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Abstract. We give stronger versions and alternative simple proofs of some results

of Beardon, [Be1] and [Be2]. These results concern contractions of locally compact

metric spaces and generalize the theorems of Wolff and Denjoy about the iteration of a

holomorphic map of the unit disk. In the case of unbounded orbits, there are two types

of statements which can sometimes be proven; first, about invariant horoballs, and second,

about the convergence of the iterates to a point on the boundary. A few further remarks

of similar type are made concerning certain random products of semicontractions and also

concerning semicontractions of Gromov hyperbolic spaces.

1. Introduction

Let (Y, d) be a metric space. A contraction is a map φ : Y → Y , such that

d(φ(x),φ(y)) < d(x, y),

for any distinct x, y ∈ Y . A semicontraction (or non-expanding/non-expansive map) is a

map φ : Y → Y such that

d(φ(x),φ(y)) ≤ d(x, y)

for any x, y ∈ Y . In particular, any isometry is a semicontraction.

In this paper we are interested in (the iteration of) semicontractions of locally compact,

complete metric spaces.

Recall that the Schwarz–Pick lemma asserts that any holomorphic map f : D → D,

whereD is the open unit disk in the complex plane, is a semicontraction with respect to the

hyperbolic metric on D. Therefore the following two classic theorems are the first results

of the type we are concerned with in this paper.

THEOREM 1.1. [Wo1, De] Let f be a holomorphic map of the unit disk D into itself.

Then either f has a fixed point in D or there is a point ξ ∈ ∂D such that the iterates f n

converge uniformly on compact sets in D to the constant map taking the value ξ .
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THEOREM 1.2. [Wo2] Let f be a holomorphic map of the unit disk D into itself. Then

either f has a fixed point (in which case every ball centered at this point is an f -invariant

set) or there is a point ξ for which every horoballH based at ξ is an f -invariant set, that

is f (H) ⊂ H.

Generalizations of these results in various directions have been obtained in several

papers, the majority of which consider holomorphicmaps of more general complex spaces.

We refer to the introduction and references of the recent papers [KKR, M], and to the

book [Ko]. Beardon’s two papers [Be1] and [Be2] advanced the understanding of the

general metric space mechanisms behind the above two results and gave simple proofs of

significant extensions of these results. These two papers had a crucial impact on the present

paper.

We will here give an elementary argument that makes the proofs of some of the

statements in [Be1] and [Be2] somewhat simpler. At the same time, more general results

can be obtained in this way. It turns out that, fairly generally, a semicontraction with

unbounded orbits interacts nicely with some Busemann function of the space.

Examples of semicontractions of locally compact metric spaces include holomorphic

maps of a (Kobayashi) hyperbolic complex space, affine maps of a convex domain with

the Hilbert metric, invertible matrices acting on the corresponding symmetric space and

elements of the fundamental group of a Riemannian manifold acting on the universal

covering manifold.

The paper is organized as follows: the first section lists some of the properties that

metric spaces can have and that will be used in this paper. (Examples of spaces having

or failing to have these properties are mentioned in the last section.) §3 describes the

main argument of this paper and its corollaries. §4 combines the main subadditive ergodic

lemma in [KaMa] with some additional axiom imposed on the metric space to give a

statement about certain random products of semicontractions. In §5 we make one remark

about semicontractions of (not necessarily locally compact) Gromov hyperbolic spaces

and describe one corollary concerning fixed points of isometries of Gromov hyperbolic

Hadamard spaces. In the last section we wish to point out some examples and draw

attention to some related works. The list of references is far from being complete.

2. Some axioms on metric spaces

A metric space is proper if every closed ball is compact. A proper metric space can

be compactified, Y
B = Y ∪ Y (∞) (finer than the one-point compactification) using

Busemann functions. Namely, fixing a point y, the space Y is injected into C(Y ) by the

map

z (→ d(·, z) − d(z, y).

The compactification is now obtained by taking the closure of this image in C(Y ), where

the topology is given by uniform convergence on compact subsets. So a sequence of points

yn going to infinity converges to a point ξ on the boundary Y (∞) if and only if

d(·, yn) − d(yn, y)
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converges uniformly on compact sets. This limit in C(Y ) is called a Busemann function,

denoted by bξ , and a sublevel set {z : bξ (z) ≤ C} is called a horoball centered at ξ . For the
details of this compactification, see for example [Ba].

