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The statistical analysis of covariance matrix data is considered and,
in particular, methodology is discussed which takes into account the non-
Euclidean nature of the space of positive semi-definite symmetric matrices.
The main motivation for the work is the analysis of diffusion tensors in med-
ical image analysis. The primary focus is on estimation of a mean covariance
matrix and, in particular, on the use of Procrustes size-and-shape space. Com-
parisons are made with other estimation techniques, including using the ma-
trix logarithm, matrix square root and Cholesky decomposition. Applications
to diffusion tensor imaging are considered and, in particular, a new measure
of fractional anisotropy called Procrustes Anisotropy is discussed.

1. Introduction. The statistical analysis of covariance matrices occurs in
many important applications, for example, in diffusion tensor imaging [Alexander
(2005); Schwartzman, Dougherty and Taylor (2008)] or longitudinal data analy-
sis [Daniels and Pourahmadi (2002)]. We wish to consider the situation where the
data at hand are sample covariance matrices, and we wish to estimate the popula-
tion covariance matrix and carry out statistical inference. An example application
is in diffusion tensor imaging where a diffusion tensor is a covariance matrix re-
lated to the molecular displacement at a particular voxel in the brain, as described
in Section 2.

If a sample of covariance matrices is available, we wish to estimate an average
covariance matrix, or we may wish to interpolate in space between two or more
estimated covariance matrices, or we may wish to carry out tests for equality of
mean covariance matrices in different groups.

The usual approach to estimating mean covariance matrices in Statistics is to as-
sume a scaled Wishart distribution for the data, and then the maximum likelihood
estimator (m.l.e.) of the population covariance matrix is the arithmetic mean of the
sample covariance matrices. The estimator can be formulated as a least squares
estimator using Euclidean distance. However, since the space of positive semi-
definite symmetric matrices is a non-Euclidean space, it is more natural to use
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alternative distances. In Section 3 we define what is meant by a mean covariance
matrix in a non-Euclidean space, using the Fréchet mean. We then review some
recently proposed techniques based on matrix logarithms and also consider esti-
mators based on matrix decompositions, such as the Cholesky decomposition and
the matrix square root.

In Section 4 we introduce an alternative approach to the statistical analysis of
covariance matrices using the Kendall’s (1989) size-and-shape space. Distances,
minimal geodesics, sample Fréchet means, tangent spaces and practical estimators
based on Procrustes analysis are all discussed. We investigate properties of the
estimators, including consistency.

In Section 5 we compare the various choices of metrics and their properties. We
investigate measures of anisotropy and discuss the deficient rank case in particular.
We consider the motivating applications in Section 6 where the analysis of diffu-
sion tensor images and a simulation study are investigated. Finally, we conclude
with a brief discussion.

2. Diffusion tensor imaging. In medical image analysis a particular type of
covariance matrix arises in diffusion weighted imaging called a diffusion tensor.
The diffusion tensor is a 3×3 covariance matrix which is estimated at each voxel in
the brain, and is obtained by fitting a physically-motivated model on measurements
from the Fourier transform of the molecule displacement density [Basser, Mattiello
and Le Bihan (1994); Alexander (2005)].

In the diffusion tensor model the water molecules at a voxel diffuse according to
a multivariate normal model centered on the voxel and with covariance matrix �.
The displacement of a water molecule x ∈ R3 has probability density function

f (x) = 1

(2π)3/2|�|1/2 exp
(

−1

2
xT�−1x

)

.

The convention is to call D = �/2 the diffusion tensor, which is a symmetric
positive semi-definite matrix. The diffusion tensor is estimated at each voxel in
the image from the available MR images. The MR scanner has a set of magnetic
field gradients applied at directions g1, g2, . . . , gm ∈ RP 2 with scanner gradient
parameter b, where RP 2 is the real projective space of axial directions (with
gj ≡ −gj , ‖gj‖ = 1). The data at a voxel consist of signals (Z0,Z1, . . . ,Zm)

which are related to the Fourier transform of the displacements in axial direction
gj ∈ RP 2, j = 1, . . . ,m, and the reading Z0 is obtained with no gradient (b = 0).
The Fourier transform in axial direction g ∈ RP 2 of the multivariate Gaussian
displacement density is given by

F (g) =
∫

exp
(

i
√

bg
)

f (x) dx = exp(−bgTDg),

and the theoretical model for the signals is

Zj = Z0F (gj ) = Z0 exp(−bgT
j Dgj ), j = 1, . . . ,m.
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FIG. 1. Visualization of a diffusion tensor as an ellipsoid. The principal axis is also displayed.

There are a variety of methods available for estimating D from the data (Z0,Z1,

. . . ,Zm) at each voxel [see Alexander (2005)], including least squares regression
and Bayesian estimation [e.g., Zhou et al. (2008)]. Noise models include log-
Gaussian, Gaussian and, more recently, Rician noise [Wang et al. (2004); Fillard et
al. (2007); Basu, Fletcher and Whitaker (2006)]. A common method for visualiz-
ing a diffusion tensor is an ellipsoid with principal axes given by the eigenvectors
of D, and lengths of axes proportional to

√
λi, i = 1,2,3. An example is given in

Figure 1.
If a sample of diffusion tensors is available, we may wish to estimate an average

diffusion tensor matrix, investigate the structure of variability in diffusion tensors
or interpolate at higher spatial resolution between two or more estimated diffusion
tensor matrices.

