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Abstract 

This paper uses the tools and techniques of generalized expected utility analysis to explore the robustness of some 
of the classical basic results in insurance theory to departures from the expected utility hypothesis on agents' 
risk preferences. The areas explored consist of individual demand for coinsurance and deductible insurance, the 
structure of Pareto-efficient bilateral insurance contracts, the structure of Pareto-efficient multilateral risk-sharing 
agreements, and self-insurance and self-protection. Most, though not all, of the basic results in this area are found 
to be quite robust to dropping the expected utility hypothesis. 
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1. Introduction 

The purpose of  this paper is to explore what the fields of  non-expected utility theory and 

the economic theory of  insurance might have to contribute to each other. 

For the benefit of readers more familiar with insurance theory than with non-expected 

utility, I begin by describing what non-expected utility risk preferences are, and the differ- 

ent ways--both algebraic and graphical--to study them. The first point I ' m  going to make 

is that non-expected utility is not an alternative to expected utility. Rather, it is a generaliza- 

tion of it, much like CES utility functions over commodity bundles are generalizations 

of  Cobb-Douglas utility functions or, better still, like general quasiconcave functions are 

generalizations of  Cobb-Douglas functions. 

Accordingly, I would like to ask the reader to think of  the theory of  insurance as developed 

under the expected utility hypothesis as similar to the situation of  someone who has devel- 

oped the theory of  consumer demand using only Cobb-Douglas utility functions. Such a 

Cobb-Douglas scientist has an easy and tractable model to work with, and he or she is 

likely to discover and derive many results, such as the Slutsky equation, or that income 

elasticities are identically one, or that cross-price elasticities are identically zero. But we 

know that while the Slutsky equation is a general property of all utility functions over com- 

modity bundles, the two elasticity results are specific to the Cobb-Douglas case and most 

definitely not true of  more general utility functions. It is had to see how our  scientist could 

have known the robust results from the nonrobust results, unless he or she at least took 

a peek at more general non-Cobb-Douglas preferences. 

Presented as the Geneva Risk Lecture at the Twenty-First Seminar of the European Group of Risk and Insurance 
Economists ("Geneva Association"), Toulouse, France, September 19, 1994. 
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The goal of this paper is to examine some of the classic theoretical results in individual 

and market insurance theory from the more general non-expected utility point of view and 

determine which of these classic results are robust (like the Slutsky equation) and which 

are not. I mentioned that I am interested in what non-expected utility theory and insurance 

theory can contribute to each other. The identification of the robust results can contribute 

to insurance theory, by determining which theorems can be "leaned on" most heavily for 

further theoretical implications. The identification of the nonrobust results can contribute 

to non-expected utility theory by determining which parts of current insurance theory are 

in effect testable implications of the expected utility hypothesis. Since insurance provides 

the largest, most systematic, and most intensive set of field data on both individual and 

market choices under uncertainty, this would provide us non-expected utility types with 

a desperately needed opportunity to apply real-world data to the testing of the expected 

utility model and the calibration of our more general models of choice under uncertainty. 

Experts in insurance theory will note that the selection of results I have chosen to exam- 

ine reflects breadth rather than depth. This reflects my own less-than-exhaustive knowledge 

of the huge literature on insurance. It also reflects the fact that more specific and sophisti- 

cated results often require more specialized assumptions (such as convexity of marginal 

utility or HARA utility functions), whose natural generalizations to non-expected utility 

may have yet to be worked out. But I feel that we can learn most about robustness by start- 

ing out with an examination of the most basic and fundamental results in each of the various 

branches of insurance theory. 

Section 2 of this paper introduces the notion of non-expected utility preferences over 

lotteries and describes how they are represented and analyzed, both graphically and alge- 

braically. The next several sections use these tools to examine the robustness of the classic 

results of insurance theory to these more general types of risk preferences. Section 3 covers 

the individual's demand for insurance, taking the form of the insurance contract (coinsur- 

ance or deductible) as given. Section 4 examines the determination of the optimal form 

of insurance contract. Section 5 considers the general conditions for Pareto-efficient risk 

sharing among many individuals. Finally, Section 6 examines the classic problem of self- 

insurance versus self-protection. I conclude with some thoughts on further work. 

2. Non-expected utility preferences and non-expected utility analysis 

Non-expected utility theory--at least the way I look at it--works with the same objects of 

choice as standard insurance theory--namely, lotteries over final wealth levels, which can 

be represented by discrete probability distributions of the form P = (x:, Pl; �9 �9 �9 ; xn, Pn) 

or, in more general analyses, by cumulative distribution functions F(-).I Non-expected utility 

theory also follows the standard approach by assuming--or positing axioms sufficient to 

imply--that the individual's preferences over such lotteries can be represented by means 

of a preference function ~(P)  = ~(Xl, Pl; -- �9 ; Xn, Pn). Just as with preferences over com- 

modity bundles, the preference function "~(.) can be analyzed graphically, by means of 

its indifference curves, or algebraically. 
In our discussion of non-expected utility preferences, it will be useful to keep in mind the 

benchmark special case of expected utility. Recall that under the expected utility hypothesis, 

~(-) takes the specific form 
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t~P(X1, Pl ; �9 �9 �9 ; Xn, p~) 

n 

=-)-~j U(xi) "Pi (1) 
i=1 

for some von Neumann-Morgenstern utility function U('). 
Now, the normative appeal of the expected utility axioms is well known. However, in 

their capacity as descriptive economists, non-expected utility theorists wonder whether 

restricting attention solely to the functional form (1) might not be like the Cobb-Douglas 

hypothesis of our above scientist. We would like to determine which results of classic risk 

and insurance theory follow because of that functional form and which might follow from 

the properties of risk aversion or stochastic dominance preference in general, without really 

requiring the functional form (1). To do this, we begin by illustrating how non-expected 

utility theorists analyze general preference functions 'V(Xl, Pl; �9 �9 �9 ; Xn, Pn) and how they 

compare them to expected utility. 

2.1. Graphical depictions of  non-expected utility preferences 

As might be expected, some simple diagrams can help illustrate the key differences between 

expected utility preferences and non-expected utility preferences, by depicting how prefer- 

ences over distributions P = (xl, Pl; �9 �9 �9 ; xn, Pn) depend on: (1) changes in the outcomes 

{xl . . . . .  Xn} for a fixed set of probabilities {/31 . . . . .  /3n}; and (2) changes in the proba- 

bilities {Pl . . . . .  p~} for a fixed set of outcomes {Xl . . . . .  xn}. 

Preferences over changes in the outcomes can be illustrated in the classic Hirshleifer- 

Yaari diagram (Hirshleifer [1965, 1966], Yaari [1965, 1969], Hirshleifer and Riley [1979, 

1992]). Assume there are two states of nature, with fixed, known probabilities (/31,/32) 

adding to unity, so that we restrict attention to probability distributions of the form (xl,/31; 

x2,/32), which can be represented by points in the (Xl, x2) plane, as in Figure 1. A family 

of expected utility indifference curves in this diagram are the level curves of some expected 

utility preference function ~r = U(xO �9 + U(x2) ~ with slope (marginal rate of 
substitution) naturally given by 

MRSEu(Xl ' x2 ) ___ _ U ' ( x 1 )  ~ 
U'(x2) �9 (2) 

Besides indifference curves, Figure 1 also contains two other constructs. The 45 ~ line 

consists of all sure prospects (x, x) and is accordingly termed the certainty line. The parallel 

dashed lines are loci of constant expected value Xl "/31 + x2 "/32, with slope accordingly 

given by the odds ratio -/31//32. In insurance theory these lines are frequently termed the 

fair odds lines, in non-expected utility theory, we call them iso-expected value lines. 

Formula (2) implies two very specific properties of expected utility indifference curves 

in the Hirshleifer-Yaari diagram. It is straightforward to show that it implies both 

* MRS at certainty = odds ratio. The MRS at every point (x, x) on the 45 o line equals 

the odds ratio -/31//32, and 

�9 Rectangle property. For any four points (x~, x~), (x~, x2 ), (Xl, x2), (Xl, ~ )  that form a 

rectangle in the diagram, the products of the MRS's at diagonally opposite pairs are equal ? 



12 MARK J. MACHINA 

x ~x 

0 xl 

Figure L Risk averse expected utility indifference curves in the Hirshleifer-Yaari diagram. 

Besides these two properties, the indifference curves drawn in Figure 1 exhibit three 

other features of risk preferences on the part of the underlying preference function ~(.) 

that generates them. The first feature is that they are downward sloping. To see what this 

reflects, note that any north, east, or northeast movement in the diagram will, by raising 

xl or x2, lead to a (first-order) stochastically dominating probability distribution. Accord- 

ingly, any set of indifference curves that is downward sloping is reflecting stochastic domi- 

nance preference on the part of its underyling preference function "q(.). Of course, under 

expected utility, this is equivalent to the condition that U(') is an increasing function ofx.  

The second feature of these indifference curves is that they are steeper than the iso-expected 

value lines in the region above the 45 o line and flatter than the iso-expected value curves 

in the region below the 45 o line. To see what this reflects, note that, starting at any point 

(xl, x2) and moving along its iso-expected value line in a direction away from the certainty 

line serves to further increase the larger outcome of the probability distribution and fur- 

ther decrease the smaller outcome, and does so in a manner that preserves the expected 

value of the prospect. This is precisely a mean preserving increase in risk? Thus, indif- 

ference curves that are steeper or flatter than the iso-expected values lines in the region 

above or below the certainty line are made worse off by all such increases in risk and hence 

reflect the property of risk aversion on the part of their underlying preference function 

~q(.). Under expected utility, this property is equivalent to the condition that U(') is a con- 

cave function of x. 

The third feature of the indifference curves in Figure 1 is that they are bowed-in toward 

the origin. This means that a convex combination 0x" Xl + (1 - )9 "x~, )~" x 2 + (1 - )9 

�9 x2) of any two indifferent points (Xl, x2) and (Xl, x2) will be preferred to these points. 

Expressed more generally, we term this property outcome convexity--namely, for any set 

of probabilities {/~1 . . . . .  /Sn}, 

( x ~ , ~ ;  . . . ;  x , , , ~ , )  - (x*~,p~; . . . ;  x , , p , )  = 

(~k'x 1 + (1 - ~k)"xl,Pl; . . . ; ) t ' x  n + (1 - X)"Xn, fin) ~ (Xl,fil; . . . ;Xn, fin) (3) 
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for all ), E (0, 1). This property of risk preferences has been examined, under various names, 

by Tobin [1958], Debreu [1959, ch. 7], Yaari [1965, 1969], Dekel [ 1989], and Karni [1992]. 

Under expected utility, it is equivalent to the condition that U(.) is concave. 

Note what these last two paragraphs imply: Since under expected utility the properties 

of risk aversion and outcome convexity are both equivalent to concavity of U('), it follows 

that expected utility indifference curves in the plane--and expected utility preferences in 

general--will be risk averse i f  and only i f  they are outcome convex. We will see the impli- 

cations of this below. 

A family of non-expected utility indifference curves, on the other hand, consists of the 

level curves of some general preference function ~r = %9(xl, jbl; x2,/52), with slope 

therefore given by 

MRS~e(Xl, x2 ) E O~9(Xl,/51; x2,/52)/0x1 
0~(Xl,  Pl; x2,/52)/0x2 " (4) 

Two such examples, derived from two different preference functions ~ga(~ ) and ~r are 

illustrated in Figure 2. Keep in mind that in Figures 2a and 2b, just as in Figure 1, the 

indifference curves are generated by an underlying preference function "r def'med over 

the probability distributions implied by each (xl, x2) pair under the well-defined state prob- 

abilities (ill,/52): we refer to such preferences over (Xl, x2) bundles as probabilistically 
sophisticated. 

Expected utility and non-expected utility preference functions, and hence their respec- 

tive indifference maps, have two features in common and two important differences. Their 

first common feature is stochastic dominance preference. Stochastic dominance preference 

is the stochastic analogue of "more money is better" and makes just as much sense under 

non-expected utility as under expected utility. As we have seen, this translates into downward 

sloping indifference curves in the Hirshleifer-Yaari diagram and is reflected in both parts 

of Figure 2. 

