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Abstract

In this paper we obtain some non-existence results for the Klein–Gordon equation

coupled with the electrostatic field. The method relies on the deduction of some

suitable Pohoz̆aev identity which provides necessary conditions to get existence

of nontrivial solutions. The case of Maxwell-Schrödinger type coupled equations

is also considered.
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1 Introduction

This paper deals with non-existence results of nontrivial solutions for some semi-
linear elliptic systems in R3. Such problems have been motivated by substantial
researches generated in recent years concerning certain kinds of solitary charged
waves in nonlinear equations of Klein–Gordon or Schrödinger type.

More precisely, let us first consider the following system:

−∆u + [m2 − (ω + eφ)2]u = f(u) in R3, (1.1)

−∆φ + e2u2φ = −eωu2 in R3, (1.2)
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where m, ω, e > 0, u, φ : R3 → R, f : R→ R. Such system has been first introduced
in [2] as a model describing solitary waves for the nonlinear stationary Klein–Gordon
equation in the three-dimensional space interacting with the electrostatic field. Here
m and e are the mass and the charge of the particle respectively, while ω denotes the
phase. The unknowns of the system are the field u associated to the particle and the
electric potential φ. The presence of the nonlinear term simulates the interaction
between many particles or external nonlinear perturbations.

Suppose that f is a continuous function such that f(0) = 0. (1.1) and (1.2) are
the Euler-Lagrange equations corresponding to the functional

S(u, φ) =
1
2

∫

R3

(
|∇u|2 − |∇φ|2 + [m2 − (ω + eφ)2]u2

)
dx−

∫

R3
F (u) dx,

where

F (t) =
∫ t

0

f(s)ds t ∈ R.

For physical reasons, we are led to consider solutions with bounded energy (bound
states), i.e. we want the functional S to be finite. Hence we require u ∈ H1 (i.e.
u, |∇u| ∈ L2(R3)), φ ∈ D1 (i.e. |∇φ| ∈ L2(R3)) and F (u) ∈ L1(R3).

Some existence results for the system (1.1)-(1.2) have been proved in the case
f(u) = |u|p−2u. In [2] the authors find infinitely many radially symmetric solutions
having bounded energy for 4 < p < 6; in [10] the range p ∈ (2, 4] is also covered.
Motivated by these works, a natural question arises: what happens in the absence
of the nonlinear term or if the exponent p varies in different ranges?

In this paper we examine both cases, considering respectively f ≡ 0 and f(u) =
|u|p−2u with p ∈ (0, 2] ∪ [6,+∞), and we exhibit a negative answer: the unique
bound state solution is the trivial one (for more general nonlinear functions f , see
Theorem 1.2 below).

In order to state the precise result, we first consider the case f ≡ 0, which leads
to the following system:

−∆u + [m2 − (ω + eφ)2]u = 0 in R3, (1.3)

−∆φ + e2u2φ = −eωu2 in R3. (1.4)

Note that in this case the system describes linear charged Klein–Gordon fields in
the presence of the electrostatic field; we point out that equations (1.3)-(1.4) have a
relevant physical significance, since they describe a system of isolated charged parti-
cles in absence of mutual interactions and without external nonlinear perturbations.
However, the nature of the problem is still nonlinear, but the nonlinearity is merely
internal to the system, being given only by the coupling, i.e. by the interaction of
the particle with its own electrostatic field.

We can now state a first result:

Theorem 1.1 Assume m, ω, e > 0 and let (u, φ) be a solution of the system (1.3)-
(1.4) such that u ∈ H1 and φ ∈ D1. Then u = φ = 0.
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Concerning the general system (1.1)-(1.2), another consequence of the method
employed to prove Theorem 1.1 is the following further nonexistence result.

Theorem 1.2 Let f : R→ R be a continuous function such that f(0) = 0. Assume
m, ω, e > 0 and either

i) f(s)s + 2(m2 − ω2)s2 ≥ 6F (s) for every s ∈ R,

or

ii) 2F (s) ≥ f(s)s for every s ∈ R.

Let (u, φ) be a solution of the system (1.1)-(1.2) such that u ∈ H1, φ ∈ D1 and
F (u), f(u)u ∈ L1(R3). Then u = φ = 0.

If f(s) = |s|p−2s we immediately get the following corollary.

Corollary 1.1 Assume m, ω, e > 0 and either

i) p ≥ 6 and m ≥ ω,

or

ii) p ≤ 2.