In diffusion tensor imaging a strongly anisotropic diffusion tensor indicates a
strong direction of white matter fiber tracts, and plots of measures of anisotropy
are very useful to neurologists. A measure that is very commonly used in diffusion
tensor imaging is Fractional Anistropy,

FA =
{

k

k − 1

k
∑

i=1

(λi − λ̄)2
/ k

∑

i=1

λ2
i

}1/2

,

where 0 ≤ FA ≤ 1 and λi are the eigenvalues of the diffusion tensor matrix. Note
that FA ≈ 1 if λ1 ≫ λi ≈ 0, i > 1 (very strong principal axis) and FA = 0 for
isotropy. In diffusion tensor imaging k = 3.

In Figure 2 we see a plot of FA from an example healthy human brain. We focus
on the small inset region in the box, and we would like to interpolate the displayed
image to a finer scale. We return to this application in Section 6.3.

3. Covariance matrix estimation.

3.1. Euclidean distance. Let us consider n sample covariance matrices (sym-
metric and positive semi-definite k × k matrices) S1, . . . , Sn which are our data (or
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FIG. 2. An FA map from a slice in a human brain. Lighter values indicate higher FA.

sufficient statistics). We assume that the Si are independent and identically distrib-
uted (i.i.d.) from a distribution with mean covariance matrix �, although we shall
elaborate more later in Section 3.2 about what is meant by a “mean covariance
matrix.” The main aim is to estimate �. More complicated modeling scenarios are
also of interest, but for now we just concentrate on estimating the mean covariance
matrix �.

The most common approach is to assume i.i.d. scaled Wishart distributions for
Si with E(Si) = �, and the m.l.e. for � is �̂E = 1

n

∑n
i=1 Si . This estimator can

also be obtained if using a least squares approach by minimizing the sum of square
Euclidean distances. The Euclidean distance between two matrices is given by

dE(S1, S2) = ‖S1 − S2‖ =
√

trace{(S1 − S2)T(S1 − S2)},(1)

where ‖X‖ =
√

trace(XTX) is the Euclidean norm (also known as the Frobenius
norm). The least squares estimator is given by

�̂E = arg inf
�

n
∑

i=1

‖Si − �‖2.

However, the space of positive semi-definite symmetric matrices is a non-
Euclidean space and other choices of distance are more natural. One particular
drawback with Euclidean distance is when extrapolating beyond the data, non-
positive semi-definite estimates can be obtained. There are other drawbacks when
interpolating covariance matrices, as we shall see in our applications in Section 6.

3.2. The Fréchet mean. When using a non-Euclidean distance d(·) we must
define what is meant by a “mean covariance matrix.” Consider a probability dis-
tribution for a k × k covariance matrix S on a Riemannian metric space with den-
sity f (S). The Fréchet (1948) mean � is defined as

� = arg inf
�

1

2

∫

d(S,�)2f (S)dS,



1106 I. L. DRYDEN, A. KOLOYDENKO AND D. ZHOU

and is also known as the Karcher mean [Karcher (1977)]. The Fréchet mean need
not be unique in general, although for many distributions it will be. Provided the
distribution is supported only on the geodesic ball of radius r , such that the geo-
desic ball of radius 2r is regular [i.e., supremum of sectional curvatures is less than
(π/(2r))2], then the Fréchet mean � is unique [Le (1995)]. The support to ensure
uniqueness can be very large. For example, for Euclidean spaces (with sectional
curvature zero), or for non-Euclidean spaces with negative sectional curvature, the
Fréchet mean is always unique.

If we have a sample S1, . . . , Sn of i.i.d. observations available, then the sample
Fréchet mean is calculated by finding

�̂ = arg inf
�

n
∑

i=1

d(Si,�)2.

Uniqueness of the sample Fréchet mean can also be determined from the result of
Le (1995).

3.3. Non-Euclidean covariance estimators. A recently derived approach to
covariance matrix estimation is to use matrix logarithms. We write the loga-
rithm of a positive definite covariance matrix S as follows. Let S = U�UT be
the usual spectral decomposition, with U ∈ O(k) an orthogonal matrix and �

diagonal with strictly positive entries. Let log� be a diagonal matrix with log-
arithm of the diagonal elements of � on the diagonal. The logarithm of S is
given by logS = U(log�)UT and likewise the exponential of the matrix S is
expS = U(exp�)UT. Arsigny et al. (2007) propose the use of the log-Euclidean
distance, where Euclidean distance between the logarithm of covariance matrices
is used for statistical analysis, that is,

dL(S1, S2) = ‖ log(S1) − log(S2)‖.(2)

An estimator for the mean population covariance matrix using this approach is
given by

�̂L = exp

{

arg inf
�

n
∑

i=1

‖ logSi − log�‖2

}

= exp

{

1

n

n
∑

i=1

logSi

}

.

Using this metric avoids extrapolation problems into matrices with negative eigen-
values, but it cannot deal with positive semi-definite matrices of deficient rank.

A further logarithm-based estimator uses a Riemannian metric in the space of
square symmetric positive definite matrices

dR(S1, S2) = ‖ log(S
−1/2
1 S2S

−1/2
1 )‖.(3)
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The estimator (sample Fréchet mean) is given by

�̂R = arg inf
�

n
∑

i=1

‖ log(S
−1/2
i �S

−1/2
i )‖2,

which has been explored by Pennec, Fillard and Ayache (2006), Moakher (2005),
Schwartzman (2006), Lenglet, Rousson and Deriche (2006) and Fletcher and Joshi
(2007). The estimate can be obtained using a gradient descent algorithm [e.g., see
Pennec (1999); Pennec, Fillard and Ayache (2006)]. Note that this Riemannian
metric space has negative sectional curvature and so the population and sample
Fréchet means are unique in this case.