A geodesic space is a metric space (Y, d) such that for, every two points x, y in Y , there

is an isometry α : [0, d(x, y)] → Y such that α(0) = x and α(d(x, y)) = y. This path α,

which is not required to be unique, is called a geodesic connecting x and y.

Any locally compact, complete (meant in the usual sense), geodesic space (Y, d) is

proper. For such a space Y there is also another boundary, the ray boundary or the visual

sphere, consisting of equivalence classes of geodesic rays starting from y. Two rays are

equivalent if they stay a bounded distance from each other. The topology is uniform

convergence on compact sets. Any geodesic ray in a proper metric space defines a

Busemann function.

The following two axioms for metric spaces (Y, d) appeared in [Be2]. The first axiom

says that Y can be compactified by adding a boundary at infinity.

AXIOM 1. The metric space Y is an open dense subset of a compact Hausdorff topological

space Y , whose relative topology coincides with the metric topology. For any y ∈ Y , if xn

is a sequence in Y converging to a point in ∂Y := Y − Y , then d(y, xn) → ∞.

The second axiom says that the asymptotic geometry resembles that of hyperbolic

spaces.

AXIOM 2. If xn and yn converge to two distinct points γ and ξ , respectively, in ∂Y , then

for any y in Y

d(xn, yn) −max{d(y, xn), d(y, yn)} → +∞.

An alternative to Axiom 2 is the following.

AXIOM 3. Let xn → γ ∈ ∂Y and let yn be a sequence in Y . If, for some y,

d(xn, yn) − d(y, yn) → −∞,

then yn → γ .

Another property we need to note is the following.

AXIOM 4. Let xn → γ ∈ ∂Y and let yn be a sequence in Y . If

d(xn, yn) < C

for some constant C, then yn → γ .

Note that Axiom 2 implies Axiom 3. Under the assumption that all points of ∂Y lie

on infinite distance (Axiom 1), Axiom 4 is implied by either of Axiom 2 or Axiom 3.

Note also that in the case Y = Y
B
, Axiom 2 implies the property that any sequence of

points yn going to infinity inside a horoball based at γ must converge to γ , in other words,

any horoball meets the boundary at infinity at only one point.

Recall the definition of the so-called Gromov product. Fix a point y and let

(z,w)y = 1
2
(d(y, z) + d(y,w) − d(z,w)).



1450 A. Karlsson

A metric space is called hyperbolic in the sense of Gromov or δ-hyperbolic if there is a

constant δ ≥ 0 such that

(z,w)y ≥ min{(z, x)y, (x,w)y} − δ

holds for all z,w, x ∈ Y . For a Gromov hyperbolic space, one defines the boundary ∂Y so

that yn converges to a point on the boundary if and only if

(yn, ym)y → ∞

as n,m → ∞.

It follows immediately from the definitions that Gromov hyperbolic spaces satisfy

Axioms 2, 3 and 4. It is known that the ray boundary of a proper, geodesic Gromov

hyperbolic space is naturally isomorphic to the hyperbolic boundary ∂Y and it is Hausdorff,

see [CDP].

3. Semicontractions of locally compact spaces

Several of the arguments in this paper use one of the following two simple observations.

The first one is trivial and the second one follows from the first one applied to an−(A−ε)n.

OBSERVATION 3.1. Let an be a sequence of real numbers which is unbounded from above.

Then there are infinitely many n such that

am < an

for all m < n.

OBSERVATION 3.2. Let an be a sequence of real numbers and assume A := lim sup an/n

is finite. For any ε > 0 there are infinitely many n such that

an − an−k ≥ (A − ε)k

for all k, 1 ≤ k ≤ n.

These type of statements are also useful in other dynamical contexts (cf. Pliss’ lemma

and Alves’ hyperbolic times, see [A]).

It is an elementary fact that

A := lim
n→∞

1

n
d(y,φn(y))

exists. The following two results are generalizations of Wolff’s theorem.

THEOREM 3.3. Let (Y, d) be a proper metric space and let φ be a semicontraction.

Then any orbit of φ lies inside a (horo)ball. In the unbounded orbit case, there is in

fact a point ξ in Y (∞) such that for all k ≥ 0,

bξ (φ
k(y)) ≤ −Ak.

In particular,

lim
n→∞ −1

n
bξ (φ

n(y)) = A.
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Proof. Let an = d(y,φn(y)). In the case of an unbounded orbit, Observation 3.2 implies

that given a sequence εi decreasing to zero we can find indices ni such that

ani − ani−k ≥ (A − εi )k

for all k < ni , and by compactness we can assume that

φni (y) → ξ ∈ Y (∞).

