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NON-EXISTENCE OF REAL HYPERSURFACES
WITH PARALLEL STRUCTURE JACOBI OPERATOR

IN NONFLAT COMPLEX SPACE FORMS

MIGUEL ORTEGA, JUAN DE DIOS PÉREZ

AND FLORENTINO G. SANTOS

ABSTRACT. We prove the nonexistence of real hypersur-
faces in nonflat complex space forms whose Jacobi operator
associated to the structure vector field is parallel. In order
to prove this result we also obtain the nonexistence of several
classes of non homogeneous real hypersurfaces in complex pro-
jective space.

1. Introduction. Let CMm(c), m ≥ 2, c �= 0, be a nonflat
complex space form endowed with the metric g of constant holomorphic
sectional curvature c. For the sake of simplicity, we will use c =
4ε, ε = 1 or ε = −1. When ε = 1 we will call it the complex
projective space, CPm, and when ε = −1, the complex hyperbolic
space, CHm. Let M be a connected real hypersurface in CMm(c)
without boundary. Let J denote the complex structure of CMm(c)
and N a locally defined unit normal vector field on M . Then −JN =
ξ is a tangent vector field to M called the structure vector field
on M . The study of real hypersurfaces in nonflat complex space
forms is a classical topic in differential geometry. The classification
of homogeneous real hypersurfaces in the case of complex projective
space, CPm was obtained by Takagi, see [6, 11 13], and is given by
the following list:

A1: Geodesic hyperspheres.

A2: Tubes over totally geodesic complex projective spaces CP k,
0 < k < m − 1.

B: Tubes over complex quadrics and RPm.

C: Tubes over the Segre embedding of CP 1xCPn, where 2n+1 = m
and m ≥ 5.
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D: Tubes over the Plucker embedding of the complex Grassmann
manifold G(2, 5). In this case m = 9.

E: Tubes over the canonical embedding of the Hermitian symmetric
space SO(10)/U(5). In this case m = 15. In the case of complex hyper-
bolic space CHm, the classification of homogeneous real hypersurfaces
is not completed yet, but we have the following examples, see [1, 7]:

A0: Horospheres.

A1: Geodesic hyperspheres.

A2: Tubes over totally geodesic CHk, 0 < k < m − 1.

B: Tubes over totally geodesic real hyperbolic space RHm.

Jacobi fields along geodesics of a given Riemannian manifold (M̃, g̃)
satisfy a very well-known differential equation. This classical differ-
ential equation naturally inspires the so-called Jacobi operator. That
is, if R̃ is the curvature operator of M̃ , and X is any tangent vec-
tor field to M̃ , the Jacobi operator (with respect to X) at p ∈ M ,
R̃X ∈ End (TpM̃), is defined as (R̃XY )(p) = (R̃(Y, X)X)(p) for all
Y ∈ TpM̃ , being a self-adjoint endomorphism of the tangent bundle
TM̃ of M̃ . Clearly, each tangent vector field X to M̃ provides a Jacobi
operator with respect to X.

The study of Riemannian manifolds by means of their Jacobi opera-
tors has been developed following several ideas. For instance, in [2], it
is pointed out that (locally) symmetric spaces of rank 1 (among them
complex space forms) satisfy that all the eigenvalues of R̃X have con-
stant multiplicities and are independent of the point and the tangent
vector X. The converse is a well-known problem that has been studied
by many authors, although it is still open.

Let M be a real hypersurface in a nonflat complex space form
CMm(c), and let ξ be the structure vector field on M . We will call the
Jacobi operator on M with respect to ξ the structure Jacobi operator
on M . In [5], the authors obtain a characterization of class A real
hypersurfaces as those ones in CMm(c) such that the structure Jacobi
operator and the shape operator commute. See also [4]. In [3], the
authors classify, under certain additional conditions, real hypersurfaces
of CPm whose structure Jacobi operator is parallel in a certain sense
in the direction of ξ. They obtain class A real hypersurfaces and
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a non homogeneous real hypersurface. In this paper we study the
parallelism of the structure Jacobi operator of a real hypersurface of a
nonflat complex space form. In Section 3 we prove the nonexistence of
three distinct classes of nonhomogeneous real hypersurfaces in complex
projective space. These results are used in Section 4 to obtain the main
result of this paper by

Theorem 1. There exist no real hypersurfaces in a nonflat complex
space form CMm(4ε), ε �= 0, m ≥ 3, whose structure Jacobi operator
is parallel.