Alternatively, one can use a reparameterization of the covariance matrix, such
as the Cholesky decomposition [Wang et al. (2004)], where Si = LiL

T
i and Li =

chol(Si) is lower triangular with positive diagonal entries. The Cholesky distance
is given by

dC(S1, S2) = ‖ chol(S1) − chol(S2)‖.(4)

A least squares estimator can be obtained from

�̂C = �̂C�̂T
C, where �̂C = arg inf

�

{

1

n

n
∑

i=1

‖Li − �‖2

}

= 1

n

n
∑

i=1

Li .

An equivalent model-based approach would use an independent Gaussian pertur-
bation model for the lower triangular part of Li , with mean given by the lower
triangular part of �C , and so �̂C is the m.l.e. of �C under this model. Hence, in
this approach the averaging is carried out on a square root type-scale, which would
indeed be the case for k = 1 dimensional case where the estimate of variance would
be the square of the mean of the sample standard deviations.

An alternative decomposition is the matrix square root where S1/2 = U�1/2UT,
which has not been used in this context before as far as we are aware. The distance
is given by

dH (S1, S2) = ‖S1/2
1 − S

1/2
2 ‖.(5)

A least squares estimator can be obtained from

�̂H = �̂H �̂T
H , where �̂H = arg inf

�

{
n

∑

i=1

‖S1/2
i − �‖2

}

= 1

n

n
∑

i=1

S
1/2
i .

However, because LiRRTLT
i = LiL

T
i for R ∈ O(k), another new alternative is

to relax the lower triangular or square root parameterizations and match the initial
decompositions closer in terms of Euclidean distance by optimizing over rotations
and reflections. This idea provides the rationale for the main approaches in this
paper.
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4. Procrustes size-and-shape analysis.

4.1. Non-Euclidean size-and-shape metric. The non-Euclidean size-and-sha-
pe metric between two k × k covariance matrices S1 and S2 is defined as

dS(S1, S2) = inf
R∈O(k)

‖L1 − L2R‖,(6)

where Li is a decomposition of Si such that Si = LiL
T
i , i = 1,2. For example, we

could have the Cholesky decomposition Li = chol(Si), i = 1,2, which is lower
triangular with positive diagonal elements, or we could consider the matrix square
root L = S1/2 = U�1/2UT, where S = U�UT is the spectral decomposition. Note
that S1 = (L1R)(L1R)T for any R ∈ O(k), and so the distance involves matching
L1 optimally, in a least-squares sense, to L2 by rotation and reflection. Since S =
LLT, then the decomposition is represented by an equivalence class {LR :R ∈
O(k)}. For practical computation we often need to choose a representative from
this class, called an icon, and in our computations we shall choose the Cholesky
decomposition.

The Procrustes solution for matching L2 to L1 is

R̂ = arg inf
R∈O(k)

‖L1 − L2R‖
(7)

= UWT, where LT
1 L2 = W�UT,U,W ∈ O(k),

and � is a diagonal matrix of positive singular values [e.g., see Mardia, Kent and
Bibby (1979), page 416].

This metric has been used previously in the analysis of point set configurations
where invariance under translation, rotation and reflection is required. Size-and-
shape spaces were introduced by Le (1988) and Kendall (1989) as part of the pio-
neering work on the shape analysis of landmark data [cf. Kendall (1984)]. The de-
tailed geometry of these spaces is given by Kendall et al. [(1999), pages 254–264],
and, in particular, the size-and-shape space is a cone with a warped-product metric
and has positive sectional curvature.

Equation (6) is a Riemannian metric in the reflection size-and-shape space of
(k + 1)-points in k dimensions [Dryden and Mardia (1998), Chapter 8]. In par-
ticular, dS(·) is the reflection size-and-shape distance between the (k + 1) × k

configurations HTL1 and HTL2, where H is the k × (k + 1) Helmert sub-matrix
[Dryden and Mardia (1998), page 34] which has j th row given by

(hj , . . . , hj
︸ ︷︷ ︸

j times

,−jhj , 0, . . . ,0
︸ ︷︷ ︸

k−j times

), hj = −{j (j + 1)}−1/2,

for j = 1, . . . , k.
Hence, the statistical analysis of covariance matrices can be considered equiva-

lent to the dual problem of analyzing reflection size-and-shapes.
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4.2. Minimal geodesic and tangent space. Let us consider the minimal geo-
desic path through the reflection size-and-shapes of L1 and L2 in the reflection
size-and-shape space, where LiL

T
i = Si , i = 1,2. Following an argument simi-

lar to that for the minimal geodesics in shape spaces [Kendall et al. (1999)], this
minimal geodesic can be isometrically expressed as L1 + tT , where T are the
horizontal tangent co-ordinates of L2 with pole L1. Kendall et al. [(1999), Sec-
tion 11.2] discuss size-and-shape spaces without reflection invariance, however,
the results with reflection invariance are similar, as reflection does not change the
local geometry.

The horizontal tangent coordinates satisfy L1T
T = T LT

1 [Kendall et al. (1999),
page 258]. Explicitly, the horizontal tangent coordinates are given by

T = L2R̂ − L1, R̂ = inf
R∈O(k)

‖L1 − L2R‖,

where R̂ is the Procrustes match of L2 onto L1 given in (7). So, the geodesic path
starting at L1 and ending at L2 is given by

w1L1 + w2L2R̂,

where w1 + w2 = 1,wi ≥ 0, i = 1,2, and R̂ is given in (7). Minimal geodesics
are useful in applications for interpolating between two covariance matrices, in
regression modeling of a series of covariance matrices, and for extrapolation and
prediction.

Tangent spaces are very useful in practical applications, where one uses Euclid-
ean distances in the tangent space as approximations to the non-Euclidean metrics
in the size-and-shape space itself. Such constructions are useful for approximate
multivariate normal based inference, dimension reduction using principal compo-
nents analysis and large sample asymptotic distributions.

