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NON-FORMAL CO-SYMPLECTIC MANIFOLDS

GIOVANNI BAZZONI, MARISA FERNÁNDEZ, AND VICENTE MUÑOZ

Abstract. We study the formality of the mapping torus of an orientation-
preserving diffeomorphism of a manifold. In particular, we give conditions
under which a mapping torus has a non-zero Massey product. As an applica-
tion we prove that there are non-formal compact co-symplectic manifolds of
dimension m and with first Betti number b if and only if m = 3 and b ≥ 2, or

m ≥ 5 and b ≥ 1. Explicit examples for each one of these cases are given.

1. Introduction

In this paper we follow the nomenclature of [19], where co-symplectic manifolds
are the odd-dimensional counterparts to symplectic manifolds. In terms of differ-
ential forms, a co-symplectic structure on a (2n + 1)-dimensional manifold M is
determined by a pair (F, η) of closed differential forms, where F is a 2-form and
η is a 1-form such that η ∧ Fn is a volume form, so that M is orientable. In this
case, we say that (M,F, η) is a co-symplectic manifold. Earlier, such a manifold
was called co-symplectic by Libermann [20], or almost-co-symplectic by Goldberg
and Yano [17].

The simplest examples of co-symplectic manifolds are the manifolds called co-
Kähler by Li in [19], or co-symplectic by Blair [3]. Such a manifold is locally a
product of a Kähler manifold with a circle or a line. In fact, a co-Kähler structure
on a (2n+1)-dimensional manifold M is a normal almost contact metric structure
(φ, η, ξ, g) on M , that is, a tensor field φ of type (1, 1), a 1-form η, a vector field ξ
(the Reeb vector field) with η(ξ) = 1, and a Riemannian metric g satisfying certain
conditions (see section 3 for details) such that the 1-form η and the fundamental
2-form F given by F (X,Y ) = g(φX, Y ), for any vector fields X and Y on M , are
closed.

The topological description of co-symplectic and co-Kähler manifolds is due to
Li [19]. There he proves that a compact manifold M has a co-symplectic structure
if and only if M is the mapping torus of a symplectomorphism of a symplectic man-
ifold, while M has a co-Kähler structure if and only if M is a Kähler mapping torus,
that is, M is the mapping torus of a Hermitian isometry on a Kähler manifold. This
result may be considered an extension to co-symplectic and co-Kähler manifolds of
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Tischler’s Theorem [25] that asserts that a compact manifold is a mapping torus if
and only if it admits a non-vanishing closed 1-form.

The existence of a co-Kähler structure on a manifold M imposes strong restric-
tions on the underlying topology of M . Indeed, since co-Kähler manifolds are
odd-dimensional analogues of Kähler manifolds, several known results from Kähler
geometry carry over to co-Kähler manifolds. In particular, every compact co-Kähler
manifold is formal. Another similarity is the monotone property for the Betti num-
bers of compact co-Kähler manifolds [7].

Intuitively, a simply connected manifold is formal if its rational homotopy type
is determined by its rational cohomology algebra. Simply connected compact man-
ifolds of dimension less than or equal to 6 are formal [13,23]. We shall say that M
is formal if its minimal model is formal or, equivalently, if the de Rham complex
(ΩM,d) of M and the algebra of the de Rham cohomology (H∗(M), d = 0) have
the same minimal model (see section 2 for details).

It is well known that the existence of a non-zero Massey product is an obstruction
to formality. In [13] the concept of formality is extended to a weaker notion called
s-formality. There, the second and third authors prove that an orientable compact
connected manifold, of dimension 2n or 2n− 1, is formal if and only if it is (n− 1)-
formal.

The importance of formality in symplectic geometry stems from the fact that it
allows one to distinguish symplectic manifolds which admit Kähler structures from
those which do not [8, 15, 24]. It seems thus interesting to analyze what happens
for co-symplectic manifolds. In this paper we consider the following problem on
the geography of co-symplectic manifolds:

For which pairs (m = 2n + 1, b), with n, b ≥ 1, are there compact
co-symplectic manifolds of dimension m and with b1 = b which are
non-formal?

We address this question in section 5. It will turn out that the answer is the
same as for compact manifolds [14], i.e., that there are always non-formal examples
except for (m, b) = (3, 1).

On any compact co-symplectic manifold M , the first Betti number must satisfy
b1(M) ≥ 1, since the (2n+ 1)-form η ∧ Fn defines a non-zero cohomology class on
M , and hence η defines a cohomology class [η] �= 0. It is known that any orientable
compact manifold of dimension ≤ 4 and with first Betti number b1 = 1 is formal
[14].