Let (u, φ) be a solution of the system (1.1)-(1.2) with f(s) = |s|p−2s such that
u ∈ H1 ∩ Lp(R3) and φ ∈ D1. Then u = φ = 0.

Remark 1.1 We point out that the nonexistence result in the critical case p = 6
was already obtained in [6]. Note that if p = 6, according to Sobolev embeddings,
the requirement u ∈ Lp(R3) in corollary 1.1 can be omitted. Moreover, if p = 2
Theorem 1.2 can be reduced to Theorem 1.1.

In view of the previous results, the presence of a nonzero nonlinear external
perturbation term with a superlinear and subcritical growth seems to be neces-
sary to get nontrivial solitary Klein–Gordon charged waves interacting with their
electrostatic field. In the spirit of the method developed in [4]-[5], the idea of the
proof is based on a suitable Pohoz̆aev identity ([17]) for the system (1.1)-(1.2) which
provides necessary conditions for the existence of nontrivial solutions.

Stationary states of nonlinear Schrödinger equations lead to similar problems.
Indeed, in [1] the authors proved that the following system of Maxwell-Schrödinger
equations

− ~
2

2m
∆u + ωu + eφu− f(u) = 0 in R3 (1.5)

−∆φ = 4πeu2 in R3 (1.6)

actually describes a charged wave interacting with its own electrostatic field. As
before, u is the wave associated to the particle, m, e and ω are the mass, the charge
and the phase of the wave respectively, while ~ is the Planck ’s constant.
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Concerning equations (1.5)-(1.6) with f(u) = |u|p−2u, the existence of a non-
trivial radial solution was proved in [7] under the restriction 4 < p < 6 and in [10]
for 4 ≤ p < 6, while in [12] the existence of a non-radially symmetric solution was
established for 2 < p < 6.

We point out that the system (1.5)-(1.6) has attracted considerable attention
in recent years: the eigenvalue problem with f = 0 has been studied in [1] (in the
case in which the charged particle lies in a bounded space region Ω) and in [8] (in
the presence of an external nonzero potential). Furthermore in the papers [9] and
[11] the authors deal with the semiclassical limit for the system (1.5)-(1.6), and
they find a family of nontrivial solutions exhibiting a concentration behavior when
~→ 0+.

In the second part of the paper we prove the following nonexistence results for
the system (1.5)-(1.6).

Theorem 1.3 Let f : R → R be a continuous function with f(0) = 0. Assume
m, ω, e > 0 and either

i) f(s)s + 2ωs2 ≥ 6F (s) for every s ∈ R,

or

ii) 2F (s) ≥ f(s)s for every s ∈ R.

Let (u, φ) be a solution of the system (1.5)-(1.6) such that u ∈ H1, φ ∈ D1 and
F (u), f(u)u ∈ L1. Then u = φ = 0.

Clearly we have the following corollary.

Corollary 1.2 Assume m, ω, e > 0 and either p ≥ 6 or p ≤ 2. Let (u, φ) be a
solution of the system (1.5)-(1.6) with f(s) = |s|p−2s, such that u ∈ H1 ∩ Lp(R3)
and φ ∈ D1. Then u = φ = 0.

As already observed in Remark 1.1, if p = 6, according to Sobolev embeddings,
the requirement u ∈ Lp(R3) in corollary 1.2 can be omitted.

Finally we recall that similar physical models of Maxwell-Dirac and Klein-
Gordon-Born-Infeld systems have been studied respectively in [14] and [13], [16].
Moreover in [3] the authors obtain the existence of topological solitary waves inter-
acting with electromagnetic fields.

Let us now briefly outline the organization of the contents of this paper. In
section 2 we analyze the variational structure of the system (1.3)-(1.4) and we show
that its solutions correspond to the critical points of a C1 functional on the space
H1. Section 3 is devoted to prove the non-existence Theorems 1.1 and 1.2. Finally
in section 4 we develop the same arguments to get non-existence results for the
Maxwell–Schrödinger type problems (1.5)-(1.6).

NOTATIONS
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• Lp ≡ Lp(R3) (1 ≤ p < +∞) is the usual Lebesgue space endowed with the
norm

‖u‖p
p :=

∫

R3
|u|p dx;

• H1 ≡ H1(R3) denotes the usual Sobolev space endowed with the norm

‖u‖2H1 :=
∫

R3

(|∇u|2 + |u|2) dx;

• D1 ≡ D1(R3) is the completion of C∞0 (R3,R) with respect to the norm

‖u‖2D1 :=
∫

R3
|∇u|2 dx;

• we will use the symbol C for denoting positive constants depending only on
the functional spaces. The value of C is allowed to change from line to line
and also in the same formula.

