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A fundamental framework for the construction of a quantum field theory for open systems, which
will be called non-equilibrium thermo field dynamics (NETFD), is built upon two concepts. One is
the thermal state in the thermal-Liouville space, by which the quasi-particle superoperator is introduced
generally from the thermal state condition. The other is the coarse graining which is realized by
projecting out some partial space from the complete thermal-Liouville space, and by which the
dissipation is introduced. Most properties of the usual quantum field theory (e.g., the operator
formalism, the time-ordered formulation of the Green’s functions, the Feynman diagram method in
real time, etc.) are preserved in NETFD. The entropy for the nonequilibrium state can be also
introduced in NETFD.

§1. Introduction

Coarse graining is a fundamental concept in a microscopic theory of open Sys-
tems, especially in non-stationary and nonequilibrium situations in which certain
dissipation process takes place or need of projecting out some irrelevant subsystems
arises. Among many formulations available,”~® we find the projection operator
method of the damping theory,”~” especially the time-convolution-less (TCL) formula-
tion of the damping theory,”~” quite suitable to our purpose of constructing a field
theoretical framework for open systems.'”

As for the equilibrium situation, the so-called thermo field dynamics (TFD)"~'?
extends the usual quantum field theory to the one at finite temperature, preserving
many properties of the usual quantum field theory, e.g., the operator formalism, the
time-ordered formulation of the Green’s functions, the Feynman diagram method in
real time, etc. A central concept in TFD is the thermal state which describes the
themal equilibrium state and forms a linear vector space. This space is built on a
vacuum state which is called the thermal vacuum state. The statistical average is
given by the thermal vacuum state expectation value.

In this and the following papers, we present a general framework for the construc-
tion of a quantum field theory for open systems by combining the concepts of the
coarse graiming and the thevmal state, which will be called the non-equilibvium thermo
field dynamics (NETFD)."” We introduce the thermal-Liouville space in which super-
operators are defined. In the thermal-Liouville space, the “Schrodinger equation” for
the thermal state is reduced to a “master equation” by eliminating the reservoir
thermal-Liouville subspace in terms of the TCL projection operator method which is
reformulated in terminology of NETFD. The thermal state condition at time ¢ is
determined by the thermal state condition at the initial time together with the “master
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Nown-Equilibrium Thermo Field Dynamics 33

equation”. The thermal state condition at time ¢ for unperturbed system determines
the quasi-particle annihilation- and creation-superoperators and the thermal vacuum
state for the non-stationary and nonequilibrium situation, and leads to a quantum field
theory for open systems.

In § 2, the thermal-Liouville space and superoperators are introduced and their
basic properties are investigated. This somewhat mathematical preparation of the
space and operators makes us possible to unite quantum field theoretical and statis-
tical mechanical arguments. In § 3, using the thermal state condition in NETFD, we
introduce thermal vacuum state and quasi-particle superoperators, which provide us
with the representation space of the theory. We see that the methods of canonical
formalism in the ordinary quantum field theory can be extended to the perturbative
calculation in NETFD. In § 4, we discuss the coarse graining in the thermal-Liouville
space. The method is applied, in § 5, to eliminate reservoir variables in order to
introduce dissipation. This shows explicitly that, within the framework of NETFD,
we can treat dissipation effects quantum-field-theoretically, which have been treated
statistical-mechanically. Section 6 is devoted to discussion. In Appendix A, the
characteristics of the mirror space is given with the definition of mirror super-
operators. In Appendix B, the TCL formulation of the damping theory is applied to
obtain the “master equation” in the thermal-Liouville space. The time-convolution
(TC) formulation of the damping theory”® is also reviewed. These considerations
are to be compared with the one in §§ 4 and 5. In Appendix C, another derivation of
the “master equation” is shown.

§2. Thermal-Liouville space and superoperators

After giving the general properties of the Liouville space and introducing
superoperators, we build a linear vector space which will be called the themal-Liouville
space.

2.1. Liouville space

The Liouville space'™ ' can be spanned by a complete orthonormal basis
lmn)y=||m><nl), _ (2-1)
Cmn|=|mn)* =((m><nl)|=¢n><ml| (2-2)

which satisfies

«mnlm,%,»zamm'ann' , (2'3)
%]mn)}({mn]=i , ' » (2-4)

where {|n>=|n1, #,, -->} is a complete orthonormal basis of the Hilbert space which is
generated by cyclic operations of the creation operators a.' on the vaccum |0).
These operators obey the commutation relations:

[di, Cle]U:az'j, (2‘5)
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34 T. Arimitsu and H. Umezawa

la, alo=[a:", a;"1s=0, | (2+6)
' where the o-commutator is defined by

[A, Ble=AB—0BA ’ , (2:7)

with
={+1 Vfor bosoTl . (2-8)
—1 for fermion
When A consists of a: and a;', we define

|A>)=%‘.l|mn)><mlA|n> , (2-9a)