The main problem in order to answer the question above is to construct examples
of non-formal compact co-symplectic manifolds of dimension m = 3 with b1 ≥ 3 as
well as examples of dimension m = 5 with b1 = 1. The other cases are covered in
section 5, using essentially the 3-dimensional Heisenberg manifold to obtain non-
formal co-symplectic manifolds of dimension m ≥ 3 and with b1 = 2 as well as
non-formal co-symplectic manifolds of dimension m ≥ 5 and with b1 ≥ 2, or from
the non-formal compact simply connected symplectic manifold of dimension 8 given
in [15] to exhibit non-formal co-symplectic manifolds of dimension m ≥ 9 and with
b1 = 1.

To fill the gaps, we study in section 4 the formality of a (not necessarily sym-
plectic) mapping torus Nϕ obtained from N × [0, 1] by identifying N × {0} with
ϕ(N)× {1}, where ϕ is a self-diffeomorphism of N . The description of a minimal

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NON-FORMAL CO-SYMPLECTIC MANIFOLDS 4461

model for a mapping torus can be very complicated even for low degrees. Never-
theless, in Theorem 15 we determine a minimal model of Nϕ up to some degree
p ≥ 2 when ϕ satisfies some extra conditions, namely that the map induced on
cohomology ϕ∗ : Hk(N) → Hk(N) does not have the eigenvalue λ = 1, for any
k ≤ (p− 1), but ϕ∗ : Hp(N) → Hp(N) has the eigenvalue λ = 1 with multiplicity
r ≥ 1. In particular (see Corollary 16), we show that if r = 1, Nϕ is p-formal in
the sense mentioned above.

Moreover, in Theorem 13 we prove that Nϕ has a non-zero (triple) Massey prod-
uct if there exists p > 0 such that the map

ϕ∗ : Hp(N) → Hp(N)

has the eigenvalue λ = 1 with multiplicity 2. In fact, we show that the Massey
product 〈[dt], [dt], [α̃]〉 is well-defined on Nϕ and it does not vanish, where dt is
the 1-form defined on Nϕ by the volume form on S1, and [α̃] ∈ Hp(Nϕ) is the
cohomology class induced on Nϕ by a certain cohomology class [α] ∈ Hp(N) fixed
by ϕ∗.

Regarding symplectic mapping torus manifolds, first we notice that if N is a
compact symplectic 2n-manifold, and ϕ : N → N is a symplectomorphism, then
the map induced on cohomology ϕ∗ : H2(N) → H2(N) always has the eigenvalue
λ = 1. As a consequence of Theorem 15, we get that if Nϕ is a symplectic mapping
torus such that the map ϕ∗ : H1(N) → H1(N) does not have the eigenvalue λ = 1,
then Nϕ is 2-formal if and only if the eigenvalue λ = 1 of ϕ∗ : H2(N) → H2(N)
has multiplicity r = 1. Thus, in these conditions, the co-symplectic manifold Nϕ is
formal when N has dimension four.

In section 5, using Theorem 13, we solve the case m = 3 with b1 ≥ 3 taking the
mapping torus of a symplectomorphism of a surface of genus k ≥ 2 (see Proposition
20). For m = 5 and b1 = 1 we consider the mapping torus of a symplectomorphism
of a 4-torus (see Proposition 22).

Let G be a connected, simply connected solvable Lie group, and let Γ ⊂ G be a
discrete, co-compact subgroup. Then M = Γ\G is a solvmanifold. The manifold
constructed in Proposition 22 is not a solvmanifold according to our definition.
However, it is the quotient of a solvable Lie group by a closed subgroup. In section 6
we present an explicit example of a non-formal compact co-symplectic 5-dimensional
manifold S, with first Betti number b1(S) = 1, which is a solvmanifold. We describe
S as the mapping torus of a symplectomorphism of a 4-torus, so this example fits
in the scope of Proposition 22.

2. Minimal models and formality

In this section we recall some fundamental facts of the theory of minimal models.
For more details, see [9], [10] and [11].

We work over the field R of real numbers. Recall that a commutative differential
graded algebra (A, d) (CDGA for short) is a graded algebra A =

⊕
k≥0 A

k which

is graded commutative, i.e. x · y = (−1)|x||y|y · x for homogeneous elements x and
y, together with a differential d : Ak → Ak+1 such that d2 = 0 and d(x · y) =
dx · y + (−1)|x|x · dy (here |x| denotes the degree of the homogeneous element x).

