
Non-Euclidean or Non-metric Measures
Can Be Informative
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Abstract. Statistical learning algorithms often rely on the Euclidean
distance. In practice, non-Euclidean or non-metric dissimilarity measures
may arise when contours, spectra or shapes are compared by edit dis-
tances or as a consequence of robust object matching [1,2]. It is an open
issue whether such measures are advantageous for statistical learning or
whether they should be constrained to obey the metric axioms.

The k-nearest neighbor (NN) rule is widely applied to general dissimi-
larity data as the most natural approach. Alternative methods exist that
embed such data into suitable representation spaces in which statistical
classifiers are constructed [3]. In this paper, we investigate the relation
between non-Euclidean aspects of dissimilarity data and the classifica-
tion performance of the direct NN rule and some classifiers trained in
representation spaces. This is evaluated on a parameterized family of
edit distances, in which parameter values control the strength of non-
Euclidean behavior. Our finding is that the discriminative power of this
measure increases with increasing non-Euclidean and non-metric aspects
until a certain optimum is reached. The conclusion is that statistical clas-
sifiers perform well and the optimal values of the parameters characterize
a non-Euclidean and somewhat non-metric measure.

1 Introduction

Many currently available data are non-vectorial by origin. Although some ways
exists to represent particular information in a vectorial form, these may be unnat-
ural, of poor quality for the final prediction or very difficult to obtain. Vectorial
representations are convenient since there exists a plethora of powerful learning
techniques [4]. These are developed in inner product spaces or normed spaces, in
which the inner product or norm defines the corresponding metric. On the other
hand, if objects contain an inherent, identifiable structure or organization such
as contours, shapes, spectra, images or texts, then structural descriptions are ad-
visable. Objects can then be compared by suitable (min-max or edit) distances.
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In other words, a collection of objects can be represented in a relative way, by
a vector of dissimilarities (proximities) to a given set of representative examples.
This is the so-called dissimilarity (proximity) representation [5,3]. Since prox-
imity can be defined in both quantitative and qualitative contexts, it becomes
a natural bridge between structural and statistical pattern recognition.

Kernel methods offer also an alternative to vectorial representations [6]. A ker-
nel K is a (conditionally) positive definite (cpd) function of two variables, in-
terpreted as a generalized inner product, hence similarity, in a Hilbert space H
induced by K. Thanks to the reproducing property of K, the support vector ma-
chine (SVM) is built in H as a linear combination of kernel values to the so-called
support vectors. The class of admissible kernels is, however, very limited due to
the strong requirement of their being cpd. This is equivalent to stating that the
corresponding distance d(x, y) =

√
K(x, x)+K(y, y)−2K(x, y) is Euclidean for

finite kernels [3]. In our terminology, kernels are an example of general proximity
representations for which other learning strategies can successfully be applied.

Although proximity measures are widely used for matching and object com-
parison [1,2,7], classification often relies on assigning a new object to the class
of its nearest neighbor. Alternative generalization frameworks exist that handle
general proximity measures. They represent dissimilarity information in suitable
representation vector spaces [5,8,9,3] or deal with indefinite kernels [10,3]. In case
of non-Euclidean or non-metric dissimilarity data, researches usually either rely
on the nearest neighbor distances, or choose to constrain/correct the measure to
make it obey the metric axioms, e.g. by adding an appropriate constant or using
a suitable transformation. In kernel methods, this is equivalent to regularizing
the kernel by adding a proper constant to the diagonal.

If a highly non-metric/non-Euclidean measure describes the problem well (as
judged by experts), corrections will likely lead to a significant loss of information
[11,10,8]. If such deviations are small, they may be neglected as noise. Under-
standing is, therefore, necessary to identify under which circumstances and to
what extent non-metric or non-Euclidean measures are advantageous in statis-
tical learning. We contribute to this issue by presenting an empirical study in
which the performance of dissimilarity-based statistical classifiers is related to
indices measuring their departure from the Euclidean or metric behavior.