4.3. Procrustes mean covariance matrix. Let S1, . . . , Sn be a sample of n pos-
itive semi-definite covariance matrices each of size k × k from a distribution with
density f (S), and we work with the Procrustes metric (6) in order to estimate the
Fréchet mean covariance matrix �. We assume that f (S) leads to a unique Fréchet
mean (see Section 3.2).

The sample Fréchet mean is calculated by finding

�̂S = arg inf
�

n
∑

i=1

dS(Si,�)2.

In the dual size-and-shape formulation we can write this as

�̂S = �̂S�̂T
S , where �̂S = arg inf

�

n
∑

i=1

inf
Ri∈O(k)

‖HTLiRi − HT�‖2.(8)

The solution can be found using the Generalized Procrustes Algorithm [Gower
(1975); Dryden and Mardia (1998), page 90], which is available in the shapes
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library (written by the first author of this paper) in R [R Development Core Team
(2007)]. Note that if the data lie within a geodesic ball of radius r such that the geo-
desic ball of radius 2r is regular [Le (1995); Kendall (1990)], then the algorithm
finds the global unique minimum solution to (8). This condition can be checked
for any dataset and, in practice, the algorithm works very well indeed.

4.4. Tangent space inference. If the variability in the data is not too large, then
we can project the data into the tangent space and carry out the usual Euclidean
based inference in that space.

Consider a sample S1, . . . , Sn of covariance matrices with sample Fréchet mean
�̂S and tangent space coordinates with pole �̂S = �̂S�̂T

S given by

Vi = �̂S − LiR̂i,

where R̂i is the Procrustes rotation for matching Li to �̂S , i = 1, . . . , n, and Si =
LiL

T
i , i = 1,2.

Frequently one wishes to reduce the dimension of the problem, for example,
using principal components analysis. Let

Sv = 1

n

n
∑

i=1

vec(Vi)vec(Vi)
T,

where vec is the vectorize operation. The principal component (PC) loadings are
given by γ̂j , j = 1, . . . , p, the eigenvectors of Sv corresponding to the eigenvalues
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p > 0, where p is the number of nonzero eigenvalues. The PC
score for the ith individual on PC j is given by

sij = γ̂ T
j vec(Vi), i = 1, . . . , n, j = 1, . . . , p.

In general, p = min(n − 1, k(k + 1)/2). The effect of the j th PC can be examined
by evaluating

�(c) =
(

�̂S + c vec−1
k (λ̂

1/2
j γ̂j )

)(

�̂S + c vec−1
k (λ̂

1/2
j γ̂j )

)T

for various c [often in the range c ∈ (−3,3), for example], where vec−1
k (vec(V )) =

V for a k × k matrix V .
Tangent space inference can proceed on the first p PC scores, or possibly in

lower dimensions if desired. For example, Hotelling’s T 2 test can be carried out
to examine group differences, or regression models could be developed for inves-
tigating the PC scores as responses versus various covariates. We shall consider
principal components analysis of covariance matrices in an application in Sec-
tion 6.2.
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4.5. Consistency. Le (1995, 2001) and Bhattacharya and Patrangenaru (2003,
2005) provide consistency results for Riemannian manifolds, which can be applied
directly to our situation. Consider a distribution F on the space of covariance ma-
trices which has size-and-shape Fréchet mean �S . Let S1, . . . , Sn be i.i.d. from F ,
such that they lie within a geodesic ball Br such that B2r is regular. Then

�̂S
P→ �S, as n → ∞,

where �S is unique. In addition, we can derive a central limit theorem result as in
Bhattacharya and Patrangenaru (2005), where the tangent coordinates have an ap-
proximate multivariate normal distribution for large n. Hence, confidence regions
based on the bootstrap can be obtained, as in Amaral, Dryden and Wood (2007)
and Bhattacharya and Patrangenaru (2003, 2005).

4.6. Scale invariance. In some applications it may be of interest to consider
invariance over isotropic scaling of the covariance matrix. In this case we could
consider the representation of the covariance matrix using Kendall’s reflection
shape space, with the shape metric given by the full Procrustes distance

dF (S1, S2) = inf
R∈O(k),β>0

∥
∥
∥
∥

L1

‖L1‖
− βL2R

∥
∥
∥
∥
,(9)

where Si = LiL
T
i , i = 1,2, and β > 0 is a scale parameter. Another choice of the

estimated covariance matrix from a sample S1, . . . , Sn, which is scale invariant and
based on the full Procrustes mean shape (extrinsic mean), is

�̂F = �̂F �̂T
F , where �̂F = arg inf

�

n
∑

i=1

{

inf
Ri∈O(k), βi>0

‖βiLiRi − �‖2
}

,

and Si = LiL
T
i , i = 1, . . . , n, and βi > 0 are scale parameters. The solution can

again be found from the Generalized Procrustes Algorithm using the shapes

library in R. Tangent space inference can then proceed in an analogous manner to
that of Section 4.4.

5. Comparison of approaches.

5.1. Choice of metrics. In applications there are several choices of distances
between covariance matrices that one could consider. For completeness we list
the metrics and the estimators considered in this paper in Table 1, and we discuss
briefly some of their properties.

