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Abstract 

In order to assess the non-evaporative components of the reduced thermal insulation of wet 

clothing, experiments were performed with a manikin and with human subjects in which two 

layers of underwear separated by an impermeable barrier were worn under an impermeable 

overgarment at 20 °C, 80% RH and 0.5 ms-1 air velocity. By comparing manikin measurements 

with dry and wetted mid underwear layer, the increase in heat loss caused by a wet layer kept away 

from the skin was determined, which turned out to be small (5-6 Wm-2), irrespective of the inner 

underwear layer being dry or wetted, and was only one third of the evaporative heat loss calculated 

from weight change, i.e. evaporative cooling efficiency was far below unity. 

In the experiments with 8 males, each subject participated in two sessions with the mid underwear 

layer either dry or wetted, where they stood still for the first 30 minutes and then performed 

treadmill work for 60 minutes. Reduced heat strain due to lower insulation with the wetted mid 

layer was observed with decreased microclimate and skin temperatures, lowered sweat loss and 

cardiac strain. Accordingly, total clothing insulation calculated over the walking period from heat 

balance equations was reduced by 0.02 m2 °C W-1 (16%), while for the standing period the same 

decrease in insulation, representing 9% reduction only showed up after allowing for the lower 

evaporative cooling efficiency in the calculations. As evaporation to the environment and inside 

the clothing was restricted, the observed small alterations may be attributed to the wet mid layer’s 

increased conductivity, which, however, appears to be of minor importance compared to the 

evaporative effects in the assessment of the thermal properties of wet clothing. 

Keywords: moisture, clothing insulation, conduction, skin temperature, sweating 
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Introduction 

Wet clothing can increase the wearer’s heat loss by increasing the thermal 

conductivity increasing the ‘dry’ heat loss (Chen et al. 2003), and by evaporation 

from the surface or within the clothing, possibly combined with increased 

condensation in outer layers (Lotens et al. 1995). These mechanisms occur 

simultaneously and their separate quantification in the framework of heat balance 

analysis is problematic as evaporative cooling efficiency, defined as the ratio of 

the observed evaporative cooling to the effect expected from clothed mass loss 

(Havenith et al. 2007b), may deviate from unity with protective clothing 

(Nunneley 1989; McLellan et al. 1996; Candas et al. 2006; Havenith et al. 2006, 

2007a). This may lead to complications in the course of predicting unwanted 

cooling effects of sweat accumulated inside clothing while or after working in the 

cold (Meinander et al. 2004) or when modelling the sweating response of persons 

performing heavy work with protective clothing (Cheuvront et al. 2007). 

There have been several approaches to overcome the difficulties in assessing the 

increased heat loss with wet clothing in the context of heat balance calculations, 

e.g. Aoyagi et al. (1996) adapted the skin-core temperature weighting used in the 

calculation of body heat storage, while assuming an unchanged clothing 

insulation, Chen et al. (2003) calculated changes in dry heat loss with wet clothing 

from measurements with a sweating manikin assuming unity evaporative cooling 

efficiency, while Cheuvront et al. (2007) showed that allowing for the clothing 

insulation to change during modelling the sweating response of clothed persons 

improved the predictive capabilities of the model. To provide data and models for 

the systematic assessment of the effects of moisture on the thermal properties of 

protective clothing was one major concern of the European research initiative 

THERMPROTECT (Havenith et al. 2005). 

In a recent paper, Havenith et al. (2007a) presented a detailed analysis of the 

aspects related to evaporative heat loss while wearing protective clothing, 

especially the attenuated efficiency of evaporation (Craig and Moffitt 1974; 

Aoyagi et al. 1996; McLellan et al. 1996) and the internal vapour transfer 

accompanied with evaporation-condensation cycles in the clothing layers that on 

the other side may lead to higher heat losses than expected, particularly when 

wearing an impermeable outer layer (Candas et al. 2006, Havenith et al. 2006, 
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2007b). One unresolved issue pertained to the magnitude of the decrease in 

clothing insulation caused by the increased conductivity of the wet textiles. 

Concentrating on the non-evaporative, i.e. conductive effects, this paper describes 

experiments performed with a manikin and with humans in which two layers of 

underwear separated by a layer with low vapour permeability were worn under an 

impermeable overgarment. Wetting the mid underwear layer beneath an 

impermeable outerwear should facilitate the observation of conductive effects 

with only minimal influence by evaporation through and from the outer clothing.  