2 Representation Spaces and Classifiers

Assume a training set T = {t1, . . . , tN} of N objects and a representation set
R = {p1, p2, . . . , pn} ⊆ T of n prototypes. Given a dissimilarity measure d,
a dissimilarity representation is an N × n matrix D(T, R) with the elements
d(ti, pj). An object ti ∈ T is represented by an n-element vector of dissimilarities
D(ti, R). The k-NN rule can directly be applied to such data. While it has
good asymptotic properties for metric data, its performance deteriorates for
small training (representation) sets. In such cases, alternative learning strategies
can be more advantageous. They determine a suitable vector space equipped
with the algebraic structure of either an inner product or norm in which the
proximity information is represented. In such a vector space, the traditional
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learning algorithms can appropriately be adapted. Two simplest approaches are
a linear isometric embedding into a pseudo-Euclidean space or the use of the
so-called dissimilarity spaces [12,5,3].

In this paper, D(·, R) is interpreted as a data-dependent mapping D(·, R) :
X → R

n from some initial representation X (such as a vector space, images,
strings or graphs) to a vector space defined by R. This is the dissimilarity space,
in which each dimension D(·, pi) corresponds to a dissimilarity to a prototype
pi ∈ R. The property that dissimilarities should be small for similar objects (be-
longing to the same class) and large for distinct objects, gives them a discrim-
inative power. Hence, D(·, pi) can be interpreted as ’features’ and traditional
classifiers built in vector spaces can be adapted [9,3]. The simplest are linear
and quadratic classifiers, which are weighted combinations of the dissimilarities
d(x, pi) between an object x and the prototypes pi. The classifiers are optimized
on D(T, R), hence on the complete set T , even if only R is used for their rep-
resentation. They can outperform the k-NN rule since they become more global
in their decisions (suppressing the influence of individual noisy examples).

Classifiers. Normal density based (Bayesian) classifiers [4] tend to perform well
in dissimilarity spaces [3,5,9]. This especially holds for summation-based dissim-
ilarity measures, summing over a number of components with similar variances.
The reason is that such dissimilarities will be approximately normally distrib-
uted thanks to the central limit theorem (if one or few variances are dominant,
then they will approximate the χ2 distribution) [3].

For a two-class problem, a quadratic normal density based classifier (NQC),
is given by f(D(x, R)) =

∑2
i=1

(−1)i

2 (D(x, R)−mi)TS−1
i (D(x, R)−mi)+log p1

p2
+

1
2 log |S1|

|S2| , where mi are the mean vectors and Si are the class covariance ma-
trices, all estimated in the dissimilarity space D(·, R). p1 and p2 are the class
prior probabilities. If S1 and SS2 are replaced by the average covariance matrix,
then a linear classifier is obtained. If the covariance matrices become singu-
lar, they need to be regularized. Here, we choose the following regularization
Sκ

i = (1−κ)Si + κpi diag(Si), κ∈ [0, 1], which leads to the RNQC, i.e. the regu-
larized NQC. In our implementation, the normal-density functions are estimated
per class and the final decision relies on the maximum a posteriori probability.

Another useful strategy for dissimilarity data is offered by sparse linear pro-
gramming machines (LPM), which construct hyperplanes in the corresponding
dissimilarity spaces. They are able to automatically determine a prototype set
R (or if trained on D(T, R), they may reduce the set R further on) which defines
the final classifier. Two variants are here considered: the μ-LPM and the auc-
LPM. The μ-LPM is a form of the �1-SVM with μ ∈ [0, 1), where μ is related
to the expected classification error [13,9]. The auc-LPM is defined to maximize
the area under the ROC curve, as recently proposed in [14].

We also define a new linear classifier, which is a nonnegative least square
classifier (NLSQC). Let D denote D(T, R), R ⊆ T , |T | = N and |R| = n.
Consider a two-class problem with the corresponding labels yi = +1/−1. Let YT =
diag(yT ) and YR = diag(yR), where yT and yR are the label vectors for the sets
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T and R, respectively. We define our classifier as f(D(x, R) = sign(h(D(x, R))),
where h(D(x, R)) = −wTYRD(x, R) + w0, wi ≥ 0, i = 0, 1, . . . , n. (Since wi are
multiplied by yR

i , so wiy
R
i can be of any sign.) The classifier will assign 1 to

x if h(D(x, R)) = a > 0 and −1 if h(D(x, R)) = a < 0. By fixing a = 1, it
yields yT

i h(D(ti, R)) > 1 for the training objects ti. The weights are now sought
to minimize the sum of square differences (yT

i h(D(ti, R)) − 1)2 for all ti. We
formulate the following problem:

Minw ||DY Y

[ w
w0

]
− 1||22, subject to wi ≥ 0, i = 0, 1, . . . , n (1)

where DY Y = [YT (−D)YR −yT ] and 1 is a vector of all ones. This can be solved
by a standard nonnegative least square method that gives a sparse solution in
terms of R. The non-zero weights correspond to the selected subset R′ of R.
In our case, the sparsity will not be large because of the choice of −D in DY Y

(or, equivalently, because of non-positive weights −w in the function h). In this
quadratic criterion, −D acts as a similarity (large values in −D, hence small
distances, indicate large similarity) and requires many objects of R to support
the decision boundary. On the contrary, if we choose D instead−D in h(D(x, R)),
i.e. DY Y = [YT DYR yT ], this will lead to a very sparse solution determined by
dominating, possibly outlier distances only, hence to a poor discrimination. Non-
positive weights −wi diminish the influence of large distances and shift the ’focus’
towards the objects with small distances to the other class.

Equation (1) can be extended to wT(YRDTDYR)wT + 2wTYT DYR1 +
21TyT w0+N(w2

0+1)+1, in which the first term is the same as in the formulation
of a linear SVM defined in a ’feature space’ X = D. (There, in the dual problem,
one would minimize 1

2w
T(YRDTDYR)wT−wT1 given that wTyR = 0 and wi ≥ 0

[6].) Such an SVM would work in a entire dissimilarity space as it selects the
support vectors in the form of D(tj , R) from T (and not from R)! Hence, a linear
SVM in a dissimilarity space is not sparse. The advantage of the NLSQC is that
it is a linear function with no additional parameters, which optimizes a square
error and is, thereby, competitive to a quadratic classifier. Although it cannot
outperform the SVM, it may compete with other LPMs applied to dissimilarity
data. These LPMs are usually trained on a complete representation D(T, T ) and
determine both R and the weights of the classifiers. These representation sets R
may be used to train the NLSQC on D(T, R) to enhance the sparsity.

3 Indices Characterizing Data

Assume K classes, ω1, ω2, . . . , ωK such that |ωi| = ni and N =
∑

i ni. Two
indices are defined to reflect the class separability. The first one is J1

sep =
�K

i=1 niAii
�K

i=1 ni/(N−ni)
�

j �=i njAij
∈ (0, 1), where Aij is the average dissimilarity between

the i-th and j-th classes (hence Aii is the between-class average dissimilarity).
The second index focusses on the nearest neighbor distances. J2

sep = 1
K

∑K
i=1 Bi,

where Bi = 1
ni

∑ni

k=1
minx∈ωi

dNN(tk,x)
minz �∈ωi

dNN(tk,z) is the average ratio of the nearest neighbor
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within-class to between-class distances. The smaller the values, the better sepa-
rability. Note that if J2

sep ≈ 1 or larger, than (on average) the nearest neighbor
distances to objects from other classes are similar or smaller than the nearest
neighbor distances within the class, hence the 1-NN rule cannot perform well.

Concerning the departure from the Euclidean behavior, it is known that a sym-
metric N ×N dissimilarity matrix D = D(T, T ) has a Euclidean behavior iff the
corresponding Gram matrix G=− 1

2JD�2J , where D�2 =(d2
ij) and J =I− 1

N 11T,
is positive semidefinite [12,5,3]. It means that all eigenvalues λi of G are non-
negative. Hence, the magnitudes of negative eigenvalues manifest the amount
of deviation from the Euclidean behavior. An indication of such a deviation is
given by JeigM = |λmin|/λmax, i.e. the ratio of the absolute value of the small-
est negative eigenvalue to the largest positive one. The overall contribution of
negative eigenvalues is estimated by JeigS =

∑
λi<0 |λi|/

∑N
j=1 |λj |.