2 The Variational setting for the system of Klein-
Gordon-Maxwell equations

In this section we will prove some preliminary results concerning the variational
structure for the system (1.3)-(1.4).

First we recall the following continuous embeddings:

H1 ↪→ Lp ∀ p ∈ [2, 6] and D1 ↪→ L6. (2.7)

We need the following auxiliary Lemma.

Lemma 2.1 For any u ∈ H1 and for any h ∈ D−1 there exists a unique solution
φ := (∆− u2)−1[h] ∈ D1 of the equation

∆φ− u2φ = h,

(being D−1 the dual space of D1). Moreover, for every u ∈ H1 and for every
h, k ∈ D−1,

〈h, (∆− u2)−1[k]〉 = 〈k, (∆− u2)−1[h]〉, (2.8)

where 〈·, ·〉 denotes the duality pairing between D−1 and D1.

Proof. The proof concerning the existence part is a straightforward application of
Lax–Milgram Lemma. Indeed, if u ∈ H1, then by Hölder’s inequality and (2.7),

∫

R3
u2φ2 dx ≤ C‖u‖23‖φ‖26 ≤ C‖u‖23‖φ‖2D1 ,

and thus (
∫ |∇φ|2 +

∫
u2φ2)1/2 is a norm in D1 equivalent to ‖φ‖D1 . The remaining

part is an easy computation. 2

A fundamental tool in our analysis will be the following Proposition.
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Proposition 2.1 For every u ∈ H1, there exists a unique φ = φu ∈ D1 which
solves (1.4), and

−ω

e
≤ φu ≤ 0 in R3. (2.9)

Moreover, the map Φ : u ∈ H1 −→ φu ∈ D1 is of class C1 and for every u, v ∈ H1

(
Φ′[u]

)
[v] = 2e

(
∆− e2u2

)−1[(ω + eφu)uv
]
. (2.10)

Proof. The existence and uniqueness part follows from Lemma 2.1, since u2 ∈
L6/5 ⊂ D−1. See also [2] and [10].

Fixed u ∈ H1, if we multiply (1.4) by (ω + eφu)− ≡ −min{ω + eφu, 0}, which
is an admissible test function, we get

−e

∫

φu≤−ω/e

|∇φu|2 dx− e

∫

φu≤−ω/e

(ω + eφu)2u2 dx = 0,

which implies φu ≥ −ω
e . Next use

(
φu

)
+

= max{φu, 0} as a test function in (1.4)
to get ∫

φu≥0

|∇φu|2 dx + e

∫

φu≥0

(ω + eφu)φuu2 dx = 0,

by which, since ω + eφu ≥ 0,
(
φu

)
+
≡ 0.

For the last part, consider the map T : H1 ×D1 → D1 of class C1

T (u, φ) = e∆−1[(ω + eφ)u2]− φ.

Note that T is well defined, since by (2.7) u2, u2φ ∈ L6/5 ⊂ D−1. It is obvious that
(u, φ) solves (1.4) if and only if T (u, φ) = 0.

Now, for every (u, φ) ∈ H1 ×D1 we compute

∂T

∂φ
(u, φ) : D1 → D1, ψ 7→ e2∆−1[u2ψ]− ψ

and
∂T

∂u
(u, φ) : H1 → D1, v 7→ 2e∆−1[(ω + eφ)uv].

It immediately follows that ∂T
∂φ (u, φ) is invertible for every (u, φ) ∈ H1 ×D1 and

(
∂T

∂φ
(u, φ)

)−1

=
(
e2u2 −∆)−1 ◦∆.

Then the C1 regularity of the map Φ follows from the implicit function theorem,
and, for every u ∈ H1, Φ′[u] : H1 → D1 is given by (2.10). 2

Now let us consider the functional J : H1 −→ R defined as

J(u) =
1
2

∫

R3
|∇u|2 dx +

m2 − ω2

2

∫

R3
u2 dx− eω

2

∫

R3
u2φu dx. (2.11)

The next lemma establishes the variational nature of the system (1.3)-(1.4).
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Lemma 2.2 The following statements are equivalent:

i) (u, φ) ∈ H1 ×D1 is a solution of the system (1.3)-(1.4);

ii) u ∈ H1 is a critical point of J and φ = φu.