((AI=§(nlAlm>((mn| . ‘ ' (2-9b) |
We then have

{mn|AY=<{ml|Aln>, (2-10a)

CAlmn)=<n|Alm) . (2-10b)

It is obvious that |A) and { A| belong to the Liouville space. They are related to each
other through

(Al=1Am)". - (2:11)
We have also _
((A|B>>=Zn}<nIAB|n>=Tr AB. (2-12)

When A in (2-9) is the unit operator, we have

1=, - | (2-132)
=2 nn|. ' (2-13b)

2.2.  Superoperators

The operators which induce linear transformations among the vectors in the
Liouville space are called superoperators.*® Any superoperator is a linear sum of
operators, each being a product of four kinds of basic operations; m;— m;t1 or »;
- u: 11

Following Schmutz,
by

D we thus define a special set of the superoperators a; and @;

ailmny=|a|m><nl), (2-14a)
a:\mny=oc"*""||m><nla:") (2-14b)

with ¢=2)(m;—n:), where we used the particle-number eigenstates for {|z>}:
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Non-Equilibrium Thermo Field Dynamics 35

aaind>=niln>. : (2-15)

In the mapping rule (2-14), we used the same notation for the superoperator a: as the
" ordinary operator a..

By analysing the Hermitian conjugate of the matrix elements of the superoper-
ators a; and @;, we find

a:'|mny=la:"lm><nl, (2-16a)
a:'|mny= d”llni><n|a,->> . (2-16b)
For example, (2:16b) is derived from (2-14b) as
Cm'w'| @t |\ mn)=Lmn| @:\m’ n')*
=" Ymnl|lm' ><{n'la;"H*
= 0" YKm|m">*n'|a:'|nd*
=" Um'|m><nla:|n">

=o"{m' %' ||m><nla:), (2-17)

where (/=2 (m;—n/) and we used the fact that m=m and n=#'—1 in the last

. equality.

It is obvious that the four superoperators (a., a.', @;, @:") form a basic set of
superoperators in the sense that any superoperator-is a linear sum of products of
them. As a matter of fact, this set is the smallest among the basic sets.

From (2-14) and (2-16) follow the commutation relations among the superoper-
ators, i.e.,

lai, a;'1o=[a:, @;'16=04, (2-18)
while the other commutation relations vanish. We also -obtain

a:' allmn)=mimn) , (2-19a)

a:" aimny=mn;mn) 7 (2-19b)
and ‘

a:00)= @:{00y=0, (2-20)
where |

[00)=1l0><0[) (2-21)

which is called the supervacuum.?”
From (2-13), we have

|1>>=Z”}|nn>>=exp(2iai' a:")[00y, (2-22a)
(<ll=ZnK<n%I=(<00lexp(Zz_‘. a.a;). (2-22b)

It follows from (2-22) that
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36 T. Arvimitsu and H. Umezawa

aill)=a.'1y, . (2-23a)
a:'\1)=o0a1). (2-23b)
According to the definition (2:2), we have
Cmnla;' ={n><mla’|, (2-242)
Cmn| @' =Cailn><ml|c*, (2-24b)
(mnla;=(n><mlail,  (2-25a)
mnl|@:={a:' |l n><mllc* (2-25b)
and
(lla:"=(1la:, (2-26a)
{lla:=(1la:"o. (2-26b)

It is obvious from (2-9a), (2-14a) and (2-16a) that when A and B consist only of
a and a’,

Ajy=|A}, (2-27a)
BAN)=B|A)=|BA), (2-27b)
and from (2:9b), (2-24a) and (2-25a) | '
(1lA=(Al, (2-28a)
(1|AB=(A|B=(AB]|. (2-28b)

These relations satisfy the self-consistency condition
(AIB|CY=(AIBCY=(ABIC). (2-29)
Then we also have, using (2-12)
(1]AY=CAl1)=(1|A|1)=TrA. : (2-30)
We now set up the rule for the tilde conjugation. We first note that (2-14b) gives
c(@:ta; " Wawadlmn)=7allm><nllc*(a:"a;' Naw--a)l"y, (2-31)

where ¢ is a complex c-number and & is the product of ¢**' which comes from
(2-14b). This relation indicates the following rule for the tilde conjugation:

(AB) =AB, (2-32a)

(aA+aB) =c*A+c*B, (2-32b)
because this rule puts (2-31) in the form

Almn)=5||m><n|A") . : (2-33)

We generalize the definition (2-32) to any operators (A, B) consisting of ¢ and a'
(although the simple form of (2-33) does not always hold when A is a linear sum of
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Non-Equilibrium Thermo Field Dynamics 37

more than two product terms).
When A has the form c(al--al)(@r " ar,) With a c-number ¢, (2-23) leads to