Methods 

In order to reduce the evaporation to the environment, the experiments were 

carried out under a high humidity condition with air temperature (Ta) of 20 °C, 

relative humidity (RH) of 80%, yielding ambient water vapour pressure (Pa) of 

1.87 kPa, and air velocity of 0.5 ms
-1

. Globe temperature was equal to Ta. Manikin 

measurements were performed at Loughborough University and human tests at 

IfADo. 

Manikin experiments 

Heat loss was measured using a thermal manikin ‘Newton’ (MTNW, Seattle, 

USA) with 32 independent zones in which surface temperature was controlled at 

34 ºC and the total heat input required to achieve this was accurately measured. 

This heat input is a direct measure of the heat loss from the manikin. As skin 

temperatures were uniform, clothing insulation related to this heat loss was 

calculated by applying the ‘parallel’ method (ISO 9920 2007, ISO 15831 2004). 

As this paper intends to study the effect of clothing, all manikin data in this paper 

were calculated for the clothed area (Ac = 1.457 m
2
) only, excluding head, hands 

and feet. 

Two layers of cotton (CO, type “Gnägi”, Switzerland) underwear were used, as 

shown in the electronic supplementary material for this paper (ESM 1a). Each 

layer had a separate shirt and long legged pants. The two layers were separated by 

a layer of Tyvek® (DuPont, Luxembourg), which prevented wicking of the 

moisture between layers but did allow some evaporative exchange. As the outer 

layer an impermeable coverall was used which was custom-made of PVC and 

possessed a waist band, that was tightened, and was sealed by a zipper at the front 



5 

and Velcro fasteners at ankles, wrists and along the front up to the collar. 

Experiments were carried out wetting either the inner (‘wet-dry’) or outer (‘dry-

wet’) CO layer with 600 g of water, and additional measurements were done with 

both layers either dry (‘dry-dry’) or wet (‘wet-wet’).  

For the conditions with wet CO, the shirt and pants were separately pre-wetted 

with 300 g water each and kept in sealed bags at room temperature for about 12 

hours before the experiment in order to distribute the moisture. The amount of 

water evaporated from the clothing (me, g) was determined by weighing the 

garments before and after each measurement (Sartorius balance 150 kg, ± 1 g). 

Evaporative heat loss was then calculated as 1

c

1

e A)tm( −− ×∆××λ  with ∆t 

denoting measurement time (s) and 1gJ2430 −⋅=λ  (enthalpy of evaporation). All 

measurements lasted 40 minutes and were performed twice. The means of the two 

measurements are reported for the results. 

Human experiments 

Subjects and study design 

Eight healthy male students (Mean ± SD: age 22.8 ± 1.3 yrs, body height 1.81 ± 

0.06 m, body mass (mb) 75.1 ± 6.6 kg, body surface area (AD) 1.94 ± 0.11 m
2
), 

gave written consent into participation in two trials each, that had been approved 

by IfADo’s Ethics Committee. The subjects wore their own briefs, socks and sport 

shoes, and a four layer clothing ensemble as shown in the electronic 

supplementary material (ESM 1b) that was slightly changed compared to the 

manikin study and comprised polypropylene underwear (HHS, Helly Hansen 

Super Bodywear® 140 g/m
2
), followed by a hooded Tychem® C Standard 

coverall (DuPont, Luxembourg) as intermediate layer, that prevented both 

wicking and evaporation, and the same additional CO mid layer and impermeable 

PVC outer layer as used with the manikin. The area clothing factor (fcl) was 

obtained as the ratio of pixels of digital photographs taken from the front and the 

side of the fully clothed to those of the nude (only briefs wearing) subject 

(McCullough et al. 2005), and amounted to 1.32 ± 0.04. Trials were performed 

with the CO mid layer either dry or wetted with 618 ± 16 g of water. In the wetted 

CO condition, the cotton clothing was wetted by applying a rinsing and spin-cycle 

programme of a washing machine. If the necessary amount of water was not 
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reached, the cotton clothes were additionally sprayed with water.  The sequence of 

the two conditions was balanced across subjects who visited the laboratory at the 

same time of day, with intervals between the 2 visits ranging from 1 to 19 days, 

the median interval was 4 days. 

Following a resting period of 30 minutes, each session consisted of 3 phases 

inside a climatic chamber, each lasting 30 minutes and separated by a 3 minute 

period where the fully clothed person’s weight was determined (Mettler-Sauter 

balance, Mettler, Germany, ± 5 g), yielding the mass loss due to evaporation (me) 

for that bout. Phase 1 comprised of 2 minutes of treadmill walking (4.5 km/h on 

the level) for initial moisture and temperature distribution inside the clothing 

followed by a 28 minutes lasting standing period in order to minimise sweat 

production. In phases 2 and 3 the persons had to perform the treadmill work for 

the whole time. 