Morphisms of CDGAs are required to preserve the degree and to commute with
the differential. Notice that the cohomology of a CDGA is an algebra which can
be turned into a CDGA by endowing it with the zero differential. A CDGA is said
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to be connected if H0(A, d) ∼= R. The main example of a CDGA is the de Rham
complex of a smooth manifold M , (Ω∗(M), d), where d is the exterior differential.

A CDGA (A, d) is said to be minimal (or Sullivan) if the following happens:

• A =
∧
V is the free commutative algebra generated by a graded (real)

vector space V =
⊕

k V
k;

• there exists a basis {xi, i ∈ J } of V , for a well-ordered index set J , such
that |xi| ≤ |xj | if i < j and the differential of a generator xj is expressed in
terms of the preceding xi (i < j); in particular, dxj does not have a linear
part.

We have the following fundamental result:

Proposition 1. Every connected CDGA (A, d) has a minimal model, that is, there
exist a minimal algebra (

∧
V, d) together with a morphism of CDGAs ϕ : (

∧
V, d) →

(A, d) which induces an isomorphism ϕ∗ : H∗(
∧
V, d) → H∗(A, d). The minimal

model is unique.

The (real) minimal model of a differentiable manifold M is by definition the
minimal model of its de Rham algebra (Ω∗(M), d).

Recall that a minimal algebra (
∧
V, d) is formal if there exists a morphism of

differential algebras ψ : (
∧
V, d) −→ (H∗(

∧
V ), 0) that induces the identity on co-

homology. Also a differentiable manifold M is formal if its minimal model is formal.
Many examples of formal manifolds are known: spheres, projective spaces, compact
Lie groups, homogeneous spaces, flag manifolds, and compact Kähler manifolds.

In [9], the formality of a minimal algebra is characterized as follows.

Proposition 2. A minimal algebra (
∧
V, d) is formal if and only if the space V

can be decomposed as a direct sum V = C⊕N with d(C) = 0, d injective on N and
such that every closed element in the ideal I(N) generated by N in

∧
V is exact.

This characterization of formality can be weakened using the concept of s-
formality introduced in [13].

Definition 3. A minimal algebra (
∧
V, d) is s-formal (s > 0) if for each i ≤ s the

space V i of generators of degree i decomposes as a direct sum V i = Ci⊕N i, where
the spaces Ci and N i satisfy the three following conditions:

(1) d(Ci) = 0,
(2) the differential map d : N i →

∧
V is injective,

(3) any closed element in the ideal Is = I(
⊕

i≤s N
i), generated by the space⊕

i≤s N
i in the free algebra

∧
(
⊕

i≤s V
i), is exact in

∧
V .

A smooth manifold M is s-formal if its minimal model is s-formal. Clearly, if
M is formal, then M is s-formal, for any s > 0. The main result of [13] shows that
sometimes the weaker condition of s-formality implies formality.

Theorem 4. Let M be a connected and orientable compact differentiable manifold
of dimension 2n, or (2n− 1). Then M is formal if and only if is (n− 1)-formal.

In order to detect non-formality, instead of computing the minimal model, which
usually is a lengthy process, we can use Massey products, which are obstructions
to formality. Let us recall their definition. The simplest type of Massey product
is the triple Massey product. Let (A, d) be a CDGA and suppose a, b, c ∈ H∗(A)
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are three cohomology classes such that a · b = b · c = 0. Take co-cycles x, y and z
representing these cohomology classes and let s, t be elements of A such that

ds = (−1)|x|x · y, dt = (−1)|y|y · z.

Then one checks that

w = (−1)|x|x · t+ (−1)|x|+|y|−1s · z

is a co-cycle. The choice of different representatives gives an indeterminacy, repre-
sented by the space

I = a ·H |y|+|z|−1(A) +H |x|+|y|−1(A) · c.

We denote by 〈a, b, c〉 the image of the co-cycle w in H∗(A)/I. As is proven in [9]
(and which is essentially equivalent to Proposition 2), if a minimal CDGA is formal,
then one can make uniform choices of co-cycles so that the classes representing
(triple) Massey products are exact. In particular, if the real minimal model of a
manifold contains a non-zero Massey product, then the manifold is not formal.

3. Co-symplectic manifolds

In this section we recall some definitions and results about co-symplectic mani-
folds, and we extend to co-symplectic Lie algebras the result of Fino-Vezzoni [16]
for co-Kähler Lie algebras.

