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NON-EXISTENCE OF POSITIVE SOLUTIONS OF LANE-EMDEN SYSTEMS
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Henghui Zou*
Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294

1. Introduction. In this paper we consider (component-wise) positive solutions
of the weakly coupled system

�u + vp = 0,
�v + uq = 0,

x 2 Rn, (I)

where p, q > 0 and n � 3 is the dimension of the space, and are concerned with the
question of non-existence of such solutions. This system arises in chemical, biological
and physical studies, and has been investigated by several authors, see for example [3,
8, 9] and references therein.

The system (I) is a natural extension of the celebrated Lane-Emden equation, and
we thus refer to it as the Lane–Emden system. The Lane-Emden equation

�u + up = 0, x 2 Rn, n > 2, p > 1 (II)

has been extensively studied, going back to the pioneering work of Fowler (cf. [4], and
the recent paper [12]). It is well-known that the Sobolev exponent

l =
n + 2
n� 2

serves as the dividing number for existence and non-existence of solutions of (II), that
is, equation (II) admits non-negative, non-trivial solutions if and only if p � l, see [4]
and [5].

It is natural to ask if there exists a corresponding dividing curve in the pq�plane
for the Lane-Emden system, that is, a curve with the property that (I) admits positive
solutions if and only if (p, q) is on or above the curve.

Mitidieri [9] showed that (I) does not have any positive radial solutions if

1
p + 1

+
1

q + 1
>

n� 2
n

, p, q > 1,
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a result which was improved in [13] to be valid for p, q > 0. On the other hand, a
concentrated - compactness argument (cf. [7]) implies that (I) admits a positive radial
solution when (p, q) is on the hyperbola

1
p + 1

+
1

q + 1
=

n� 2
n

. (1.1)

This suggests that the hyperbola (1.1) is the dividing curve for existence and nonex-
istence for (I). The purpose of the paper is to justify this assertion in a number of
important cases, see Corollaries 1.1 and 1.2. We also note that condition (1.1) be-
comes exactly p = l when p = q, as for the Lane–Emden equation.

We call a point (p, q) in the first quadrant of the pq�plane critical, subcritical or
supercritical if it is respectively on, below or above the hyperbola (1.1). Also we say
that a function w on Rn has algebraic growth at infinity if there exists a constant K
such that

|w(x)|  Const. |x|K , |x| > 1. (1.2)

Throughout the paper we write vector-valued functions using bold face type, e.g.,
u(x) = (u(x), v(x)), and we say that u is positive if both components are positive. We
shall establish the following non-existence results concerning positive solutions of (I).

Theorem 1.1. Let n = 3 and suppose that (p, q) is subcritical with respect to the
hyperbola (1.1). Then (I) does not admit any non-negative and non-trivial solutions u
with algebraic growth at infinity.

Since by definition ground states of (I) tend to zero at infinity, Theorem 1.1 excludes
their existence for subcritical exponents when n = 3, see Corollary 1.1.

Theorem 1.2. The system (I) does not admit any non-negative and non-trivial solu-
tions u, provided either pq  1 or

pq > 1 and max
⇢

2(p + 1)
pq � 1

,
2(q + 1)
pq � 1

�
� n� 2. (1.3)

Remark. When p, q > 1, Theorem 1.2 was obtained in [9]. Condition (1.3) corre-
sponds exactly to the relation p  n/(n� 2) when p = q.

The proofs depend heavily on asymptotic estimates at infinity. For the proof of
Theorem 1.2, this amounts to obtaining estimates for spherical averages of solutions.
Such an argument is no longer valid when the point (p, q) lies above the curve given by
(1.3), as in the case of Theorem 1.1. A subtler approach is to apply a Pohozaev-type
identity together with estimates for the solutions themselves.

There are various di�culties in obtaining such estimates, partly due to the im-
balance between the two exponents p and q. This makes it generally impossible to
apply techniques used in treating single equations. For instance, in contrast to the
case of the Lane-Emden equation for which solutions have fast decay |x|2�n at infinity
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when p = l, the components u and v of solutions of (I) cannot both have fast decay
everywhere on the critical hyperbola.

Problem (I) admits infinitely many positive radial solutions when (p, q) is critical or
supercritical with respect to the hyperbola (1.1), see [14]. Combining the results of [9,
13] and Theorem 1.1 with this conclusion, we obtain the following corollaries showing
that (1.1) is the dividing curve for (I) for radial solutions, and for all solutions with
algebraic growth when n = 3.

Corollary 1.1. Suppose n = 3. Then the hyperbola given by (1.1) is the dividing
curve for positive solutions of (I) with algebraic growth at infinity, and, in particular,
for ground states.

Corollary 1.2. The hyperbola given by (1.1) is the dividing curve for positive radial
solutions of (I).