Measurements 

By weighing (Mettler ID1, Mettler-Toledo GmbH, Germany, ± 1 g) the nude 

persons and each part of the clothing before and after the experiment, the sweat 

loss and the amount of moisture absorbed by the clothing was measured. 

Metabolic heat production (M, 2mW −⋅ ) was calculated according to ISO 8996 

(2004) from the analyses of O2 consumption (Servomex Series 1100, Servomex 

Ltd., UK) and CO2 production (UNOR Infrarot-Gasanalysator, Maihak AG, 

Germany) of expired air collected with Douglas bags during the last 10 minutes of 

phase 1 and 3, respectively. 

Heart rates (HR) were determined from the electrocardiogram (Polar Tester, Polar 

Elektro GmbH, Germany) and rectal temperatures (Tre) were continuously 

recorded with a flexible thermistor probe at a depth of 10 cm from the anal 

sphincter (YSI 401, Yellow Springs, USA). Mean skin temperatures (Tsk) were 

calculated as area weighted average from recordings with thermistors (YSI 427, 

Yellow Springs, USA) that were fixed with a porous adhesive non-woven fabric 

(Fixomull® stretch, Beiersdorf, Germany) at 8 body sites according to a scheme 

slightly modified from ISO 9886 (1992) (forehead, left chest, right frontal thigh, 

left dorsal thigh (instead of calf), right scapula, right upper arm, left lower arm, 

left hand). 
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Relative humidity (RHmc) and air temperature (Tmc) in the clothing’s microclimate 

were measured by data loggers (HandyLog DK502, Driesen+Kern GmbH, 

Germany) positioned at the right chest and left scapula between the HHS and 

Tychem® layer and, correspondingly, at the contra lateral sites between the CO 

mid and PVC outer layer. Partial water vapour pressure (Pmc) was computed from 

Tmc and RHmc according to DIN 50010-2 (1981). Averages of the values at the 

chest and scapula were calculated as the results for each layer. Surface 

temperatures on the inner and outer side of the PVC outerwear were measured as 

averaged recordings of thermistors (YSI 427, Yellow Springs, USA) taped on 6 

locations corresponding to the six body sites covered by clothing (i.e. without 

forehead and hand) used for Tsk registration. 

Using standardised scales (ISO 10551 1995) the subjects rated their thermal 

sensation (TS, -4: ‘very cold’ to 4: ‘very hot‘), thermal preference (TP, -3: ‘much 

warmer‘ to 3: ‘much cooler‘) and thermal tolerance (TT, 1: ‘perfectly bearable‘ to 

5: ‘unbearable‘). They gave ratings for moisture sensation (MS) on a five-point-

scale (1: ‘dry‘, 2: ‘slightly moist‘, 3: ‘moist‘, 4: ‘wet‘, 5: ‘very wet‘) and rated 

perceived exertion (RPE) using Borg’s 15-point-scale with values ranging from 6: 

‘no exertion at all‘ to 20: ‘maximal exertion‘ (Borg 1998). Votes were obtained at 

the end of the resting period, at the start of the experiment and at the end of each 

phase. 

Procedure 

After arriving at the institute, the subject’s nude weight was taken as was the 

weight of the different clothing pieces in a preparation room. The subject inserted 

the rectal probe and was equipped with the skin temperature sensors except at the 

forehead and hand. Then he put on the HHS underwear and rested lying on a bed 

in a room with neutral temperature (22-23 °C) for 30 minutes. Meanwhile the 

outer PVC layer was equipped with the sensors for measuring the inside surface 

temperature. The wet clothing’s weight was taken immediately before it was 

donned onto the person who was meanwhile clothed with the Tychem®  layer and 

equipped with the humidity sensors (ESM 1b, electronic supplementary material). 

Finally, the PVC outer layer was donned and the remaining sensors were taped. 

With dry CO mid layer, the subject’s preparation took place in the preparation 

room (22-23 °C). With wet CO layer, donning the three outer layers was carried 
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out in the climatic chamber with the high humidity and the air velocity 

temporarily reduced to 0.2 ms
-1

 to avoid evaporation as far as possible. When the 

subject was fully equipped, the protocol was carried out as described above. After 

the end of the experiment the sensors and clothing were removed from the subject 

and weighing of the nude subject, clothing and equipment, as well as data storage 

was carried out. 