All»:GUA(UA+1)/2AT|1» , . (2.343)
A'Ly=cas DALY | (2-34b)

where va=m—n. Here it was considered that the total number of permutations
needed in reversing the order of the operator elements in A is (m+#n)(m+n—1)/2
which is equal to [va(va+1)/2+m+an even number], and that each @' in A contrib-
utes to the phase factor on the right-hand side of (2-34a) by an amount o, according
to (2:23b). In a similar manner, (2-26) leads to

QA =(1]|Agvavartiiz, (2-35a)
(1A= AT g a2 _ (2-35b)
Now (2:27b) gives
|BAY=BAI1)=c***+""2BA"|1)
=6UA(UA+1)/2+UAUBAT|B» , i » (2’36)
where ¢/4”® is created by the commutation among B and A'. Here vs is related to
B in the same way as va to A. Thus va and vs are the fermion numbers of A and B,
respectively. The relations (2-34)~(2-36) hold true even if A is the linear sum of the
products of the above form with common m—# and when B has the same structure,

because, then va and vs can be assigned to A and B, respectively. When B has an
inverse, (2-36), gives

BAB_1|B>>= GuA(uA+1)/z+uAuBA'f|B>> . | : (2.37)
Finally, we note that, comparing the tilde conjugate of the both sides of (2-34a)
[or (2-35a)] with (2:34b) [(2-35b)] gives
A=0.A, (2-38)
where 04 is the fermion number of A, i.e., ca=0"4. A similar argument holds for A
consisting of @ and &'. Note that we can modify’”* the phase factor in the
definition of the superoperators in (2:14) in such a manner that A=A. However, in
this paper we use (2:14) which leads to (2-38).
As particular cases for (2-38), we have

C-Z-:i:O‘ai, giTzddiT . (2'39)

2.3.  Thermal-Liouville space

We now formulate NETFD in terms of the Liouville space and the superoper-
ators. We assume that each thermal state is represented by a vector in the Liouville

space. Thus our basic set of operators are the superoperators (a, a', @, @'). The

ket-basic vectors are constructed by cyclic actions of “creation superoperators” on the
thevmal vacuum ket-vector which in the Schrédinger representation will be denoted by
|W(#)). The change of thermal states in time is generated by a “Hamiltonian” H
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38 T. Arimitsu and H, Umezawa
which is a superoperator consisting of @, a', @ , @'. Thus, we have the “Schridinger
equation”

| W()y=—iH|W(t)). (2-40)

When we write | W(#))=W(2)[1), W(¢) will be called the density superoperator.
We see from (2-40) that

W)= S5t W(s)), | (2-41)
where _ R
S(t)=exp[—ift]. (2-42)

Note that we did not require that H is Hermitian. Thus S'is not necessarily unitary.

The thermal average is given by (1|4 W(#)) when | W(#)) is normalized accord-
ing to ' '

Qw()y=1. (2-43)

In order for this to be satisfied by all kinds of nonequilibrium situations, we may
expect that

(llH=0. | (2-44)
Indeed, a derivation of this condition is presented in Appendix C. We then have

(AW (OY=CUADIW (%)), (2-45)
where

A)=S"(t—t)AS(t—ts). (2-46)

The superoperator A(#) will be called the Heisenberg representation of the superoper-
ator A.

The state |W (%)) is called the thermal vacuum ket-vector in the Heisenberg
representation. This state is determined by the initial condition for the system at ¢
=1 (i.e, by the experimental setup of the system at the initial time ).

The Heisenberg equation of motion for the superoperators is

0A(t)=i[H, A(1)]. (2-47)
As particular cases of (2-46), we have

a(t)=S"(t—ta S(t—1t), (2-48a)

a' ()=S"t—t)a'S(t—1t), (2-48Db)

a(t)=S""t—t)aS(t—t), (2-48¢)

att()=St—t)a'S(t—1t). (2-48d)

It should be noted that 2" *(¢) and @''(¢) are not Hermitian conjugation to a(#) and
a(t), respectively, when S is not unitary, although they satisfy the “canonical”
relations:
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Non-Equilibrium Thermo Field Dynamics 39

[ai(t), dj”(l‘)]zrz[di(t), dj”(t)]6=3ij . (2,'49)

The basic bra-vectors are created by cyclic actions of annihilation operators on
the themal vacuum bra-vector which is {1|.

Thus, {1| and |W(%)) are considered to be thermal vacuum states (in the Heisen-
berg representation) for the bra- and ket-vectors, respectively. The thermal average
CA®)| W (k)Y is the vacuum expectation value of A(¢) in this space. The thermal-
Liouville space is a linear vector space constructed on these thermal vacuum states
(see §3 for detailed discussion). We will build a quantum field theory for open
- systems in this thermal-Liouville space.

It is worthwhile to note here that there is a space similar to the thermal-Liouville
space, which will be called the mirror space of the thermal-Liouville space, the bra and
ket state vectors of which are constructed on the mirrvor thermal vacuum states
{W(%)| and |1), respectively. In the mirror space, we can define the Heisenberg
representation of the mirrvor superoperator which is nothing but the mirror operator
introduced in Ref. 7). Some investigation of the mirror space is given in Appendix A.