Now let bξ be the Busemann function based at ξ with y as the reference point. We have by

the triangle inequality that

−d(y,φk(y)) ≤ bξ (φ
k(y)) = lim

i→∞
d(φk(y),φni (y)) − d(φni (y), y)

≤ lim inf
i→∞

ani−k − ani ≤ −Ak.

This means in particular that the orbit {φk(y)} lies inside the horoball {z : bξ (z) ≤ 0} and
that the limit in question exists. !

The following statement was proved in [Be1] for the special case of Cartan–Hadamard

manifolds.

THEOREM 3.4. Let (Y, d) be a proper metric space satisfying Axiom 4. If φ is a

semicontraction, then either the orbit is bounded or there is a point ξ in Y (∞) such that

every horoballH based at ξ , is a φ-invariant set, that is φ(H) ⊂ H.

Proof. By Observation 3.1 and compactness we can find ni such that

d(y,φm(y)) < d(y,φni (y)),

for all m < ni , and

φni (y) → ξ ∈ Y (∞).

Now for any z in Y we have

bξ (φ(z)) = lim
i→∞

d(φ(z),φni (y)) − d(φni (y), y)

≤ lim inf
i→∞

d(z,φni−1(y)) − d(φni (y), y)

≤ lim inf
i→∞

d(z,φni−1(y)) − d(φni−1(y), y)

= bξ (z),

since φni−1(y) → ξ by Axiom 4. This proves that all horoballs based at ξ are invariant

under φ. !

Remark. Given a compactification as in Axiom 1, one can define some kind of horoballs

using balls centered at points converging to a point on the boundary, see also the discussion

in [KKR]. These horoballs may not be as natural, since they depend not only on the

boundary point, but, at least a priori, also on the sequence of points defining them.
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Remark. If φ is a contraction and the orbit φn(y) has a bounded subsequence, then there

exists a unique fixed point of φ, any orbit of φ converges to this fixed point and the balls

centered at the fixed point are invariant. This is a simple fact; we reproduce the argument

in [Be1]. First note that d(φn(y),φn+1(y)) → δ as n → ∞, for some δ ≥ 0. Now

if there is a convergent subsequence φki (y) → z ∈ Y , then by continuity we have that

d(z,φ(z)) = δ and also d(φ(z),φ2(z)) = δ. Since φ is a (strict) contraction φ(z) = z and

δ = 0.

Remark. Let (Y, d) be a uniformly convex, complete metric space. (For a definition of

uniform convexity, see for example [KaMa].) Then any semicontraction with bounded

orbit has a fixed point. This is basically a well-known fact; it can be proved using

circumcenters and Zorn’s lemma.

From the second remark above and by Observation 3.1 we can now prove the following

generalization of the Wolff–Denjoy theorem. It is straightforward to verify that the

convergence is uniform on compact sets, see [Be2].

THEOREM 3.5. (Cf. [Be2]) Let (Y, d) be a metric space satisfying Axioms 1 and 2.

Then the iterates φn of a contraction φ converge uniformly on compact sets in Y to some

point ξ in Y .

This shows that it is not necessary to make the assumption, as is done in [Be2], that φ

is the pointwise limit of a sequence of contractions φj , each of which has a fixed point

in Y . However, in many concrete situations it is possible to construct such maps φj .

In [Be2], Beardon wrote that ‘[i]t would be desirable to avoid [this assumption] but this

seems difficult’.

In view of the second remark above, the following statement, which in the special case

of visibility manifolds was proved in [Be1], is a corollary of Theorem 3.3.

COROLLARY 3.6. Let (Y, d) be a proper metric space and assume that every horoball

meets Y (∞) at only one point. Then the iterates φn(y) of a contraction φ converge to

some point in Y
B
.

The Schwarz–Pick lemma asserts that the holomorphic map in question is in fact either

an isometry or a contraction. The argument in the second remark above is only valid

for (strict) contractions. In order to get the analogous result for semicontractions, we use a

theorem proved by Calka in [Ca]. This result asserts that if there is a bounded subsequence

of {φn(y)}, where φ is a semicontraction of a proper metric space, then in fact the whole

orbit is bounded.

In view of the theorem of Calka just described, the following statement is now a

corollary of Theorem 3.3.

COROLLARY 3.7. Let (Y, d) be a proper metric space and assume that every horoball

meets Y (∞) at only one point or let (Y, d) be a metric space satisfying Axioms 1 and 2.