Proof. By (2.10), for every u, v ∈ H1 we have

J ′(u)[v] =
∫

R3
∇u · ∇v dx + (m2 − ω2)

∫

R3
uv dx− eω

∫

R3
uvφu dx

− e2ω

∫

R3
u2

(
∆− e2u2

)−1[(ω + eφu)uv
]
dx

=
∫

R3
∇u · ∇v dx + (m2 − ω2)

∫

R3
uv dx− eω

∫

R3
uvφu dx

− e

∫

R3

(
∆− e2u2

)−1[eωu2](ω + eφu)uv dx

by (2.8). On the other hand, in any case we know that
(
∆ − e2u2

)−1[ωeu2] = φu,
by which

J ′(u)[v] =
∫

R3
∇u · ∇v dx + (m2 − ω2)

∫

R3
uv dx− e

∫

R3
(2ω + eφu)φuuv dx

and the thesis follows. 2

3 Nonexistence results for the system of Klein–
Gordon–Maxwell equations

In this Section we prove Theorems 1.1 and 1.2 as a corollary of a suitable Pohoz̆aev–
type identity for the systems (1.1)-(1.2) and (1.3)-(1.4).

First we establish the following identities.

Lemma 3.1 Let u, φ ∈ H2
loc(RN ) and a, b ≥ 0. Then, for every R > 0, the

following identities hold:
∫

BR

−∆u(x · ∇u) dx =
2−N

2

∫

BR

|∇u|2 dx− 1
R

∫

∂BR

|x · ∇u|2 dσ

+
R

2

∫

∂BR

|∇u|2 dσ;
(3.12)

∫

BR

(a + bφ)φu(x · ∇u) dx = −
∫

BR

(a

2
+ bφ

)
u2(x · ∇φ) dx

− N

2

∫

BR

(a + bφ)φu2 dx +
R

2

∫

∂BR

(a + bφ)φu2 dσ;
(3.13)

∫

BR

g(u)(x · ∇u) dx = −N

∫

BR

G(u) dx + R

∫

∂BR

G(u) dσ, (3.14)

where g : R→ R is a continuous function such that g(0) = 0 and G(s) =
∫ s

0
g(t) dt.
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Proof. The proof of (3.14) can be found in [4, Proof of Proposition 1, pg. 320].
Concerning (3.12), fix i, j = 1, . . . , N and, integrating by parts on a ball BR, we
compute

∫

BR

uxj uxixj xi dx =
1
2

∫

BR

(|uxj
|2)

xi
xi dx

= −1
2

∫

BR

|uxj
|2 dx +

1
2

∫

∂BR

|uxj
|2 |xi|2
|x| dσ.

(3.15)

Therefore, denoting by δij the Kroneker symbols,

−
∫

BR

uxjxj
uxi

xi dx =
∫

BR

uxj
uxixj

xi dx +
∫

BR

uxj
uxi

δij dx

−
∫

∂BR

uxj
uxi

xixj

|x| dσ = −1
2

∫

BR

|uxj
|2 dx +

∫

BR

uxj
uxi

δij dx

+
1
2

∫

∂BR

|uxj |2
|xi|2
|x| dσ −

∫

∂BR

uxj uxi

xixj

|x| dσ.

Summing up for i, j = 1, . . . , N , (3.12) follows.
In order to prove (3.13), fix i = 1, . . . , N and, integrating by parts, compute

2
∫

BR

(a + bφ)φuuxixi dx =
∫

BR

(a + bφ)φ
(
u2

)
xi

xi dx

= −
∫

BR

(a + 2bφ)φxiu
2xidx−

∫

BR

(a + bφ)φu2dx +
∫

∂BR

(a + bφ)φu2 x2
i

|x|dσ.

Summing up for i = 1, . . . , N , we get the thesis. 2

Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. Let (u, φ) ∈ H1 ×D1 be a solution to (1.3)-(1.4).
First let us remark that, if m ≥ ω, the proof is straightforward: indeed, if we

multiply equation (1.3) by u and integrate by parts, we obtain
∫

R3
|∇u|2 dx +

∫

R3
[m2 − (ω + eφ)2]u2 dx = 0

and then u ≡ 0 by (2.9), since m2 − (ω + eφ)2 ≥ m2 − ω2 ≥ 0.
For the general case, let us recall that u, φ ∈ H2

loc(R3) by standard regularity
results; then equations (1.3)-(1.4) are verified a.e. in R3. Set Ω = m2 − ω2 and
multiply (1.3) by x ·∇u; integrating on BR and using Lemma 3.1 with g(s) = s, we
deduce

− 1
2

∫

BR

|∇u|2 dx− 3
2
Ω

∫

BR

u2 dx + e

∫

BR

(ω + eφ)u2(x · ∇φ) dx

+
3
2
e

∫

BR

(2ω + eφ)φu2 dx =
1
R

∫

∂BR

|x · ∇u|2 dσ

− R

2

∫

∂BR

|∇u|2 dσ − Ω
2

R

∫

∂BR

u2 dσ +
R

2
e

∫

∂BR

(2ω + eφ)φu2 dσ.