§3. Thermal state condition

In this section we extend the thermal state condition of the equilibrium TFD'»~'?
to nonequilibrium situation.'”® We do this by using the interaction representation
(i.e., the perturbative expansion). The unperturbed Hamiltonian is of a bilinear
form consisting of the superoperators a, @', @ and @'. The superoperators a, a', @
and &' in this representation will be said to be semi-free.

For simplicity, in this paper (except §4) we restrict our consideration to a
translationally invariant case. It is straightforward to extend the discussion to cases
in which the condition of the translationally invariance is broken.?

In a translationally invariant case, the superoperator a. is a linear sum of

a_k(t):§0_1(t_t0)ak§0(t_t0) , ) (3'13.)
ﬁkTT(L‘)zS\o_l(t‘—to)ﬁkfgo(t—to), . (3-1b)

where the subscript % describes the wave number, and So(t) is defined by (2-42) in
which H is replaced by the unperturbed “Hamiltonian”.

The unperturbed thermal state condition in the translationally invariant case is
given by

ar|W(t))=rfudar'|W(t)), , - (3-2a)
akl W(t0)>>=dfkakfl W(to)» (3'2b)

with a c-number function fx, the form of which is determined by the knowledge of the
initial density matrix W(%). In writing (3-2), we considered the fact that the density
opertor is a boson-like operator in general. The condition (3-2) is satisfied, for
example, when the initial state is in thermal equilibrium.

Both the deviation of A from the unperturbed bilinear “Hamiltonian” and the
deviation of the thermal state condition from its unperturbed linear form [i.e., (3-2)]
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40 _ T. Avimitsu and H. Uwmezawa

are considered as perturbative effects.

Let us show how the thermal state condition (3:2) determines the “canonical”
annihilation and creation superoperators of quasi-particles. Since (3-2a) is linear in
the superoperators a. and &.', and since these operators are linear combinations of
ax(t) and @."*(¢), (3-2a) becomes a linear relation among @«(#) and @x' () acting on
| W(%)). This can be written as 7x(¢)] W(#))=0, where 7.(¢) is a linear sum of @x(¢)
and @."'"(¢). Similarly the thermal state condition (2-26a) for (1| leads to 1| 7% (¢)
=0 where 7.%(¢) is a linear sum of a.''(¢) and. @A(¢). Summarizing; the thermal
state conditions (3-2a) and (2-26a) determine the annihilation and creation quasi-
particle superoperators as

7e()=Zu"*(t —to) an(t)~ f(t —to)@x" " ()], (3-3a)
Fo (=22t — b)) @x' (1) — oan(t)], (3-3b)
_and in terms of which the thermal state condition at time t veads as
rOIW@N=0,  (17.%(£)=0. (3-4a)
The tilde conjugation of (3-4a) leads to
FaOIW (D=0,  (UnF(#)=0. ' (3-4b)

The c-number function £(#) in (3-3a) is determined by £« and So(¢). The normaliza-
tion factor Z."*(¢) is determined by the “canonical” commutation relation

[ye(t), 7.7 (£)]o=6u, (3-5)
[74(8), 771%(1‘)]6:31@1 , (3-6)

while the other commutation relations vanish. The result is

Z(t)=1+na(t), (3-7)
where
na(t)=ofu()/[1~ 0 fu(1)]. (3-8)
Using the rélations (3-3) and (3-4), we obtain
ot —t)=olllax" () ax ) W(t)) . (3+9)

The above argument shows one of the most significant roles played by the
thermal state condition; the latter condition specifies the thermal vacuum and creation
and anwihilation superopertors for the quasi-particles.

We are now ready to present a precise definition of the thermal-Liouville space.
The thermal-Liouville space is nothing but the linear vector space spanned by the set
of bra and ket state vectors which are generated, respectively, by cyclic operations of
the annihilation superoperators y(¢) and #(¢) on the thermal vacuum (1| and of the
creation superoperators ¥ ¥(¢) and 7 *(¢) on the thermal vacuum | W(%)).

We now adopt the usual definition of the normal product; when a product has a
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Non-Equilibvium Thermo Field Dynawics 41

form in which all the creation superoperators (y*and 7 %) stand left to the annihila-
tion superoperators (y and #), it is called a normal product.

When we rewrite a(¢) and @''(#) in terms of the quasi-particle superoperators
7(¢) and 7 ¥(¢), any product can be rewritten as a sum of normal products, leading us
to a Wick-type formula for nonequilibrium systems. This Wick-type formula leads
to Feynman-type diagrams for multi-time Green’s functions in the interaction repre-
sentation. We then obtain a Feynman-type diagram method for perturbative calcula-
tions for non-stationary and nonequilibrium statistical mechanical problems when a
perturbative interaction is introduced in H. The perturbative calculation leads us to
an expression of the Heisenberg operators in terms of product of quasi-particle
superoperators. This is an extension of the concept of the dynamical map in the
usual quantum field theory to nonequilibrium situations.