General functions f(v) and g(u), replacing vp and uq, can also be treated in a
similar manner, with corresponding existence and non-existence results under suitable
conditions on f and g. We refer the reader to [13, 14] for details.

The outcomes could be quite di↵erent if there were special homogeneous relations
between the exponents. For example, Bidaut-Veron and Raoux [1] considered the
system

�u + |x|�uqvp+1 = 0,

�v + |x|�uq+1vp = 0,
u, v > 0, (III)

where p, q > 0. Estimates near isolated singularities were obtained when

p + q + 1 <
n + 2 + 2�

n� 2
(1.4)

by an argument similar to that used in [5]. The duality between u and v plays a major
role here and methods used to treat single equations remain applicable. Moreover,
for comparable n-component systems (with appropriate symmetry, and with (III) a
special case), the moving plane method shows non-existence and symmetry of positive
solutions when the nonlinearity is, respectively, subcritical or critical with respect to
(1.4); see [11].

This approach also can be used for the Lane–Emden system in certain cases. Indeed
when both exponents p and q are less than or equal to l, the moving plane method
applies with the aid of a Kelvin transform. This shows in particular that the system
(I) has no positive solutions if p  l and q  l with at most one equality holding, and
that all solutions must be radially symmetric when p = q = l; see [3].

As a final remark, we observe that one can combine Theorem 1.1 with a blow-up
argument to get a priori estimates for positive solutions of a large class of semilinear
elliptic systems on bounded domains, especially systems without variational structure,
see the forthcoming paper [16].

The organization of the paper is as follows. In Section 2, we present some prelim-
inaries and our main estimates. In Section 4, appropriate asymptotic estimates are
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obtained for the case n = 3. Section 3 contains the proof of Theorem 1.2, and Section
5 the proof of Theorem 1.1.

2. Preliminaries and principal asymptotic estimates. Consider the weakly
coupled system ⇢

�u + vp = 0,
�v + uq = 0,

x 2 Rn, (I)

where p, q > 0 and n � 3 is an integer. We are interested in non-existence of non-
negative and non-trivial C2-solutions.

As mentioned in the introduction, throughout the paper we shall write vector-valued
functions in the form u(x) = (u(x), v(x)), and say that u is positive if both components
u and v are positive. Generic constants will be denoted by c, M etc.; these depend on
the arguments explicitly indicated, but may vary from line to line.

We begin with several preliminary results. The first is a standard comparison
lemma.

Lemma 2.1. Suppose that w � 0 is non-trivial and satisfies

�w  0, x 2 Rn. (2.1)

Then there exists a positive constant c = c(w) such that

w(x) � c|x|2�n, |x| � 1.

Proof. By the strong maximum principle, w > 0 (we take this granted without
mention in the sequel). Take

c = min
|x|=1

w(x) > 0,

and put
w1(x) = c|x|2�n, |x| > 1.

Clearly w � w1 is non-negative on the boundary of the set ⌦ = Rn\B1. Moreover

lim inf
|x|!1

(w � w1) � 0

and
�(w � w1)  0, x 2 ⌦.

Therefore w � w1 is non-negative in ⌦ by the maximum principle.

Lemma 2.2. Suppose that w � 0 is non-trivial and satisfies (2.1). Then for ⌘ 2
C10 (Rn) and � < 1, there exists a constant c = c(�) > 0 such that

Z
Rn

⌘2|Dw|2w��2  c

Z
Rn

|D⌘|2w� . (2.2)
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Proof. Multiplying (2.1) by �(x) = w��1(x)⌘2 2 C10 (Rn) and integrating over Rn,
we obtain

(1� �)
Z

Rn

⌘2|Dw|2w��2 � 2
Z

Rn

⌘w��1Dw · D⌘  0.

It follows by the Schwarz inequality that

Z
Rn

⌘2|Dw|2w��2  2
1� �

Z
Rn

⌘|D⌘||Dw|w��1

 2
1� �

✓Z
Rn

⌘2|Dw|2w��2

◆1/2

·
✓Z

Rn

|D⌘|2w�

◆1/2

 1
2

Z
Rn

⌘2|Dw|2w��2 +
2

(1� �)2

Z
Rn

|D⌘|2w� ,

as required (c = 4/(1� �)2).

For w 2 C(Rn), denote the spherical average of w by

w(r) =
1
!n

Z
Sn�1

w(r, ✓), r > 0,

where (r, ✓) are spherical-coordinates and !n = |Sn�1| is the area of the unit sphere
in Rn.

Lemma 2.3. Suppose that w � 0 is non-trivial and satisfies (2.1). Then for a 2 (0, 1],
we have (wa)0  0. In particular, wa is a non-increasing function of r.

Proof. For a 2 R, it follows by direct calculation and (2.1) that

�(wa) + a(1� a)wa�2|rw|2  0.