(3.16)
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Now multiply (1.4) by x · ∇φ; integrating on BR and using again Lemma 3.1, we
achieve

e

∫

BR

(ω + eφ)u2(x · ∇φ) dx =
∫

BR

∆φ(x · ∇φ) dx

=
1
2

∫

BR

|∇φ|2 dx +
1
R

∫

∂BR

|x · ∇φ|2 dσ − R

2

∫

∂BR

|∇φ|2 dσ.

(3.17)

Combining (3.16) and (3.17) we obtain

− 1
2

∫

BR

(
|∇u|2 − |∇φ|2

)
dx− 3

2
Ω

∫

BR

u2 dx +
3
2
e

∫

BR

(2ω + eφ)φu2 dx

=
1
R

∫

∂BR

(
|x · ∇u|2 − |x · ∇φ|2

)
dσ − R

2

∫

∂BR

(
|∇u|2 − |∇φ|2

)
dσ

− Ω
2

R

∫

∂BR

u2 dσ +
R

2
e

∫

∂BR

(2ω + eφ)φu2dσ.

(3.18)

Following the idea in [4], we will show that the right hand side in (3.18) converges
to zero for a suitable sequence Rn → +∞. First note how, assuming this, the thesis
easily follows. Indeed, considering the identity (3.18) with R = Rn and letting
n →∞, we obtain

−
∫

R3

(
|∇u|2 − |∇φ|2

)
dx− 3Ω

∫

R3
u2 dx + 3e

∫

R3
(2ω + eφ)φu2 dx = 0. (3.19)

On the other hand, by (1.3) and (1.4) we deduce respectively

Ω
∫

R3
|u|2 dx = −

∫

R3
|∇u|2dx + e

∫

R3
(2ω + eφ)φu2 dx, (3.20)

∫

R3
|∇φ|2 dx = −e

∫

R3
(ω + eφ)φu2dx. (3.21)

Inserting (3.20) and (3.21) in (3.19), we get

2
∫

R3
|∇u|2 dx− e

∫

R3
(ω + eφ)φu2 dx = 0. (3.22)

By (2.9) (ω + eφ)φ ≤ 0; then u = 0 and, consequently, φ = 0.

Thus it remains to prove that the right hand side of (3.18) goes to zero for a
suitable Rn → +∞. To this aim first note that |x·∇u| ≤ R|∇u| and |x·∇φ| ≤ R|∇φ|
on ∂BR, and, by Proposition 2.1, |(2ω+eφ)φ|u2 ≤ 2ω2

e u2 in R3. Hence it is sufficient
to prove that if α ∈ L1 ∩H1

loc(R3), then

Rn

∫

∂BRn

|α| dσ → 0
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for a suitable Rn →∞. Otherwise there would exist c, R0 > 0 such that
∫

∂BR

|α| dσ ≥ c

R
for R ≥ R0,

and this leads to a contradiction, since
∫

R3
|α| dx =

∫ +∞

0

dR

∫

∂BR

|α|dσ ≥ c

∫ +∞

R0

dR

R
= +∞.

2

Remark 3.1 We recall that the solutions of the system (1.3)-(1.4) are the couples
(u, φu), where u is a critical point for the functional J defined in (2.11) and φu

has been defined in Proposition 2.1. We point out that the non-existence result of
Theorem 1.1 could be obtained directly for the solutions u which are local minimum
point for J . Indeed, if u is a local minimum point of J , for λ > 0 consider the
functions

uλ(x) = λu(λx).

It is easy to show that
(
uλ(x), φu(λx)

)
solves equation (1.4), hence by the uniqueness

given in Proposition 2.1, we immediately get

φuλ
(x) = φu(λx).

Now set au(λ) = J(uλ). Taking into account of (2.11), an easy computation gives

au(λ) =
λ

2

∫

R3
|∇u|2 dx +

m2 − ω2

2λ

∫

R3
u2 dx− eω

2λ

∫

R3
u2φu dx.