2. Preliminaries. Throughout this paper, all manifolds, vector
fields, etc., will be considered of class C∞ unless otherwise stated. Let
M be a connected real hypersurface in CMm(4ε), m ≥ 2, without
boundary. Let N be a locally defined unit normal vector field of M .
Let ∇ be the Levi-Civita connection on M and (J, g) the Kaehlerian
structure of CMm(4ε). For any vector field X tangent to M we write
JX = φX + η(X)N and −JN = ξ. Then (φ, ξ, η, g) is an almost
contact metric structure on M . That is, we have

(2.1)
φ2X = −X + η(X)ξ, η(ξ) = 1,

g(φX, φY ) = g(X, Y ) − η(X)η(Y ).

for any tangent vectors X, Y to M . From (2.1) we obtain

(2.2) φξ = 0, η(X) = g(X, ξ).

From the parallelism of J we get

(2.3) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ

and

(2.4) ∇Xξ = φAX

for any X, Y tangent vectors to M , where A denotes the Weingarten
endomorphism of the immersion. As the ambient space has holomor-
phic sectional curvature 4ε, the equations of Gauss and Codazzi are
given respectively by

(2.5)
R(X, Y )Z = ε{g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX

− g(φX, Z)φY − 2g(φX, Y )φZ}
+ g(AY, Z)AX − g(AX, Z)AY,
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and

(2.6) (∇XA)Y − (∇Y A)X = ε{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},
for any tangent vectors X, Y, Z to M , where R is the curvature tensor
of M . In the sequel we will need the following result, see [8, 10]:

Theorem A. Let M be a real hypersurface of CMm(4ε), ε �= 0,
m ≥ 2. Then the following are equivalent:

1. M is locally congruent to one of the homogeneous hypersurfaces of
class A.

2. φA = Aφ.

We will also denote by D the distribution on M given by all vectors
orthogonal to ξ at any point of M .

3. Some nonexistence results. To be used in the proof of the
Theorem we will prove the following propositions

Proposition 3.1. There are no real hypersurfaces M in CPm,
m ≥ 3, such that the Weingarten endomorphism of M is given by
Aξ = αξ + U , AU = ξ, AφU = −(1/α)φU , AX = 0, where U is a unit
tangent vector field in D, X is any tangent vector field to M orthogonal
to Span {ξ, U, φU} and α is a certain nonzero smooth function on M .

Proof. We see that Ker (A) is a holomorphic distribution. Now from
the Codazzi equation we have
(3.1)

− 1 = g((∇XA)ξ − (∇ξA)X, φX) = g(∇X(αξ + U), φX)
= αg(∇Xξ, φX) + g(∇XU, φX)
= g(∇XU, φX)

for any unit X ∈ kerA. On the other hand, by (2.3) and (2.6) we get

(3.2)
0 = g((∇XA)φU − (∇φUA)X, X) = − g(∇X(1/α)φU, X)

= −(1/α)g((∇Xφ)U, X) − (1/α)g(φ∇XU, X)
= (1/α)g(∇XU, φX)
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The result follows from (3.1) and (3.2).

Proposition 3.2. There exist no real hypersurfaces M in CPm,
m ≥ 4, such that the Weingarten endomorphism is given by Aξ = ξ+U ,
AU = ξ, AφU = −φU , where U is a unit vector field in D and
there exist two nonzero holomorphic distributions D1 and D0 such that
their direct sum is the orthogonal complement of Span {ξ, U, φU} and
AX = −X, AφX = −φX, AZ = 0 = AφZ for any unit X ∈ D1,
Z ∈ D0.