§4. Coarse graining

We divide the system into two parts A and B as

ﬁ:ﬁo+gﬁ1, ﬁozﬁA+ﬁB, (4'1)

where H, describes the interaction between two subsystems A and B. In the interac-

tion representation with the interaction “Hamiltonian” gﬁl, (2+40) becomes

| W(M=—igEL()I W (1)), (4-2)
where | ‘

W (6= W(1))y, - (4-3)

Hi(#)=e™ott=t0 f, g=Holt=t0) (4-4)
The formal solution of (4-2) is given by

W)= Z (2, )| W (%)),  @5)
where '

Z(t, =T expl~ig [ ds Bi(s)], (4-6)

and T is the well-known time ordering operator.
We now calculate

| W) =18l WD) @

by assuming that, at the initial time #= fo, the thermal vacuum ket-vector is factoriza-
ble, .

| W (1)) = | Wa(ta))| We(%0)) . ' (4-8)

We specified that ({1al, | Wa(%))) and (1], | Wa(%))) are the thermal vacuum states
associated with the relevant A subsystem and the irrelevant B subsystem, re-
spectively. By substituting (4+5) into (4+7), we obtain
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42 T. Arimitsu and H. Umezawa

WA =T expl | ds Ri(s)I Wil (1-9)
with |
Ki(t)=8,TIn(1s| Z (¢, to)| Wa(t))
=[0(16|Z (2, 1)l Walt)) K16l Z (2, t0)| W)y . (4-10)

The right-hand side of (4-10) is given by connected diagrams without any external
B-lines which are nothing but ordered cumulants® " in the TCL formulation of
the damping theory. The superoperator K;(¢) in (4-10) was introduced in the TCL
projection operator method.” The TCL formulation of the damping theory is given
in Appendix B with the TC formulation of the damping theory.”™® An interesting
argument related to (4-10) is found in Ref. 27).

In the Schrédinger representation,

| Wa(£))= e~ =1 Wu(£))s (4-11)
we obtain a “master equation” for the relevant A subsystem as

3 Wa())=—i[Ha+iK ()| Wa(t)), (4-12)
where

R(t)=e -t [ (1) giflatt=to) (4-13)

§5. Elimination of reservoir variables

In order to introduce dissipation, we eliminate the partial space in the thermal-
Liouville space, which is related to the thermal reservoir, by use of the coarse graining
method given in the previous section. The characteristics of the thermal reservoir
will be specified in the following argument.

. We divide total closed system into two parts, i.e., the system (S) which we are
interested in and the reservoir (R), so that

Ho=Hs+ . , (5-1)

As for the interaction between the system and reservoir, we take a linear dissipative
interaction®”?®"®

ﬁlel—ﬁl : (5'2)
with
gHF%!/ikz(aksz* + Ruax't) s (5-3)

where the reservoir superoperator R. is assumed to be a boson (fermion)-like
operator when a. is a boson (fermion) superoperator. We do not assume the
canonical commutation relation for Rx and Ri'.

In the van Hove limit,? which corresponds to the coarse graining in the time axis,
(4-13) with (4-10) or equivalently (B-11) reduces to
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Non-Equilibrium Thermo Field Dynamics 43
K(c0)= tllt?iloo( — ig)2e Nt =t0) [ @)( ) pifiatt—to)
t - -~
== tlitr{.lmgz'/t‘ dtl«lRlHl(to)Hl(h— t+ to)| W) , (5-4)

where (1x| and | W&) are the thermal vacuum states for the reservoir thermal-Liouville
subspace. We assumed that

(el gFL| We)=0, (55)
is satisfied, and used the fact
(Lel o™=t =(1y] , (5-6a)
™ 10| W)=| Wa . (5-6b)
By substituting (5-2) with (5-3) into (5-4), and using thermal state conditions
(Ll Rut " () =(Lel Rua(2) , | (5-7)

and its tilde conjugate, (5-4) becomes
K(oo): *%:Aklz./o‘wdt(dk— O‘ﬁkT)[«lRlezT(f)sz(O)l Widar (to—1t)

— o{1rl Rei(0) Rt ' ()| Wr) @ w(to— )] +(tilde conjugate), (5-8)

where we used (5-6) again. Note that e.g., ax(t)=as. In deriving (5-8), we assumed
that reservoirs for each mode are mutually independent and that -

CLr| Rei 1) Rus(to)| Wa)=0 . (5-9)

and its tilde conjugate areAsatisﬁed. The time evolution, such as a«(#) is determined
by (2-48) in which H in S(¢) is replaced by Hs that generally contains interactions

within the system S. We note that {{ is equal to T since the time evolutions of a(¢)’s

and R(t)’s are generated by unitary superoperators [see (4:4)]. This comes from the
fact that the total system is closed, i.e., Ho=Ho— H, does not contain cross terms
between tilde and non-tilde superoperators [see (5-23b) below].