Taking the average over Sn�1 yields, by a standard calculation,

�
wa

�00 + n� 1
r

�
wa

�0 + a(1� a)wa�2|rw|2  0, r > 0,

with 0 denoting di↵erentiation with respect to r. In turn

(wa)00 +
n� 1

r
(wa)0  0,

since 0 < a  1. Thus rn�1(wa)0 is non-increasing. But this function vanishes as
r ! 0, so that rn�1(wa)0  0, and in turn (wa)0  0 and wa is non-increasing.

We next state a useful version of the Poincaré-Sobolev embedding lemma.
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Lemma 2.4. Let k be a positive integer and s > 1. Suppose w 2 W k,s(⌦), where
⌦ is a smooth bounded connected domain in Rn. Then there exists a positive number
C = C(n, s, k,⌦) such that

|w|L1(⌦)  C|Dkw|Ls(⌦) + |w⌦|,

provided ks > n, and

|w|Lns/(n�ks)(⌦)  C|Dkw|Ls(⌦) + |⌦|(n�ks)/ns|w⌦|,

provided ks < n, where

w⌦ =
1
|⌦|

Z
⌦

w.

When ⌦ is a compact smooth connected manifold in Rn the conclusions still hold, but
with the conditions ks > n and ks < n respectively replaced by ks > dim(⌦) and
ks < dim(⌦).

Proof. Let ⌦ be a smooth bounded connected domain. From [15], Corollary 4.2.3,
L(w) = T (w) = w⌦ and p = s,m = k + 1, we obtain (replacing k by k � 1)

|w � w⌦|Ls⇤ (⌦)  C|Dkw|Ls(⌦);

here one uses also that T (1) = 1 and that kTk depends on ⌦. The required estimates
now follow from the triangle inequality.

The same conclusion obviously continues to hold (by a partition of unity argument)
when ⌦ is a compact smooth connected manifold.

We remark that the constant C in Lemma 2.4 is invariant under geometric similarity
(scaling, rotation and translation etc.) for the case when ks < n.

Lemma 2.5. (i) Suppose that w � 0 is non-trivial and satisfies (2.1). Also assume
that there exist � 2 (0, 1) and µ > 0 such that

w�(r) Mr�µ. (2.3)

Then for any R > 0 and � > 1 we have
Z

B�R\BR

|Dw|2w��2  cMRn�2�µ

and Z
B�R\BR

w�n/(n�2)  cMn/(n�2)Rn�µn/(n�2),

where c = c(n, �,�).
(ii) If moreover � 2 (0, (n� 2)/n], then also

w�n/(n�2)(r)  cMn/(n�2)r�µn/(n�2).
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Proof. Choose

⌘(x) ⌘
⇢

0, |x| > 2�R or |x| < R/2,
1, R < |x| < �R,

|r⌘(x)|  c/R (2.4)

in Lemma 2.2. Then, recalling that � < 1, we getZ
B�R\BR

|D(w�/2)|2 =
�2

4

Z
B�R\BR

|Dw|2w��2  c

R2

Z
B2�R\BR/2

w�

=
c

R2

Z 2�R

R/2
rn�1w�(r) dr  cM

R2

Z 2�R

R/2
rn�1�µ dr = cMRn�2�µ

by (2.3) (note that the final step is valid for arbitrary µ). This gives the first result of
(i), with the constant c clearly depending also on �.

Next we apply Lemma 2.4 with

k = 1, s = 2, ⌦ = B�R\BR

and with w replaced by w�/2. Since ks < n in the present case, this gives, in view of
the comment after the proof of Lemma 2.4,

J = |w�/2|2L2n/(n�2)(⌦)  c|Dw�/2|2L2(⌦) + 2|⌦|(n�2)/n|w�/2|2L1(⌦)

where c = c(n,�). By the Hölder inequality

|w�/2|2L1(⌦)  cRn

Z
B�R\BR

w�  cMR2n�µ

as in the last steps of the preceding calculation. Combining the previous lines then
yields

J  cMRn�2�µ.

The second result of (i) now follows from the calculationZ
⌦

w�n/(n�2) = Jn/(n�2)  (cMRn�2�µ)n/(n�2) = cMn/(n�2)Rn�µn/(n�2). (2.5)

We now prove (ii). Since w�n/(n�2)(r) is non-increasing by Lemma 2.3 and the
hypothesis �n/(n� 2)  1, it follows thatZ

⌦
w�n/(n�2) = !n

Z �R

R
rn�1w�n/(n�2)(r) dr � (�n � 1)!n

n
w�n/(n�2)(�R) · Rn.

Hence

w�n/(n�2)(�R)  cR�n

Z
⌦

w�n/(n�2)  cMn/(n�2)(�R)�µn/(n�2),

where we have used (2.5) at the last step. This completes the proof of the lemma,
when we put r = �R.