Proof. For any unit X ∈ D1, the Codazzi equation gives us
(∇X+UA)U − (∇UA)(X + U) = 0. That is,

(3.3) −φX − A∇XU + ∇UX + A∇UX = 0.

If we take the scalar product of (3.3) and X, we have

(3.4) g(∇XU, X) = 0

If we take the scalar product of (3.3) and ξ, bearing in mind (3.4), we
get

(3.5) g(∇UX, U) = 0.

From the Codazzi equation we also have (∇X+φUA)U − (∇UA)(X +
φU) = 2ξ, and this gives

(3.6)

−φX+U−A∇XU−A∇φUU+∇UX+∇UφU +A∇UX+A∇UφU = 2ξ.

If we take the scalar product of (3.6) and ξ, from (2.3), (3.4) and (3.5)
we get

(3.7) g(∇UφU, U) = 1

and, if we take the scalar product of (3.6) and U , from (2.4) and (3.5)
we obtain

(3.8) g(∇UφU, U) = − 2



1608 M. ORTEGA, J. DE DIOS PÉREZ AND F.G. SANTOS

The result follows from (3.7) and (3.8).

Proposition 3.3. There exist no real hypersurfaces M in CPm,
m ≥ 3, such that the Weingarten endomorphism is given by Aξ =
ξ+βU , AU = βξ+(β2−1)U , AφU = −φU , AX = −X for any tangent
vector X orthogonal to Span {ξ, U, φU}, where β is a nonvanishing
smooth function defined on M .

Proof. Let X be the unit tangent vector field orthogonal to
Span {ξ, U, φU}. By the Codazzi equation applied to X and U , we
get g((∇XA)U − (∇UA)X, U) = 0. This gives us

(3.9) g(X,∇UU) = (2/β)X(β)

Similarly, g((∇XA)U − (∇UA)X, ξ) = 0 implies

(3.10) g(X,∇UU) = (1/β)X(β)

From (3.9) and (3.10) we get

(3.11) g(X,∇UU) = X(β) = 0.

Also we get g((∇XA)U − (∇UA)X, X) = 0, and this yields β2g(∇XU,
X) = 0. Thus,

(3.12) g(∇XU, X) = 0

As g(∇UU, ξ) = g(∇UU, U) = 0, from (3.11) we have

(3.13) ∇UU = g(∇UU, φU)φU

Now by the Codazzi equation (∇X+UA)ξ−(∇ξA)(X+U) = −φX−φU .
From (3.11) this yields

(3.14)
β∇XU + U(β)U + β∇UU − φX + (β2 − 1)φU + ∇ξX

− ξ(β)ξ − ξ(β2− 1)U − (β2− 1)∇ξU + A∇ξX + A∇ξU = 0.

If we take the scalar product of (3.14) and X we obtain −g(U,∇XX)+
g(∇UU, X) − βg(∇ξU, X) = 0. From (3.11) and (3.12) this gives

(3.15) g(∇ξU, X) = 0.
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The Codazzi equation yields (∇X+φUA)ξ−(∇ξA)(X+φU) = −φX+U .
If we develop this equality, we obtain from (3.11)

(3.16)
−φX + β∇XU + U + (φU)(β)U + β∇φUU − βξ

− β2U + ∇ξX + ∇ξφU + A∇ξX + A∇ξφU = 0.

Taking the scalar product of (3.16) and U and bearing in mind (3.15),
we obtain

(3.17) (1 − 2β2) + (φU)(β) + β2g(∇ξφU, U) = 0.

The scalar product of (3.16) and U and (3.15) yield

(3.18) g(∇ξφU, U) = 4.

From (3.17) and (3.18) we obtain

(3.19) (1 + 2β2) + (φU)(β) = 0.

Now, from the Codazzi equation, we have

(∇φU+UA)ξ − (∇ξA)(φU + U) = U − φU.

This gives us

(3.20)

(φU)(β)U + β∇φUU − βξ − (β2 − 1)U
+ ∇ξφU + A∇ξφU + β∇UU + U(β)U
+ (β2 − 1)φU − ξ(β)ξ − ξ(β2 − 1)U
− (β2 − 1)∇ξU + A∇ξφU + A∇ξU = 0.