Definition 5. LetM be a (2n+1)-dimensional manifold. An almost contact metric
structure on M consists of a quadruplet (φ, ξ, η, g), where φ is an endomorphism
of the tangent bundle TM , ξ is a vector field, η is a 1-form and g is a Riemannian
metric on M satisfying the conditions

(1) φ2 = −Id + η ⊗ ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for X,Y ∈ Γ(TM).

Thus, φ maps the distribution ker(η) to itself and satisfies φ(ξ) = 0. We call
(M,φ, η, ξ, g) an almost contact metric manifold. The fundamental 2-form F on M
is defined by

F (X,Y ) = g(φX, Y ),

for X,Y ∈ Γ(TM).
Therefore, if (φ, ξ, η, g) is an almost contact metric structure on M with fun-

damental 2-form F , then η ∧ Fn �= 0 everywhere. Conversely (see [4]), if M is a
differentiable manifold of dimension 2n + 1 with a 2-form F and a 1-form η such
that η ∧ Fn is a volume form on M , then there exists an almost contact metric
structure (φ, ξ, η, g) on M having F as the fundamental form.

There are different classes of structures that can be considered on M in terms
of F and η and their covariant derivatives. We recall here those that are needed in
the present paper:

• M is co-symplectic iff dF = dη = 0;
• M is normal iff the Nijenhuis torsion Nφ satisfies Nφ = −2dη ⊗ ξ;
• M is co-Kähler iff it is normal and co-symplectic or, equivalently, φ is
parallel,
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where the Nijenhuis torsion Nφ is given by

Nφ(X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ],

for X,Y ∈ Γ(TM).
In the literature, co-symplectic manifolds are often called almost co-symplectic,

while co-Kähler manifolds are called co-symplectic (see [3, 5, 7, 16]).
Let us recall that a symplectic manifold (M,ω) is a pair consisting of a 2n-di-

mensional differentiable manifold M with a closed 2-form ω which is non-degenerate
(that is, ωn never vanishes). The form ω is called symplectic. The following well-
known result shows that co-symplectic manifolds are really the odd-dimensional
analogue of symplectic manifolds; a proof can be found in Proposition 1 of [19].

Proposition 6. A manifold M admits a co-symplectic structure if and only if the
product M × S1 admits an S1-invariant symplectic form.

A theorem by Tischler [25] asserts that a compact manifold is a mapping torus
if and only if it admits a non-vanishing closed 1-form. This result was extended
recently to co-symplectic manifolds by Li [19]. Let us first recall some definitions.

Let N be a differentiable manifold and let ϕ : N → N be a diffeomorphism. The
mapping torus Nϕ of ϕ is the manifold obtained from N × [0, 1] by identifying the
ends with ϕ, that is,

Nϕ =
N × [0, 1]

(x, 0) ∼ (ϕ(x), 1)
.

It is a differentiable manifold, because it is the quotient of N × R by the infinite
cyclic group generated by (x, t) → (ϕ(x), t + 1). The natural map π : Nϕ → S1

defined by π(x, t) = e2πit is the projection of a locally trivial fiber bundle.

Definition 7. Let Nϕ be a mapping torus of a diffeomorphism ϕ of N . We say that
Nϕ is a symplectic mapping torus if (N,ω) is a symplectic manifold and ϕ : N → N
a symplectomorphism, that is, ϕ∗ω = ω.

Theorem 8 ([19, Theorem 1]). A compact manifold M admits a co-symplectic
structure if and only if it is a symplectic mapping torus M = Nϕ.

Notice that if M is a symplectic mapping torus M = Nϕ, then the pair (F, η)
defines a co-symplectic structure on M , where F is the closed 2-form on M defined
by the symplectic form on N , and

η = π∗(θ),

with θ the volume form on S1. Moreover, notice that any 3-dimensional mapping
torus is a symplectic mapping torus if the corresponding diffeomorphism preserves
the orientation, since such a diffeomorphism is isotopic to an area-preserving one.
However, in higher dimensions, there exist mapping tori without co-symplectic
structures. That is, they are not symplectic mapping tori (see Remark 19 in section
5 and [19]).

Next, we consider a Lie algebra g of dimension 2n + 1 with an almost contact
metric structure, that is, with a quadruplet (φ, ξ, η, g), where φ is an endomorphism
of g, ξ is a non-zero vector in g, η ∈ g∗ and g is a scalar product in g, satisfying (1).
Then, g is said to be co-symplectic iff dF = dη = 0; and g is called co-Kähler iff it

is normal and co-symplectic, where d :
∧k

g∗ →
∧k+1

g∗ is the Chevalley-Eilenberg
differential.