The previous lemmas concerned solutions of (2.1). We now turn to the main problem
of positive solutions of (I).
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Lemma 2.6. Let u=(u, v) be a positive solution of (I). Then

U 001 +
n� 1

r
U 01 + V p

1  0, for 0 < p1  p, (2.6)

and
V 00

2 +
n� 1

r
V 0

2 + Uq
2  0, for 0 < q1  q, (2.7)

where
U1(r) =

⇣
up1/p

⌘p/p1

, V1(r) =
⇣
vp1

⌘1/p1

;

and
U2(r) =

⇣
uq1

⌘1/q1

, V2(r) =
⇣
vq1/q

⌘q/q1

.

Proof. We only prove (2.6) for p1 < p, the case (2.7) being the same and the case
with equality being trivial. For a 2 R, it follows by direct calculation and (I)1 that

�(ua) + a(1� a)ua�2|ru|2 + aua�1vp = 0.

Taking the average over Sn�1 yields
�
ua

�00 + n� 1
r

�
ua

�0 + a(1� a)ua�2|ru|2 + avpua�1 = 0, r > 0. (2.8)

By the Hölder inequality, we have

vp1 =
1
!n

Z
Sn�1

vp1  1
!n

⇣Z
Sn�1

vpu�1/p0
⌘p1/p

·
⇣Z

Sn�1
up1/p

⌘1/p0

=
�
up1/p

�1/p0 ·
�
vpu�1/p0

�p1/p
,

where p0 = p/(p� p1) is the conjugate of p/p1, that is,

vpua�1 � V p
1 ·

�
ua

�1�p/p1

with a = p1/p 2 (0, 1). Therefore from (2.8)
�
ua

�00 + n� 1
r

�
ua

�0 + a(1� a)ua�2|ru|2 + aV p
1 ·

�
ua

�1�p/p1  0, r > 0.

Multiply by
�
ua

�p/p1�1 and rewrite in terms of U1(r) =
�
ua

�1/a to obtain after a short
calculation

U 001 +
n� 1

r
U 01 +

1� a

a2

h
a2ua · ua�2|ru|2 �

�
ua

�02i
U1�2a

1 + V p
1  0. (2.9)

By the Schwarz inequality, setting u0 = @u/@r,
�
ua

�02 =
h⇣ 1

!n

Z
Sn�1

ua
⌘0i2

=
⇣ a

!n

Z
Sn�1

u0ua�1
⌘2

 a2

!2
n

Z
Sn�1

u0
2
ua�2 ·

Z
Sn�1

ua  a2ua · ua�2|ru|2.

Thus (2.6) follows from (2.9), and the proof of the lemma is complete.
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Lemma 2.7. Suppose z = z(r) > 0 satisfies

z00 +
n� 1

r
z0 + �(r)  0, r > 0,

with � non-negative and non-increasing, and z0 bounded for r near 0. Then

z(r) � cr2�(r),

where c = c(n).

Proof. Clearly

�z0(r) � r1�n

Z r

0
sn�1�(s)ds � r1�n

Z r/2

0
sn�1�(s)ds � r

2nn
�(r/2).

Integrating from r to 2r then yields

z(r) � z(2r) +
1

2nn

Z 2r

r
s�(s/2)ds � r2

2nn
�(r),

as required.
For pq > 1, put

↵ =
2(p + 1)
pq � 1

> 0, � =
2(q + 1)
pq � 1

> 0. (2.10)

Then we have the following proposition.

Proposition 2.1. If pq = 1, then (I) admits no positive solutions. When pq > 1 there
exists a positive constant M = M(p, q, n) such that

u(r) Mr�↵, v(r) Mr�� for r > 0. (2.11)

Proof. We first consider p, q � 1. Taking the average of (I) on Sn�1 and using
Jensen’s inequality, we have

u00 +
n� 1

r
u0 + vp  0, v00 +

n� 1
r

v0 + uq  0, r > 0.

Since u and v are non-increasing by Lemma 2.3 with a = 1, we get from Lemma 2.7

u(r) � cr2vp(r), v(r) � cr2uq(r). (2.12)

We immediately obtain a contradiction if pq = 1 (p = q = 1). Otherwise, solving the
inequalities, we obtain (2.11).
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Next, without loss of generality, assume pq � 1 and q < 1. Clearly from (I)

v00 +
n� 1

r
v0 + uq = 0.

Using (2.6) with 1 = p1 < p, and noticing that uq (q < 1) and v are non-increasing
functions by Lemma 2.3, we again obtain from Lemma 2.7

U1(r) =
�
u1/p

�p � cr2vp, v(r) � cr2uq. (2.13)

But from the Hölder inequality
�
u1/p

�p  (uq)1/q, since q � 1/p. It follows that

(uq)1/q � cr2vp, v(r) � r2uq,

again a contradiction if pq = 1. Thus we assume pq > 1 and solve the inequalities to
get

uq(r) Mr�↵q, v(r) Mr�� . (2.14)
We now require Lemma 2.5. Because q 2 (0, 1) it is clear that there exists a positive

number �0  q and an integer N � 1 such that⇣ n

n� 2

⌘N
�0 = 1.