Estimators �̂E, �̂C, �̂H , �̂L, �̂A are straightforward to compute using arith-
metic averages. The Procrustes based estimators �̂S, �̂F involve the use of the
Generalized Procrustes Algorithm, which works very well in practice. The Rie-
mannian metric estimator �̂R uses a gradient descent algorithm which is guaran-
teed to converge [see Pennec (1999); Pennec, Fillard and Ayache (2006)].
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TABLE 1
Notation and definitions of the distances and estimators

Name Notation Form Estimator Equation

Euclidean dE(S1, S2) ‖S1 − S2‖ �̂E (1)
Log-Euclidean dL(S1, S2) ‖ log(S1) − log(S2)‖ �̂L (2)

Riemannian dR(S1, S2) ‖ log(S
−1/2
1 S2S

−1/2
1 )‖ �̂R (3)

Cholesky dC(S1, S2) ‖ chol(S1) − chol(S2)‖ �̂C (4)

Root Euclidean dH (S1, S2) ‖S1/2
1 − S

1/2
2 ‖ �̂H (5)

Procrustes size-and-shape dS(S1, S2) infR∈O(k) ‖L1 − L2R‖ �̂S (6)

Full Procrustes shape dF (S1, S2) infR∈O(k),β>0 ‖ L1
‖L1‖ − βL2R‖ �̂F (9)

Power Euclidean dA(S1, S2) 1
α ‖Sα

1 − Sα
2 ‖ �̂A (10)

All these distances except dC are invariant under simultaneous rotation and re-
flection of S1 and S2, that is, the distances are unchanged by replacing both Si

by V SiV
T,V ∈ O(k), i = 1,2. Metrics dL(·), dR(·), dF (·) are invariant under si-

multaneous scaling of Si, i = 1,2, that is, replacing both Si by βSi , β > 0. Metric
dR(·) is also affine invariant, that is, the distances are unchanged by replacing
both Si by ASiA

T, i = 1,2, where A is a general k × k full rank matrix. Metrics
dL(·), dR(·) have the property that

d(A, Ik) = d(A−1, Ik),

where Ik is the k × k identity matrix.
Metrics dL(·), dR(·), dF (·) are not valid for comparing rank deficient covari-

ance matrices. Finally, there are problems with extrapolation with metric dE(·):
extrapolate too far and the matrices are no longer positive semi-definite.

5.2. Anisotropy. In some applications a measure of anisotropy of the covari-
ance matrix may be required, and in Section 2 we described the commonly used
FA measure. An alternative is to use the full Procrustes shape distance to isotropy
and we have

PA =
√

k

k − 1
dF (Ik, S) =

√

k

k − 1
inf

R∈O(k),β∈R+

∥
∥
∥
∥

Ik√
k

− β chol(S)R

∥
∥
∥
∥
,

=
{

k

k − 1

k
∑

i=1

(√
λi −

√
λ
)2

/ k
∑

i=1

λi

}1/2

,

where
√

λ = 1
k

∑√
λi . Note that the maximal value of dF distance from isotropy

to the rank 1 covariance matrix is
√

(k − 1)/k, which follows from Le (1992).
We include the scale factor when defining the Procrustes Anisotropy (PA), and so
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0 ≤ PA ≤ 1, with PA = 0 indicating isotropy, and PA ≈ 1 indicating a very strong
principal axis.

A final measure based on metrics dL or dR is the geodesic anisotropy

GA =
{

k
∑

i=1

(logλi − logλ)2

}1/2

,

where 0 ≤ GA < ∞ [Arsigny et al. (2007); Fillard et al. (2007); Fletcher and Joshi
(2007)], which has been used in diffusion tensor analysis in medical imaging with
k = 3.

5.3. Deficient rank case. In some applications covariance matrices are close
to being deficient in rank. For example, when FA or PA are equal to 1, then the
covariance matrix is of rank 1. The Procrustes metrics can easily deal with defi-
cient rank matrices, which is a strong advantage of the approach. Indeed, Kendall’s
(1984, 1989) original motivation for developing his theory of shape was to inves-
tigate rank 1 configurations in the context of detecting “flat” (collinear) triangles
in archeology.

The use of �̂L and �̂R has strong connections with the use of Bookstein’s
(1986) hyperbolic shape space and Le and Small’s (1999) simplex shape space,
and such spaces cannot deal with deficient rank configurations.

The use of the Cholesky decomposition has strong connections with Bookstein
coordinates and Goodall–Mardia coordinates in shape analysis, where one regis-
ters configurations on a common baseline [Bookstein (1986); Goodall and Mar-
dia (1992)]. For small variability the baseline registration method and Procrustes
superimposition techniques are similar, and there is an approximate linear rela-
tionship between the two [Kent (1994)]. In shape analysis edge superimposition
techniques can be very unreliable if the baseline is very small in length, which
would correspond to very small variability in particular diagonal elements of the
covariance matrix in the current context. Cholesky methods would be unreliable in
such cases. Also, Bookstein coordinates induce correlations in the shape variables
and, hence, estimation of covariance structure is biased [Kent (1994)]. Hence, in
general, Procrustes techniques are preferred over edge superimposition techniques
in shape analysis. Hence, this would mean in the current context that the Procrustes
approaches of this paper should be preferred to inference using the Cholesky de-
composition.

6. Applications.

6.1. Interpolation of covariance matrices. Frequently in diffusion tensor
imaging one wishes to carry out interpolation between tensors. When the tensors
are quite different, interpolation using different metrics can lead to very different
results. For example, consider Figure 3, where four different geodesic paths are
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FIG. 3. Four different geodesic paths between the two tensors. The geodesic paths are obtained

using dE(·) (1st row), dL(·) (2nd row), dC(·) (3rd row) and dS(·) (4th row).

plotted between two tensors. Arsigny et al. (2007) note that the Euclidean met-
ric is prone to swelling, which is seen in this example. Also, the log-Euclidean
metric gives strong weight to small volumes. In this example the Cholesky and
Procrustes size-and-shape paths look rather different, due to the extra rotation in
the Procrustes method. From a variety of examples it does seem clear that the
Euclidean metric is very problematic, especially due to the swelling of the vol-
ume. In general, the log-Euclidean and Procrustes size-and-shape methods seem
preferable.