Calculations and statistics 

All heat balance components were computed in units of 2mW −⋅ . Body heat 

storage (S) was calculated as p

1

Db

1

b cAm)tT( ×××∆×∆ −−  with 1

b tT −∆×∆  

( 1sC −⋅° ) denoting the rate of change of body temperature, that was computed 

from Tre and Tsk applying a 4:1 weighting, over the final 5 minutes of each phase, 

and cp = 3.48 11 CkgkJ −− °⋅⋅  the specific heat of body tissue. The respiratory heat 

loss components were estimated by 

)T885.0P641.056.28(M10516.1 aa

3 ×−×+××× −  for the convective (Cresp), and 

by )T53.0P63.1134.59(M1027.1 aa

3 ×+×−××× −  for the evaporative (Eresp) 

fraction, respectively (Malchaire et al. 2001). Evaporative heat loss (E) corrected 

for respiratory loss was then computed as resp

1

D

1

e EA)tm( −×∆××λ −− . By solving 

the heat balance equation for the added up conductive, radiatitive and convective 

components, and assuming zero external work for walking and standing on the 

level, the ‘Dry’ heat loss was computed as respresp CEESM −−−− , and was used 

to calculate total clothing insulation (It, 
12 WCm −⋅°⋅ ) by 1

ask Dry)TT( −×− . 

The continuously recorded variables were averaged over 5 minute intervals and 

presented as means and SD for the dry and wet CO mid layer conditions. 

Differences between the two conditions in the values at the end of phase 1 

(standing) and phase 3 (walking) were tested for statistical significance using a 

paired-comparison t-test. 
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Results 

Manikin experiments 

The averaged Ta and RH during the manikin study were 20.4 °C and 76%, 

respectively. The total manikin heat losses measured in the experimental 

conditions are summarised in Figure 1, also presenting the increase in heat loss 

from the condition dry-dry compared to the evaporative heat loss calculated from 

me, the latter is shown together with the weight change of the different clothing 

layers in Figure 2. 

Wetting the outermost CO layer caused similar increases in heat loss, in me, and 

consequently in the calculated evaporative loss, irrespective of the condition of 

the inner CO layer: increases were 5.7 2mW −⋅ , 25.0 g and 17.4 2mW −⋅ , 

respectively, with the inner CO layer being dry, and 5.1 2mW −⋅ , 23.5 g and 16.3 

2mW −⋅ , respectively, with wet inner CO. 

For the dry-wet condition the heat loss increase from the manikin was only 33% 

of the evaporative heat loss from the ensemble as calculated from the mass loss of 

the clothed manikin. Assuming a greater conduction of the wet CO layer as 

compared to dry, this means that more than two thirds of the actual evaporative 

heat was drawn from the environment and less than one third from the skin. 

For the wet-dry condition on the other hand, the increase in heat loss from the skin 

compared to dry was actually higher (142%) than the total clothing evaporative 

heat loss. Though me, the loss to the environment, was similar (28.5 g in wet-dry 

versus 25 g in dry-wet), moisture loss from the wet CO layer was higher (121 g in 

wet-dry versus 74 g in dry-wet) with most of the difference being transferred to 

the outer CO layer (Figure 2). As wicking was limited by the interlayer, this 

implies that part of the moisture, that evaporated from the inner underwear taking 

up the latent heat of evaporative cooling, has condensed again in the outer layers, 

consequently releasing heat. Thus heat loss by evaporation was higher than 

calculated based on the total clothing weight change. When considering only the 

inner layer’s weight loss, (121 g corresponding to 84 2mW −⋅ ) one can indeed see 

that this has not all contributed to the total body heat loss increase (28.2 2mW −⋅ ) 

due to heat being released by condensation in the outer layers. This, in turn, may 
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have increased the temperature of the outer layers, and thus the total dry heat loss 

to the environment. 

In the wet-wet condition the increased heat loss came close to the calculated 

evaporative heat loss (92%) and appeared to be the sum of the dry-wet and wet-

dry condition. 

Human experiments 

Sweating and moisture in clothing 

The sweat production, the distribution of moisture in the different clothing layers 

after the experiment and the clothed mass loss during the three 30 minute periods 

for the two experimental conditions are presented in Table 1. Sweating was 

significantly reduced with the wet CO mid layer by about one third compared to 

the dry CO condition, and consequently, the amount of moisture absorbed by the 

HHS underwear located next to the skin was significantly lower. This led to a 

reduced difference in averaged total moisture content between the two conditions 

from 618 g at the start to 455 g after the experiment. The Tychem® layer served 

as an effective barrier against moisture transport, as was indicated by the low 

amount of sweat that was transferred from the HHS layer into the CO and PVC 

layers in the dry CO condition. With wet CO there was significantly more 

moisture absorbed by the PVC outer layer. 