The following result is proved in [16].
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Proposition 9. Co-Kähler Lie algebras in dimension 2n+1 are in one-to-one cor-
respondence with 2n-dimensional Kähler Lie algebras endowed with a skew-adjoint
derivation D which commutes with its complex structure.

In order to extend this correspondence to co-symplectic Lie algebras we need to
recall the following. Let (V, ω) be a symplectic vector space (hence ω is a skew-
symmetric invertible matrix). An element A ∈ gl(V ) is an infinitesimal symplectic
transformation if A ∈ sp(V ), that is, if

Atω + ωA = 0.

A scalar product g on (V, ω) is said to be compatible with ω if the endomorphism
J : V → V defined by ω(u, v) = g(u, Jv) satisfies J2 = −Id. We prove the following:

Proposition 10. Co-symplectic Lie algebras of dimension 2n + 1 are in one-to-
one correspondence with 2n-dimensional symplectic Lie algebras endowed with a
compatible metric and a derivation D which is an infinitesimal symplectic transfor-
mation.

Proof. Let (φ, ξ, η, g) be a co-symplectic structure on a Lie algebra g of dimension
2n+ 1. Set h = ker(η). For u, v ∈ h we compute

η([u, v]) = −dη(u, v) = 0,

since η is closed (this is simply Cartan’s formula applied to the case in which η(u)
and η(v) are constant). Then h is a Lie subalgebra of g. Note that h inherits an
almost complex structure J and a metric g which are compatible. From φ and g
we obtain the 2-form ω which is closed and non-degenerate by hypothesis. Thus
(h, ω) is a symplectic Lie algebra.

Actually h is an ideal of g. Indeed, the fact that η(ξ) = 1 implies that ξ does
not belong to [g, g], and then one has

[h, h] ⊆ h and [ξ, h] ⊆ h.

Thus one can write
g = Rξ ⊕adξ

h.

Since ω is closed, we obtain

0 = dω(ξ, u, v) = −ω([ξ, u], v) + ω([u, v], ξ)− ω([v, ξ], u)

= −ω(adξ(u), v)− ω(u, adξ(v)).(2)

The correspondence X �→ adξ(X) gives a derivation D of h (this follows from
the Jacobi identity in g), and the above equality shows that D is an infinitesimal
symplectic transformation.

Next suppose we are given a symplectic Lie algebra (h, ω) endowed with a metric
g and a derivation D ∈ sp(h). Set

g = Rξ ⊕ h

and define the following Lie algebra structure on g:

[u, v] := [u, v]h, [ξ, u] := D(u), u, v ∈ h.

Since D is a derivation of h, the Jacobi identity holds in g. Let J denote the almost
complex structure compatible with ω and g. Extend J to an endomorphism φ of g
setting φ(ξ) = 0 and extend g so that ξ has length 1 and ξ is orthogonal to h. Also,
let η be the dual 1-form with respect to the metric g. It is immediate to see that
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dη = 0. On the other hand, equation (2) shows that dω = 0 as D is an infinitesimal
symplectic transformation. Thus g is a co-symplectic Lie algebra. �

Remark 11. If one wants to obtain a co-symplectic nilpotent Lie algebra, then the
initial data in Proposition 10 must be modified so that the symplectic Lie algebra
and the derivation D are nilpotent. This gives a way to classify co-symplectic
nilpotent Lie algebras in dimension 2n + 1 starting from nilpotent symplectic Lie
algebras in dimension 2n and a nilpotent symplectic derivation.

4. Minimal models of mapping tori

In this section we study the formality of the mapping torus of an orientation-
preserving diffeomorphism of a manifold. We start with some useful results.

Lemma 12. Let N be a smooth manifold and let ϕ : N → N be a diffeomorphism.
Let M = Nϕ denote the mapping torus of ϕ. Then the cohomology of M sits in an
exact sequence

0 → Cp−1 → Hp(M) → Kp → 0,

where Kp is the kernel of ϕ∗ − Id : Hp(N) → Hp(N), and Cp is its cokernel.