Assume φ is a semicontraction. Then either the orbit of φ is bounded or φn(y) converges

to a point on the boundary of Y .
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Note that without local compactness this might fail. Edelstein considered the following

map of the space l2 of square summable sequences of complex numbers:

{xn} (→ {e2π i/n!xn + 1− e2π i/n!}.

This map is a fixed point free isometry and the orbit of zero is unbounded but accumulates

at zero, see [Ed].

4. Cocycles of semicontractions

Let S be a semigroup of semicontractions of a metric space (Y, d) and fix a point y in Y .

Let (X,µ) be a measure space with µ(X) = 1 and let L be an ergodic measure-preserving

transformation.

Given a measurable map w : X → S, let

u(n, x) = w(x)w(Lx) · · · w(Ln−1x),

and a(n, x) = d(y, u(n, x)y). Assume that

∫
X

d(y,w(x)y) dµ(x) < ∞

and let

A = lim
n→∞

1

n

∫
X

a(n, x) dµ(x).

A proof of the following subadditive ergodic lemma was given by Margulis and the present

author in [KaMa]. This lemma is the key ergodic theoretic ingredient of that paper.

LEMMA 4.1. For each ε > 0, let Eε be the set of x in X for which there exist an integer

K = K(x) and infinitely many n such that

a(n, x) − a(n − k,Lkx) ≥ (A − ε)k

for all k, K ≤ k ≤ n. Then µ(
⋂

ε>0 Eε) = 1.

The following result is now a consequence of the lemma.

THEOREM 4.2. Assume that (Y, d) satisfies Axioms 1 and 3. If A > 0, then for µ-almost

every x

u(n, x)y → γ (x) ∈ ∂Y

as n → ∞.

Proof. Pick ε such that 0 < A−ε < A. Fix x ∈ Eε and note that obviously a(n, x) → ∞.

From Axiom 1 and Lemma 4.1 we can pick ni such that

a(ni, x) − a(ni − k,Lkx) ≥ (A − ε)k

for all k, K ≤ k ≤ ni , and

u(ni, x)y → ξ ∈ ∂Y.
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For any other convergent subsequence u(kj , x)y → γ ∈ ∂Y , pick nj ∈ {ni} such that
nj ≥ kj . We then have, for kj ≥ K , that

d(u(kj , x)y, u(nj , x)y) − d(y, u(nj , x)y)

≤ d(y, u(nj − kj , L
kj x)y) − d(y, u(nj , x)y)

= a(nj − kj , L
kj x) − a(nj , x) ≤ −(A − ε)kj

and since kj → ∞ as j → ∞, we get from Axiom 3 that γ = ξ . !

Note that in the case where there is no randomness (X = {x}), this is a statement about
the iteration of a single semicontraction φ = w(x). We also want to point out that in

some cases it is possible to guarantee that A > 0, but in general it is difficult to determine

whether A = 0 or A > 0.

In many cases it is also possible to conclude from Lemma 4.1 that for almost every x

there is γ (x) ∈ Y (∞) such that

lim
n→∞ −1

n
bγ (x)(u(n, x)y) = A = lim

n→∞
1

n
d(y, u(n, x)y).

5. Gromov hyperbolicity and orbits of semicontractions

The purpose of this section is to show that compactness is sometimes not needed if

assuming Gromov hyperbolicity.

PROPOSITION 5.1. Let (Y, d) be a Gromov hyperbolic metric space and suppose that φ is

a semicontraction such that d(y,φn(y)) → ∞. Then the orbit φn(y) converges to a point

γ on the hyperbolic boundary of Y .

Proof. Let an = d(y,φn(y)). From Observation 3.1, we get a subsequence φni (y) such

that for k ≤ ni ,

(φni (y),φk(y)) = 1
2
(ani + ak − d(φni (y),φk(y)))

≥ 1
2
(ak + ani − ani−k) ≥ 1

2
ak.

Since by assumption ak → ∞ and in view of the definition of the hyperbolic boundary,

we get (from the above inequality with k = nj ) that φ
ni (y) converges to a point γ on the

boundary and then also φk(y) → γ as k tends to infinity. !

The analog of Theorem 4.2 (or rather the theorem in [KaMa]) can of course also be

obtained. This is well known, a proof was given by Delzant, see [K]. The following result

was proved in quite a different way in the recent paper [Bu].