Concerning non-metric aspects, any symmetric D can be made metric by
adding a suitable constant γ to all off-diagonal elements of D. In a first attempt,
such a constant can be found as γ0 =maxp,q,t |dpq+dpt−dqt| [3]. This estimation
is however largely overpessimistic. Starting from this initial γ0, we find a better
estimation of γ ∈ (0, γ0) by an iterative bisection method. Our index is therefore
Jγ = γ ≥ 0 and it should be judged wrt the actual dissimilarity values. Another
way to characterize the deviation from the metric behavior is by Jineq equal to
the total number of disobeyed triangle inequalities.

4 Data, Experiments and Results

In our study we use the Chicken Pieces Silhouettes data [15], available from
http://algoval.essex.ac.uk/data/sequence/chicken. This set consists of
446 binary images from chicken pieces, labeled to one of the five classes,which
represent specific parts of the chicken: wing (117 examples), back (76), drumstick
(96), thigh and back (61), and breast (96). After edge detection applied to these
silhouettes, the edges were approximated by straight line segments of a fixed
length L, taking values between 5 and 40 pixels. Since chicken pieces are placed
in arbitrary position in an image and mirror symmetry occurs, the line segments
may not be the most appropriate. Instead, the sequence of angles between the
neighboring segments was chosen as the initial string representation. Addition-
ally, the approximate algorithm of Bunke and Bühler [16] was applied to handle
the rotation invariance and axis symmetry. Given such string representations a
family of edit distances [17] is considered with fixed insertion and deletion costs
equal to some C and a substitution cost of the absolute difference between the an-
gles. Consequently, we deal with an (L, C)-family of edit distance measures para-
meterized by L and C. In our case, we set L = 5, 7, 10, 15, 20, 25, 29, 30, 31, 35, 40
pixels and C = 45, 60, 90, 120 (angle degrees), which give rise to 44 different
dissimilarity data, in total. The distances were originally asymmetric and are
made symmetric by averaging, dij = dij+dji

2 .
In our classification experiments we perform 50 runs of 2-fold cross-validation.

In each run, all objects are first randomly split into the training set T and test
set S. Then, classifiers are trained on DL,C(T, T ) and tested on DL,C(S, T ).
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Fig. 1. Indices characterizing dissimilarity data. Legend values refer to C. Markers
describing the same value of C are connected by lines to enhance the visibility.

Next, in the second fold, the classifiers are trained on DL,C(S, S) and tested
on DL,C(T, S). Finally, the errors, weighted by prior probabilities, are de-
termined. This is repeated 50 times and the results are averaged out. To
avoid too large distance values, all dissimilarities are scaled by 1√

N
, where

N = |T |. The following classifiers are used: the 1-NN and k-NN rules directly
applied to the dissimilarity representation D(T, T ) (k is optimized in a LOO
approach), edited-and-condensed nearest neighbor (CNN) [18], μ-LPM, with
μ = max{0.01, 1.3 ·LOO-NN-error}, the auc-LPM (with the trade-off parameter
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set to 20) [14], the NSQLC and the RNQC with κ = 0.05. Additionally, the
NSQLC is trained on the representation sets determined by the μ-LPM and
auc-LPM, and denoted as the NSQLC(μ) and the NSQLC(auc), respectively.
Remember that the LPMs and the NSQLC determine R ⊂ T and that all (multi-
class) linear classifiers are derived in an one-against-all strategy.

The properties of dissimilarity data are characterized by the indices intro-
duced in Sect. 2. These will reflect the character of the dissimilarities, the class
separability and the deviation from both Euclidean and metric behaviors. The
indices are derived in the same setup as above. Their values are first averaged
over two folds in a cross-validation scheme, and then over 50 runs.

Results. The indices defined in Sec. 2 were evaluated on 44 dissimilarity data
with varying parameters L and C of the (L, C)-edit distances. By observing the
results in Fig. 1, the following conclusions can be drawn:

– The average dissimilarities decrease with growing L. The smaller L, the
larger maximal distances. The average and maximal distances grow with
increasing C.