Define
�i =

⇣ n

n� 2

⌘i
�0, i = 0, 1, 2, . . . ,

so
0 < �0 < �1 < · · · < �N�1 =

n� 2
n

and �N = 1.

Now from (2.14) and the Hölder inequality

u�0(r) 
�
uq(r)

��0/q  (Mr�↵q)�0/q Mr�↵�0 .

Hence from Lemma 2.5 (ii), we get by iteration (with � = �i and µ = µi = ↵�i)

u�i(r) Mr�↵�i , i = 1, 2, . . . , N (2.15)

since �i 2 (0, (n� 2)/n] for i = 1, 2, . . . , N � 1. Taking i = N in (2.15) completes the
proof of the proposition.

Corollary 2.1. Suppose that pq > 1 and that u is a positive solution of (I). ThenZ
BR

uq  cRn�q↵,

Z
BR

vp  cRn�p� (2.16)

where c = c(p, q, n).

Proof. By (I) and (2.11),Z
BR

uq  cRn�2

Z 2R

R
r1�n

Z
Br

uq = �cRn�2

Z 2R

R
r1�n

Z
Br

�v

= �cRn�2

Z 2R

R
v0  cRn�2v(R)  cMRn�2�� = cRn�q↵,

since 2 + � = q↵, which yields (2.16)1. Similarly one obtains (2.16)2.
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Corollary 2.2. Suppose that pq > 1 and that u is a positive solution of (I). Then for
� 2 (0, 1), R > 0 and � > 1, there exists a constant c = c(�,�) > 0 such that

Z
B�R\BR

|Du|2u��2  cRn�2��↵,

Z
B�R\BR

|Dv|2v��2  cRn�2��� . (2.17)

Moreover, for any � < n/(n� 2) there exists a constant c = c(�,�) > 0 such that
Z

B�R\BR

u�  cRn��↵,

Z
B�R\BR

v�  cRn��� . (2.18)

Proof. Since � 2 (0, 1), we have u�  u�  cr��↵ by Hölder’s inequality and (2.11)1.
This is just (2.3) with w = u and µ = ↵�. Hence from Lemma 2.5 (i) we get (2.17)1,
and we derive (2.17)2 similarly.

To obtain (2.18), choose � = �(n� 2)/n and use the second part of Lemma 2.5 (i).

3. Non-existence I. In this section, we prove two non-existence results for positive
solutions of (I). Consider the following region in the first quadrant of the (p, q)�plane,

⌃2 = {p, q > 0, pq > 1 : n� 2  max{↵,�}},

where ↵ and � are given by (2.10). We first show non-existence in ⌃2.

Theorem 3.1. The system (I) does not admit any non-negative and non-trivial solu-
tions u if (p, q) 2 ⌃2.

Remark. When p, q � 1, Theorem 3.1 was proved in [9].
Proof. Suppose for contradiction that (I) admits a non-negative and non-trivial solu-
tion u. Then u must be strictly positive by the maximum principle. Without loss of
generality, we assume in what follows that p � q. Then necessarily p > 1, ↵ � � and
↵ � n� 2. Moreover,

n� p� = n� (2 + ↵) = n� 2� ↵  0,

with equality holding if and only if ↵ = n� 2. Thus by (2.16),
Z

BR

vp  cRn�p� ! 0 as R !1

when ↵ > n� 2. It follows that u ⌘ v ⌘ 0 when n� 2 < ↵, which is a contradiction.
Next suppose ↵ = n� 2. Then by (2.12)2 and Lemma 2.1 we have, when q � 1,

v � cr2 (u)q � cr2�(n�2)q, r � 1,

and, by (2.13)2 and Lemma 2.1, when q < 1,

v � cr2uq � cr2�(n�2)q, r � 1,
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that is, in both cases, v � cr2�(n�2)q when r � 1. Now, using (2.16) again,

c = cRn�2�↵ �
Z

BR

vp = !n

Z R

0
rn�1vp � !n

Z R

0
rn�1vp

by Jensen’s inequality and the fact that p > 1. Thus, using the previous estimate for
v, we get

c �
Z R

0
rn�1vp � c

Z R

1
rn�1+2p�(n�2)pq = c lnR !1 as R !1

(since n� 1 + 2p� (n� 2)pq = (pq � 1)(↵� n + 2)� 1 = �1), again a contradiction.
Next we show a non-existence result when pq  1.

Theorem 3.2. Suppose pq  1. Then (I) has no non-trivial and non-negative solu-
tions.