Substituting (5-8) into (4-12), we obtain a “master equation” for the system S as

3| We(8))=—iH | Wx(2)) (5-10)
with

| We(2))=C1:l W (2)), (5-11)

H=H+iR(). (5-12)
It should be noted that A satisfies the relations

H=(H)", (5-13)

(1lA=0, ' (5-14)

where (1| describes the thermal vacuum bra-vector of the system S.
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In the interaction representation with respect to the interactions within the
system S, the unperturbative part of (5-8) reduces to

XO(OO) = ;{(ak —odr MNas" dut(er)— 0Grpr "t (er)*]
+(tilde conjugate)}, - v 6 15)

where ex describes the quasi-particle energy including the chemical potential of the
reservoir self-consistently, and

b (&)= [ A1l Res’ (DRl 0) W™ (516)

() =3 [ dt (Ul Re £) Re' (O] W)™ . (5-16b)
By introducing a non-negative real valued function A.(%),
Sl Res (O Ru O W= [ du i), (517a)
we can obtain
Elllklz«lR!Rkl(t)Rle(O)l m>>:%'[:du e"'”t/lk(u)e’g" . (5'17]3)
In deriving (5-17b), we used the thermal state condition, i.e., the tilde conjugate of
(5+7) together with (2-37), in such a way as
(LrIRel(2) Rt (0)] W)= 0(1xl Rai " (£) Rer (0)] Wi)
=(1elRu " (0) Rt (#)| WRY
= (Lel Rut (0) WeRn(t) We™| W)
=(1el Ree' (0) Rie( + iB)| Wi . (5-18)
with
We= W Wi, | (5-19)

since the thermal vacuum state | Wz) is constructed by the grand canonical density
superoperator Wi~exp|— BHz| with the temperature T=8"'(ks=1). The relation
(5-18) is nothing but the Kubo-Martin-Schwinger relation.**"

If we define new quantities xx(¢) and 4.(e) through the relation

2a(&) i) = s~ (&) — o™~ (&)*
=St [l Rus D R’ 0)— ROl Wade™, (520)

they are written in terms of A.(x) as

xe(e)=(e®—0)Aule), ' (5-21a)
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1=, P | olhy
2= ["au L) . (5-21b)
Equation (5-21a) indicates that xk(e) >0 for €>0. Equation (5-21b) is nothing but the
Kramers-Kronig relation. .

By using xx(¢) and 4:(e) and their properties, (5-15) finally reduces to .

Ko(0)=—idHs+11 (5-22)
with
1= A(ax' ar— x" @x) (5-23a)
Z—E}Ck[(1+2%dk)(dk ant @r' @r)— 200+ #ior) @ nan
—27ordr" as' | =20 ks Ron A (5-23b)
where

iszifk(Ek) » Akzdk(ék)
and
ﬁo‘k:ﬁ(Sk)ZO'(eﬂek_G)—l . v . (5'24)

It may be worthwhile to note that in the above argument we do not need to specify

the explicit form of Hx as far as the values of xx(¢) and 4.(e), defined by (5-20), are
left undetermined. They depend on the structure of Hx and can be calculated system-
atically by TFD*® within the conventional linear response theory.*”
" The “master equation” (5-10) with (5-12) is equivalent to the one derived from the
rigorous treatment of the damping theory.”*¥~*® In the convenional treatment of the
damping theory, in which the effect of the interactions in the system S on the
relaxation of the system is ignored, one considers only Ky() instead of K(o0) in
(5-12).

§ 6. Discussion

We presented a fundamental framework for the construction of a quantum field
theory for open systems by means of the thermal-Liouville space of thermal states.

Although, for simplicity, we assumed the translational invariance for the reser-
voir and also for the thermal state condition, we can extend straightforwardly the
consideration to the case where the translationally invariance is broken. We for-
mulated a coarse graining method with which we project out the reservoir to obtain
a “master equation” from the “Schriodinger equation” in the themal-Liouville space.
This method is equivalent to the TCL formulation of the projection operator
method”~” when the thermal vacuum ket-vector in the Heisenberg representation is
factorizable. When we are interested in a smaller subsystem, we can further apply
the projection method to this “master equation” to eliminate more partial subsystems
in order to obtain a “master equation” for the subsystem in which we are interested.”
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However, in this paper we restricted the discussion only to the first step, i.e., the
reduction of the reservoir variables. A formulation of the second step (i.e., further
reduction of partial subsystems, in terms of the superoperators) is required in the
applications of this formalism to some practical problems such as the parametric
amplifier,*® the microscopic laser theory,*¥*" the transient nonlinear optical prob-
lems related to the dephasing,®~* a localized electron-phonon system,*9 etc.
Introduction of the time-dependent projection operator method*”*® into the thermal-
Liouville space will be interesting in view of its relation to the local equilibrium state.