Taking the scalar product of (3.20) and U we have (φU)(β) + U(β) −
β2 + 1 + β2g(∇ξφU, U) − ξ(β2 − 1) − β2 = 0. From (3.18) and (3.19),
we get

(3.21) U(β) = 2βξ(β).

Now we take the scalar product of (3.20) and ξ and, bearing in mind
(3.18), from (3.2) we get

(3.22) ξ(β) = U(β) = 0.
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From the Codazzi equation (∇UA)ξ − (∇ξA)U = −φU . Developing
this equality, from (3.21) and (3.22) we have β∇UU + (β2 − 1)φU −
(β2−1)∇ξU +A∇ξU = 0. Taking the scalar product of this expression
and φU we obtain, from (3.18)

(3.23) g(∇UU, φU) = 5β − (1/β).

Now we also have (∇U+ξA)ξ − (∇ξA)(U + ξ) = −φU . If we develop
this equality and take the scalar product with φU , we have

(3.24) β2 = 1/5.

Now from (3.19) and (3.24), 1 + 2β2 = 0, which is impossible.

4. Proof of the theorem. From (2.5), (∇XRξ)Y = 0 gives us

(4.1)

− ε(g(Y, φAX)ξ + g(ξ, Y )φAX) + g(∇XAξ, ξ)AY + g(Aξ, φAX)AY

+ g(Aξ, ξ)(∇XA)Y − g(Y,∇XAξ)Aξ − g(AY, ξ)∇XAξ = 0,

for any X, Y tangent vectors to M . First suppose that ξ is an
eigenvector: Aξ = αξ. Let us take Y ∈ D in (4.1). Then we get

(4.2) εAφY + αAφAY = 0.

And, if we take Y = ξ in (4.1), we have

(4.3) εφAX + αAφAX = 0

for any X tangent to M . Equations (4.2) and (4.3) imply φA = Aφ.
Thus, from Theorem A, M must be locally congruent to a hypersurface
of type A. In the case of ε = 1, if we take a unit X tangent to M such
that AX = cot rX we have (∇XRξ)ξ = − cot r3φX. Thus Rξ cannot
be parallel. In the case of ε = −1 we obtain a similar result. Now
suppose that ξ is not principal. Thus in a certain neighborhood of
a point p we must find a unit U ∈ D an a certain nonzero smooth
function β such that Aξ = αξ + βU for a smooth function α on M . If
in (4.1) we take Y = φU , X = ξ and the scalar product with ξ we get
0 = −εβ − αβg(AφU, φU). This implies

(4.4) α �= 0 and g(AφU, φU) = − ε/α.
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If Y ∈ D ∩ Span {U, φU}⊥ from (4.1), taking X = ξ and the scalar
product with ξ we obtain 0 = αβg(AY, φU). Thus

(4.5) g(AY, φU) = 0.

Similarly, we have

(4.6) g(AY, φY ) = 0

for any Y ∈ D∩ Span {U, φU}⊥. If in (4.1) we take Y = U , X = ξ and
the scalar product with ξ we get αβg(AU, φU) = 0. Thus from (4.4)
we get

(4.7) g(AU, φU) = 0.

From (4.4), (4.5) and (4.7), we obtain

(4.8) AφU = −(ε/α)φU.

From (4.1), for any X tangent to M we get −εg(U, φAX)+β2g(U, φAX)
−αg(AU, φAX) = 0. Thus, εAφU −β2AφU +αAφAU = 0. Thus from
(4.8) we get −((1 − εβ2)/α)φU + αAφAU = 0. Taking the scalar
product of this equality and φU we have

(4.9) g(AU, U) = −(ε − β2)/α.

If in (4.1) we take Y = ξ, for any X tangent to M we obtain

(4.10) g(Aξ, φAX)Aξ = εφAX + αAφAX.

Taking X = φU , from (4.8) we get

(4.11) AU = βξ − ((ε − β2)/α)U.