THEOREM 5.2. [Bu] Let (Y, d) be a Gromov hyperbolic Hadamard space. Any isometry

of Y fixes a point in the closure Y = Y ∪ ∂Y .

Proof. If the orbit is bounded, then the circumcenter of the orbit is a fixed point, see [Ba].

Otherwise, the orbit contains an unbounded subsequence φni (y). Arguing in the same way

as in the previous proposition, we can assume that φni (y) converges to a point γ on the

boundary. By continuity and since Axiom 4 holds, any accumulation point on the boundary

is a fixed point. !
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In the locally compact case this result is simple, well known and holds for any Hadamard

space (not necessarily hyperbolic). In contrast, Edelstein’s isometry described above

(with a minor modification) is a parabolic isometry of the infinite-dimensional Hadamard

space l2 without fixed points in the closure.

Note that for a Gromov hyperbolic Hadamard space it is possible with these arguments

to get invariant horoballs in the unbounded orbit case even in the non-locally compact

situation.

6. Examples

The Poincaré metric can be generalized in several directions; for example, the

Carathéodory and Kobayashi pseudometrics on complex spaces, the Hilbert metric on

convex domains in vector spaces and the symmetric spaces of non-positive curvature.

By the Hopf–Rinow theorem, any complete, connected, finite-dimensional Riemannian

manifold with its usual distance function is a locally compact, complete, geodesic space.

Any finitely generated group can be turned into a proper metric space using a word metric.

The Hilbert metric on a strictly convex bounded domain inRk (with the usual boundary)

satisfies Axioms 1 and 2 (see [Be2]). Any visibility manifold, see [EO’N] for the

definition, satisfies Axiom 2. The Teichmüller space with the Teichmüller metric and the

Thurston compactification satisfies Axiom 3 for almost every boundary point, see Lemma

1.4.2 in [KM]. It is known that there are Teichmüller geodesic rays starting from one

point that stay within bounded distance from each other and that the visual sphere is non-

Hausdorff, see [McCP]. This situation is similar to the Hilbert metric on a non-strictly

convex domain; there are rays which do not diverge, so Axiom 4 fails for the natural

(extrinsic) boundary.

Simply connected spaces of non-positive curvature, sometimes called CAT(0)-spaces

or (Cartan–)Hadamard spaces, constitute an important class of nice geodesic spaces, see

[Ba]. The ray boundary of these metric spaces is isomorphic to Y (∞) and Axiom 4 always

holds. Any Hadamard space has a large supply of semicontractions, in fact any point η in Y

defines a one-parameter family of semicontractions by pushing every point in Y a length t

towards η along geodesics. Compare this to Theorem 3.4.

The main theorem of [KaMa] asserts, in particular, that the orbit of certain

semicontractions of Hadamard spaces (for example any isometry φ for which

infz∈Y d(z,φ(z)) > 0) converges to a point on the boundary. There are also some papers,

starting with [Pa], that treat similar questions for semicontractions (‘non-expansivemaps’)

of Banach spaces.

A system which to each complex space assigns a pseudometric is called a Schwarz–

Pick system if it assigns the Poincaré metric to the unit disk and any holomorphic map

between two spaces semidecreases distances. The Carathéodory and the Kobayashi

pseudometrics are two examples. It is known that on convex bounded domains all

such Schwarz–Pick pseudometrics coincide. A complex space, for which the Kobayashi

pseudeometric actually is a metric, is called a hyperbolic complex space. The book [Ko]

is a comprehensive account of this theory.

It is reasonable to wonder what geometric properties (such as various convexity

properties, the axioms in this paper, Gromov hyperbolicity, etc.) these intrinsic distances
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enjoy. In general, most properties can fail, which is analogous to the situation with the

Hilbert metrics. One known fact is that a complete (Kobayashi) hyperbolic space is a

geodesic space. (How do the various boundaries compare?) Another result, proven in

[BBo], asserts that the Bergman, Carathéodory and Kobayashi metrics on a bounded,

strictly pseudoconvex domain with C2-smooth boundary are hyperbolic in the sense

of Gromov. In contrast, Royden’s theorem asserts that the Kobayashi metric on the

Teichmüller spaces actually coincides with the Teichmüller metric, hence these spaces are

hyperbolic in the sense of complex analysis, but Masur and Wolf showed that they are not

hyperbolic in the sense of Gromov (for the genus ≥2 cases). Some other questions about
this metric, for example concerning convexity properties, are still unresolved.
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