Proof. The case pq = 1 was proved in Proposition 2.1, so we only need to consider
the case pq < 1. Let s and ✓ be chosen so that

p < s <
1
q
, 0 < ✓ < min(1, 1/s),

and put � = ✓s. Then clearly

✓p < � < 1, �q < ✓ < 1,

and
a =

1� ✓

1� �q
2 (0, 1), b =

1� �

1� ✓p
2 (0, 1).

By Hölder’s inequality,
u✓ 

�
u�q

�a · u1�a  c
�
u�q

�a
. (3.1)

since u is decreasing (Lemma 2.3) and thus bounded. Similarly

v�  c
�
v✓p

�b
. (3.2)

On the other hand, from (2.6) and (2.7) with p1 = ✓p and q1 = �q, we get

U 001 +
n� 1

r
U 01 +

�
v✓p

�1/✓  0, V 00
1 +

n� 1
r

V 0
1 + (u�q)1/�  0.

Then from Lemma 2.7

U1 =
�
u✓

�1/✓ � cr2
�
v✓p

�1/✓
, V1 = (v�)1/� � cr2 (u�q)1/�

, (3.3)
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where again we have used the fact that v✓p and u�q are decreasing (Lemma 2.3).
The four inequalities in (3.1)–(3.3) can be solved for u✓, which yields after a short
calculation

u✓  cr�2a✓(s+b)/(1�ab).

In turn, from Lemma 2.1 and the fact that �(u✓)  0, there follows

n� 2 � 2a(s + b)
1� ab

. (3.4)

But it is easy to see that (for fixed s)

lim
✓!0

a = lim
✓!0

b = 1.

Therefore
lim
✓!0

2a(s + b)
1� ab

=1,

which contradicts (3.4). Hence no solution can exist and the theorem is proved.

4. Further asymptotic estimates: the case n = 3. Let w be an arbitrary
function on Rn. We say that w has algebraic growth at infinity if there exists a
constant K such that

|w|  Const.|x|K for |x| > 1,

and that a vector-valued function u = (u, v) has algebraic growth if both components
do. We shall deduce estimates for positive solutions u of (I) with algebraic growth at
infinity.

In what follows we assume that all constants depend both on the explicit arguments
indicated as well as on the structural numbers p, q, n and the solution itself.

We first prove a standard Lp estimate, valid for all n � 3.

Lemma 4.1 (Lp estimate). Let u be a positive solution of (I) with algebraic growth at
infinity. Then, for R � 1 and ✏ > 0, there exist two positive numbers m1 = m1(✏) > 1
and c = c(m) such that for m 2 (1,m1]

Z
B2R\BR

|D2u|m  cRn+✏�p�,

Z
B2R\BR

|D2v|m  cRn+✏�q↵. (4.1)

Proof. It su�ces to show (4.1)1. Put

w(x) = u(x)⌘ 2 C10 (B4R\BR/2),

where ⌘ is given by (2.4) with � = 2. Then w satisfies the equation

�w + ⌘vp � u�⌘ � 2Du · D⌘ = 0.
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For m > 1, by standard Lp estimates (see [6], Corollary 9.10, page 235) we have
Z

B2R\BR

|D2u|m =
Z

B2R\BR

|D2w|m 
Z

B4R\BR/2

|D2w|m  c

Z
B4R\BR/2

|�w|m
(4.2)

 c

Z
B4R\BR/2

vmp + cR�2m

Z
B4R\BR/2

um + cR�m

Z
B4R\BR/2

|Du|m

where c depends on m. We shall estimate the right hand side of (4.2) term by term.
From the algebraic growth condition of v at infinity and (2.16), we bound the first
term by

Z
B4R\BR/2

vmp  cRKp(m�1)

Z
B4R

vp  cRKp(m�1)+n�p�  cRn+✏�p�, (4.3)

provided that R � 1 and Kp(m � 1)  ✏. Next, for any � 2 (0, 1), we use Schwarz’s
inequality, (2.17) and (2.18) (with � = 8 and R replaced by R/2) to obtain

Z
B4R\BR/2

|Du|m 
⇣Z

B4R\BR/2

|Du|2u��2
⌘m/2⇣Z

B4R\BR/2

um(2��)/(2�m)
⌘(2�m)/2

 cRm(n�2��↵)/2 · R[n�m(2��)↵/(2�m)](2�m)/2 = cRn�m(1+↵),
(4.4)

provided that

m < 2, 0 <
m(2� �)

2�m
<

n

n� 2
. (4.5)

Fix � 2 (0, 1) so that � > 2� n/(n� 2). Then there exists m1 2 (1, 2) such that (4.5)
holds for all m  m1. Note also

m1 <
2�m1

2� �
· n

n� 2
<

n

n� 2
. (4.6)

Thus for any 1 < m  m1 the estimate (2.18)1 is valid with � = m and � = 8, that is,

R�2m

Z
B4R\BR/2

um  cRn�m(2+↵) = cRn�mp�,

while by (4.1)

R�m

Z
B4R\BR/2

|Du|m  cRn�m(2+↵) = cRn�mp�.

