 0) and thus β − 2 + j + 1 ≤ β + γ + j = 0. The sup

over λ is (1 + z)−1 and the integral converges because γ ∈ [−1, 0).
We now proceed to the other choices of γ by induction. We first deal with negative

γ. Assume we have shown that ΛβY Λγ′

is bounded for all γ′ ∈ [−τ, 0], and assume that

γ ∈ [−τ − 1,−τ), and Y ∈ Yj . We write

ΛβY Λγ = Λβ−1Y Λγ+1 + Λβ[Y,Λ−1]Λγ+1 .

The first term is bounded by the inductive hypothesis. To bound the second, we apply again the

method used in Eq.(B.8). Then we get

Λβ[Y,Λ−1]Λγ+1 = C−1

∫ ∞

0

dz z−1/2 Λβ

z + Λ2
[Y,Λ2]

Λγ+1

z + Λ2
.

Since [Y,Λ2] ∈ Yj+1, we see from the inductive hypothesis that

sup
y≥0

∥∥∥∥Λ
β 1

y + Λ2
[Y,Λ2]Λγ+1

∥∥∥∥ ≤
∥∥∥Λβ−2[Y,Λ2]Λγ+1

∥∥∥

is bounded and hence, using (B.5), we can complete the inductive step.

The case γ > 0 is handled by observing that Y ∈ Yj implies Y ∗ ∈ Yj , and bounding

ΛβY Λγ by bounding ΛγY ∗Λβ . This completes the proof of the first part of Proposition B.2.
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To prove the second part, we first consider the case α ∈ (0, 2). In this case, using Eq.(B.7),

we write Λβ[Λ−α, Z]Λγ as

C−α

∫ ∞

0

dz z−α/2Λβ

[
1

z + Λ2
, Z

]
Λγ = C−α

∫ ∞

0

dz z−α/2 Λβ

z + Λ2

[
Λ2 , Z

] Λγ

z + Λ2
.

(B.9)
We let B = [Λ2, Z], use another commutator and rewrite (B.9) as

C−α

∫ ∞

0

dz z−α/2ΛβB
Λγ

(z + Λ2)2
+ C−α

∫ ∞

0

dz z−α/2 Λβ

z + Λ2

[
Λ2, B

] Λγ

(z + Λ2)2

≡ C−α(X1 +X2) .

We first bound X1. We get, using Eq.(B.6),

‖X1u‖ =

∥∥∥∥∥Λ
βBΛ−j−β

∫ ∞

0

dz z−α/2 Λj+β+γ

(z + Λ2)2
u

∥∥∥∥∥

≤ ‖u‖
∥∥∥ΛβBΛ−j−β

∥∥∥ sup
λ≥1

∫ ∞

0

dz z−α/2 λj+β+γ

(z + λ2)2

≤ ‖u‖
∥∥∥ΛβBΛ−j−β

∥∥∥ sup
λ≥1

∫ ∞

0

ds s−α/2λ2−α λj+β+γ

(s+ 1)2λ4
.

Since, by assumption, B ∈ Yj , the norm is bounded, and the integral is bounded because

β + γ ≤ α− j + 2, by assumption.

To bound X2 we first observe that by assumption, and by Lemma B.1, C = [Λ2, B] is in

Yj+1. Therefore, using Eq.(B.5) we find the following bound for X2:

‖X2u‖ =

∥∥∥∥∥

∫ ∞

0

dz z−α/2 Λβ

z + Λ2
CΛ1−j−β ·

Λj−1+β+γ

(z + Λ2)2
u

∥∥∥∥∥

≤ ‖u‖ sup
y≥0

∥∥∥∥∥
Λβ

y + Λ2
CΛ1−j−β

∥∥∥∥∥

∫ ∞

0

dz z−α/2 sup
λ≥1

λj−1+β+γ

(z + λ2)2
.

This is clearly bounded when β + γ ≤ α − j + 2 and α ∈ (0, 2). This completes the second

part of Proposition B.2 when α ∈ (0, 2). If α = 0 the assertion is trivial. The case α = 2 is

handled by considering the identity:

[Λ−2, Z] = Λ−2[Λ2, Z]Λ−2 .

The cases when α > 2 follow inductively by using the identity:

Λβ[Λ−α−2, Z]Λγ = Λβ−2[Λ−α, Z]Λγ + Λβ[Λ−2, Z]Λγ−α .
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The cases when α < 0 follow by similar identities The proof of Proposition B.2 is complete.

Proof of Proposition 4.3. The Proposition 4.3 is a simple consequence of Proposition B.2.

Since Z is in Y1, the claim 2) is covered by the bound on (B.3). We next prove 3). The operator

K0 is in Y2 and Z is in Y1. Power counting would suggest that [K0, Z] ∈ Y2. However, by

Condition H1, we know that ∇qj
V equals a linear term plus a term in Y0, and hence explicit

computation shows that [K0, Z] ∈ Y1. Hence the assertion is covered by the bound on (B.3).

