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Abstract. It has been observed that for the axially symmetric Einstein-Rosen metric,
the stress-tensor of a scalar meson field associated with meson of rest mass μ cannot be the
source term for generating gravitation. The above result also holds even when this meson
field is coupled with an electromagnetic field.

1. Introduction

The study of scalar meson fields in general relativity has drawn the
attention of many workers. Bergmann and Leipnik [1], Buchdahl [2],
Bramhachary [3], Stephenson [4], Janis et al. [5], Penney [6,7],
Gautreau [8], Misra and Pandey [9] are some of the authors who have
investigated various aspects of the problem.

Rao et al. [10] have recently found out exact solutions for nonstatic
axially symmetric Einstein-Rosen metric when a Zeromass meson field
is coupled with an electromagnetic field. A natural extension of this
investigation would be the inclusion of the mass of the meson field.
To this end, we have taken up the problem of interacting gravitational
and massive (nonzero-rest-mass) scalar meson fields in Section 2, and in
Section 3 we have studied the more general case when the massive scalar
field is coupled with an electromagnetic field. In both the cases it has been
observed that the stress-tensor of the massive scalar meson field cannot
be the source term for generating gravitation. This result excludes the
possibility of any further extension of our previous work [10].

2. Axially Symmetric Massive Scalar Field

We consider the axially symmetric Einstein-Rosen metric

ds2 = e2«~2β(dt2 - dρ2) - ρ2e-2β dφ2 - e2β dz2 , (2.1)

where α and β are functions of ρ and t only and ρ, φ, z, t correspond
respectively to x1, x2, x3, x 4 coordinates.
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The general relativistic field equations for regions of spacetime
containing matter are

G-^-μ^.^-K^, (2.2)
8πG\ .

where K = —4— is the gravitational constant.

In this section we consider the solutions of the field Eqs. (2.2) when
Ttj represents the stress-energy tensor for a scalar meson field associated
with a meson of rest mass μ, where V satisfies the scalar wave equation

i 2V^Oi (2.3)

the semicolon denoting covariant differentiation.
Taking now the stress-tensor of the massive scalar menson field

(Corson [11]) as

Tn =
4π

ti Vj - - | gtj(V, V's - μ2 V2)

the field Eqs. (2.2) become

1
V V { - -z-i

(2.4)

, (2.5)

where a comma denotes partial differentiation and small latin letters
take the values 1, 2, 3, 4.

With the nonvanishing components of the Ricci tensor (see Eq. (11)
of [10]), the field Eqs. (2.5) are

K (2.6)

K \ 1

"4T

4π

* " | - 2 ^ 1 1 - 2 / ϊ 4 4 - α u + α 4 4

K Γ 1

2β1

(2.7)

(2.8)

(2.9)



164

and

A. R. Roy and J.R.Rao:

(2Λ0)

where the axial symmetry assumed implies that the scalar potential V
shares the same symmetry as α and β, as a consequence of which

F,2 = 0, F 3 = 0. (2.11)

Thus the axially symmetric massive scalar field will be completely

determined by the Eqs. (2.6)-(2.10) and (2.3).

The Eqs. (2.6) and (2.9) give us

which implies that μ = 0. Hence, we conclude that for the axially
symmetric Einstein-Rosen metric (2.1) there cannot exist any massive
scalar field. Physically we can interpret this as showing that massive
scalar fields cannot be the source term for generating axially symmetric
gravitational field described by (2.1).

3. Axially Symmetric Coupled Electromagnetic
and Massive Scalar Field

In this section we consider the region of the spacetime to consist of
a sourcefree electromagnetic field, in addition to the massive scalar field,
satisfying the Maxwell's equations

and
(3-1)

(3.2)

where Ftj is the electromagnetic field tensor and A{ the electromagnetic
four potential.

Thus, in this case ΎV} consists of two parts viz., stress-tensor corre-
sponding to the electromagnetic field given by

1

4π

1 Z7 VSn h h (3.3)

and that corresponding to the massive scalar field already defined by
(2.4).

Hence, the field Eqs. (2.2) for this case are

4π

-F Fs-\ a F F
1 IS1 J ' 4 UlJ1 Sp1

sp

V V • Q-iV V's-u2V2)

(3.4)

Thus the Eqs. (2.3), (3.1), (3.2) and (3.4) will determine the field completely.
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For the metric (2.1) we have the relation

i.e.

which in view of (3.4) implies

11 44/p j 2 22 3 3 ^ ) 2 — 0 (3.5)

Since g11, g22, g33 are all negative and g44 is positive (3.5) will hold iff

^14 = 0, F 2 3 = 0 . (3.6)

Substituting the values of the Ricci tensors and using (3.6), the field
Eqs. (3.4) read as

v is- I

Ϊ7 J 7 2 _ _ FT ί?3

1

K

8π

1
-^QuiFiiF 4-Fj 3 F 1 3 + F 2 4 F 2 4 + F 3 4 F 3 4 ) ^ (3.8)

4π ^

2/? ^
1 /? O Ω ~ i « D2 i o2 i r l

(3.10)
J

8π '

(3.9)

{ ( F l 2 F F 1 3 F i ) } V 1 V 4 . (3.11)
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Now multiplying (3.7) by g11 and (3.10) by g 4 4 and noting g11 = — g 4 4,
we get

μ = 0.

Hence, there cannot exist any solution for the coupled electromagnetic
and massive scalar field for the metric (2.1).

We may mention in conclusion that the above results are also true
when the field characterized by (2.1) is assumed to be static.
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The legends to the figures were inadvertently omitted; they should read as follows:

Fig. 1. The sign variation of Q(G x) for N(G) = 7 as x goes from — oo to + oc.

Fig. 2. Two graphs for which Q{G\ x) has two identical zeros, (a) gives two zeros at x = 0
independent of the edge weights. In (b) if the weights on all four vertical edges are a2 there
will be double zeros at x — ±a.