As in equilibrium TFD,""~'” most properties of the usual quantum field theory (e.
g., the operator formalism, the time-ordered formulation of the Green’s functions, the
Feynman diagram method in real time, etc.) are preserved in NETFD. We expect
that our formalism for nonequilibrium systems may easily accommodate the Ward-
Takahashi relations, the renormalization method and the renormalization group.
The general quantization procedures of the free field*®~® can be extended to the cases
of semi-free field (i.e., /7#0). We can formulate NETFD by the generating functional
method.”™ The relation of NETFD to the real time-path methods®~* is an interest-
ing problem. '

The entropy for the nonequilibrium state,'®"” in the thermal-Liouville space can
be given by

S()=—5In()/2() (61)

with
Q(H)=(1I W& (D] (1)) | (6-22)
=W (DI WD) . (6-2b)

Operations, ~, T and M in the thermal-Liouville space are closely related®® to the
three conjugations of Prigogine’s.”

With the general framework presented in this paper, the linear response theory
proposed by Kubo® can be made to include the effect of reservoir on the response of
the system under consideration.” A systematic calculation method for the response
function can be formulated in terms of NETFD.

In the following paper, we will show that NETFD can be formulated in an
extremely compact form on several basic requirements (axioms) without referving to
the existence of the reservoir. The determination of A in NETFD becomes complete-
ly simple especially for the first step of the coarse graining. The whole structure of
NETFD will be constructed upon the basic requirements.

We close this paper by noting that a “matrix element” in terms of the complete
orthonormal basis of the Liouville space has the property:

v((m’n’lfié, |mny=(m' n'|, AB|mn)
=(m'w|A, Blmn), (6-3)

where A and B consist of a,a', @ and a".
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- Appendix A
— Mirrov Space ——

In the mirror space, all of the equations of motion in the Schrdinger representa-
tion are written in terms of the bra state vector. Thus the “Schrodinger equation”
becomes

(WNT =W HI(—H)", (A-1)

where the mapping rules (2-24) and (2+25) were considered (see also Appendix C).
Here the superscript M indicates the superoperator in the mirror space.
The Heisenberg representation of a mirror superoperator A" is defined by

AM(1)=§"(t~ 1) A"SH(t— 1)
=Ala"()', a"(1), @"(1)'", a"(1)] | (A-2)
with
- SM(t)=expl(—iH)"t], (A-3)
because this together with
(WDI=(W(B)IS"(t—t), | (A9
leads to
(W (I AMY=¢ W (1)l A*(£)I1) (A-5)
by using |
HM[1)=0, - (A-6)

where the definition of |1) is given by (2:22a). The Heisenberg equation of motion of
the mirror superoperator is given by

A"()9 . =[A"(t), GH)"]. (A7)
For the superoperator

A=35C(ps* br, @1ty 71°** ¥my S1°**Sn)
kl pq

mnrs

x(agl'"ag’k)(am'"a%)(ﬁll"'a;m)(&sl"'asn) ’ (A'S)
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the mirror superoperator is given by
A=At (A-9)
with y=(7—v)(7—v—1)/2, p=k—1 and v=m—n, where we have assumed that v is

common to all the terms in (A-8). Note that the mirror superoperator A is defined
through the relation

(WA =AW (DA, AW =14 () A (a-10)

because of the original definition (A-1). If the fermion number is conserved, i.e., 7
=y, then (A-9) reduces to

AM=A" (A-11)
It is worthwhile to note that the relation
- (GE"=GH)*, ' (A-12)

is satisfied because of the relation (5-13).
As particular cases of (A+9), we have

a"=oa', (a"YW=a, (A-13a)

(@g'Y=a, a“"=oa'. (A-13b)
Note that |

(AB)" = g*=BHA™M (A-14)

where w4 and g describe the fermion numbers of the superoperators A and B,
respectively, i.e., pa=7—v, etc.

‘ Appendix B
—— Projection Operator Methods ——

An alternative derivation of the “master equation” (4:12) for the relevant subsys-
tem is given by the TCL formulation of the damping theory”~" with the assumption
(4-8). In this Appendix, we review the general structure of the TCL projection

operator method”~" which is more suitable, compared with the TC projection opera- -

tor method,”® to construct a quantum field theory for open systems in which we deal
with real time explicitly. The TC method is also reviewed.
We introduce a projection operator

P=|Wu(to))1s|, , (B-1)

which projects out the irrelevant part in the thermal-Liouville space that corresponds
to the irrelevant subsystem B. We divide (4-2) into two equations by applying P and
Q=1—P as

0P| W(t))r=—igPH\(t)P| W (1)) — igPH() QI W ()Y , (B-2a)
O:QIW(8))i=—igQH () PIW(£)): — igQE(t) Q| W ()): . (B-2b)
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We can solve (B+2b) formally as