X2 X2 ",, 

0 xl 0 xi 

(a) (b) 

Figure 2. Risk-averse non-expected utility indifference curves. (a) Outcome convex. (b) Non-outcome convex. 
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The second common feature is the "MRS at certainty = odds ratio" condition, as seen 

in both parts of Figure 2. The non-expected utility condition for this property--namely, 

that any sufficiently smooth non-expected utility preference function 'V(.) must satisfy 

M R S , ~ ( x ,  x) - O*~9(x1,/~1; x2,  P2) /0x1 Xl=X2 =x _ /~1 (5)  
0~9 (x1 , / )1 ;  x2 , /~2) ]~x2  - - P---2 

follows from an early result of Samuelson [1960, pp. 34-37, eq. 5]. Note that it implies 

that we can recover a non-expected utility (or expected utility) maximizer's subjectiveprob- 

abilities from their indifference curves over state-indexed outcomes in the HirsMeifer-Yaari 

diagram. 

The first of the two important differences between expected utility and non-expected utility 

should not come as a surprise. Any departure from the additively separable expected utility 

form (1) means that the so-called rectangle property on MRS's will no longer hold. 4 This 

is a well-known consequence for indifference curves over any kind of commodities, once 

we drop the assumption of separability of the preference function that generates them. 

We come now to the second important difference between expected utility and non- 

expected utility indifference curves--one that will play a very important role in our analysis. 

Note that while the non-expected utility indifference curves of Figure 2a needn't satisfy 

the rectangle property for MRS's, they do satisfy both risk aversion 5 and outcome convex- 

ity--just like the expected utility indifference curves of Figure 1. However, the non-expected 

utility indifference curves of Figure 2b are risk averse but not outcome convex. In other 

words, in the absence of the expected utility hypothesis, risk aversion is no longer equivalent 

to outcome convexity, and as Dekel [1989] has formally shown, it is quite possible for a 

preference function W('), and hence its indifference curves, to be globally risk averse but 

not outcome convex. 6 

On the other hand, Dekel has shown that if a non-expected utility "q(.) is outcome convex 

then it must be risk averse. Although this is a formal result that applies to preferences over 

general probability distributions, the graphical intuition can be seen from Figure 2a: recall 

that non-expected utility indifference curves must be tangent to the iso-expected value lines. 

Thus, if they are also outcome convex, they must be steeper than these lines above the 

45 ~ line and flatter than those below the 45 ~ line, which is exactly the condition for risk 

aversion in the diagram. 

Thus, in the absence of the expected utility hypothesis, risk aversion is seen to be a logically 

separate--and weaker--property than outcome convexity. This means that when dropping 

the expected utility hypothesis and examining the robustness of some insurance theorem 

that "only required risk aversion," we have to determine it really was "only risk aversion" 

that had been driving the result in question or whether it was risk aversion plus outcome 

convexity that had been doing so. 

Let us now illustrate preferences over change in the probabilities for fixed outcome values. 

Specifically, pick any three values ~71 < x2 < :73, and consider the set of all probability 

distributions of the form (:cl, Pl; :~2, P2; :~3, P3). Since we must have P2 = 1 - Pl - P3, 
we can plot each of these distributions as a point (Pl, P3) plane, as in Figure 3. Once again, 

a family of expected utility indifference curves will consist of the level curves of some 
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1 

p3 

0 p~ 

1 

p3 

1 0 Pl 1 

(a) Co) 

Figure 3. Risk averse exlx~ted utility (a) and non-expected utility (b) indifference curves in the probability triangle. 

expected utility preference functional ~2(P) = UO~I)  �9 Pl q- U(x2) "P2 -k U(x3) "/73, which, 

after substituting for P2, takes the form 

U(52) + [U(53) - U(22)1 "p3 - [U(22) - U(.~I)] "pl ,  (6) 

with MRS accordingly given by 

U(x2) - U(Xl) (7) 
MRSEv(Pl, P3) -~ U(53 ) U(52 ) �9 

A family of non-expected utility indifference curves in the ( P l ,  P3) diagram consist of 

the level curves of some general preference function "4(51, Pl; 22, P2; 23, P3), subject to 

P2 = 1 - Pl - P3. Substituting forp2 to obtain the expression "4(51, Pl; 52, 1 - Pl - P3; 

-r3, P3), we have that the slope of these indifference curves at any point (Pl, P3) is given 

by the formula 

o~O') o's(P) 

Op2 O~pl 
MRS~(pl, P3) -- O'V(P) O'V(P) 

ol,3 ol,2 P=(~I,Pl;-~2,1 -Pl  -P3;~3,P3) 

(8) 

Figure 3a highlights the single most significant feature of expected utility preferences-- 

namely, the property of linearity in the probabilities. As the level curves of a linear func- 

tion (formula (1) or (6)), expected utility indifference curves in the probability diagram 

are parallel straight lines. This is the source of much of the predictive power of the ex- 

pected utility model, since it implies that knowledge of indifference curves in any one region 

of the triangle implies knowledge of them over the whole triangle. 
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As we did for the Hirshleifer-Yaari diagram, we can ask what the properties of stochastic 

dominance preference and risk aversion look like in the probability triangle. A pure north- 

ward movement in the triangle implies a rise inp3 along with, of course, a matching drop 

in P2. This corresponds to shifting probability from the outcome x2 up to the higher out- 

come 23. A westward movement implies a drop in Pl with matching rise in P2. An exact 

(45 ~ northwestward movement implies a rise in P3 with equal drop in Pl (no change in 

P2). All three of these movements shift probability mass from some lower outcome up to 

some higher outcome and hence are stochastically dominating shifts. Since the sets of indif- 

ference curves in both parts of Figure 3 are both upward sloping, they prefer such shifts 

and hence both reflect stochastic dominance preference. 

The property of risk aversion is once again illustrated by reference to iso-expected value 

lines. In the probability triangle, they are the (dashed) level curves of the formula 

Xl " P l  -I- 22 " (1 - P l  - P3)  "1- 23 " P 3  = 22 q- [-~3 - 22] " P 3  - [22 - 211 "Pl (9)  

and hence have slope [x2 - Xl]/[x3 - 22]. Northeast movements along these lines increase 

both of the outer (that is, the tail) probabilities Pl and P3 at the expense of the middle prob- 

ability P2, in a manner that does not change the expected value, so they represent the mean 

preserving spreads in the triangle. Since the indifference curves in both parts of Figure 3 

are all steeper than these lines, they are made worse off by such increases in risk, and 

hence are both risk averse. 

Besides risk aversion per  se, these diagrams can also illustrate comparative risk aversion-- 

the property that one individual is at least as risk averse as another. Arrow [1965b] and Pratt 

[1964] have shown that the algebraic condition for comparative risk aversion under expected 

utility is that a pair of utility function UI(') and U2(') satisfy the equivalent conditions 

Ul(x) =- ,p(U2(x)) for some increasing concave ~('), ( lO)  

u~' (x) 
U~'(x) > for all x, (11) 
Ui(x) - U~(x) 

_ _  U~(x*) 
U[(x*) < for all x* > x. (12) 
U ~ ( x ) -  U~(x) 

Figure 4 illustrates the implications of these algebraic conditions for indifference curves 

in the Hirshleifer-Yaari and the triangle diagrams. The indifference curves of the more risk- 

averse utility function [/1(') are solid; those of [/2(~ are dotted. In the Hirshleifer-Yaari 

diagram, the MRS formula (2) and inequality (12) imply that the indifference curves of 

the more risk-averse UI(') are flatter than those of [/2(') below the 45 ~ line and steeper 

than they are above it. In the triangle diagram, the MRS formula (7) and a bit of calculus 

applied to either (11) or (12) yields that the indifference curves of the more risk-averse 

UI(') are steeper than those of U2('). 

Comparing both parts of Figure 4 with Figures 1 and 3a reveals that in each case, the 

relative slope conditions for comparative risk aversion are simply a generalization of the 

slope conditions for risk aversion per  se. This is such a natural result that we would want 
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0 pl 1 
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Figure 4. Comparative risk aversion for expected utility indifference curves. 

to adopt it for non-expected utility indifference curves as well. In other words, when we 

come to determine the algebraic condition for comparative risk aversion under non-expected 

utility, we would insist that it imply these same relative slope conditions on indifference 

curves, as in Figure 5. 

2.2. Algebraic analysis of  non-expected utility preferences 

What about algebraic analysis in the absence of expected utility? Let's go back and think 

about how we might reassure our Cobb-Douglas scientists, puzzled at having to drop their 

well-structured formula c~ 1 �9 . . . .  Cm ~m for a shapeless general preference function qt(c~, 

. . . .  Cm). We would tell them that we conduct our general analysis in terms of the deriva- 
tives {(a~t(c)/acO . . . .  , (a~(c) /ac,)}  of our general function and that conditions on 

these derivatives, or maybe the ratios of these derivatives (marginal rates of substitution), 

give us theorems about behavior. 

In fact, one branch 7 of non-expected utility theory proceeds similarly, by working with 

derivatives of the preference function ~(.),  and it is here that much of the robustness of 

expected utility analysis reveals itself. By way of motivation, let us recall some of the classical 

results of expected utility theory. For purposes of this exercise, assume that the set of potentiai 

outcome values xl < �9 �9 �9 < x, is fixed, so that only the probabilities {Pl . . . .  , Pn} are 
independent variables. Now, given an expected utility preference function ~ (P )  = ~7=1 

U(xi)" Pi, don't think of U(xi) in its psychological role as the utility ofoutcome xi but rather 

in its purely mathematical role as the coefficient ofpi - prob(xi). If we plot these proba- 

bility coefficients against xi, as in Figure 6a, we can state the three most fundamental re- 

suits of expected utility theory as follows: 

�9 Stochastic dominance. ~(.) exhibits stochastic dominance preference if and only if its 

probability coefficients {U(xi)} form an increasing sequence, as in Figure 6a. 
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X2 

0 xt 

1 

0 Pi 1 

(a) (b) 

Figure 5. Comparative risk aversion for non-expected utility indifference curves. 

coefficient of prob(xl) 

= U(xl) 

derivative w.r.t, prob(xi) 

= 0V(P)/igpl = U(xi;P) 

0 Xl X2 X3 Xn.l Xn 0 Xl X2 X3 Xn.l Xn 

(a) (b) 

Figure 6. Expected utility probability coefficients (a) and non-expected utility probability derivatives (b) plotted 
against their corresponding outcome values. 

�9 Risk aversion. ~r is r i sk  averse i f  and only  i f  its p robab i l i ty  coeff icients  {U(xi)} form 

a concave sequence,  s as in F igure  6a. 

�9 Comparative risk aversion. ~a(') is at least  as r i sk  averse as  "qb(') i f  and  only i f  the se- 

quence of  p robabi l i ty  coefficients {Ua(xi) } is at  least  as concav@ as the sequence of  

p robab i l i ty  coeff icients  {Ub(Xl)}. 

Now, consider  a general  non-expected utility preference function ",7(P) = *~9(Xl, PI;  - . - ;  

xn, p , ) ,  and cont inue to t reat  the ou tcomes  Xl < �9 �9 < Xn as  f ixed and the probabi l i t ies  
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{Pl . . . .  , p~} as independent variables. Since ~ ( ' )  is not linear in the probabilities (not 

expected utility), it will not have probability coefficients. However, as long as ~?(') is differ- 

entiable, it will have a set of probability derivatives {(a~(P)/Opl), . . . ,  (a~(P)/Op~)} at 

each distribution P, and calculus tells us that in many cases, theorems based on the coeffi- 
cients of a linear function will also apply to the derivatives of  a nonlinear function. 

Fortunately, this is precisely the case with the above three results, and this extension 

from probability coefficients to probability derivatives is the essence of generalized ex- 

pected utility analysis. In other words, for any non-expected utility preference functional 

~(.) ,  pick a distribution P, and plot the corresponding sequence of probability derivatives 

{(a~(P)/Opl) . . . . .  (a"c(P)/ap~)} against xi, as in Figure 6b. I f  these form an increasing 

sequence (as in the figure), then any infinitesimal stochastically dominating shift--say, an 

infinitesimal drop in Pi and matching rise in P i + l - - W i U  clearly be preferred. I f  the deriva- 

fives form a concave sequence (as in the figure), then any infinitesimal mean preserving 

increase in risk--such as an infinitesimal drop in Pi coupled with a mean preserving rise 

in Pi-1 and P i + l - - W i l l  make the individual worse off. 