Proof. This is a simple application of the Mayer-Vietoris sequence. Take U, V
as two open intervals covering S1 = [0, 1]/0 ∼ 1, where U ∩ V is the disjoint
union of two intervals. Let U ′ = π−1(U), V ′ = π−1(V ). Then Hp(U ′) ∼= Hp(N),
Hp(V ′) ∼= Hp(N) and Hp(U ′ ∩ V ′) ∼= Hp(N) ⊕ Hp(N). The Mayer-Vietoris se-
quence associated to this covering becomes

. . . → Hp(M) → Hp(N)⊕Hp(N)
F−→ Hp(N)⊕Hp(N) → Hp+1(M)

→ Hp+1(N)⊕Hp+1(N) → . . . ,(3)

where the map F is ([α], [β]) �→ ([α]− [β], [α]− ϕ∗[β]).
Write

K=ker
(
ϕ∗ − Id : H∗(N)→H∗(N)

)
and C=coker

(
ϕ∗ − Id : H∗(N)→H∗(N)

)
.

These are graded vector spaces K =
⊕

Kp, C =
⊕

Cp. The exact sequence (3)
then yields an exact sequence 0 → Cp−1 → Hp(M) → Kp → 0. �

Let us look more closely at the exact sequence in Lemma 12. First take [β] ∈
Cp−1. Then [β] can be thought of as an element in Hp−1(N) modulo Im (ϕ∗ − Id).
The map Cp−1 → Hp(M) in Lemma 12 is the connecting homomorphism δ∗. This
is worked out as follows (see [6]): take a smooth function ρ(t) on U which equals 1
in one of the intervals of U ∩ V and zero on the other. Then

(4) δ∗[β] = [dρ ∧ β].

Write β̃ = dρ∧β. If we put the point t = 0 in U∩V , then clearly β̃(x, 0) = β̃(x, 1) =

0, so β̃ is a well-defined closed p-form on M . (Note that [dρ] = [η] ∈ H1(S1), where

η = π∗(θ) = dt, so [β̃] ∈ Hp(M) is [η ∧ β].)
On the other hand, if [α] ∈ Kp, then ϕ∗[α] = [α]. So ϕ∗α = α + dθ, for some

(p− 1)-form θ. Let us take a function ρ : [0, 1] → [0, 1] such that ρ ≡ 0 near t = 0
and ρ ≡ 1 near t = 1. Then, the closed p-form α̃ on N × [0, 1] given by

(5) α̃(x, t) = α(x) + d(ρ(t)θ(x)),
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where x ∈ N and t ∈ [0, 1], defines a closed p-form α̃ on M . Indeed, ϕ∗α̃(x, 0) =
ϕ∗α = α+dθ = α̃(x, 1). Moreover, the class [α̃] ∈ Hp(M) restricts to [α] ∈ Hp(N).
This gives a splitting

Hp(M) ∼= Cp−1 ⊕Kp.

Theorem 13. Let N be an oriented compact smooth manifold of dimension n,
and let ϕ : N → N be an orientation-preserving diffeomorphism. Let M = Nϕ

be the mapping torus of ϕ. Suppose that, for some p > 0, the homomorphism
ϕ∗ : Hp(N) → Hp(N) has eigenvalue λ = 1 with multiplicity1 two. Then M is
non-formal since there exists a non-zero (triple) Massey product. More precisely, if
[α] ∈ Kp ⊂ Hp(N) is such that

[α] ∈ Im
(
ϕ∗ − Id : Hp(N) → Hp(N)

)
,

then the Massey product 〈[η], [η], [α̃]〉 does not vanish.

Proof. First, we notice that if the eigenvalue λ = 1 of ϕ∗ : Hp(N) → Hp(N) has
multiplicity two, then there exists [α] ∈ Hp(N) satisfying the conditions mentioned
in Theorem 13. In fact, denote by

E = ker (ϕ∗ − Id)2

the graded eigenspace corresponding to λ = 1. Then K = ker(ϕ∗ − Id) ⊂ E is a
proper subspace. Take

(6) [β] ∈ Ep \Kp ⊂ Hp(N) and [α] = ϕ∗[β]− [β].

Thus [α] ∈ Kp ∩ Im
(
ϕ∗ − Id : Hp(N) → Hp(N)

)
. By (4) and Lemma 12, the

Massey product 〈[η], [η], [α̃]〉 is well-defined. In order to prove that it is non-zero
we proceed as follows. Clearly,

C ∼= E/I, where I = Im (ϕ∗ − Id) ∩ E.

As ϕ is an orientation-preserving diffeomorphism, the Poincaré duality pairing
satisfies that 〈ϕ∗(u), ϕ∗(v)〉 = 〈u, v〉, for u ∈ Hp(N), v ∈ Hn−p(N). Therefore the
λ-eigenspace of ϕ∗, Eλ, pairs non-trivially only with E1/λ. In particular, Poincaré
duality gives a perfect pairing,

Ep × En−p → R.