Since λ = 1 is a local minimum for au, then, by differentiation,
∫

R3
|∇u|2 dx− (m2 − ω2)

∫

R3
u2 dx + eω

∫

R3
u2φu dx = 0. (3.23)

Substituting (3.20) in (3.23) we obtain (3.22) and we can conclude as in Theorem
1.1.

The preceding argument ceases to work, however, for generic solutions. Indeed,
if u is a local minimum point for J , then λ = 1 is obviously a local minimum for au

as well (and, consequently, a′u(1) = 0). On the contrary, in the generic case, if u is
critical for J , the conclusion that λ = 1 is critical for au does not hold in general;
to conclude this, one should show that the curve λ > 0 7→ uλ ∈ H1 is differentiable
at λ = 1, i.e. d

dλuλ(x) = x · ∇u lies in H1. If some a priori decays on u and ∇u are
known, we can use them to obtain a simpler proof of the identity (3.22), by making
the preceding scale-change argument rigorous. However, the proof of Theorem 1.1
we gave above relies essentially on the Pohoz̆aev identity and provides a rigorous
proof of the fact that any solution of the system (1.3)-(1.4) satisfies the identity
(3.22).
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We conclude this section with the proof of the more general non-existence result
given by Theorem 1.2.

Proof of Theorem 1.2. By repeating the same proof of Theorem 1.1, we set Ω =
m2−ω2 and multiply (1.1) by x ·∇u; integrating on BR and using Lemma 3.1 with
g(s) = s and g(s) = f(s), we obtain the analogous of (3.18):

− 1
2

∫

BR

(
|∇u|2 − |∇φ|2

)
dx− 3

2
Ω

∫

BR

u2 dx +
3
2
e

∫

BR

(2ω + eφ)φu2 dx

+ 3
∫

BR

F (u) dx

=
1
R

∫

∂BR

(
|x · ∇u|2 − |x · ∇φ|2

)
dσ − R

2

∫

∂BR

(
|∇u|2 − |∇φ|2

)
dσ

− Ω
2

R

∫

∂BR

u2 dσ +
R

2
e

∫

∂BR

(2ω + eφ)φu2dσ + R

∫

∂BR

F (u) dσ.

(3.24)

As already done in the proof of Theorem 1.1, we can find a sequence Rn → +∞
such that the left hand side of (3.24) vanishes. Hence we are reduced to

− 1
2

∫

R3

(
|∇u|2 − |∇φ|2

)
dx− 3

2
Ω

∫

R3
u2 dx +

3
2
e

∫

R3
(2ω + eφ)φu2 dx

+ 3
∫

R3
F (u) dx = 0.

By substituting (3.21) we get

−
∫

R3
|∇u|2 dx− 3Ω

∫

R3
u2 dx + e

∫

R3
(5ω + 2eφ)φu2 dx + 6

∫

R3
F (u) dx = 0. (3.25)

From (1.1) we obtain
∫

R3
|∇u|2 dx + Ω

∫

R3
u2 dx− e

∫

R3
(2ω + eφ)φu2 dx−

∫

R3
f(u)u dx = 0. (3.26)

We first isolate
∫ |∇u|2 in (3.26) and substitute it in (3.25) to achieve

−2Ω
∫

R3
u2 dx + e

∫

R3
(3ω + eφ)φu2 dx +

∫

R3
(6F (u)− f(u)u) dx = 0. (3.27)

Since (3ω + eφ)φ ≤ 0 by Proposition 2.1, if 6F (s) − f(s)s − 2Ωs2 ≤ 0 for every s,
then (3.27) gives u = 0.

Now we isolate Ω
∫

u2 in (3.26) and and insert it in (3.25). We end up with

2
∫

R3
|∇u|2 dx− e

∫

R3
(ω + eφ)φu2 dx + 3

∫

R3
(2F (u)− f(u)u) dx = 0. (3.28)

If 2F (s)− f(s)s ≥ 0 for every s, identity (3.28) and again Proposition 2.1 give
u = 0. 2
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Remark 3.2 Assume that there exist c1, c2 > 0 and p > 1 such that

|f(s)| ≤ c1|s|+ c2|s|p−1 ∀ s ∈ R,

so that the Nemitsky operator u ∈ H1 ∩ Lp 7→ F (u) ∈ L1 is of class C1. Then, by
repeating the same proof of Lemma 2.2, we deduce that the solutions of the system
(1.1)-(1.2) correspond to the critical points of the C1 functional

J̃(u) =
1
2

∫

R3
|∇u|2 dx +

m2 − ω2

2

∫

R3
u2 dx− eω

2

∫

R3
u2φu dx−

∫

R3
F (u) dx.