Of course, these results are local, since they link the derivatives {(O~?(P)/Opl), �9 �9 
(O~r at a distribution P only to infinitesimal changes from P. However, we can 

take advantage of another feature of calculus--namely, that global conditions on derivatives 

are frequently equivalent to global properties of a function. Fortunately, this is the case with 

our three fundamental results. Thus, if  the derivatives {(O~r . . . ,  (O~(P)/Op~)} 
are found to form an increasing and concave sequence at all such distributions P, then global 
stochastically dominating shifts will always be preferred, and global increase in risk will 

always make the individual worse off, and so on. Formally, we can prove 

�9 Stochastic dominance. A non-expected utility preference function ~(.)exhibits global 
stochastic dominance preference if and only if at each distribution P, its probability 

derivatives {(O~(P)/Opi)} form an increasing sequence, as in Figure 6b. 

�9 Risk aversion. ~?(') is globally risk averse (averse to mean preserving increases in risk) 

if and only if at each P its probability derivatives {(O~(P)/Opi)} form a concave se- 

quence, as in Figure 6b. 

�9 Comparative risk aversion. "~a(') is globally at least as risk averse as 1~ ~b(') if and only 

if at each P, the sequence of probability derivatives {(O~?a(P)/Opi)} is at least as con- 

cave as the sequence of probability derivatives {(a~b(P)/Opi)}. 

In light of this correspondence between expected utility's probability coefficients {U(xi)} 
and non-expected utility's probability derivatives {(O'~(P)/api)}, we adopt the suggestive 

notation U(xi; P) = (O~(P)/api), and call {U(xi; P)} the local utility index of q?(') at P. 

An important point: Do we really need to restrict ourselves just to changes in the proba- 

bilities of the original outcomes {Xl, �9 �9 xn}? No. At any distribution P = (Xl, Pl; �9 �9 �9 ; 

xn, Pn), we can define the local utility index U(x; P) for any other outcome level x, by 

observing that 

P = ( X l ,  P l ,  �9 �9 � 9  Xn, Pn) = ( X l ,  Pl; �9 �9 �9 ; xn, Pn; x, O) (13) 

so that we can define 
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O~(P) O'P(Xl, Pl; . - .  ; Xn, P,,; x, 1") [ 
U(x; P)  

Oprob(x) - O~ ] 9=0 
(14) 

Thus, U('; P )  is really a local utility function over all outcome values x. In this more com- 

plete setting, the non-expected utility conditions for stochastic dominance preference, risk 

aversion, and comparative risk aversion are that at every P, the function U(x; P) must respec- 

tively be increasing in x, concave in x, and more concave in x--just like the conditions 

on U(x) under expected utility theory. See Machina [1982, 1989], Chew, Epstein, and Zilcha 

[1988], and Karni [1987, 1989] for formal derivations and additional applications of this 

kind of analysis. 

Although all of this says that the key to generalizing expected utility analysis is to think in 

terms of probability derivatives of the preference functional ~ (P )  = ~(xl, Pl; . . .  ; xn, Pn), 

it is clear that the analysis of insurance and risk-sharing problems is going to have to in- 

volve its outcome derivatives as well. Fortunately, we can show that, as long as we con- 

tinue to think of U(x; P)  = (O~7(P)/Oprob(x)) as the local utility function, the standard 

expected utility outcome derivative formula also generalizes11--that is, 

One(P) _ Oe~9(x1, P l ;  . . . ;  Xn, Pn)  OU(xi; P) 
OX i OX i ~ OX i " P i  -~ U ' ( x i ;  P) " Pi .  (15) 

This gives us an immediate generalization of the expected utility MRS formula for non- 

expected utility indifference curves--namely, 

O~(X1, /~1; X2, f f2)[OXl __ U t ( X l ;  Pxl,x2) ~ f f l  

MRSv(Xl, x2) - O~(Xl, ill; x2, /32)/0x2 - U'(x2; Pxl,X2) "/32 (16) 

where Pxvx2 = (Xl,/31; x2,/32) is the probability distribution corresponding to the point 

(Xl, x2). It also gives us a generalization of the marginal expected utility formula--namely, 

k : 0  

Oe~9(X1 + k ,  pl;ok: �9 ; x n + k, p~) - U'(xi; P)  �9 Pi. 

i=1 
(17) 

It should come as no surprise that formulas (15), (16), and (17) will come in very handy 

in checking the robustness of standard expected utility-based insurance theory. 

A settling of accounts. If a non-expected utility preference function ~VI(.) is at least as 

risk averse as another one ~72('), so that at each P its local utility function UI('; P)  is at 

least as concave as U2('; P),  then the Arrow-Pratt theorem and the MRS formula (16) im- 

mediately imply the relative slope condition illustrated in Figure 5a. Similarly, the Arrow- 

Pratt theorem, the MRS formula (8), and a little calculus imply the relative slope condition 

illustrated in Figure 5b. Just as required! 12 

3. Individual demand for insurance 

We now have a set of tools--graphical and algebraic--for representing and analyzing non- 

expected utility risk preferences. I hope I've convinced you that the analysis of non-expected 
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utility preferences is much closer to classical expected utility theory than you might have 

thought. Let 's now turn toward applying these tools, in order to examine the robustness 

of  standard insurance theory 13 in the absence of  the expected utility hypothesis. 

Throughout the rest of  this paper, we shall assume that risk preferences--expected utility 

or otherwise--are  differentiable both in the outcomes and in the probabilities. In addition, 

since the results of  insurance theory also almost all depend on the property of  risk aver- 

sion, even under the expected utility hypothesis, there is no point in dropping that assump- 

tion when undertaking our non-expected utility examination. But as noted above, since risk 

aversion under expected utility also means outcome convexity, we could never be sure 

whether the result in question was really driven by risk aversion alone or by outcome con- 

vexity as well. 14 Thus, when examining insurance theory in the absence  of the expected 

utility hypothesis, our "robustness check" could reveal each expected utility-based insurance 

result to be in one of the following categories: 

�9 The result only requires the assumption of risk  avers ion ,  without either outcome con- 

vexity or expected utility, 

�9 The result requires o u t c o m e  convex i ty  (and hence also risk avers ion)  but not expected 

utility, 

�9 The result simply d o e s n ' t  ho ld  a t  a l l  without the expected utility hypothesis. 

Naturally, when checking any given result, the higher up its category in this listing, the 

nicer it would be for non-expected utility theorists. And since robustness is a virtue, the 

nicer it would be for standard insurance theorists as well! 

Throughout this section and its successors, we assume that the individual possesses an 

initial wealth level w and faces the prospect of  a random loss g', with probability distribu- 

tion (21, Pl; �9 �9 �9 ; 2n, Pn) (with each 2 i > 0). An insurance policy consists of an indemni ty  

f u n c t i o n  I( ' )  such that the individual receives payment 1(2) in the event o f  a loss of 2, as 

well as a p r e m i u m  of a-, which must be  paid no matter what. Thus, the individual's random 

wealth on taking a policy (or contract) (I(.), r )  becomes 15 

w - 7r - ~" + I(g) .  (18) 

Of  course, different forms of insurance involve different classes {(I~(-), 7r~)l or E A } of 

indemnity functions I~(') and their corresponding premia r~ ,  from which the individual 

may choose. In many cases, the premium for a given indemnity function I(-) takes the form 

r = h .  E[I(~')] ,  where X _> 1 is a load ing  fac tor .  The results of standard insurance theory 

involve both characterization theorems and comparative statics theorems concerning indi- 

vidual maximization, bilateral efficiency, and group efficiency using the above framework. 

For notational simplicity, we shall frequently work directly with random variables, such 

as g" or w - g', rather than with their probability distributions (el, p l ;  . . .  ; e~, p~) or 

(w - el, pl ;  �9 �9 �9 ; w - e~, pn). In other words, given, say, a random variable ~ with prob- 

ability distribution (xl, Pl;  . . .  ; x~, p~), we shall use the term ~7(~) as shorthand for 

~V(xl, Pl; �9 �9 �9 ; x~, p~). Thus, for example 

'IP(w - 7r - e" + I(g')) denotes ~r - 7r - ei + I(gl), Pl ;  . . .  ; w - 7r - en + I(gn), p~).  
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3.1. Demand for  coinsurance 

The very simplest results in insurance theory involve individual demand for a level ot of 

coinsurance, given a fixed loading factor X _> 1. Formally, this setting consists of the set 

of policies {(Is(.), r~)] ot E [0, 1]}, with 

Indemnity function: Is(e ) ~- tx �9 g 

J 
o/ E [0, 1]. 

Premium: ~rs )~ c~ �9 E[e'] 

(19) 

In the expected utility framework, the individual's choice problem can therefore be written as 

max E[U(w - ~ "  )~. E[b'] - e" + a ,  e')] or 
se[0,1] 

max E[U(w - )~" E[g] - (1 - a ) "  (e" - ) ,"  E[b']))]. (20) 
se[0,1] 

Denote the optimal choice in this problem by or*. This setting was studied early on, in 

classic papers by Borch [1961], Mossin [1968], and Smith [1968]. From the right side 

of (20), we see that a marginal change in insurance coverage ot adds or subtracts the ran- 

dom variable (b" - k"  E[e]) to or from the individual's random wealth. Accordingly, we 

can term the variable (b" - )~ �9 E[b']) the marginal insurable-risk variable. 

The most basic analytical results for coinsurance are 

CO. 1. The first order condition for an interior optimum--a necessary condition for an 

interior global maximum--is that the expectation of the marginal-insurable-risk var- 

iable times the marginal utility of wealth is zero: 

E [ ( e  - )~" E[e']) �9 U'(w - tx- X" E[~'] - b" + or.  b')] = 0 (21) 

and under risk aversion, this is a sufficient condition for a global optimum. 

C0.2.  If the individual is risk averse, then full insurance will be demanded if and only 

if.it is actuariallyfair. In other words, or* = 1 if and only if 9~ = 1. 

C0.3.  If two risk averse individuals face the same choice problem except that the first 

is at least as risk averse as the second, then the first will demand at least as much 

insurance as the second. In other words, if UI(') is a concave transformation of  

U2('), then a~ >_ ot 2.16 

Results CO.2 and CO.3 can both be illustrated in the Hirshleifer-Yaari diagram.17 Con- 

sider Figure 7a, where the original uninsured position, point A, lies off  the 45 ~ line, its 

corresponding full insurance point would lie exactly on the 45 ~ line, and the coinsurance 

"budget  l ine" would connect the two points. The value tx E [0, 1] corresponds to the 

position along the budget line from the uninsured point to the fully insured point. To see 

CO.2, note first that when insurance is actuarially fair, this budget line will correspond 
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Figure 7. Optimal coinsurance (a) and effect of greater risk aversion on coinsurance (b) for risk averse expected 
utility preferences. 

to the (dashed) iso-expected value line emanating from A, and risk aversion clearly implies 

that the optimal point on this line is its corresponding fifll-insurance point B. Next, note 

that when insurance is actuarially unfair, the budget line from A is now f la t ter  than the 

iso-expected value lines, so it is no longer tangent to the indifference curve through the 

(new) full-insurance point C. This implies that the new optimal point--namely, D--will 

involve less than full insurance. To see CO.3, consider Figure 7b and recall from Figure 4a 

(or equations (2) and (12)) that for expected utility maximizers, the (solid) indifference 

curves of the more risk-averse person must be flatter than the (dotted) indifference curves 

of the less risk-averse one in the region below the 45 ~ line. This fact, coupled with the 

outcome-convexity property of risk-averse expected utility indifference curves, guarantees 

that, when both start from the same uninsured point A', the more risk-averse person will 

choose a greater level of coinsurance--point F rather than point E. 

How about the case of non-expected utility maximizers? In this case, the maximization 

problem for coinsurance (the indemnity/premium structure (19)) is 

max ~r - a �9 X- E[e'] - e" + a �9 g') or 
aE[0,1] 

max V(w - X "  E [ e ' ]  - (1 - t x ) .  (e" - X "  E [ ~ ' ] ) )  ( 2 2 )  
~e[0,1l 

for some general non-expected utility preference function ~J(.). Do any of the above ex- 

pected utility-based results still hold? And if so, do they require just risk aversion, or do 

they also need outcome convexity? 