The clothed mass loss to the environment was low while standing, was 

approximately doubled in the first and increased to its threefold value in the 

second walking period, but there were no significant differences between the two 

CO conditions. 

Clothing microclimate 

The air temperature and humidity recordings, presented in Figure 3, revealed 

differing patterns for the HHS/Tychem® layer #1-2 and the CO/PVC layer #3-4, 

respectively. In the HHS/Tychem® layer located nearer to the skin, the RHmc 

profiles were similar for both conditions, but Tmc was significantly lower with wet 

CO in both the standing and walking phase (Table 2), which also resulted in lower 

Pmc. In the mid CO/PVC outer layer, Tmc was very similar, but RHmc was 

definitely higher in the wetted layer, and consequently also Pmc. The nearly 
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constant values for RHmc in the HHS/Tychem® layer during the static phase 

indicate the expected low amount of sweat produced while standing still. With 

walking, humidity increased indicating the onset of more heavily sweating. 

The surface temperatures of the PVC outer layer increased during the walking 

period and were lower inside than at the outside, but differed not much between 

the two experimental conditions while standing (Table 2). Only at the end of the 

walking period there was a tendency to a higher inside temperature with the wet 

CO layer. 

Heart rates, rectal and skin temperatures, metabolic rate 

Figure 4 shows the development of HR, Tre and Tsk during the experiments. HR 

were approximately constant while standing with only minor differences between 

the two experimental conditions, but increased during walking to significant lower 

values at the end of experiment in the wet condition (Table 2), although the 

metabolic rates were nearly identical in both conditions with average values of 

about 60 2mW −⋅  while standing and 175 2mW −⋅  while walking (Table 3). Tre 

was also constant while standing and increased under treadmill work, but the time 

profiles were very similar in both conditions. Tsk was significantly lower 

throughout the whole session for the condition with wet CO mid layer (Table 2). 

Considering the local skin temperatures, this was only observed at those sites 

covered by the clothing, not at the forehead and hand. 

Subjective responses 

Mean and SD of the subjective ratings at the end of the first and third phase are 

presented in Table 2. Starting from ‘neutral’, ‘dry’ and ‘no exertion’ values for 

TS, MS and RPE, respectively, at the end of the resting period, they increased 

slightly with the start of the experiment, remained constant during the static phase 

and increased with time during the walking phase. TS was significantly less warm 

with the wet CO layer while standing though at the end of experiment the 

difference to the ‘dry’ condition was smaller and not significant. Corresponding 

results were obtained for TP, whereas TT showed less tolerance to the dry CO 

condition at the end of the experiment. Contrary to that, there was no significant 

difference between the two conditions with respect to the time profiles for MS and 
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RPE, especially MS ratings were nearly identical notwithstanding the amount of 

water that had been applied to the CO mid layer. 

Heat balance 

The partition of the metabolic heat production into heat storage and the different 

avenues of heat loss as well as the total clothing insulation calculated from dry 

heat loss is presented in Table 3 for the standing and last walking period, 

respectively. As expected, the absolute values of all heat balance components 

increased while walking. There were no significant differences between the dry or 

wet CO condition observable while standing, but at the end of the walking period 

S was significantly higher with dry CO, whereas it did not differ significantly 

from zero with wet CO, indicating that a steady state was reached only for the 

latter condition. E, based on mass loss of the clothed person did not differ for the 

two conditions. 

It was significantly reduced by 16% with wet CO compared to dry CO during 

walking, but there was no significant difference in the standing period. It while 

walking was reduced to 50% of that while standing for dry CO, and to 41% for 

wet CO. 

Discussion 

Manikin measurements 

The manikin experiments demonstrated small increases in heat loss, i.e. small 

reductions of clothing insulation by a wet layer that was kept from the skin by an 

impermeable layer, presumably mainly due to increased conductive heat loss.  

The greater increase in heat loss for the wet-dry condition may have several 

reasons, that are all related to the fact that the utilised Tyvek® mid layer did not 

fully prevent water vapour transfer into the outer layers. Firstly, as evaporation 

takes place close to the skin, the heat loss is more effective in cooling the skin. 

Secondly, as the separating layer did not prevent evaporation entirely and due to 

the higher temperature of the wet layer, internal vapour transfer occurred. Thirdly, 

condensation of the evaporated moisture in the outer layers, caused the outer 

layers to heat up and increased the total heat loss. All this led to a higher increase 

in heat loss than expected from weight change, i.e. to an evaporative cooling 
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efficiency above unity, as it had been observed also in other studies with 

impermeable clothing (Lotens et al. 1995, Candas et al. 2006, Havenith et al, 

2006, 2007b). 