If moreover m1 is chosen even smaller if necessary, so that m1  1 + ✏/Kp, then (4.3)
also holds. Putting these estimates into (4.2), we obtain (4.1)1 as required.

After these preparations, we can derive the following estimates which are the key
to non-existence for any subcritical point (p, q) when n = 3.
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Theorem 4.1. Suppose that n = 3, pq > 1 and u is a positive solution of (I) with
algebraic growth at infinity. Then for any ✏ 2 (0, 2), there exist a sequence Rj ! 1
and a constant c = c(✏) such that

Z
S2

|Du(Rj , ✓)|2  cR2✏�2(↵+1)
j , u⇤(Rj)  cR✏�↵

j , (4.7)

and Z
S2

|Dv(Rj , ✓)|2  cR2✏�2(�+1)
j , v⇤(Rj)  cR✏��

j (4.8)

for j = 1, 2, . . . , where

u⇤(r) = max
✓2Sn�1

u(r, ✓), v⇤(r) = max
✓2Sn�1

v(r, ✓).

Proof. For any n � 3, fix � 2 (0, 1) and put

f(r) =
Z

Sn�1
|Du(r, ✓)|2u��2(r, ✓), g(r) =

Z
Sn�1

|D2u(r, ✓)|m,

and

�R,T = { r 2 (R, 2R) : f(r) � T}, ⇤R,T = { r 2 (R, 2R) : g(r) � T},

where m > 1, R > 0 and T > 0. By (2.17) with � = 2, and by (4.1), it follows that
for every ✏ > 0 there exist two positive constants m1 = m1(✏) > 1 and c = c(m) such
that for 1 < m  m1

Z 2R

R
f(r)rn�1dr  cRn�2��↵,

Z 2R

R
g(r)rn�1dr  cRn+✏/2�p�.

Therefore one finds easily that

TRn�1
����R,T

���  cRn�2��↵, TRn�1
���⇤R,T

���  cRn+✏/2�p�.

In particular, if we take T = T1 = 4cR�2��↵ then

|�R,T1 |  R/4,

and if T = T2 = 4cR✏/2�p�, then

|⇤R,T2 |  R/4.

It follows that there must be some point R0 2 [R, 2R] which is in neither �R,T1 nor
⇤R,T2 . Hence at R0 we have

f(R0)  4cR�2��↵
0 , g(R0)  4cR✏/2�p�

0 .



650 JAMES SERRIN AND HENGHUI ZOU

Note that R > 0 is arbitrary, whence there exist a sequence Rj ! 1 and a positive
constant c = c(m) such that

f(Rj)  4cR�2��↵
j , g(Rj)  4cR✏/2�p�

j , j = 1, 2, . . . . (4.9)

We now wish to apply Lemma 2.4 on the manifold Sn�1 to estimate the L1 norm
u⇤(Rj). In view of (4.9) this requires that we take k = 2 and s = m > 1, and that
ks > dim(Sn�1), i.e.,

m > (n� 1)/2. (4.10)

However m  m1 < n/(n � 1) (as one easily sees from (4.6)), so that (4.10) requires
essentially that n = 3. Taking this case from here on, and using Lemma 2.4 and
Proposition 2.1, we deduce that

u⇤(Rj)  c(|u(Rj)|W 2,m(S2) + |uS2(Rj)|)

= c
⇣Z

S2
|D2

✓u(Rj , ✓)|m
⌘1/m

+ cu(Rj)  cR2
jg

1/m(Rj) + cu(Rj)

 cR2+✏/2m�p�/m
j + cR�↵

j  cR2+✏/2m�p�/m
j .

(4.11)

Since p� = 2 + ↵, it is easy to see that the required condition

2 +
✏

2m
� p�

m
= 2 +

✏

2m
� 2 + ↵

m
 ✏� ↵

is equivalent to
D(m) = 2(2 + ↵� ✏)m� 2(2 + ↵) + ✏  0.

Recalling that ✏ < 2, one checks that the (linear) equation D(m) = 0 has a unique
root

m0 = m0(↵, ✏) = 1 + ✏/2(2 + ↵� ✏) > 1

and that D(m)  0 when m  m0. Therefore

2 +
✏

2m
� p�

m
= ✏� ↵ +

D(m)
2m

 ✏� ↵ for 1 < m  m0.

Now (4.7)2 follows from (4.11) by taking

m = min{m0,m1} > 1.