To examine the robustness of CO.1, write (22) as 

max  ~ V ( w  - o~ . h " E l g ]  - e~ + o l  �9 el, p l ;  . .  �9 ; w - a . )~ �9 E [ e ' ]  - e , ,  + or. en, p n ) .  

~[0,q (23) 
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Formula (15) allows us to differentiate with respect to ct to get the non-expected utility 

first-order condition 

0q~9(W --  O~ ~ )k" E [ ~ ' ]  - e I q- o /~  e l ,  Pl;  . - .  ; w - ct" )~" E[g'] - en + or. en, Pn) 

0or 

= ~ - ]  (el - ~ "  E[~ ' ] )  ' U ' ( w  - cr �9 )~ " E [ e ]  - f i  + a �9 e l ;  P ~ )  �9 pi 
i=l  

= El(e" - 3,. E[g']) �9 U'(w - or. X. E[e'] - ~" + e~. ~'; P,~)] = 0 (24) 

where P~ denotes the wealth distribution w - c~ �9 k "  E[g'] - e" + cr �9 ~" arising from the 

purchase of t~ coinsurance. This is precisely the analogue of the expected utility first-order 

condition (21) with the von Neumann-Morgenstern utility function U(') replaced by the 

local utility function U(';  P~) at the wealth distribution p~,18 where 

e ~  = w - c~. X" E [ ? I  - e +  ~ . L  (25) 

Note that the necessity of condition (24) does not even require risk aversion, just differ- 

entiability. However, it should be clear from the Hirshleifer-Yaari diagram that it will only 

be sufficient under full outcome convexity. Otherwise, an indifference curve could be tan- 

gent to the budget line f rom below, and the point of  tangency would be a (local or global) 

minimum. 

Extending result CO.2 to the non-expected utility case is very straightforward and doesn't 

require outcome convexity at all. When insurance is actuarially fair 0~ = 1), we have that 

for any ot < 1, the random wealth 

w - or .  E[e'] - g" + or .  ~ -- w - E[e'] - (1 - or). (e  - E[e']) (26) 

differs from the full insurance (ct = 1) wealth of w - E[~'] by the addition of a zero-mean 

random variable. Accordingly, risk aversion alone implies that when coinsurance is actuari- 

ally fair, full coverage is optimal. Similarly, when insurance is unfair ()~ > 1), we have that 

O V ( W  - -  Ol" )k ~ E[e']0o~ - e'-i- ot oe*) I a=l = E [ ( ~ ' -  h �9 Eta ' l )  " U'(w - X " E[e'];  P1)I 

= (1 - x ) .  E [ ? I .  U'(w - X.  E f t ] ;  P1) < 0, 

(27) 

where P1 is the degenerate distribution of the full-insurance wealth level w - )~ �9 E[e']. 

Thus, there will be values ot < 1 that are strictly preferred to the full insurance position 

ot = 1. This is all illustrated in Figure 8a, where indifference curves are risk averse but 

not outcome convex. 

It would seem that if any of the coinsurance results depended crucially on the assumption 

of outcome convexity, it would be result CO.3, the result linking greater risk aversion to 
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Figure & Optimal coinsurance (a) and effect of greater risk aversion on coinsurance (b) for non-expected utility 
preferences that are risk averse but not outcome convex. 

greater coinsurance. This type of global comparative statics theorem is precisely the type 

of result we would expect to depend on the proper curvature of indifference curves, and 

a glance back at Figure 7b would seem to reinforce this view. However, perhaps one of 

the most important points of this paper, which appears a few times, is that even for a result 

like this, outcome convexity is not needed. 

The essence of this argument can be gleaned from Figure 8b. Recall that if preferences, 

though risk averse, are not outcome convex, then there is the possibility of multiple global 

optima, as with the dotted indifference curve in the figure. However, the essence of the 

comparative statics result CO.3 is not that each individual must have a unique solution 

but that the less risk averse individual must always buy less insurance than the more risk 

averse individual. 

To see that this still holds under non-expected utility, recall (from (12) and (16) or Figure 

5a) that the non-expected utility condition for comparative risk aversion is that at each point 

below the 45 ~ line, the indifference curves of the more risk averse person are flatter than 

those of the less risk averse person. This means that any southeast movement along one 

of the less risk averse person's indifference curves must lower the preference function of 

the more risk averse person. 

Now, to see that every optimum of the less risk averse person involves less insurance 

than every optimum of the more risk averse person, consider point E in Figure 8b, which 

is that optimum for the less risk averse person that involves the most insurance for them, 

and consider their indifference curve through E (call it I-I). Of course I-I must lie every- 

where on or above the insurance budget line. By the previous paragraph, the more risk 

averse person prefers E to every point on I-I that lies southeast of E and hence (by the 

previous sentence) prefers E to every point on the budget line that lies southeast of E. This 

then establishes that the very least amount of coinsurance that the more risk averse person 

would buy is at E. I f  the more risk averse person is in fact strictly more risk averse, the 

two persons' indifference curves cannot both be tangent to the budget line at E. Rather, 
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the indifference curve of the more risk averse person will be flatter at that point, which 

implies that the least insurance they would ever buy is strictly more than the most insur- 

ance that the less risk averse person would ever buy (namely, E ). Risk aversion (and com- 

parative risk aversion) alone ensure this result, and outcome convexity is not needed at all. 19 

A formal algebraic statement of this result, which includes general probability distribu- 

tions and allows for a corner solution (at zero insurance), is 

Theorem 1. Let w0 > 0 be base wealth, e >_ 0 be a random loss, and X > 1 a load 

factor, such that Wo - l a n d  w o - ~ �9 E[~'] are both nonnegative. Assume that the non- 

expected utility preference functions ~l( ')  and ~2(') are twice continuously Frkchet differ- 

entiable, strictly risk averse, and that ~1(') is strictly more risk averse than 'V2(. ) in the 

sense that -U~'(x; F)/U{(x; F) > -U~'(x; F)/U~(x; F) for  all x and F(.). Consider the 

problem 

m a x  nOi(Wo - Ot . ~ , .  E [ e ]  - g + ot . g ) i =  1,2.  
~[0,1] 

(28) 

I f  et*l is the smallest solution to this problem for ~1(~ and or2 is the largest solution for 

~2('), then ct I ~_ or2, with strict inequality unless or1 = O. 

Proof In Appendix. 

In other words, regardless of the possible multiplicity of optima due to non-outcome 

convexity, we will never observe the more risk averse first individual purchasing a smaller 

amount of insurance than the second individual, and the only time they would ever pur- 

chase the same amount is if the terms are so unattractive that zero insurance is an optimum 

even for the first individual, in which case it is the only optimum for the second individual. 

To sum up our robustness check on the basic theory of coinsurance: except for the addi- 

tional status of the necessary condition (21) as a sufficient condition as well (which also 

requires outcome convexity), all three of the coinsurance results CO.1, CO.2, and CO.3 

generalize to the case of non-expected utility preferences under the assumption of simple 

risk aversion alone. In other words, at least at this most basic level, the standard theory 

of demand for coinsurance is, happily, extremely robust. 

3.2. Demand for deductible insurance 

A second type of insurance contract, distinct from the coinsurance contract considered 

above, is deductible insurance. Given a fixed actuarial loading factor )~ >_ 1, this setting 

consists of the set of contracts {(I~('), a-~)[ ot E [0, M]}, where M is the largest possible 

value of the loss e, and 

Indemnity function: I,(e) =- max{r - or, 0}-~ 

J 
Ot [0, M]. 

Premium: 7r, h �9 E [I~(e')] 

(29) 
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In the expected utility framework, the individual's choice problem can therefore be written as 

max E[U(w - ~ �9 E[I~(}-)] - }- + max{}" - tr, 0})1 or 
a~ [O,M] 

max E [ U ( w  - h �9 E[max{e" - a, 0}] - min{e, a})]. (30) 
a~[0,M] 

Once again, denote the optimal choice by ct*. This problem has been studied by, among 

others, Mossin [1968], Gould [1969], Pashigian, Schkade, and Menefee [1966], Moffet 

[1977], Schlesinger [1981], Dr6ze [1981], Karni [1983, 1985], and Eeckhoudt, Gollier, 

and Schlesinger [1991]. 

The insurance budget line for this problem in the case of two states is illustrated in the 

Hirshleifer-Yaari diagram of Figure 9. Given an initial (preloss) wealth point W = (w, w), 

the uninsured point A reflects a small loss el in state 1 and a larger loss e2 in state 2. The 

thick line in the figure represents the kinked insurance budget line when insurance is actu- 

ariaUy unfair (otherwise, is it simply the dashed iso-expected value line through A). Starting 

at the deductible level ot = e2 (no insurance) each unit drop in ot lowers wealth in state 1 

by the premium )t'/52 and raises wealth in state 2 by 1 - X'/52, while lowering the overall 

expected value of wealth. This generates a linear budget line from point A to the certainty 

line at point B, where ot has dropped by (g2 - el) (so now ot = et), and the individual's 

wealth is equal to w - el - ), "/52 �9 (g2 - i ? l )  in each state. Note that while a stillsmaller 

deductible ot < gl is possible, this is basically further insuring what is now a sure pros- 

pect, and doing so at actuarially unfair rates, so it moves the individual down the 45 o line. 

In the limit, when oz = 0, wealth in each state would be w - )t �9 (ill "el  +/52 �9 e2) 

(point c ) .  

The point of presenting Figure 9 is to show that, for  the two-state case, the budget line 

for deductible insurance (at least the relevant part A-B) is so similar to the budget line for 

X2 

0 xl 

Figure 9. Insurance budget line for deductible insurance. 
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coinsurance that all of the graphical intuition obtained from Figures 7 and 8 concerning 

coinsurance will carry over to Figure 9 and to deductible insurance. But given the fact 

that most of the "action" of  the deductible problem (30) occurs in the case of a mul t i tude  

(or continuum) of states, we do not repeat the graphical analyses of Figures 7 and 8 here. 

Rather, we proceed directly to our algebraic robustness check. To avoid the types of kinks 

that occur as ot crosses the value of some discrete loss value gi, we assume that the random 

variable e 'has a continuous cumulative distribution function F( ' )  with support [0, M ]. We 

consider the corresponding basic results for deductible insurance: 

DE. 1. The first-order condition for an interior opt imum (that is, the n e c e s s a r y  condition 

for an interior global maximum) is 

E [ [ X .  (1 - F(ot)) - sgn(max{g"-  o~, 0})] 

�9 U ' ( w  - ), �9 E[max{g" - u, 0}l - min{g', ot})l = 0 (31) 

DE.2 .  

DE .3 .  

where sgn(z) = +1/0/-1  as z > / = / <  0. 2~ 

I f  the individual is risk averse, then full insurance will be demanded if and only 

if it is a c t u a r i a l l y f a i r .  In  other words, or* = 0 if and only if X = 1. 

I f  two risk-averse individuals face the same choice problem except that the first is 

at  l eas t  as  r isk  aver se  as the second, then the first will demand at least as much 

insurance as (i.e., have a lower deductible than) the second. In other words, if UI(') 

is a concave transformation of  U2('), then o~ < o~. 21 

The non-expected utility version of  the deductible problem (30) is 

max ~ ( w  - X" E[l~(g')] - e" + max{~" - a ,  0}) or 
a~EO,M] 

max ~ ( w  -- X" E [ m a x { ?  - a ,  0}] - ra in{? ,  c~}). 
c~[0,M] 

(32) 

Formula (15) allows us to differentiate these objective functions with respect to or, to get 

the non-expected utility first order condition 

[X" (1 F(t~)) sgn(max{e" c~, 0})1 0 M - -  - -  - -  

�9 U ' ( w  - X" E[max{g  - or, 0}] - min{e, or}; F~) �9 dF(g) = 0, (33) 

where F~(.) is the distribution of the random variable w - X �9 E[max{~" - or, 0}] - 

min{e', or}. This is once again seen to be equivalent to the expected utility first order con- 

dition (31), with the yon Neumann-Morgenstern utility function U(.) replaced by the local  

utility function U('; F~) at the distribution F~(.) implied by the optimal choice. Thus, DE.1 

generalizes to non-expected utility. 