Now if we take DU = D ∩ Span {U, φU}⊥, DU is a holomorphic
distribution on M . Moreover it is invariant by A. Now take an
eigenvector X ∈ DU such that AX = λX. From (4.1), (4.8) and
(4.11) we obtain that either λ = 0 or λ = −ε/α and AφX = λφX.
Let us suppose that there exists X ∈ DU , such that AX = 0. Then
AφX = 0. Then, from the Codazzi equation, (∇XA)φX−(∇φXA)X =
−2εξ = A[φX, X]. Taking the scalar product of this equation and ξ
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we have −2ε = g([φX, X], αξ + βU) = βg([φX, X], U). If we now take
the product of that equation and U we obtain 0 = g([φX, X], AU) =
−((ε − β2)/α)g([φX, X], U). If ε = −1, we should have β2 + 1 = 0
which is impossible. If ε = 1, β2 = 1. Thus changing, if necessary, U
by −U , we can suppose that β = 1. Thus if for any X ∈ DU , AX = 0,
the result follows from Proposition 3.1.

If we suppose that there exists X ∈ DU such that AX = (−ε/α)X,
then the principal distribution D1 = {Y ∈ DU/AY = (−ε/α)Y } is
holomorphic. Thus, for any X, Y ∈ D1, the Codazzi equation gives us
(∇XA)Y − (∇Y A)X = 2εg(X, φY )ξ. Developing this expression, we
get

(4.12)
2εg(X, φY )ξ = ε

(
(1/α)[Y, X] − X(1/α)Y + Y (1/α)X

)
+ A[Y, X].

Taking the scalar product of (4.12) and ξ we obtain

(4.13) g([Y, X], U) = (−2/α2β)g(X, φY ),

and taking the scalar product of (4.12) and U , we get

(4.14) g([Y, X], U) = (−2ε/β)g(X, φY ).

If ε = 1, (4.13) and (4.14) give α2 = 1 and, if we change ξ by −ξ, if
necessary, we have α = 1. From Propositions 3.2 and 3.3 the result
follows. If ε = −1, (4.13) and (4.14) imply α2 + 1 = 0. This is
impossible and finishes the proof.

Acknowledgments. The first and the second authors are partially
supported by MCYT-FEDER grant BFM 2001-2871-C04-01.

REFERENCES

1. J. Berndt, Real hypersurfaces with constant principal curvatures in complex
hyperbolic space, J. Reine Angew. Math. 395 (1989), 132 141.

2. Q-S. Chi, A curvature characterization of certain locally rank-one symmetric
spaces, J. Differential Geom. 28 (1988), 187 202.

3. J.T. Cho and U-H. Ki, Jacobi operators on real hypersurfaces of a complex
projective space, Tsukuba J. Math. 22 (1998), 145 156.



NON-EXISTENCE OF REAL HYPERSURFACES 1613

4. , Real hypersurfaces of a complex projective space in terms of the Jacobi
operators, Acta Math. Hungar. 80 (1998), 155 167.

5. U-H. Ki, H-J. Kim and A-A. Lee, The Jacobi operator of real hypersurfaces in
a complex space form, Commun. Korean Math. Soc. 13 (1998), 545 560.

6. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective
space, Trans. Amer. Math. Soc. 296 (1986), 137 149.

7. S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc.
Japan 37 (1985), 515 535.

8. S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic
space, Geomet. Dedicata 20 (1986), 245 261.

9. R. Niebergall and P.J. Ryan, Real hypersurfaces in complex space forms, Tight
and Taut Submanifolds, MSRI Publications 32 (1997), 233 305.

10. M. Okumura, On some real hypersurfaces of a complex projective space,
Trans. Amer. Math. Soc. 212 (1975), 355 364.

11. R. Takagi, On homogeneous real hypersurfaces in a complex projective space,
Osaka J. Math. 10 (1973), 495 506.

12. , Real hypersurfaces in a complex projective space with constant
principal curvatures, J. Math. Soc. Japan 27 (1975), 43 53.

13. , Real hypersurfaces in a complex projective space with constant
principal curvatures II, J. Math. Soc. Japan 27 (1975), 507 516.
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