Now Kp × In−p is sent to zero: if x ∈ ker(ϕ∗ − Id) and y = ϕ∗(z) − z, then
〈x, y〉 = 〈x, ϕ∗(z)− z〉 = 〈x, ϕ∗(z)〉− 〈x, z〉 = 〈ϕ∗(x), ϕ∗(z)〉− 〈x, z〉 = 0. Therefore
there is a perfect pairing

Ep/Kp × In−p → R.

Take [β] and [α] as in (6). By the discussion above about Poincaré duality, there
is some [ξ] ∈ In−p such that

〈[β], [ξ]〉 �= 0.

Note that in particular, [ξ] pairs trivially with all elements in Kp.
Now consider the form α̃ on M corresponding to α as in (5), [α̃] ∈ Hp(M). Let

us take the p-form γ on N defined by

γ =

∫ 1

0

α̃(x, s)ds.

1In this paper, by multiplicity of the eigenvalue λ of an endomorphism A : V → V we mean
the multiplicity of λ as a root of the minimal polynomial of A.
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Then [γ] = [α] = ϕ∗[β]− [β] on N . Hence we can write

γ = ϕ∗β − β + dσ,

for some (p− 1)-form σ on N . Now let us set

γ̃(x, t) =

(∫ t

0

α̃(x, s)ds

)
+ β + d(ζ(t)(ϕ∗)−1σ),

where ζ(t), t ∈ [0, 1], equals 1 near t = 0, and equals 0 near t = 1. Then

ϕ∗(γ̃(x, 0)) = ϕ∗(β + d((ϕ∗)−1σ)) = ϕ∗β + dσ = γ + β = γ̃(x, 1),

so γ̃ is a well-defined p-form on M . Moreover,

d(γ̃(x, t)) = dt ∧ α̃(x, t)

on the mapping torus M . Therefore we have the Massey product

(7) 〈[dt], [dt], [α̃]〉 = [dt ∧ γ̃].

We need to see that this Massey product is non-zero. For this, we multiply
against [ξ̃], where ξ̃ is the (n − p)-form on M associated to ξ by the formula (5).
Recall that [ξ] ∈ In−p ⊂ Kn−p ⊂ Hn−p(M). We have

〈[dt ∧ γ̃], [ξ̃]〉 =
∫
M

dt ∧ γ̃ ∧ ξ̃ =

∫ 1

0

(∫
N×{t}

γ̃ ∧ ξ̃

)
dt .

Restricting to the fibers, we have [γ̃|N×{t}] = t[α] + [β] and [ξ̃|N×{t}] = [ξ]. More-

over, 〈[α], [ξ]〉 = 0 and 〈[β], [ξ]〉 = κ �= 0. So
∫
N×{t} γ̃ ∧ ξ̃ = κ �= 0. Therefore

〈[dt ∧ γ̃], [ξ̃]〉 = κ �= 0 .

Now the indeterminacy of the Massey product is in the space

I = [α̃] ∧H1(M) + [η] ∧Hp(M).

To see that the Massey product (7) does not live in I, it is enough to see that the

elements in I pair trivially with [ξ̃]. On the one hand, α̃ ∧ ξ̃ is exact in every fiber

(since 〈[α], [ξ]〉 = 0 on N). Therefore [α̃] ∧ [ξ̃] = 0. On the other hand, Hp(M) ∼=
Cp−1 ⊕ Kp. The elements corresponding to Cp−1 all have a dt-factor. Hence the
elements in [η] ∧Hp(M) are of the form [dt ∧ δ̃], for some [δ] ∈ Kp ⊂ Hp(N). But

then 〈[dt ∧ δ̃], [ξ̃]〉 =
∫
M

dt ∧ δ̃ ∧ ξ̃ = 〈[δ], [ξ]〉 = 0. �
Remark 14. The non-formality of the mapping torusM is proved in [12, Proposition
9] when p = 1 and the eigenvalue λ = 1 has multiplicity r ≥ 2, by a different method.

We finish this section with the following result, which gives a partial computation
of the minimal model of M .

From now on we write
ϕ∗
k : Hk(N) → Hk(N),

for each 1 ≤ k ≤ n, the induced morphism on cohomology by a diffeomorphism
ϕ : N → N .