The " i f "  part of  result DE.2--namely,  full insurance under actuarial fairness--follows 

immediately from risk aversion without outcome convexity, just as it did in the case of 
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coinsurance. To see that the "only i f "  part does not require outcome convexity either, con- 

sider the case X > 1 and evaluate the left side of (33) at the full-insurance point ot = 0, 

to obtain 

O"r - k" E[max{g'Oot- et, 0}] - min{e', a}) I,,=0 = [X - 1]- U'(w - k" E[e']; F0) > 0, 

(34) 

where Fo(. ) is the degenerate distribution of the full-insurance wealth level w - ~ .  E [e']. 

Thus, in this case there will be values tx > 1 that are strictly preferred to the full-insurance 

level ot = 0. 

Finally, the comparative static result DE.3: as it turns out, the argument behind Figure 

8b (more correctly, the argument behind Theorem 1) applies to the case of deductible insur- 

ance as well. We have 

Theorem 2. Let Wo > 0 be base wealth, let e be a random loss with support [0, M] 

(M < Wo) and continuous cumulative distribution function F?('), and let k > 1 be a load 

factor. Assume that the non-expected utility preference functions 'VI(') and ~2(') are twice 

continuously Frdchet differentiable, strictly risk averse, and that ~ql(') is strictly more risk 

averse than 'V2(. ) in the sense that -U{'(x; F)/U{(x; F) > -U~'(x; F)/U~(x; F) for all 

x and F(.). Consider the problem 

max ~z(w0 - X" E[max{e" - or, 0}] - e" + max{g" - et, 0}) i = 1, 2. (35) 
a~[O,M] 

If  al  is the largest solution to this problem for ~1('), and a2 is the smallest solution for 

~2('), then al <- a2, with strict inequality unless al = M. 

Proof. In Appendix. 

In other words, regardless of the possible multiplicity of optima due to non-outcome 

convexity, we will never observe the more risk averse first individual choosing a higher 

level of deductible (less insurance) than the second individual, and the only time they would 

ever choose the same level is if the terms are so unattractive that no insurance (a = M) 

is an optimum even for the first individual, in which case it is the only optimum for the 

second individual. 

Perhaps surprisingly, or perhaps not, our robustness findings for at least the most basic 

aspects of deductible insurance parallel those of coinsurance: except for the additional status 

of condition (31) as a sufficient condition (which requires outcome convexity), all of the 

deductible results DE.l, DE.2, and DE.3 generalize to the case of non-expected utility 

preferences under the assumption of risk aversion alone. 

4. Pareto-efficient bilateral insurance contracts 

The results of the previous section have examined the customer's optimal amount of insur- 

ance, taking the form of the insurance contract (either coinsurance or deductible) as given. 
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However, an important set of results in insurance theory attempts to determine the optimal 

(Pareto-efficient) f o r m  of insurance contract, given the nature of the insurer's costs and 

risk preferences. Will these results be robust to dropping the expected utility hypothesis? 

The basic theorems on Pareto-efficient bilateral insurance contracts concern the case where 

the insurer possesses an increasing cost function C(1) for indemnity payments I >_ 0. These 

costs include the indemnity payment itself plus any additional processing or transactions 

costs. In the expected utility case, a Pareto-efficient contract (I(.), ~r) can be represented 

as the solution to 

m a x  E[UI(W 1 -- "It -- e + l(e'))] 
l(.),r 

s.t.: 

E[U2(w z + 7r - C(l(e')))l = Uz(w2) 

0 <_ I(e) <_ e, 

(36) 

where UI(') is the concave utility function of the insured, U2(') is the utility function of 

the insurer, and Wl and w2 are their respective initial wealth levels. The loss variable g" 

is assumed to have a continuous cumulative distribution function F~(') over some interval 

[0, M]. 

Arrow [1963, app.] 22 considered the simplest case where the cost function takes the linear 

form C(I )  =- X"  I (for)~ > 1), and the insurer is risk neutral. Under these assumptions, 

the upper constraint in (36) immediately implies the standard loading formula 

r = X" E[l(g')], (37) 

and Arrow showed that the Pareto-efficient indemnity function I(') must take the deduct- 

ible form 

l(e) =- min{e - ~,  0}. (38) 

Needless to say, this forms an important justification for studying the individual's demand 

for insurance under the deductible structure, as we did in Section 3.2. 

This result has been extended in a few directions by Raviv [1979], so that we can now 

consider the set of expected utility-based results: 

PE. 1. Given risk neutrality of the insurer and a linear cost function (with)~ > 1), the 

Pareto-efficient bilateral insurance contract must take the deductible form (38), for 

a positive deductible or. 

PE.2 .  Given strict risk aversion of the insurer and a linear cost function (with X > 1), 

the Pareto-efficient bilateral insurance contract must take the form of coinsurance 

above a nonnegative deductible u--that is, 

I(e) = 0  fo r e  _< a 

O <  l(e) < e  f o r g >  a 

0 < l'(g) < 1 forg > o~. (39) 
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PE.3.  Given risk neutrality of the insurer and a strictly convex cost function C(') (C"(') 

> 0), the Pareto-efficient bilateral insurance contract must again take the form of 

coinsurance above a deductible, as in (39), where the deductible c~ is strictly positive. 

Just as Arrow's original result (PE.1) gave a justification for the study of deductibles, the 

results PE.2 and PE.3 provide a justification for the study of the demand for coinsurance 

as we undertook in Section 3.1. 23 

Do these results extend to non-expected utility maximizers, and if so, is risk aversion 

sufficient to obtain them, or do we also need to assume outcome convexity? Under non- 

expected utility, the Pareto-efficient contracts are characterized by the solutions to 

max ~r - a- - e" + I(g')) 
I(.),~ 

f ~ 2 ( W 2  d- 71" --  C(Id ' ) ) )  = ~r~2(w2) (40)  

s.t.: 

0 < I(e) < e. 

Concerning PE.1, note that under its assumptions, the standard loading formula (37) con- 

tinues to follow from the constraint in (40). In such a case, Karni [1992] has proven that, 

given differentiability of ~1('), risk aversion alone ensures that any Pareto-efficient insur- 

ance contract must continue to take the pure deductible form (38). More recently, Gollier 

and Schlesinger [1995] have provided an ingenious proof of PE.1 based solely on risk aver- 

sion considerations and hence similarly independent of the expected utility hypothesis. 

The robustness of PE.2 and PE.3 to non-expected utility can be demonstrated by using 

the same type of proof that Karni used to generalize PE.1. We present an informal sketch 

here. Let (I*('), ~r*) be a Pareto-efficient insurance contract between ~1(') (which is risk 

averse) and ~V2('), under the assumptions of either PE.2 or PE.324 In such a case, no joint 

differential change25~(AI(.), Air) from (I*('), r*) that continues to satisfy the conditions 

~2(W2 "4- 71" - -  C(I(g))) = ~ 2 ( w 2 )  and 0 _ I(e) <_ t should be able to raise the value of 

~1(Wl - r - r + I(g)). However, from the cumulative distribution function version of 

(15), the effect of any such differential change (AI('), Air) from (I*('), a'*) on the value 

of ~1(Wl -- r -- r + I(g')) is given by the expression 

f o  M U~(W 1 -- "IF* -- e + I*(e); FWl_lr*_~+/*(~)) "[z~i/(e) - ATI'] ~ dF~(f), (41) 

and similarly, the effect of any differential change (A/(.), ATr) from (I*('), lr*) on the value 

of ~2(w2 + r - C(I( ' l)))  is given by 

f o M U~(w2 + r* - C(I*(0); Fw2+~*-C(l* (h)) " [Arc -- C'( I*(O)  " AI(e)] �9 dF~(e). (42) 

Thus, any solution (I*(.), r*) to (40) must satisfy the property: 

"No differential change (AI(.), ATr) that makes (42) equal to zero can make (41) positive." 
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However, this is precisely the statement that the contract (I*(.), 7r*) satisfies the first-order 

conditions for the expected utility problem (36), for the fixed von Neumann-Morgenstern 

utility functions UI(') = UI('; Fwl-~*-~+t*(h) (which is concave) and U2(') = U2('; 

Fw2+~*_c(t*(h)) (which under PE.2 is also concave), and we know from the expected util- 

ity versions of PE.2 and PE.3 that any pair (I('), ~r) that satisfies these first-order condi- 

tions, including therefore the pair (I*(-), a'*), must satisfy the "coinsurance above a deduct- 

ible" condition (39). Furthermore, under the assumptions of PE.3, they must satisfy the 

additional property that the deductible is positive. Note that, like Karni, we needed to assume 

risk aversion of ~1(') (and also ~2(') for PE.2) but not outcome convexity. 26 

Thus another set of basic results in insurance theory seem to be quite robust to dropping 

the expected utility hypothesis. 

5. Pareto-efficient multilateral risk sharing 

An important part of the theory of insurance is the joint risk sharing behavior of a group 
of individuals. Research in this area was first initiated by Borch [1960, 1961, 1962] and 

Wilson [1968], and the modern theory of insurance markets can truly be said to stem from 

these papers. 27 

Under expected utility, this framework consists of a set {0} of states of nature, and n indi- 

viduals, each with von Neumann-Morgensteru utility function Ui(') and random endow- 

ment wi(O). In this paper, we consider the special case where there are a finite number of 

states {01 . . . . .  0T }, and where agents agree 2s on their probabilities {prob(01) . . . . .  prob(0r) } 

(all positive). A risk sharing rule is a set of functions {si(.)] i = 1, . . . ,  n} that deter- 

mines person i 's allocation as a function of the state of nature. Under such a rule, person 

i 's expected utility is accordingly given by 

T 

Z Ui(si(Ot)) ~ prob(0t). 
t=l  

(43) 

A risk sharing rule {si(')] i = 1 . . . .  , n} is feasible if it satisfies the constraint 

]~ s~(o,) ~, w~(O,), (44) 
i=1 i=1 

and it is Pareto-efficient if there exists no other feasible rule that preserves or increases 

the expected utility of each member, with a strict increase for at least one member. Finally, 

define the risk tolerance measure 29 of a utility function Ui(') by 

Pi(X) ~ -Ui'(x)/Ui"(x ). (45)  
X 

Given this framework, three of the most basic analytical results for Pareto-efficient risk 

sharing are 
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RS.1. A necessary condition for a risk sharing rule {s/(')l i = 1, . . . ,  n} to be Pareto- 

efficient is that there exists a set of nonnegative weights {),1, �9 �9  Xn} such that 

)~i" Ui'(si(Ot)) ~,, 5,j" Uj'(s:(Ot)) i, j = I, ..., n 

and under risk aversion, this is a sufficient condition. 

(46) 

RS.2.  Any Pareto-efficient risk-sharing nile will satisfy the mutuality principle (e.g., GoIlier 

[1992, p. 7])--namely, that the share si(Ot) depends upon the state of nature Ot only 

through the total group endowment w(Ot) = g~=l wk(Ot) in state Or. In other words, 

there exists functions {xi(.)l i  = 1, . . . ,  n} such that 

RS.3. 