The non-existence of nontrivial local minima for J̃ can be obtained in a simpler
way proceeding as in Remark 3.1. Indeed, considering the real function

ã(λ) = J̃(uλ),

where uλ(x) = λu(λx), then imposing ã′(1) = 0, we immediately arrive at (3.25).
The rest follows as above.

4 Nonexistence results for the System of Maxwell-
Schrödinger equations

As a consequence of the method introduced in the previous section, we are now able
to prove some non-existence results for the system (1.5)-(1.6) of coupled Schrödinger-
Maxwell equations. In this case the variational structure is easier to analyze since
we have an explicit representation formula for the solution of equation (1.6), as
stated in the following Lemma.

Proposition 4.1 For every u ∈ H1 there exists a unique φ = φu ∈ D1 which solves
equation (1.6). Furthermore, φu is given by

φu(x) = e

∫

R3

1
|x− y|u

2(y)dy.

As a consequence, the map Φ : u ∈ H1 −→ φu ∈ D1 is of class C1 and

(
Φ[u]

)′[v](x) = 2e

∫

R3

1
|x− y|u(y)v(y)dy ∀u, v ∈ H1.

Proof. The existence and uniqueness part follows by Lemma 2.1, since u2 ∈ L6/5 ⊂
D−1. The representation formula holds for u ∈ C∞0 (R3) (for example, see [15,
Theorem 1, p. 23]); by density it can be extended for any u ∈ H1. 2

In view of the previous Proposition, the energy functional associated to (1.5)-
(1.6) has the form

I(u) =
~2

4m

∫

R3
|∇u|2dx +

ω

2

∫

R3
u2dx +

e

4

∫

R3
u2φu dx−

∫

R3
F (u)dx. (4.29)
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Lemma 4.1 Assume that there exist c1, c2 > 0 and p > 1 such that

|f(s)| ≤ c1|s|+ c2|s|p−1 ∀ s ∈ R. (4.30)

Then the following statements are equivalent:

i) (u, φ) ∈ (
H1 ∩ Lp

)×D1 is a solution of the system (1.3)-(1.4);

ii) u ∈ H1 ∩ Lp is a critical point of I and φ = φu.

Proof. By the assumption (4.30), the Nemitsky operator u ∈ H1 ∩Lp 7→ F (u) ∈ L1

is of class C1. Hence, by Proposition 4.1, for every u, v ∈ H1

I ′(u)[v] =
~2

2m

∫

R3
∇u · ∇v dx + ω

∫

R3
uv dx

+
e2

2

∫

R3
u(x)v(x) dx

∫

R3

1
|x− y|u

2(y) dy

+
e2

2

∫

R3
u2(x)

∫

R3

1
|x− y|u(y)v(y) dy −

∫

R3
f(u)v dx

=
~2

2m

∫

R3
∇u · ∇v dx + ω

∫

R3
uv dx− e

∫

R3
uvφu dx−

∫

R3
f(u)v dx

by Fubini-Tonelli’s Theorem, and the conclusion follows. 2

We conclude this section with the proof of the non-existence result given by
Theorem 1.3.

Proof of Theorem 1.3. For the sake of simplicity, set ~ = 2m = 1. Following the
proof of Theorem 1.1, multiplying (1.5) by x · ∇u, integrating on BR and using
Lemma 3.1 with g(s) = s and g(s) = f(s), we obtain:

− 1
2

∫

BR

|∇u|2 dx− 3
2
ω

∫

BR

u2 dx− e

2

∫

BR

u2(x · ∇φ) dx− 3
2
e

∫

BR

φu2 dx

+ 3
∫

BR

F (u) dx =
1
R

∫

∂BR

|x · ∇u|2 dσ − R

2

∫

∂BR

|∇u|2 dσ

− ω

2
R

∫

∂BR

u2 dσ − R

2
e

∫

∂BR

φu2 dσ + R

∫

∂BR

F (u) dσ.

(4.31)

Now multiply (1.6) by x · ∇φ; integrating on BR and using again Lemma 3.1,
we achieve

4πe

∫

BR

u2(x · ∇φ) dx =
∫

BR

−∆φ(x · ∇φ) dx

= −1
2

∫

BR

|∇φ|2 dx− 1
R

∫

∂BR

|x · ∇φ|2 dσ +
R

2

∫

∂BR

|∇φ|2 dσ.