QIW(D)i=Gt, )QIW(t) —ig [ drG(t, Q) PIW (D)) (B-3a)
=G(t, t) QI W (t))+ Z () W()): (B-3b)

with v
S(t)=—ig f :a’rG(t, DQA(DPZ (¢, 1), (B-4)
G, o)=T exp[—.ig/:ds Qﬁl(s)Q} , (B-5)

where to obtain (B-3b) we used (4-5) with (4:6). Equation (B-3b) can be solved as
QW =[1-E ()" HG(t, t)QIW (%)) + I () PIW ()N} . (B-6)

By substituting (B+6) into (B-2a), we obtain a “master equation” in the TCL
4)~T)
a

formulation of the damping theory S

Ol Wa(£))r=EKi()| Wa()Y: +|In()):1 , (B-7)
where | Wa(#)): is defined by (4-7),

Ri(8)=—ig(lal H(£)[1— Z ()] | Wa( o)) , , “(B-8)

\a(£)):=— ig{Lel u(1)[1— Z ()] G(2, t) 8| W (1)) (B+9)
with

S| W (t))=QIW (%)) |
=| W (1)) —| Wa(to))| Walto)) .  (B+19)
The right-hand side of (B-8) can be expanded as®

Ri(t)= S~ igy"Rd™(2) | (B-11)
with |

K™ (1)= £ :a’tl [ :ldtz‘” [ " dts
| (Lol B FL8)-+ Bl ) Wt} oc (B-12)

where the integrand of (B-12) is the #-th order ordered cumulant,”~*"®" and can be
expressed by (4-10).”
In the Schrodinger representation, (B+7) reduces to

B WA(D))=— il Hat iR ()| Wa(E)) +IIn (1)), (B-13)
where | Wa(t)) and K(t) are defined by (4-11) and (4-13), respectively, and
|Ta(£))= e~ =2 [, (1)), . ‘ (B:14)
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If the condition (4-8) is satisfied, (B-13) reduces to (4-12) because in this case
|Za(£))=0.

By substituting (B+3a) into (B-2a), we obtain a “master equation” in the TC
formulation of the damping theory”™® as

3| Wa(£)y= — i[ Ha~+ g{1s| Hi| We(2o))]| Wa(2))

£ [[arb(t, WA +II D, (B-15)
in the Schrodinger representation, where ‘
B(2, 0)=e =1 (¢, 1) nT=t0 ‘ (B-16)
with '
D:(t, r)=— gLl H(1)QG(¢, 1) QH(7)| Wal®o)) , (B-17)
and V |
|9 a(£))=e =1 (1)) (B-18)
with _
IO = — il O, 18 W) . (B-19)

The second term of the right-hand side of (B-15) can be expanded® as
) t — o t —
_/;0 dr O:(¢, 7)| WA(r)»1=7§2(—ig)"£o dr O,/ (¢, )| Walo)) (B-20)
with
¢ - ’ t t1 tn-2
[lacb e, DW= [ an [t [ dtas

el () Hi( )+ Hi(t-1)| Wi to) e WA(tn_1)>>,_, (B-21)

where the integral kernel of the right-hand side of (B-21) is the #-th order partial
cumulant.” , :

For convenience, we write down several lower terms of ordered cumulants and
partial cumulants for the case

(Ll H(OIWa(t))=0. (B-22)

They are
- K01>0c=<01>pc=<01>, (B-23)
<0123>0c=<0123> —<01><23> —<02><13> —<03><12>, (B-24a)
<01235>pc=<0123>—<01><23> , | (B-24b)

where we have introduced notations like

g ky=(Lel Ai(£:) Hi(8)- H(£) W 10)) (B-25)
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in which zero refers to ¢, and the subscripts OC and PC indicate the ordered cumulant
and the partial cumulant, respectively.

Appendix C
—— A Different. Derivation of the “Master Equation” ——

By applying the TCL formulation of the damping theory”™” to the Liouville
equation

AW ()= —ilH, W], c-1)

to eliminate reservoir variables, we obtain a master equation for the relevant system
S in the van Hove limit as

3 W(t)=— i Hs, Ws(£)]-+ITW(t) , (C-2)
where Wi(?) is the density operator of the system and

HX=§{Xk([de, ak’]+[ak, Xak7])+2xkﬁdk[llk, [X, ak*]a]} (C3)

with definitions (5-31) for # s and (5-20) for x.. The energy shift 4, is included in Hs.
In deriving (C-2), we used the same linear dissipative interaction gH: of (5-3). Here
operators @ and R should be interpreted as ordinary operators. We also used the
conventional treatment of damping theory in which the effect of the interaction within
the system S on the relaxation operator is ignored.

" By putting (C-2) into the ket-vector |y, and by using the mapping rules from the
ordinary operator to the superoperator given in § 2.2, we obtain the “master equation”
(5-10) in which K (o) is replaced by Ko(0), (5-22).

The property

Tr{[Hs, X]+i1X}=0 (C-4)

for an arbitrary operator X reduces to the condition (2:44) in the thermal-Liouville
space.
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