Si(Ot) ~tt Xi(w(O')) i = 1, . . . ,  n. (47) 

In the case of a continuum of states, the members' incremental shares x: (w)  are pro- 

portional to their respective risk tolerances, evaluated along the optimal sharing rule: 

Pi(Xi(W)) i = 1 . . . .  , n. (48) 
x / (w)  - ~n Ok(Xk(W)) w k=l 

Do these results extend to non-expected utility? To check, take a set of n non-expected 

utility maximizers with preference functions {~1(') . . . . .  ~Tn(')}. The natural generaliza- 

tion of condition (46) would be that there exists a set of nonnegative weights {Xl . . . .  , Xn} 

such that 

hi"  U'(si(O); P*) o Xj . Uj'(sj(O); P j )  i, j = 1, . . . ,  n, (49) 

where U/(.; P) and Uy(.; P) are the local utility functions of ~i(') and ~j (.), and P~ and P~ 

are the probability distributions of the random variables s i (~ )  and s/(Ot), respectively. To 

check the robustness of RS.1, assume (49) did not hold, in which case there would be some 

states 0 a, Oh, and individuals i, j such that 

Uit(si(Oa)'~ P; )  Uf(sj(Oa)'~ e ; )  
U/'(si(0b); e~) ~ U/(s:(0~); e:) (50) 

and hence 

Uit(si(Oa)'~ P ; )  o prob(Oa) Uj'(sj(Oa); P f )  . prob(Oa) 

Uit(si(Ob) ; p . )  prob(Ob) # Uj,(sj(Ob); p] )  prob(Ob). (51) 

But from the n-state version of the MRS formula (16), 30 this means that the two individuals' 

marginal rates of substitution between consumption in states 0 a and 0 b are strictly unequal, 

which gives them an opportunity for mutually beneficial trade. Thus, the original sharing 

rule was not Pareto-efficient. This establishes that (49) is indeed a necessary condition 

for Pareto-efficiency. A standard Edgeworth box argument will establish that it will also be a 

sufficient condition provided outcome convexity holds, though not otherwise. 
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To check result RS.2, observe that if it did not hold, there would be two states 0~, Ob 
and an individual i such that ~ E ~ k=l Wk(Oa) = k=l wk(Ob), but si(O~) > si(Ob). But by the 
feasibility condition (44), this means that there must exist some other individual j such 

that sj(O~) < sj(Ob). By risk aversion (and hence concavity of each individual's local utility 

function), this would then imply 

U[(si(Oa); P~) . prob(0a) prob(0a) Uj(sj(Oa); P: )  . prob(0a) 

Ui'(si(Ob); P~) prob(0b) < prob(0b) < U](sj(Ob); P~) prob(Ob)' 
(52) 

so that, as before, the two individuals have different marginal rates of substitution between 

consumption in states 0 a and 0b, so the original sharing rule could not have been Pareto- 

efficient. Thus, the mutuality principle (result RS.2) and the formula (47) hold for non- 

expected utility risk sharers. Note: Only risk aversion, and not outcome convexity, is needed 

for this result. 

Finally, to show that the continuum-state-space result RS.3 also generalizes, combine 

(47) and (49) (which both continue to hold with a continuum of states) to write 

~k i �9 Uit(xi(w); I~i ) E ~kj " Ujt(xj(w)'~ F~j ) i ,  j = 1 . . . . .  n (53) 
w 

where F~i(. ) and F](.) are the cumulative distribution functions of the (continuous) random 

variables st(O) and sj(O) (see note 12). Differentiating (53) with respect to w and then 

dividing by (53) yields 

q) 
u:'(xi(w); ~) . xi (w) - �9 x: (w) 
Vit(xi(w); F~i ) w Uj' fxj(w); F~j) 

i , j  = 1, . . . ,  n (54) 

and hence 

pj(xj(w); ~ ) .  x : ( w )  - x ] ( w )  
pi(xAw); ~)  w 

i , j  = 1, . . . ,  n, (55) 

where Pi(X; F) =- - U i' (x; F)lUi"(x; F)  is the risk-tolerance measure of the local utility 

function Ui('; F) .  Summing overj  = 1 . . . .  , n, noting that the feasibility constraint im- 

plies E~n__ 1 x] (w) =- 1, and solving finally yields 
w 

&(xi(w); F~i) i = 1, . . . ,  n. (56) 
X[(W) 0 ~ 1  flk(Xk(W); l~kk) 

In other words, each member's incremental share is proportional to their local risk tolerance, 

evaluated along the optimal sharing rule. (Recall that since P-~l, �9 �9 F*n are the probability 

distributions of Sl(#) . . . .  , sn(O), they are determined directly by the optimal sharing rule.) 

What does this all imply? It is true that we need outcome convexity to guarantee the 

sufficiency of the Pareto-efficiency condition (49). However, it remains a necessary property 

of any Pareto-efficient allocation even without outcome convexity. Otherwise, risk aversion 

alone (and sometimes not even that) suffices to generalize the basic risk sharing results 

RS.1, RS.2, and RS.3 to the case of non-expected utility maximizers. 
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6. Serf-insurance versus self-protection 

Our final topic stems from the seminal article of Ehrlich and Becker [1972], who examined 

two important nonmarket risk-reduction activities--namely, self-insurance, where resources 

are expended to reduce the magnitude of a possible loss, and self-protection where resources 

are expended to reduce the probability of that loss. In a two-state framework (the one they 

considered), the individual's initial position can be represented as the probability distribu- 

tion (w - s p; w, 1 - p)--that is to say, base wealth w with a p chance of a loss of L 

The possibility of self-insurance can be represented by an expenditure variable ot E [0, M], 

such that the first-state loss becomes e(ot), where g'(ot) < 0. In that case, an expected 

utility maximizer's decision problem is 

max [ p .  U(w - s - ct) + (1 - p ) "  U(w - ct)]. (57) 
~[O,M] 

On the other hand, self-protection can be represented by an expenditure variable/3 E [0, M], 

such that the probability of a loss becomes p(/~), wherep'(/~) < 0. In that case, an expected 

utility maximizer's decision problem is 

max [p(/3) �9 U(w - e - [3) + (1 - p ( B ) )  �9 U(w - /3)]. 
~[0,M] 

(58) 

Needless to say, these activities could be studies in conjunction with each other, as well 

as in conjunction with market insurance, and Ehrlich and Becker do precisely that. Since 

then, the self-insurance and self-protection framework (with or without market insurance) 

has been extensively studied (see, for example, Boyer and Dionne [1983, 1989], Dionne 

and Eeckhoudt [1985], Chang and Ehrlich [1985], Hibert [1989], Briys and Schlesinger 

[1990], Briys, Schlesinger, and Schulenburg [1991], and Sweeney and Beard [1992]). 

Konrad and Skaperdas [1993] examine self-insurance and self-protection in the case of 

a specific non-expected utility model--namely, the "rank-dependent" functional form of 

Quiggin [1982]. They find that most (though not all) of the expected utility-based results 

on self-insurance generalize to this non-expected utility model, whereas the generally am- 

biguous results on self-protection 3~ must, of necessity, remain ambiguous in this more gen- 

eral setting? 2 

A treatment anywhere near as extensive as Konrad and Skaperdas's analysis is beyond 

the scope of this paper. However, we do examine what is probably the most basic theorem 

of self-insurance--namely, that greater risk aversion leads to greater self-insurance, which 

was proven by Dionne and Eeckhoudt [1985] for expected utility and Konrad and Skaperdas 

[1993, prop. 1] for the non-expected utility "rank-dependent" functional form. Here we 

formally show that this comparative statics result extends to all smooth risk averse non- 

expected utility maximizers, whether or not they are outcome convex: 

Theorem 3. Assume that there are two states o f  nature with f ixed positive probabilities 

and (1 - ~). Let  w o > 0 be base wealth, ~ ~ [0, M] be expenditure on self-insurance, 

and s > 0 be the loss in the first state, where e'(cO < 0 and M < w o. Assume that 

the non-expected utility preference functions ~1(') and ~2(') are t ~ c e  continuously Fr~chet 
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differentiable, strictly risk averse, and that civil(" ) i$ strictly more risk averse than ~r 

in the sense that -U['(x; F)/U[(x; 10 > -U~'(x; F)/U~(x; F) for all x and F(.). Con- 

sider the problem 

max ~i(Wo - e(o0 - o~,/5; w0 - ct, 1 - / 5 )  i = 1, 2. (59) 
~[0,M] 

I f  ~ is the smallest solution to this problem for ~1('), and ~2 is the largest solution for 

W2('), then ~1 >- ~2, with strict inequality unless t~ 1 = 0 or t~ 2 = M. 

Proof. In Appendix. 

In other words, regardless of the possible multiplicity of optima due to non-outcome 

convexity, we will never observe the more risk-averse first individual choosing less self- 

insurance than the second individual, and the only time they would ever choose the same 

level is if the producitivity of self-insurance is so weak that zero is an optimum even for 

the first individual (in which case it is the only optimum for the second) or else the produc- 

tivity is so strong that full self-insurance (o~ = M) is an optimum even for the second 

individual (in which case it is the only optimum for the first). 

7. Conclusion 

Although the reader was warned that this robustness check would be more broad than deep, 

even so, it is of incomplete breadth. There are several important areas of the theory of 

insurance that remain unexamined. One important area is the effect of changes in risk (as 

opposed to risk aversion) on the demand for insurance. This has been studied in the ex- 

pected utility framework by Alarie, Dionne, and Eeekhoudt [1992]. Although any conclu- 

sions at this point would be premature, my own work (Machina [1989]) on the robustness 

of the classic Rothschild-Silglitz [1971] analysis of the comparative smiles of risk suggests 

that this might be another area in which standard expected utility-based results would gen- 

erally extend. 

Another potentially huge area is that of insurance under asymmetric information. This 

has already played an important role in the motivation of much of insurance theory, as, 

for example, in the theory of adverse selection (e.g., Pauly [1974], Rothschild and Stiglitz 

[1976]) and the theory of moral hazard (e.g., Arrow [1963, 1968], Pauly [1968], Shavell 

[1979]). Just as this work has been primarily built on the basis of individual expected util- 

ity maximization, so, presumably, could it be built on (or at least examined from) the basis 

of non-expected utility preferences. 

A final, perhaps less well-defined area, is that of insurance under situations of ambiguity-- 

that is, the absence of well-defined subjective probabilities. Although formal research on 

ambiguity and insurance has already begun (e.g., Hogarth and Kunreuther [1989, 1992a, 
1992b]), the nature of many non-expected utility models of choice under ambiguity ss departs 

sufficiently from classic expected utility theory that the robustness of standard insurance 

results to ambiguity is still very much an open question. 
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Non-expected utility theory is still in the process of  moving from its initial phase of con- 

centrating on "choice paradoxes" and "alternative models" to the subsequent stage of reex- 

amining standard questions in the economics of risk and insurance. As I hope I have shown, 

we non-expected utility researchers have been, and will continue to be, beholden to the 

prior work of  expected utility theorists in this endeavor. No one should expect a revolution 

from this new line of  research--just  some added insight on the relationship between the 

assumptions of  risk and insurance theorems and their conclusions. 

Appendix: Proofs of theorems 

Proof of  Theorem 1 

For notational simplicity, we can equivalently rewrite (28) as 

max r -[- p "Z) i = 1, 2, (A. 1) 
pe[0,1] 

where c o = w 0 - X.  E[e'] ,  o - (1 - a),  and s --- X" E [ f ]  - e 'with cumulative distri- 

bution function Fi(- ). Proving the theorem is then equivalent to proving that if  P~ is the 

largest solution to (A.1) for ~1( ' )  and 02 is the smallest solution for ~72('), then 01 -< 02, 

with strict inequality unless 0~ = 1. 

For all p E [0, 1] and c _ c o, define the preference functions 

~)iGo, c) ~ ~i(Fc+p.~.) i = 1, 2, (A.2) 

where Fc+o.~(" ) is the cumulative distribution function of the random variable c + p �9 ~. By 

construction, each function 4~i(0, c) is continuously differentiable and possesses indifference 

curves over the set {(0, c)]o E [0, 1], c > Co}, which are "inherited" from "qi(.), as in Fig- 

ure A.1. Since first-order stochastic dominance preference ensures that &hi(P, c)/Oc > O, 

these indifference curves cannot be either backward bending or forward bending, although 

they can be either upward or downward sloping or both, Note that the horizontal line 

c = Co in the figure corresponds to the one-dimensional feasible set in the maximization 

problem (A.1). In other words, 4~i(P, %) equals the objective function in (A.1), so 01 and 

p~ are the largest and the smallest global maxima of 4h(P, Co) and r Co), respectively. 

We first show that, at any point in the set {(p, e)lO E (0, 1), c _> Co}, the marginal rates 

of  substitution for the preference functions q~l(P, e) and r c) must satisfy 

0~1(0 , C)/Op 0~2(19, C)IOp _ MRS2(P, c). (A.3) 
MRSI(o, c) =- Odpl(p, C)/OC > Oq~2(0, C)]OC 

To demonstrate this inequality, assume it is false, so that at some such point (O, c) we had 34 

a~J2(jO , c)lap O(al(o, c)/Op < k < (A.4) 
O~l(p , C)/OC -- -- 0~2(# , C)/OC 

for some value k. Since k could have any sign, c - 0 �9 k could be either negative or 

nonnegative. 
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I f c - p ' k  < 0: In this case, c -  p 'Z___ 033 i m p l i e s p . Z +  p ' k  > 0 a n d h e n c e  

+ k > 0, which implies 

o < f <z + ,+> �9 u <c + a �9 z; �9 ( A . 5 )  

(A.5), (15), and (A.2) imply 

k >  - 

f z"  U~(c + p .  z; Fc+,,.e)" dEe(z) 

f u~(c + a"  z; Fc+~.e)" dEe(z) 

a~2(c + p �9 ~)/Op _ Oq~2(p, c)/Op 

0cI~72(C -'1- p ~ Z)IOc Oq~2(,p , C)/OC 

(A.6) 

which is a contradiction, since it violates (A.4). 