In some applications, for example, fiber tracking, we may need to interpolate
between several covariance matrices on a grid, in which case we can use weighted
Fréchet means

�̂ = arg inf
�

n
∑

i=1

wid(Si,�)2,

n
∑

i=1

wi = 1,

where the weights wi are proportional to a function of the distance (e.g., inverse
distance or Kriging based weights).

6.2. Principal components analysis of diffusion tensors. We consider now an
example estimating the principal geodesics of the covariance matrices S1, . . . , Sn

using the Procrustes size-and-shape metric. The data are displayed in Figure 4
and here k = 3. We consider a true geodesic path (black) and evaluate 11 equally
spaced covariance matrices along this path. We then add noise for three separate
realizations of noisy paths (in red). The noise is independent and identically dis-
tributed Gaussian and is added in the dual space of the tangent coordinates. First,
the overall Procrustes size-and-shape mean �̂S is computed based on all the data
(n = 33), and then the Procrustes size-and-shape tangent space co-ordinates are
obtained. The first principal component loadings are computed and projected back
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FIG. 4. Demonstration of PCA for covariance matrices. The true geodesic path is given in the

penultimate row (black). We then add noise in the three initial rows (red). Then we estimate the mean

and find the first principal component (yellow), displayed in the bottom row.

to give an estimated minimal geodesic in the covariance matrix space. We plot this
path in yellow by displaying 11 covariance matrices along the path. As we would
expect, the first principal component path bears a strong similarity to the true geo-
desic path. The percentages of variability explained by the first three PCs are as
follows: PC1 (72.0%), PC2 (8.8%), PC3 (6.5%).

The data can also be seen in the dual Procrustes space of 4 points in k = 3
dimensions in Figure 5. We also see the data after applying the Procrustes fitting,
we show the effects of the first three principal components, and also the plot of the
first three PC scores.

6.3. Interpolation. We consider the interpolation of part of the brain image in
Figure 2. In Figure 6(a) we see the original FA image, and in Figure 6(b) and (c) we
see interpolated images using size-and-shape distance. The interpolation is carried
out at two equally spaced points between voxels, and Figure 6(b) shows the FA
image from the interpolation and Figure 6(c) shows the PA image. In the bottom
right plot of Figure 6 we highlight the selected regions in the box. It is clear that the
interpolated images are smoother, and it is clear from the anisotropy maps of the
interpolated data that the cingulum (cg) is distinct from the corpus callosum (cc).

6.4. Anisotropy. As a final application we consider some diffusion tensors ob-
tained from diffusion weighted images in the brain. In Figure 7 we see a coronal
slice from the brain with the 3 × 3 tensors displayed. This image is a coronal view
of the brain, and the corpus callosum and cingulum can be seen. The diagonal tract
on the lower left is the anterior limb of the internal capsule and on the lower right
we see the superior fronto-occipital fasciculus.



1116 I. L. DRYDEN, A. KOLOYDENKO AND D. ZHOU

FIG. 5. (top left) The noisy configurations in the dual space of k+1 = 4 points in k = 3 dimensions.
For each configuration point 1 is colored black, point 2 is red, point 3 is green and point 4 is blue,
and the points in a configuration are joined by lines. (top right) The Procrustes registered data,
after removing translation, rotation and reflection. (bottom left) The Procrustes mean size-and-shape,
with vectors drawn along the directions of the first three PCs (PC1—black, PC2—red, PC3—green).
(bottom right) The first three PC scores. The points are colored by the position along the true geodesic

from left to right (black, red, green, blue, cyan, purple, yellow, grey, black, red, green).

At first sight all three measures appear broadly similar. However, the PA image
offers more contrast than the FA image in the highly anisotropic region—the cor-
pus callosum. Also, the GA image has rather fewer brighter areas than PA or FA.
Due to the improved contrast, we believe PA is slightly preferable in this example.

6.5. Simulation study. Finally, we consider a simulation study to compare the
different estimators. We consider the problem of estimating a population covari-
ance matrix 
 from a random sample of k × k covariance matrices S1, . . . , Sn.

We consider a random sample generated as follows. Let � = chol(
) and Xi

be a random matrix with i.i.d. entries with E[(Xi)j l] = 0,var((Xi)j l) = σ 2, i =
1, . . . , n; j = 1, . . . , k; l = 1, . . . , k. We take

Si = (� + Xi)(� + Xi)
T, i = 1, . . . , n.

We shall consider four error models:

I. Gaussian square root: (Xi)j l are i.i.d. N(0, σ 2) for j = 1, . . . , k; l = 1, . . . , k.
II. Gaussian Cholesky: (Xi)j l are i.i.d. N(0, σ 2) for j ≤ k and zero otherwise.
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FIG. 6. FA maps from the original (a) and interpolated (b) data. In (c) the PA map is displayed,
and in (a1), (b1), (c1) we see the zoomed in regions marked in (a), (b), (c) respectively.

III. Log-Gaussian: i.i.d. Gaussian errors N(0, σ 2) are added to the matrix loga-
rithm of � to give Y , and then the matrix exponential of YY T is taken.

IV. Student’s t with 3 degrees of freedom: (Xi)j l are i.i.d. (σ/
√

3)t3 for j =
1, . . . , k; l = 1, . . . , k.