On the other hand, when the outer CO layer was wetted, the increase in heat loss 

was only about one third of that expected from weight change, irrespective 

whether the condition with dry or wet inner CO layer was chosen as reference. 

Further experiments during THERMPROTECT have shown that this attenuation 

in evaporative efficiency seems to depend on the location of the wet layer, as 

higher efficiencies (about 70%) were observed when wetting the layer next to the 

skin (Havenith et al. 2007a), and lower efficiencies (about 25%) were obtained 

when the outer layer was wetted (Havenith et al. 2005). 

With both CO layers being wet, which might simulate the situation with all layers 

wetted by sweating, these two effects, one increasing and the other attenuating 

heat loss, appear to cancel out and efficiency was nearly unity for this special 

clothing ensemble under the thermal conditions used. 

Human measurements 

A picture of reduced heat strain due to reduced clothing insulation by a wetted 

mid layer was observed in a number of parameters in the human trials. The most 

marked reaction was a reduced temperature of the clothing layer adjoining the 

skin and a concomitant reduction of skin temperature. Correspondingly, the wet 

CO condition was assessed as less warm by the subjects, especially while they 

were standing still. This was accompanied by a lower increase in heart rate during 

walking, although metabolic rate was nearly the same as with the dry mid layer. A 

further consequence of the cooling effect of the wet clothing was the reduced 

sweat production, as it had been also reported with more permeable clothing 

(Cheuvront et al. 2007; Lotens and Havenith 1995), which in this experiment, 

however, did not result in significant differences in moisture evaporation to the 

environment, the latter most likely due to the limiting effect of the impermeable 

clothing layers used. 

When comparing the human results to the manikin results, it should be noted that 

humans sweat and thus will increase the wetness of the initially dry inner 

underwear layer, while this would remain dry in the manikin testing. Thus in the 

experiments with wet CO, for the humans the condition will be ‘dry-wet’ in the 
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beginning and will slowly change towards ‘wet-wet’ when performing treadmill 

work, as it will with dry CO from ‘dry-dry’ towards ‘wet-dry’. However, as the 

effect of wetting the outer cotton layer on the increase in heat loss and evaporated 

moisture was similar irrespective of the condition of the inner layer in the manikin 

tests, the observed parallel shift of skin and microclimate temperature in the 

human tests is in good agreement with the expectations from the manikin results. 

Clothing insulation from heat balance calculation 

The observed effects of the wet mid layer on microclimate and skin temperature in 

the human trials were reflected by a reduction of the It values by 0.020 

12 WCm −⋅°⋅  (16%) only when calculated over the walking period, not when 

standing still, where It remained nearly unchanged. This may be explained by the 

differences in evaporative cooling efficiency observed in the manikin 

experiments, that was nearly unity for the wet-wet condition corresponding to the 

walking condition in the human trials, but that was reduced to one third in the dry-

wet condition, which is more representative for the humans standing still and 

hardly sweating. Re-calculating It for the wet CO condition in the standing period, 

now allowing for the reduced evaporative cooling efficiency, yielded a mean (SD) 

insulation of 0.230 (0.030) 12 WCm −⋅°⋅ , representing a reduction of 0.024 

12 WCm −⋅°⋅  (9%) compared to the dry CO condition. These relative reductions, 

especially those observed with the walking subjects, are somewhat higher than the 

values of 2-8% reported from manikin experiments (Chen et al. 2003), but are in 

line with those used in a recent modelling approach (Cheuvront et al. 2007). 

Compared to its static value, It was reduced while walking by 50% with dry and 

by 59% with wet CO (54% with the static value adjusted for evaporative cooling 

efficiency as described above), which exceeded  the expected reduction due to 

body movements of 33% that was calculated for the present walking speed 

applying correction equations (Havenith and Nilsson 2004). It should be noted 

that Havenith and Nilsson (2004) tested dry clothing only. The additional decrease 

in insulation observed here may reflect the wetting of the HHS and Tychem® 

layers due to sweating and, in case of the wetted mid layer, may also contain some 

added heat loss due to condensation in the outer layer (Lotens et al. 1995), as 

indicated by the higher moisture content accompanied by a tendency to increased 

surface temperature inside the PVC layer at the end of the experiment. 
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As the impermeable separating layer utilised in the human trials proved to be an 

effective barrier to internal moisture transfer, evaporation-condensation cycles 

between the clothing layers appear to be of minor importance for the observed 

reduction in clothing insulation, as well as evaporation to the environment, 

because it was restricted by the choice of clothing and climatic condition. This 

leaves the increase in thermal conductivity of the wet clothing layers as the most 

probable explanation.  