I f  c - p �9 k _ 0: In this case, (A.4), (A.2), and (15) imply 

k>_  - 
O~l(Fc+p.e)/Op : _ f z ~ U{(c  q- p ~ z; Fc+p.e) ~ dEe(z) 

(n.7) 
O~l(Fc+p'e)]Oc f U~(c + p �9 Z; Fc+p.e) " dFe(z) 

so that we have 

f U{(c + p �9 z; F~+p.D 
0 <_ (z + k) �9 U;(c - -  a k; F~+,,.e) " dEe(z) 

f z  U((c + p �9 z; Fr 
= +k>0 (Z + k) �9 Uffc - -  p k; F~+,,.e) " dEe(z) 

f z  U;(c + a �9 z; Fc+p.D . 
+ +k<0(Z + k)"  U~(c - -  p k;Fc+v.e) 

dFJz)  

f z  U~(c + a �9 z; Fc+p.D < (z + k ) .  - -  �9 +k>o U~(c p k; Fc+a.e) dFe(z) 

f z  U~(c + P " z; Fc+,,.e) 
+ +k<0 (Z + k) �9 U~(c --  a k; "c )~+p.e" " dEe(z) 

f 
U~(c + p �9 z; Fc+p.D 

= (z + k) �9 U~(c --  a k; Fc+,,.e) " dEe(z) (A.8) 

where the strict inequality for the "z + k > 0"  integrals follows since in this case we 

have c + p �9 z > c - p �9 k, so comparative risk aversion implies 0 < U~(c + p �9 z; 
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Fc+p.~)/U~(c - p "  k; Fr < U~(c + p"  z; Fc+~.e)/U~(c - p "  k; Fc+p.~). Strict inequal- 

ity for the "z + k < 0" integrals follows since in this case we have c + p �9 z < c - p �9 k, 

so the comparative-risk-aversion condition implies U;(c + p �9 z; Fc+p.~)/U;(c - p �9 k; 

F~+p.~) > U~(c + p .  z; Fc+p.e)/U~(c - p"  k; F~+p.~) > 0, but these ratios are each mul- 

tiplied by the negative quantity (z + k). This once again implies (A.5) and hence (A.6) 

and a contradiction. This then establishes inequality (A.3). 

Inequality (A.3) implies that, throughout the entire region {(p, c)lp ~ (0, 1), c _> Co}, 

leftward movements along any ~bl(p, c) indifference curve must strictly lower th2fp, c), 

and rightward movements along any $2(P, c) indifference curve must strictly lower 

~,1~o, c). 
Assume P2 < Pl, as illustrated in Figure A.1. In this case, consider the point (P2, Co). 

As we move rightward along the ~b2(p, c) indifference curve that passes through this point, 

the value of ~bl(p, c) must strictly drop, so that ~bl(p, c) strictly prefers the point (p~, Co) 

to every point on the curve that lies to the right of (p~, Co). But since (ao 2, Co) is a global 

optimum for $2~ ,  Co), this indifference curve must lie everywhere on or above the hori- 

zontal line c = c o. Since 0el(p ,  c)/ac > 0, this implies that q~l(P, c) strictly prefers the 

point (p~, Co) to every point on the l ine c = Co that lies to the right of (p~, Co), which con- 

tradicts the assumption that there is a global maximum p~ that exceeds (lies to the right 

of) p~. This, then, establishes that Pl -< P~. 

To complete the proof, we must rule out p~ = p~ unless p~ = 1. In the case p~ < 1, 

CO.2 and X > 1 imply ot2 < 1 so we would have 0 < P2 = Pl < 1. However this case 

of identical interior optima would imply that both individuals' indifference curves had zero 

slope at the interior point (p~, Co) = (p~, Co) , which violates (A.3). [] 

t 

Co ~ ~  ~ _ 

0 0~ p~ 
4 P 

P 

Figure A.L Indifference curve for the preference function ~2(P, c). 
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Proof of  Theorem 2 

For notational simplicity, define 

n(e ,  ~ )  ---- X -  E [ m a x { e "  - ~ ,  0}1 + e - m a x { e  - ~ ,  0 }  = 

f M 

k " f S (e - ot) " dF~(e) + ot i f e  _ ot 

k "  (e - c t ) ' d F ~ ( e )  + f i f g  < ot 

(A.9) 

This implies ~/(g, or) = ~/(ot, or) if g _ or, and ~/(g, or) < ~/(ct, or) if e > or. We also have 

f M 

- x  " f~  l " dF~(e) 

O~(f, ) 

0cr ~ M 
- k "  l l " dF~(e) 

+ 1 = - X "  [1 -F~(o t ) ]  + 1 

= - x -  [1 - E l ( a ) ]  

i f e  > ot 

i f e  < ct 

(A.IO) 

For all ot E [0, M]  and w >_ w0, let F,~w(') denote the cumulative distribution function 

of the random variable 

w - k "  E[max{f" - a ,  0}] - e" + max{~" - a ,  O} -= w - r/(g', cO (A.11) 

and define the preference functions 

t~i(O/, W) =- e~i(Fot,w ) i = 1, 2. (A. 12) 

By construction, each function ~i(O/, W) is continuously differentiable and possesses indif- 

ference curves over the set {(o~, w)lo~ E [0, M] ,  w >_ Wo}, which are "inherited" from 

~i( ' ) ,  as in Figure A.2. Since first-order stochastic dominance preference ensures that 

a~bi(ot, w)/aw > 0, these indifference curves cannot be either backward bending or for- 

ward bending, although they can be either upward or downward sloping or both. Note that 

the horizontal line w = Wo in the figure corresponds to the one-dimensional feasible set 

in the problem (35). In other words, ~bi(o~, w0) equals the objective function in (35), so 

ot~ and ol~ are the largest and the smallest global maxima of t~l(Ot , W0) and ~b2(ct, Wo), 

respectively. 

We first show that, at any point in the set {(or, w)l ot E (0, M) ,  w _> Wo}, the marginal 

rates of substitution for the preference functions ~l(Ot, W) arid t~2(ot , w) must satisfy 

MRSI(Ot, w) - OqJl(a, w)/Oa 0~b2(t~, w)/Oct _ MRS2(c~, w). (A.13) 
O4h(et, w)/Ow > &b2(o~, w)/Ow 
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To demonstrate this inequality, assume it is false, so that at some such point (or, w) we had s6 

0~l(ot , w)lOa 0~2(ot , w)lOot 
_< k _< (A. 14) 

O~l(ot , w)/Ow O~2(ot , w)/Ow 

for some k. Since k could have any sign, k + X �9 [1 - F?(ot)] could be either nonpositive 

or positive. 

I f k  + X �9 [1 - F~(ot)] _< 0: In this case, note from (A. 10) that at the point (ot, w), 

a differential increase in ot of dot combined with a differential change in w of  dw = - X �9 

[ 1  - F~(ot)] �9 dot has zero differential effect on w - n(g, or) for each g < ot, and a strictly 

negative differential effect on w - n(g, ot) for each g > ot. Since ot E (0, M)  so that 

prob(g > ot) > 0, this implies a strictly negative differential effect on ~l(F~w). Hence, 

the value of dw necessary to have zero differential effect on ~r must be greater than 

- X "  [1 - Ff(ot)] �9 dot, and hence greater than k -  dot. This implies thatMRSl(ot, w) > k, 

which is a contradiction since it violates (A. 14). 

I f k  + X" [1 - F~(ot)] > 0: From (A.10), this implies tha tk  - 0n(e, ot)/Oot > 0 for 

g < ot. (A.14), (A. 12), and (15) imply 

f ~ "  O n ( e ' o t ) ~ ' U [ ( w - n ( e ,  ot);F,~,w)'dF~(O 
k >_ - O'Vl(F'~,w)/O~ = - 0ot (A.15) 

O~l(Fet'w)/OW f U;(w - n(e, or); F,~,w) " dF?(e) 

so that we have 

0<_ f ~1, - on(e, ot) ~ v; r -n(e, ot); F. ,~)n(ot ,  ot); F~.~) . aFe(e) 

= r e  >_~ Qk - ~ ot) ~ " U;(w U;(w 

+ fe<a ~k- On<l,~ ot)3 -]" U,O,,U; <w 

+ (,,- ~ <,,<w 

<f,>=7 -~ oot 3 - 

ot) ~ . Ug(w 
Ug(w 

+ 

~ ( l ,  oO; F,~,w) . dF?(e) 
n(ot,  ot); Fa,w) 

- n(e ,  ot); F,,,w) . dF~(e)  
n(ot, ot); Fa,w) 

~(ot, ot); F.,w). dF~(l) 
n(ot, ot); F~l,w) 

- n(e ,  ot); F,,,w) . dF~(1) 
n(ot, a); F~/,~) 

n(ot, ot); F,~,w) . dF~(e) 
n(ot, ot); F,~,w) 

- n(e ,  ot); F,~,w) . dF?(e)  
n(ot, ot); F~,w) 
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= fe  ( k  - On(l' ~ ) )  " U~(w - n( l '  ~); F~: )  " dF~(l) 
>_,~ Oot U~(w n(ot, or); F,~,w) 

k an(l, c0-~. U~(w - n(l, ct); F~,w) . dF~(l) 
+ fe<a - ~ j U~(w n(ot, or); Fa,w) 

k On(l, ol)-] . U~(w - n( l ,  c/); Fa,x) . aFT(l). 
= f - o= J U~(w n(oz, or); Fa,w) 

(A.16) 

Note that the e _> ot integrals in the fourth and sixth lines of (A. 16) are exactly equal. The 

strict inequality in (A.16) derives from the g < ot integrals in these two lines, since for 

these integrals we have (1) w - n(f, or) > w - n(a, c0, so the comparative risk-aversion 

condition implies U~(w - n(l,  t~))/U~(w - n(ot, t~)) > U~(w - n(e, cO)/U~(w - n(ct, cO) 

> o; (2) the term (k - 0n(l, ot)/Oot) is positive; and (3) since ct E (0, M), the distribution 

F?(') assigns positive probability to the range l E [0, a). 

From (A.16) we have 

(k 0n(f, a ) ~ .  U~(w - n(l, c0; F,~,w) "dF~(l)  (A.17) 0<f j 

and hence 

k >  

f On(l, U~(w - n(l, or); F,,i,w) dF?(e) 
Ol____.~) . 

o 

f U~(w - n(l ,  o0; Fo,,w) �9 dF~(e) 

= _ O'V2(F~,,~,)/Oa = 

#'V2(F,~,w)/aw 

Ot~2(ot , w)[Ool 
O~b2(ot, w) /Ow'  (A.18) 

which is a contradiction since it violates (A. 14). This then establishes inequality (A. 13). 

Inequality (A.13) implies that, throughout the entire region {(or, w)[ o~ E (0, M), w _ 

w0}, leftward movements along any ~bl(ce, w) indifference curve must strictly lower ~b2(u, 

w), and rightward movements along any ~bl(C~ , w) indifference curve must strictly lower 

q~ 1(Or, 14:). 
Assume or2 < c~, as illustrated in Figure A.2. In this case, consider the point (c~, w0). 

As we move rightward along the 4~2(a, w) indifference curve that passes through this point, 

the value of q~l(O~, w) must strictly drop, so that ~a(a, w) strictly prefers the point (c~, Wo) 

to every point on the curve that lies to the right of (c~, w0). But since (c~, w0) is a global 

optimum for q~z(a, w0), this indifference curve must lie everywhere on or above the hori- 

zontal line w = Wo. Since 0~1(o~, w)/Ow > 0, this implies that 4~1(c~, w) strictly prefers 

the point (o~2, w0) to every point on the line w = Wo that lies to the right of (o~2, Wo), which 
contradicts the assumption that there is a global maximum c~ that exceeds fries to the right 

of) o/2. This, then, establishes that oq _< ct 2. 
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wI 

Wo 

0 a~ a] M 
q 

Figure A.2. Indifference curve for the preference function r w). 