FIG. 7. In the upper plots we see the anisotropy measures (left) FA, (middle) PA, (right) GA. In

the lower plot we see the diffusion tensors, which have been scaled to have volume proportional to√
FA.
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We consider the performance in a simulation study, with 1000 Monte Carlo
simulations. The results are presented in Tables 2 and 3 for two choices of popu-
lation covariance matrix. We took k = 3 and n = 10,30. In order to investigate the
efficiency of the estimators, we use three measures: estimated mean square error
between the estimate and the matrix 
 with metrics dE(·), dS(·) and the estimated

TABLE 2
Measures of efficiency, with k = 3 and σ = 0.1. RMSE is the root mean square error using either the

Euclidean norm or the Procrustes size-and-shape norm, and “Stein” refers to the risk using the

Stein loss function. The smallest value in each row is highlighted in bold. The mean has parameters

λ1 = 1, λ2 = 0.3, λ3 = 0.1. The error distributions for Models I–IV are Gaussian (square root),
Gaussian (Cholesky), log-Gaussian and Student’s t3, respectively

�̂E �̂C �̂S �̂H �̂L �̂R �̂F

I
n = 10 RMSE(dE) 0.1136 0.1057 0.104 0.1025 0.104 0.1176 0.1058

RMSE(dS ) 0.0911 0.082 0.0802 0.0794 0.0851 0.0892 0.0813
Stein 0.0869 0.0639 0.0615 0.0604 0.0793 0.0728 0.0626

n = 30 RMSE(dE) 0.0788 0.0669 0.0626 0.0611 0.0642 0.0882 0.0652
RMSE(dS ) 0.0691 0.0516 0.0475 0.0477 0.0525 0.0607 0.049

Stein 0.058 0.0242 0.0207 0.0223 0.0295 0.0265 0.0216

II
n = 10 RMSE(dE) 0.0973 0.0889 0.0911 0.0906 0.093 0.1014 0.0923

RMSE(dS ) 0.0797 0.0695 0.0714 0.0713 0.0752 0.0785 0.0721
Stein 0.07 0.0468 0.0499 0.0502 0.0573 0.0554 0.0506

n = 30 RMSE(dE) 0.0641 0.0513 0.0535 0.0533 0.058 0.0732 0.0551
RMSE(dS ) 0.0585 0.0399 0.0422 0.0432 0.0471 0.0533 0.0431

Stein 0.0452 0.0151 0.0176 0.0196 0.0214 0.0214 0.0183

III
n = 10 RMSE(dE) 0.0338 0.0333 0.0336 0.0335 0.0333 0.0331 0.0336

RMSE(dS ) 0.0195 0.0193 0.0194 0.0194 0.0192 0.0191 0.0194
Stein 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016

n = 30 RMSE(dE) 0.0329 0.0324 0.0327 0.0327 0.0324 0.0322 0.0328
RMSE(dS ) 0.0187 0.0184 0.0185 0.0185 0.0183 0.0182 0.0185

Stein 0.0015 0.0015 0.0015 0.0015 0.0014 0.0014 0.0015

IV
n = 10 RMSE(dE) 0.119 0.1012 0.1006 0.0991 0.0996 0.109 0.1049

RMSE(dS ) 0.1202 0.082 0.0818 0.0811 0.0822 0.086 0.0922
Stein 0.1503 0.064 0.0637 0.0639 0.0676 0.0636 0.0639

n = 30 RMSE(dE) 0.081 0.0618 0.0598 0.0582 0.0618 0.0795 0.0643
RMSE(dS ) 0.0828 0.0489 0.0469 0.0472 0.0503 0.0572 0.0528

Stein 0.0825 0.0223 0.021 0.0228 0.0251 0.0235 0.0217
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TABLE 3
Measures of efficiency, with k = 3 and σ = 0.1. RMSE is the root mean square error using either the

Euclidean norm or the Procrustes size-and-shape norm, and “Stein” refers to the risk using the

Stein loss function. The smallest value in each row is highlighted in bold. The mean has parameters

λ1 = 1, λ2 = 0.001, λ3 = 0.001. The error distributions for Models I–IV are Gaussian (square

root), Guassian (Cholesky), log-Gaussian and Student’s t3, respectively

�̂E �̂C �̂S �̂H �̂L �̂R �̂F

I
n = 10 RMSE(dE) 0.0999 0.2696 0.0894 0.0876 0.1014 0.5112 0.092

RMSE(dS ) 0.2091 0.2172 0.1424 0.1491 0.1072 0.3345 0.1439
Stein 53.4893 28.1505 25.079 27.7066 12.4056 15.2749 25.497

n = 30 RMSE(dE) 0.0708 0.2836 0.0552 0.0531 0.0801 0.5515 0.0587
RMSE(dS ) 0.2064 0.2112 0.1301 0.1388 0.087v 0.3484 0.1317

Stein 53.3301 25.8512 22.2974 25.378 8.5161 12.95 22.6973

II
n = 10 RMSE(dE) 0.0907 0.4879 0.0844 0.0839 0.1104 0.75 0.0861

RMSE(dS ) 0.1669 0.3571 0.1139 0.1176 0.1023 0.5168 0.1151
Stein 34.2082 9.8147 15.4552 16.4905 10.2085 8.6754 15.7207

n = 30 RMSE(dE) 0.0606 0.5151 0.0509 0.0504 0.0954 0.7787 0.0533
RMSE(dS ) 0.1632 0.3369 0.1022 0.1067 0.0887 0.5369 0.1035