However, the manikin experiments indicate that (internal) evaporative heat 

transfer may have a larger impact on heat loss in wet clothing than increased 

conductivity. They also corroborate that considering the efficiency of evaporative 

cooling is crucial for the proper assessment of the heat transfer in protective 

clothing, especially when assessing the additional strain of working with 

protective clothing in the heat. 

Projecting our observations, obtained under a temperate-humid climate, into the 

cold with a heavy physical workload in cold protective clothing, where only 10% 

of the produced sweat might evaporate to the environment (Meinander et al. 

2004), it is suggested that sweat evaporation followed by re-condensation of 

moisture in the outer layers is mainly responsible for the reduced cold protection 

observed under these conditions. 

Conclusions 

To conclude, the human responses discussed above are symptomatic for a reduced 

insulation caused by the wet mid layer. As evaporation to the environment and 

inside the clothing was restricted, the increased conductivity of the wetted mid 

cotton layer is the most probable explanation for the observed alterations, which 

appear to be small compared to the effects associated with moisture evaporation. 

Together with other data emerging from the THERMPROTECT project, these 

findings may contribute to the development of models of the heat transfer through 

wet clothing. 
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Tables 

Table 1: Means (SD) of sweat production, moisture content in the clothing after the experiment 

and clothed mass loss for the three 30 min periods in human trials with dry and wet CO mid layer. 

Variable  dry CO  wet CO 
a 

sweat production (g)  453.8 (123.8)  312.0 (92.8) 
** 

Clothing moisture content (g)
 

HHS underwear  142.9 (77.1)  58.4 (53.1) 
** 

Tychem®  69.5 (9.4)  73.8 (12.8) 
 

CO mid layer 
b
  12.9 (6.6)  512.5 (20.1) 

*** 

PVC outer layer  8.4 (3.6)  58.3 (3.6) 
*** 

briefs, socks, shoes, equipment  34.6 (23.8)  20.6 (10.3) 
+ 

total 
b 

 268.3 (109.6)  723.5 (83.0) 
*** 

Change pre-post  268.3 (109.6)  105.4 (81.0) 
** 

Clothed mass loss (g)       
 

phase 1 (standing)  14.4 (3.2)  16.9 (4.6) 
 

phase 2 (walking)  34.4 (7.3)  36.9 (11.3) 
 

phase 3 (walking)  46.3 (3.5)  48.1 (7.5) 
 

a
 paired t-test dry vs. wet CO: 

+
:P<0.1, 

*
:P<0.05, 

**
:P<0.01, 

***
:P<0.001 

b
 includes 618.1 (16.2) g pre-filled water for wet CO condition
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Table 2: Means (SD) of clothing microclimate data, physiological and subjective responses (cf. 

text for abbreviations) at the end of standing and walking phases in human trials with dry and wet 

CO mid layer. 

Variable  standing (phase 1)  walking (phase 3) 

  dry CO  wet CO 
a 

 dry CO  wet CO 
a 

Clothing microclimate HHS/Tychem® layer
 

Tmc (°C)  30.9 (0.6)  29.7 (0.6) 
** 

 33.8 (0.4)  32.2 (0.6) 
*** 

RHmc (%)  80.0 (3.4)  79.3 (3.1) 
 

 95.7 (1.3)  95.0 (1.1) 
 

Pmc (kPa)  3.6 (0.2)  3.3 (0.1) 
* 

 5.0 (0.1)  4.6 (0.1) 
*** 

Clothing microclimate CO/PVC layer
 

Tmc (°C)  26.6 (0.4)  26.5 (0.7) 
 

 28.9 (0.4)  28.4 (0.7) 
 

RHmc (%)  47.6 (4.9)  91.3 (0.9) 
*** 

 49.5 (4.1)  93.8 (1.2) 
*** 

Pmc (kPa)  1.7 (0.2)  3.2 (0.1) 
*** 

 2.0 (0.2)  3.6 (0.1) 
*** 

PVC layer surface temperature
 

inside (°C)  23.3 (0.6)  23.4 (0.4) 
 

 25.0 (0.6)  25.4 (0.7) 
+ 

outside (°C)  23.7 (0.3)  23.8 (0.4) 
 

 25.6 (0.4)  25.8 (0.7) 
 

HR (min
-1

)  78.0 (13.2)  76.9 (10.8) 
 