To complete the proof, we must rule out ct I = t~ 2 unless oq = M. In the case ul  < M, 

DE.2 and k > 1 imply o~ 2 > 0, so that equality of  t~l and a 2 would imply 0 < u2 = 

o~ < M. However, this case of identical interior optima would imply that both individuals' 

indifference curves had zero slope at the interior point (t~ 1, Wo) = (c~2, Wo), which vio- 

lates (A. 13). []  

Proof of  Theorem 3. 

For all c~ E [0, M] and w > w0, define the probability distribution 

P=,w = (w0 - e(a)  - ol,/5; Wo - et, 1 - / 5 )  (A. 19) 

and defme the preference functions 

t~i(Ot, W) =~ r w) i = 1, 2. ( A . 2 0 )  

By construction, each function t~i(O~, W) is continuously differentiable and possesses indif- 

ference curves over the set {(or, w)[ ot E [0, M] ,  w ___ Wo}, which are "inherited" from 

~i( ' ) ,  as in Figure A.3. Since first-order stochastic dominance preference ensures that 

O(~i(ot, w)/aw > 0, these indifference curves cannot be either backward bending or forward 

bending, although they can be either upward or downward sloping or both. Note that the 

horizontal line w = Wo in the figure corresponds to the one-dimensional feasible set in 

the problem (59). In other words, r Wo) equals the objective function in (59), so ot~ 

and t~ 2 are the smallest and largest global maxima of ~bl(t~, w0) and 4~2(c~, Wo), respectively. 

We first show that, at any point in the set {(or, w)] ot E (0, M) ,  w _> w0}, the marginal 

rates of  substitution for the preference functions 4h(t~, w) and r  w) must  satisfy 

MRSI(Ot, w) - Oq~l(ot, w)lOot 0r w)lOot MRS2(ot, w). (A.21) 
a r  w)law < ar w)/aw - 
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From (A.20) and (15), we have 

all(C/, w ) l a a  _ (1 + l ' ( a ) ) .  U~(w - l (a)  - a ;  P~,w) "/5 + U~(w - ~; Pa,w)" (1 - /3 )  

O f l ( ~ ,  w ) / a w  U; (w  - l (a )  - a ;  Pa,w) "/5 + U~(w - a;  Pa,~)" (1 - / 5 )  

= I +  
l ' (a) 

1 + U ; ( w  - l(ot) - a ;  P~,w) 

< 1 +  
l'(cO 

1 + ~ U~(w - a; P.,w) -~ U~(w-e(oO-~;e.,~)_) .~1_~ 

af2(~, w)/Oa 
a%(a, w)/aw 

(A.22) 

where the strict inequality follows since (1) w - o/ > w - g(o/) - t~ so the comparative 

risk aversion condition implies U~(w - a; P~w)/U~(w - f(cO - a; P~w) > U~(w - a; 

Po~O/U~(w - l(t~) - t~; P~w) > 0; (2) these ratios occur in denominators; and (3) l '(ot) 

< 0 .  
Inequality (A.21) implies that, throughout the entire region {(o/, w)[ o/ E (0, M), w _> 

w0}, rightward movements along any fl(o/,  w) indifference curve must strictly lower 

f2(ot, w), and leftward movements along any f2(ot, w) indifference curve must strictly 

lower fl(ot,  w). 
Assume a l  < or2, as illustrated in Figure A.3. In this case, consider the pomt (Oil, w0). 

As we move rightward along the fl(o/, w) indifference curve that passes through this point, 

the value of f2 (a ,  w) must strictly drop, so that fiR(a, w) strictly prefers the point (a~, w0) 

to every point on the curve that lies to the fight of (a l ,  w0). But since (al ,  w0) is a global 

wI 

o a; a~ 

O~ 

Figure A.3. Indifference curve for the preference function (ol(c2, w). 

J 

M 
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op t imum for  ~b1(0/, Wo), this indif ference curve  mus t  l ie  eve rywhere  on o r  above the hori-  

zontal  l ine w = Wo. Since 04~2(0/, w ) / O w  > 0, this impl ies  that ~b2(0/, w) str ict ly prefers 

the point  (oq, Wo) to every point  on the l i n e  w = w 0 that lies to the right of  (0/1, Wo), which 

contradicts the assumption that there is a global  m a x i m u m  0/~ that exceeds (lies to the right 

of) 0/1. This,  then, establishes that 0/2 --- 0/1- 

To comple te  the proof ,  we mus t  rule out  0/~ = 0/~ unless ei ther  a l  = 0 o r  0/2 = M. 

I f  nei ther  o f  these  cases hold ,  we have ot 1 > 0 and 0/2 < M, so that  equali ty of  0/1 and 

0/2 would imply  0 < 0l I = 0/2 < M. However,  this case o f  identical  i n t e r i o r  optima would 

imply that both individuals '  indifference curves had zero slope at the interior  point (oe~, w0) 

= (0/~, w0), which  violates  (A.21).  []  
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Notes 

1. Depending on the context, the probabilities in these distributions can either be actuarially determined chances 

or a decision maker's personal or subjective probabilities. 

2. An interpretive note: The rectangle property is essentially the condition that (smooth) expected utility prefer- 

ences are separable across mutually exclusive states of nature. Given the rectangle property, the MRS at cer- 

tainty property is equivalent to s ta te - independent  preferences, a property we assume throughout this paper. 

For important analyses of s ta te -dependent  preferences under both expected utility and non-expected utility, 

see Karni [1985, 1987]. For a specific application to insurance theory, see Cook and Graham [1977]. 
3. In the standard sense of Rothschild and Stiglitz [1970, 1971]. 

4. Or, more properly, it will not hold in the general case of n states. 

5. As before, they satisfy risk aversion since they are steeper or flatter than the iso-expected value lines in the 

region above or below the 45 ~ line, so mean perserving increases in risk make them worse off. 

6. For an explicit example, based on the proof of Dekel's Proposition 1, let "V(P) -~ IF, x / x  i �9 Pi - 5] 3 + 8 �9 

[F'xi 'pi  - 4913. Since [']3 is a strictly increasing function over all positive and negat ive  arguments, this pref- 
erence function is strictly increasing in each x i and satisfies strict first order stochastic dominance preference. 

Since any mean preserving spread lowers the first bracketed term yet preserves the second, V(') is also strictly 
averse. Calculation reveals that 'V($100, �89 $0, I/2) = ~($49, �89 $49, �89 = 8 but ~($74.5, 1/2; $24.5, �89 

~- 6.74. But since the latter probability distribution is a .50:.50 outcome mixture of the first two, ~(') is 
not outcome convex. 

7. This branch goes by the term genera l i zed  expec ted  utility analysis  (e.g., Machina [1982, 1983]). 

8. Algebraically, {U(xl )  } forms a concave sequence if and only if its point-to-point slopes (U(x2) - U(Xl))/  

(x 2 - Xl), (U(x3) - U(x2))/(x  3 - x2), . . .  are successively nonincreasing. 
9. { Ua(Xl)} is at least as concave than { Ut,(xi)} if and only if each ratio of adjacent point-to-point slopes [(U(Xi+l) 

- U(xi))/(Xi+l - x l )] /[ (U(x  i) - U(x i_ l ) ) / (x  i - Xi_l)] is no greater for {Ua(xi)  } than for {Ub(xi) }.  

10. For the appropriate definition of "at least as risk averse as" under non-expected utility, see Machina [1982, 
1984]. 

11. This follows from applying Machina [1982, eq. 8] to the path F(-; ce) =- (Xl, Pl  . . . . .  x i -1 ,  Pi-1; c~, Pi; Xi+l, 

Pi+I; �9 �9 �9 ; Xn, Pn). 
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12. In some of our more formal analysis below (including proofs of theorems), we shall use the natural extension 

of these ideas to the more general case of a preference functional 'V(F) over cumulative distribution func- 

tions F(-), with local utility function U(,; F)  (see Machina (1982)). 

13. The reader wishing an introduction to the vast body of insurance results can do no better than the excellent 

survey by Dioune and Harrington [1992, pp. 1-48], not to mention the rest of the papers in that volume. 

14. This point is nicely made by Karni [1992]. 

15. Note that this framework abstracts from the problem of uninsurable background risk, as studied, for example, 

by Doherty and Schlesinger [1983], Schlesinger and Doberty [1985], and Eeckhoudt and Kimball [1992]. 

16. As demonstrated in Pratt [1964], further results that link increasing or decreasing absolute or relative risk 

aversion or both to changes in c~ as an individual's wealth changes can be derived as corollaries of result CO.3. 

17. So can result CO.1, if you go and calculate the slope of the budget lines in Figure 7. 

18. This close correspondence of expected utility and non-expected utility first order conditions will come as 

no surprise to those who have read Chew, Epstein, and Zllcha [1988]. We'll come to this again below. 

19. Readers will recognize this argument (and its formalization in the proofs of  the theorems) as an application 

of the well known s ingle-cross ing p roper t y  argument from incentive theory, as in Mirrlees [ 1971], Spence 

[1974], and Guesnerie and Laffont [1984], and generalized and extended by Milgrom and Shannon [1994]. 

20. Thus, sgn(max{e - ~, 0}) equals 1 when f > c~ and equals 0 when g _< c~. 

21. This was shown by Schlesinger [1981] and Kami [1983]. 

22. See also the related work in Arrow [1965c, 1974], the subsequent extensions by Raviv [1979] (discussed 

below), Blazenko [1985], Gollier [1987], and Marshall [1992], and the survey by Gollier [1992, see. 2]. 

23. Note, however, that derivative l'(g) in PE.2 or PE.3 need not be constant, but as Raviv [1979, pp. 90, 91] 

has shown, depends on both partys' levels of risk aversion as well as marginal indemnity cost C ' ( I ) .  

24. Thus, (I*('), ~r*) is a solution to problem (40) for some given w 1 and w 2, though it need not be a unique 

solution. 

25. By way of clarification, note that A~r is a differential change in the scalar ~, while ~d(.) is a differential 

change in the entire func t ion  I( .) ,  in the sense being some differential change z3d(g) in l(g) for every value of g. 

26. Readers intrigued by this type of argument are referred to Chew, Epstein, and Zilcha [1988], who, under 

slightly different assumptions (namely, uniqueness of maxima) demonstrate its astounding generality. 

27. See also Gerber [1978], Moffet [1979], Biihlman and Jewell [1979], and Eliashberg and Winkler [1981] for 

important subsequent contributions, and Lemaire [1990] and Gollier [1992, sec. 1] for insightful surveys. 

28. The case of differing beliefs, though clearly more realistic, is beyond the scope of this paper. 

29. We say risk to lerance since pi(x)  is the reciprocal of the standard Arrow-Pratt measure of absolute risk 

aversion. 

30. Like the two-state formula (16), its n-state equivalent follows immediately from equation (15). 

31. For example, Dionne and Eeckboudi [1985] show that greater risk aversion can lead to either more or less 

self-protection. 

32. The reader is also referred to Doherty and Eeckhoudt [1994] and Schruldt [1994], which besides Konrad 

and Skaperdas [1993] and Karni [1992] are the only paper on non-expected utility and insurance of which 

I am aware. Schmidt studies the non-expected utility functional form of Quiggin [1982] (including the special 

case of Yaari [1987]), and derives implications for the demand curve for insurance and risk sharing, for these 

functional forms. Doherty and Eeckhoudt [1994] delve further into the insurance implications of the Yaari 

[1987] model. 

33. See, for example, the survey of Camerer and Weber [1992]. 

34. From here until the end of the paragraph fonowi.ng (A.8), an equationsand discussion refer to this point (p, c). 

35. Since c + p �9 ~ > c o + p �9 ~ = w o - k .  E [ e ]  + p .  ( X .  E [ e ]  - e )  = p �9 (Wo - e )  + 0 - p ) "  (Wo - 

)~. E[f']), normegativity of c + p"  ~ on the set {(p, c ) l p  ~ [0, 1], c _> Co} follows from normegativity of 

w 0 - ~ and w 0 - X" E[e] .  Note that since c > c o > 0, the condition c - p �9 k < 0 also implies that p 

must be nonzero and hence positive. 

36. From here until (A.18), all equations and discussion refer to this point (~, w). 
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