– The classification task is difficult since J2
sep takes values close to 0.9 or 1. This

means that the NN distances within a class are not much smaller than the
NN distances to the objects outside the class. C = 31 seems to be optimal.
Concerning the J1

sep, the smaller C, the better the separability.
– None of the dissimilarity data set has a Euclidean behavior. The deviation

becomes larger with the increasing L and decreasing C, as judged by JeigS
and JeigM.

– The (L, C)-edit distances are practically metric up to L ≤ 10; they become
non-metric for larger values of L. The deviation from the metric behavior
becomes larger with increasing C and is the smallest for C = 45. For L ≥ 30,
the additive constant γ that makes the dissimilarity measure metric roughly
equals to 16 − 30% of the average distance.

The classification results are shown in Fig. 2. In general, we observe that the per-
formance of all classifiers improves with the increasing value of L up to a certain
optimum and then starts to decrease. Most classifiers perform the best or nearly
the best for L = 30. Concerning C, the classifiers reach the highest accuracy for
C = 45 and gradually decrease their performance for larger values of C.

We will now provide the average total number of prototypes, i.e. |R|, deter-
mined by sparse linear classifiers. These numbers, presented as ’· − · − ·’, are
averaged over C as only minor differences occur. The numbers taking the places
of the first, second and third dot refer to L = 5, L = 30 and L = 40, correspond-
ingly. We have: the μ-LPM: 223-123-112, the auc-LPM: 120-86-85, the NLSQC:
217-191-188, the NLSQC(μ): 217-116-106 and the NLSQC(auc): 119-84-83. For
the CNN, the condensed sets vary over C and vary from 38 to 45.

The CNN relies on the smaller condensed set R but it performs the worst
of all. The auc-LPM needs a relatively small R, but it also does not work well;
it cannot compete with the 1-NN and k-NN rules unless L ≤ 15. Other linear
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Fig. 2. Average 2-fold cross-validation errors (over 50 runs) for four values of C.
Markers describing the same classifier are connected by lines to enhance the visi-
bility. The standard deviations of the average errors are 0.0017 − 0.002 on average
(depending on C) for all classifiers. Their maximal values bounded by 0.0027, except
for the μ-LPM, for which the maximal values are 0.011 for C <= 10 (where μ-LPM
fails). The differences (between the average errors) larger than 0.01 are statistically
significant.

classifiers outperform the auc-LPM, expect for the μ-LPM and L≤15. In general,
the μ-LPM does not perform better than the NN rules (with little exceptions)
and it deteriorates for L ≤ 15, which is caused by the fact that the hyperplane
cannot be determined (μ-LPM fails) and in our set-up the pseudo-Fisher clas-
sifier is automatically trained instead. However, if the representation objects
determined by the auc-LPM or the μ-LPM are used to train the NLSQC, the
performance drastically increases. The NLSQC(μ) is the third best performing
classifier, which provides a good trade-off between the total cardinality of R
and the classification accuracy. The representation objects preselected by the
auc-LPM seem to make a n over-optimized set for the NLSQC(auc). Interest-
ingly, the performance of the NLSQC(auc) is similar or much better than that of
the RQNC(auc). For all C, our NLSQC performs the best or second best, after
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the RNQC if L ≥ 30. Nearly all training objects are, however, needed for the
representation. For the RNQC, always holds that R = T .

5 Conclusions

In this paper, examples of a parameterized family of (L, C)-edit distances are
evaluated for the classification task on chicken pieces silhouettes. The deviation
from non-Euclidean behavior grows with increasing L and decreasing C, while
the deviation from non-metric behavior grows with both increasing L and C.
Linear or quadratic classifiers built in dissimilarity spaces can outperform the
direct k-NN rule and reach the optimal (or nearly optimal) results for L = 30.
Our new linear classifier, the NLSQC, reaches the highest accuracy for most val-
ues of L and C. The best overall performance is reached for L = 30 and C = 45
which gives rise to a highly non-Euclidean and somewhat non-metric dissimilar-
ity data. This is very interesting, since many researchers try to avoid non-metric
data and define edit distances as metric measures. Our results suggests that
non-Euclidean and/or non-metric distances can be informative and useful in
statistical learning. We hope to explore these issues in the future research.
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