Stein 33.9321 7.6303 13.4332 14.63 7.9578 7.4431 13.693

III
n = 10 RMSE(dE) 0.0315 0.0312 0.0313 0.0313 0.0311 0.0251 0.0315

RMSE(dS ) 0.0162 0.016 0.0161 0.0161 0.016 0.013 0.0162
Stein 0.0034 0.0029 0.0029 0.0029 0.0028 0.0028 0.0029

n = 30 RMSE(dE) 0.031 0.0307 0.0309 0.0309 0.0306 0.0244 0.031
RMSE(dS ) 0.0156 0.0154 0.0155 0.0155 0.0154 0.0123 0.0156

Stein 0.0024 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019

IV
n = 10 RMSE(dE) 0.1055 0.2519 0.0848 0.0819 0.0895 0.5214 0.0933

RMSE(dS ) 0.2187 0.197 0.1253 0.1301 0.083 0.3348 0.1317
Stein 56.1488 19.7674 18.9143 20.7028 6.5634 7.875 17.4669

n = 30 RMSE(dE) 0.0755 0.2628 0.0523 0.0489 0.0682 0.5552 0.0616
RMSE(dS ) 0.2098 0.186 0.1089 0.1161 0.0635 0.3455 0.1106

Stein 53.9159 16.9026 15.701 17.9492 4.0551 6.541 14.9515

risk from using Stein loss [James and Stein (1961)] which is given by

L(S1, S2) = trace(S1S
−1
2 ) − log det(S1S

−1
2 ) − k,

where det(·) is the determinant. Clearly the efficiency of the methods depends
strongly on the 
 and the error distribution.

Consider the first case where the mean has λ1 = 1, λ2 = 0.3, λ3 = 0.1 in Ta-
ble 2. We discuss model I first where the errors are Gaussian on the matrix square
root scale. The efficiency is fairly similar for each estimator for n = 10, with �̂H
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performing the best. For n = 30 either �̂H or �̂S are better, with �̂E performing
least well. For model II with Gaussian errors added in the Cholesky decomposition
we see that �̂C is the best, although the other estimators are quite similar, with the
exception of �̂E which is worse. For model III with Gaussian errors on the matrix
logarithm scale all estimators are quite similar, as the variability is rather small.
The estimate �̂R is slightly better here than the others. For model IV with Stu-
dent’s t3 errors we see that �̂H and �̂S are slightly better on the whole, although
�̂E is again the worst performer.

In Table 3 we now consider the case λ1 = 1, λ2 = 0.001, λ3 = 0.001, where 
 is
close to being deficient in rank. It is noticeable that the estimators �̂C and �R can
behave quite poorly in this example, when using RMSE(dE) or RMSE(dS) for as-
sessment. This is particularly noticeable in the simulations for models I, II and IV.
The better estimators are generally �̂H , �̂S and �̂L, with �̂E a little inferior.

Overall, in these and other simulations �̂H , �̂S and �̂L have performed consis-
tently well.

7. Discussion. In this paper we have introduced new methods and reviewed
recent developments for estimating a mean covariance matrix where the data are
covariance matrices. Such a situation appears to be increasingly common in appli-
cations.

Another possible metric is the power Euclidean metric

dA(S1, S2) = 1

α
‖Sα

1 − Sα
2 ‖,(10)

where Sα = U�αUT. We have considered α ∈ {1/2,1} earlier. As α → 0, the
metric approaches the log-Euclidean metric. We could consider any nonzero α ∈ R

depending on the situation, and the estimate of the covariance matrix would be

�̂A = (�̂A)1/α, where �̂A = arg inf
�

{
n

∑

i=1

‖Sα
i − �‖2

}

= 1

n

n
∑

i=1

Sα
i .

For positive α the estimators become more resistant to outliers for smaller α, and
for larger α the estimators become less resistant to outliers. For negative α one
is working with powers of the inverse covariance matrix. Also, one could include
the Procrustes registration if required. The resulting fractional anisotropy measure
using the power metric (10) is given by

FA(α) =
{

k

k − 1

k
∑

i=1

(λα
i − λα)2

/ k
∑

i=1

λ2α
i

}1/2

,

and λα = 1
k

∑k
i=1 λα

i . A practical visualization tool is to vary α in order for a neu-
rologist to help interpret the white fiber tracts in the images.

We have provided some new methods for estimation of covariance matrices
which are themselves rooted in statistical shape analysis. Making this connection
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also means that methodology developed from covariance matrix analysis could
also be useful for applications in shape analysis. There is much current interest
in high-dimensional covariance matrices [cf. Bickel and Levine (2008)], where
k ≫ n. Sparsity and banding structure often are exploited to improve estimation
of the covariance matrix or its inverse. Making connections with the large amount
of activity in this field should also lead to new insights in high-dimensional shape
analysis [e.g., see Dryden (2005)].

Note that the methods of this paper also have potential applications in many ar-
eas, including modeling longitudinal data. For example, Cholesky decompositions
are frequently used for modeling longitudinal data, both with Bayesian and ran-
dom effect models [e.g., see Daniels and Kass (2001); Chen and Dunson (2003);
Pourahmadi (2007)]. The Procrustes size-and-shape metric and matrix square root
metric provide a further opportunity for modeling, and may have advantages in
some applications, for example, in cases where the covariance matrices are close
to being deficient in rank. Further applications where deficient rank matrices occur
are structure tensors in computer vision. The Procrustes approach is particularly
well suited to such deficient rank applications, for example, with structure tensors
associated with surfaces in an image. Other application areas include the averaging
of affine transformations [Alexa (2002); Aljabar et al. (2008)] in computer graph-
ics and medical imaging. Also the methodology could be useful in computational
Bayesian inference for covariance matrices using Markov chain Monte Carlo out-
put. One wishes to estimate the posterior mean and other summary statistics from
the output, and that the methods of this paper will often be more appropriate than
the usual Euclidean distance calculations.
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