 106.1 (10.5)  98.6 (9.9) 
** 

Tre (°C)  37.0 (0.2)  37.0 (0.3) 
 

 37.5 (0.2)  37.4 (0.3) 
 

Tsk (°C)  33.2 (0.5)  32.6 (0.5) 
*** 

 34.9 (0.4)  33.7 (0.4) 
*** 

Subjective responses
 

TS  1.0 (0.5)  0.4 (0.9) 
* 

 2.5 (0.5)  2.3 (0.7) 
 

TP  0.5 (0.5)  -0.1 (0.4) 
* 

 1.6 (0.9)  1.4 (0.7) 
 

TT  1.6 (0.7)  1.4 (0.7) 
 

 3.1 (1.4)  2.6 (1.3) 
* 

MS  1.6 (0.7)  1.6 (1.1) 
 

 3.9 (0.8)  3.6 (1.1) 
 

RPE  10.1 (2.8)  10.3 (2.5) 
 

 14.5 (3.8)  14.0 (3.7) 
 

a
 paired t-test dry vs. wet CO: 

+
:P<0.1, 

*
:P<0.05, 

**
:P<0.01, 

***
:P<0.001
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Table 3: Means (SD) of heat balance components (cf. text for abbreviations) and total clothing 

insulation (It) for phase 1 and 3 in the human trials with dry and wet CO mid layer. 

Variable  standing (phase 1)  walking (phase 3) 

  dry CO  wet CO 
a 

 dry CO  wet CO 
a 

Heat balance components (W m
-2

)
b 

M  60.7 (11.9)  60.2 (11.5) 
 

 173.6 (11.5)  175.8 (10.0) 
 

S  -3.2 (7.4)  -3.0 (12.0) 
 

 18.8 (11.5)  7.8 (13.3) 
* 

E  6.3 (1.9)  8.1 (3.0) 
 

 21.5 (3.6)  22.6 (4.4) 
 

Eresp  3.7 (0.7)  3.7 (0.7) 
 

 10.6 (0.7)  10.8 (0.6) 
 

Cresp  1.1 (0.2)  1.1 (0.2) 
 

 3.2 (0.2)  3.2 (0.2) 
 

Dry  52.8 (7.3)  50.3 (6.5) 
 

 119.5 (16.1)  131.4 (15.6) 
 

Clothing insulation (m
2
 °C W

-1
) 

It  0.254 (0.030)  0.256 (0.040) 
 

 0.126 (0.016)  0.106 (0.014) 
* 

a
 paired t-test dry vs. wet CO: 

+
:P<0.1, 

*
:P<0.05, 

**
:P<0.01, 

***
:P<0.001 

b
 assuming zero work rate for standing/walking on the level
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Legends 

Figure 1: Total manikin heat loss for the four conditions, and the heat loss expressed as increase 

from dry-dry, i.e. apparent evaporative heat loss, as well as the evaporative loss calculated from 

weight change. 

Figure 2: Mass losses (negative values) and gains for the different layers, as well as amount 

evaporated during the manikin measurements with wet CO layers. 

Figure 3: Means and SD of the clothing microclimate temperature, relative humidity and partial 

water vapour pressure measured between the underwear and the separating layer (layer #1-2, 

circles), and between the mid CO and the PVC outer layer (layer #3-4, triangles) in the human 

trials with dry (open symbols, upper error bars) and wet (filled symbols, lower error bars) mid CO 

layer. 

Figure 4: Means and SD of heart rate, rectal and mean skin temperature in the human trials with 

dry (open symbols, upper error bars) and wet (filled symbols, lower error bars) CO mid layer. 
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Illustrations 

 

Figure 1: Total manikin heat loss for the four conditions, and the heat loss expressed as increase 

from dry-dry, i.e. apparent evaporative heat loss, as well as the evaporative loss calculated from 

weight change. 

 

 

Figure 2: Mass losses (negative values) and gains for the different layers, as well as amount 

evaporated during the manikin measurements with wet CO layers. 
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Figure 3: Means and SD of the clothing microclimate temperature, relative humidity and partial 

water vapour pressure measured between the underwear and the separating layer (layer #1-2, 

circles), and between the mid CO and the PVC outer layer (layer #3-4, triangles) in the human 

trials with dry (open symbols, upper error bars) and wet (filled symbols, lower error bars) mid CO 

layer. 

 

 

Figure 4: Means and SD of heart rate, rectal and mean skin temperature in the human trials with 

dry (open symbols, upper error bars) and wet (filled symbols, lower error bars) CO mid layer. 

 