Since M ∈ Y0 we see from Lemma B.1 that [M,Λ2] ∈ Y1, and therefore the claim 1) follows

from the bound on (B.4). Using again explicit calculation and Condition H1 we see that [Z,Λ2]

is in Y1 (and not only in Y2) and [K0,Λ
2] is in Y2 (and not only in Y3), and hence the cases 4)

and 5) follow by applying again the bound on (B.4). The proof of Proposition 4.3 is complete.

Appendix C: A Generalized Core Theorem

We prove here the following result from Section 4:

Theorem 4.8. Let B be a Banach space. Let A : D(A) → B be maccretive. For all

n = 1, 2, . . ., if D is a subset of D(An) and is dense in B and furthermore D is invariant under

the semigroup eAt, then D is a core for An.

Proof. Let |||f |||n =
∑n

j=0 ‖A
jf‖. Then one has

(i) (D(An), ||| · |||n) is complete.

(ii) eAt is a strongly continuous semigroup on (D(An), ||| · |||n).

The statement of the theorem is equivalent to the following: If D
n

denotes the closure of

D in the norm ||| · |||n, then we have

D
n

= D(An) . (C.1)

We show this by induction. For n = 1, this is the core Theorem, [Da], Thm 1.9. Let us assume

that (C.1) holds for n− 1. Let f ∈ D(An), so there is a sequence {fm} ∈ D such that

lim
m→∞

|||fm − f |||n−1 = 0 .

With the fm we construct a sequence which converges to f in the ||| · |||n norm. We set

f (n,t)
m =

∫ t

0

ds
(t− s)n−1

(n− 1)!
eAsfm .

By the above property (ii), eAs is strongly continuous in s in D(An) and hence f (n,t)
m ∈ D

n
.

We set

f (n,t) =

∫ t

0

ds
(t− s)n−1

(n− 1)!
eAsf .
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Since eAsg is ntimes differentiable in swhen g ∈ D(An), we obtain, upon integrating by parts:

|||f (n,t)
m − f (n,t)|||n =

n−1∑

j=0

∥∥∥∥
∫ t

0

ds
(t− s)n−1

(n− 1)!
eAsAj(fm − f)

∥∥∥∥

+

∥∥∥∥
∫ t

0

ds
(t− s)n−1

(n− 1)!
eAsAn(fm − f)

∥∥∥∥

=

n−1∑

j=0

∥∥∥∥
∫ t

0

ds
(t− s)n−1

(n− 1)!
eAsAj(fm − f)

∥∥∥∥

+

∥∥∥∥−
tn−1

(n− 1)!
An−1(fm − f) +

∫ t

0

ds
(t− s)n−2

(n− 2)!
eAsAn−1(fm − f)

∥∥∥∥

≤ Ceγt t
n

n!
|||fm − f |||n−1 + (Ceγt + 1)

t(n−1)

(n− 1)!
‖An−1(fm − f)‖

= o(1) as m→ ∞ ,

by the inductive hypothesis. This shows that f (n,t) ∈ D
n

.

To conclude we show that ||| n!
tn f

(n,t) − f |||n → 0 as t→ 0. We have

∣∣∣∣∣∣n!

tn
f (n,t) − f

∣∣∣∣∣∣
n

=
n−1∑

j=0

∥∥∥∥
n!

tn

∫ t

0

ds
(t− s)n−1

(n− 1)!
(eAs − 1)Ajf

∥∥∥∥

+

∥∥∥∥
n!

tn
(∫ t

0

ds
(t− s)n−1

(n− 1)!
eAsAnf −

tn

n!
Anf

)∥∥∥∥ .

Using that eAtf is ntimes differentiable in t, that

∫ t

0

ds
(t− s)n−1

(n− 1)!
eAsAnf ,

is the remainder term in the Taylor expansion of eAtf , and that for g ∈ D(A)

(eAs − 1)g =

∫ s

0

du eAuAg ,

if g ∈ D(A) we obtain the bound

∣∣∣∣∣∣n!

tn
f (n,t) − f

∣∣∣∣∣∣
n

=

n−1∑

j=0

∥∥∥∥
n!

tn

∫ t

0

ds
(t− s)n−1

(n− 1)!

∫ s

0

du eAuAj+1f

∥∥∥∥

+

∥∥∥∥
n!

tn
(
eAtf − f − Af − · · · −

tn

n!
Anf

)∥∥∥∥

≤ O(t) + o(1) .



Anharmonic Chains Coupled to Two Heat Baths 43

This shows that f ∈ D
n

. This proves that D
n

= D(An) as required.
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