(4.32)
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Combining (4.31) and (4.32) we obtain

− 1
2

∫

BR

(
|∇u|2 − 1

8π
|∇φ|2

)
dx− 3

2
ω

∫

BR

u2 dx− 3
2
e

∫

BR

φu2 dx

+ 3
∫

BR

F (u) dx =
1
R

∫

∂BR

(
|x · ∇u|2 − 1

8π
|x · ∇φ|2

)
dσ

− R

2

∫

∂BR

(
|∇u|2 − 1

8π
|∇φ|2

)
dσ

− ω

2
R

∫

∂BR

u2 dσ − R

2
e

∫

∂BR

φu2dσ + R

∫

∂BR

F (u) dσ.

(4.33)

As already done in the proof of Theorem 1.1, we can find a sequence Rn → +∞
such that the right hand side of (4.33) vanishes. Hence we are reduced to
∫

R3

(
|∇u|2− 1

8π
|∇φ|2

)
dx+3ω

∫

R3
u2 dx+3e

∫

R3
φu2 dx−6

∫

R3
F (u) dx = 0. (4.34)

By (1.6), we deduce ∫

R3
|∇φ|2 dx = 4πe

∫

R3
φu2 dx.

By substituting in (4.34) we get

−2
∫

R3
|∇u|2 dx− 6ω

∫

R3
u2 dx− 5e

∫

R3
φu2 dx + 12

∫

R3
F (u) dx = 0. (4.35)

From (1.5) we obtain
∫

R3
|∇u|2 dx + ω

∫

R3
u2 dx + e

∫

R3
φu2 dx−

∫

R3
f(u)u dx = 0. (4.36)

We first isolate
∫ |∇u|2 in (4.36) and substitute it in (4.35) to achieve

−4ω

∫

R3
u2 dx− 3e

∫

R3
φu2 dx + 2

∫

R3
(6F (u)− f(u)u) dx = 0. (4.37)

By Proposition 4.1, φ = φu ≥ 0. Thus, if 6F (s) − f(s)s − 2ωs2 ≤ 0 for every s,
then (4.37) gives u = 0.

Now we isolate ω
∫

u2 in (4.36) and we insert it in (4.35). We end up with

4
∫

R3
|∇u|2 dx + e

∫

R3
φu2 dx + 6

∫

R3
(2F (u)− f(u)u) dx = 0. (4.38)

If 2F (u) − f(u)u ≥ 0 for every s, identity (4.38) and again Proposition 4.1 give
u = 0. 2

Remark 4.1 Assume that f satisfies (4.30). Then, according to Lemma 4.1, the
solutions of the system (1.5)-(1.6) correspond to the critical points of the C1 func-
tional I defined in (4.29). The non-existence of nontrivial local minima u for I
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can be obtained in a simpler way proceeding as in Remark 3.1 by a scale change
argument. Indeed, consider the real function

b(λ) = I(uλ),

where uλ(x) = u(λx). Then, Lemma 4.1 gives φuλ
(x) = λ−2φu(λx), and imposing

b′(1) = 0, we immediately arrive at (4.35). The rest follows as above.

Remark 4.2 By multiplying both members of (1.5) by u and integrating by parts,
we immediately obtain that the presence of a nonlinear term is necessary to get
existence of nontrivial solutions for the system (1.5)-(1.6). On the other hand, it is
easy to prove that, for every 2 < p < 6, there exists at least a radially symmetric
solution of (1.5)-(1.6) with f(u) = γ|u|p−2u for a suitable γ > 0. Indeed, it is
sufficient to minimize the functional

T (u) =
~2

4m

∫

R3
|∇u|2 dx +

ω

2

∫

R3
uv dx +

e2

4

∫

R3
u2(x) dx

∫

R3

1
|x− y|u

2(y) dy

over the manifold

M :=
{

u ∈ H1
r

∣∣∣
∫

R3
|u|pdx = 1

}
,

where H1
r denotes the subspace of H1 made up of the radially symmetric functions.

According to the compact injection H1
r ↪→ Lp (see [4, Theorem A.I’, pg. 341] or [18])

M is a compact manifold, while T is weakly lower semicontinuous on H1
r . Hence we

easily get the existence of a minimizing function. The constraint causes a Lagrange
multiplier to appear and one obtains a positive solution u of − ~2

2m∆u+ωu+euφu =
γ|u|p−2u. However, the Lagrange multiplier γ cannot be removed by looking for a
solution of the form v = σu because of the different features of homogeneity of the
terms of T .
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