(so m = m(✏) and in turn c = c(✏)). On the other hand,
Z

S2
|Du(Rj , ✓)|2  cf(Rj)[u⇤(Rj)]2��  cR�2��↵

j R✏(2��)�(2��)↵
j  cR2✏�2(↵+1)

j ,

and (4.7)1 is proved. The conclusions (4.8)1 and (4.8)2 are obtained in the same way,
and the proof is complete.
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5. Non-existence II: the case n = 3. In Section 3, we obtained non-existence for
(p, q) in the region ⌃2 and also for pq  1. In this section, we consider the special case
n = 3, and show non-existence of positive solutions with algebraic growth at infinity,
as long as (p, q) is subcritical, namely, in the region

⌃1 =
n
p, q > 0 :

1
p + 1

+
1

q + 1
>

n� 2
n

o
.

Note that the relation 1/(p+1)+1/(q +1) > (n� 2)/n is equivalent to ↵ +� > n� 2
if pq > 1.

Theorem 5.1. Suppose that n = 3 and (p, q) 2 ⌃1. Then (I) does not admit any
positive solutions u with algebraic growth at infinity.

Before we proceed to the proof, we need a final lemma. It is obvious that the system
(I) has the Lagrangian

F(u, v) = ru ·rv � uq+1

q + 1
� vp+1

p + 1
.

Hence the following identity holds.

Proposition 5.1. Let u be a positive solution of (I) and B = BR the ball centered at
the origin with radius R. Then we have

� n

p + 1
� a1

� Z
B

vp+1 +
� n

q + 1
� a2

� Z
B

uq+1 = Rn

Z
Sn�1

� vp+1

p + 1
+

uq+1

q + 1
�

+ Rn�1

Z
Sn�1

(a1u
0v + a2uv0) + Rn�2

Z
Sn�1

(R2u0v0 �r✓ur✓v), (5.1)

where a1 + a2 = n� 2 and 0 = @/@r.

This follows directly from a result of Pucci and Serrin [10] by taking

h = x, a = (a1, a2).

The boundary terms in (5.1) appear due to the non-zero boundary conditions on @BR.
Proof of Theorem 5.1. By Theorem 3.2 we may suppose that pq > 1. Now let u
be a positive solution of (I). By Theorem 4.1, for any ✏ > 0 there exist a sequence
Rj ! 1 and a positive constant c = c(✏) such that (4.7) and (4.8) hold. Denote by
Bj (j = 1, 2, . . . ) the ball centered at the origin with radius Rj . We apply Proposition
5.1 on Bj for each j, and take a1 and a2 in (5.1) such that a1 + a2 = n� 2 = 1 and

� 3
p + 1

� a1

�
=

� 3
q + 1

� a2

�
= �.



652 JAMES SERRIN AND HENGHUI ZOU

An easy calculation shows that

� =
(pq � 1)�

2(p + 1)(q + 1)
,

where � = ↵ + � � 1 (recall that pq > 1). In turn � > 0 since (p, q) 2 ⌃1 and n = 3.
Then (5.1) becomes

�

Z
Bj

�
vp+1 + uq+1

�
=

R3
j

p + 1

Z
S2

vp+1 +
R3

j

q + 1

Z
S2

uq+1 + R3
j

Z
S2

u0v0

�Rj

Z
S2
r✓ur✓v + a1R

2
j

Z
S2

u0v + a2R
2
j

Z
S2

uv0

= I = I1 + I2 + I3 + I4 + I5 + I6, j = 1, 2, . . . .

(5.2)

We shall show that the right hand side of (5.2) tends to zero as j ! 1. Indeed, by
Theorem 4.1

I1 = R3
j

Z
S2

vp+1  cR✏(p+1)��
j , I2 = R3

j

Z
S2

uq+1  cR✏(q+1)��
j ,

|I3|  R3
j

Z
S2

|u0v0|  cR2✏��
j , |I4|  Rj

Z
S2

|r✓ur✓v|  cR2✏��
j ,

and
|I5|  R2

j

Z
S2

|u0v|  cR2✏��
j , |I6|  R2

j

Z
S2

|uv0|  cR2✏��
j .

Taking

✏ < min
⇢

2,
�

p + 1
,

�

q + 1

�

(so also 2✏ < � since pq > 1), we infer that

|I|  I1 + I2 + |I3| + |I4| + |I5| + |I6|! 0 as j !1.

This implies that u ⌘ v ⌘ 0, which contradicts our assumption and completes the
proof.

We remark that Theorem 5.1 excludes the existence of ground states of (I) for
subcritical exponents, since every ground state tends to zero at infinity. Combining
this with the existence result in [14], we obtain the following corollary.

Corollary 5.1. Suppose n = 3. Then (I) has a positive solution with algebraic growth
at infinity if and only if (p, q) is critical or supercritical. In particular, (I) has a ground
state if and only if (p, q) is critical or supercritical.
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