Theorem 15. With M = Nϕ as above, suppose that there is some p ≥ 2 such that
ϕ∗
k does not have the eigenvalue λ = 1 (i.e. ϕ∗

k−Id is invertible) for any k ≤ (p−1),
and that ϕ∗

p does have the eigenvalue λ = 1 with some multiplicity r ≥ 1. Denote

Kj = ker
(
(ϕ∗

p − Id)j : Hp(N) → Hp(N)
)
,
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for j = 0, . . . , r. So {0} = K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kr. Write Gj = Kj/Kj−1,
j = 1, . . . , r. The map F = ϕ∗

p − Id induces maps F : Gj → Gj−1, j = 1, . . . , r
(here G0 = 0).

Then the minimal model of M is, up to degree p, given by the following genera-
tors:

W 1 = 〈a〉, da = 0,

W k = 0, k = 2, . . . , p− 1,

W p = G1 ⊕G2 ⊕ . . .⊕Gr, dw = a · F (w), w ∈ Gj .

Proof. We need to construct a map of differential algebras

ρ : (
∧

(W 1 ⊕W p), d) → (Ω∗(M), d)

which induces an isomorphism in cohomology up to degree p and an injection in
degree p+ 1 (see [9]). By Lemma 12, we have that

H1(M) = 〈[dt]〉,
Hk(M) = 0, 2 ≤ k ≤ p− 1,

Hp(M) = ker(ϕ∗
p − Id) = K1,

Hp+1(M) =
(
[dt] ∧ coker(ϕ∗

p − Id)
)
⊕ ker(ϕ∗

p+1 − Id).

We start by setting ρ(a) = dt, where t is the coordinate of [0, 1] in the description

M = (N × [0, 1])/(x, 0) ∼ (ϕ(x), 1) .

This automatically gives that ρ induces an isomorphism in cohomology up to degree
p − 1. Now let us go to degree p. Take a Jordan block of ϕ∗

p for the eigenvalue
λ = 1. Let 1 ≤ j0 ≤ r be its size. Then we may take v ∈ Kj0 \Kj0−1 in it. First,
this implies that v /∈ I = Im (ϕ∗

p − Id). Set

vj = (ϕ∗
p − Id)j0−jv ∈ Kj ,

for j = 1, . . . , j0. Now let bj denote the class of vj on Gj = Kj/Kj−1. Then
d(bj) = a · bj−1. We want to define ρ on b1, . . . , bj0 . For this, we need to construct
forms α̃1, . . . , α̃j0 ∈ Ωp(M) such that [α̃1] represents v1 ∈ K1 = Hp(M), and

dα̃j = dt ∧ α̃j−1 .

Then we set ρ(bj) = α̃j , and ρ is a map of differential algebras.
We work inductively. Let vj = [αj ] ∈ Hp(N). Here ϕ∗[αj ] − [αj ] = [αj−1]. As

ϕ∗[α1]− [α1] = 0, we have that ϕ∗α1 = α1 + dθ1. Set

α̃1(x, t) = α1(x) + d(ζ(t)θ1(x)),

where ζ : [0, 1] → [0, 1] is a smooth function such that ζ ≡ 0 near t = 0 and ζ ≡ 1
near t = 1. Clearly, [α̃1] = [α1] = v1.

Assume by induction that α̃1, . . . , α̃j have been constructed, and moreover satisfy
that

[α̃k|N×{t}] = [αk] +

k−1∑
i=1

cik(t)[αi],
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for some polynomials cik(t), k = 1, . . . , j. Note that the result holds for k = 1. To
construct α̃j+1, we work as follows. We define

γj(x) =

∫ 1

0

(
α̃j −

j−1∑
i=1

ciα̃i

)
dt.

This is a closed form on N . The constants ci are adjusted so that [γj ] = [αj ] =
vj = ϕ∗[αj+1]− [αj+1]. So we can write

γj = ϕ∗αj+1 − αj+1 − dθj+1

for some (p− 1)-form θj+1 on N . Write

α̂j+1 =

∫ t

0

(
α̃j(x, s)−

j−1∑
i=1

ciα̃i(x, s)

)
ds+ αj+1 + d(ζ(t)θj+1(x)) .

This is a p-form well-defined in M since ϕ∗
p(α̂j+1(x, 0)) = ϕ∗

p(αj+1) = γj + αj+1 +
dθj+1 = α̂j+1(x, 1). Set

α̃j+1 = α̂j+1 +
∑
i<j

ciα̃i+1.

Then

dα̃j+1 = dt ∧ α̃j .

Finally,

[α̃j+1|N×{t}] = [αj+1] +

j∑
i=1

ci(t)[αi] ,

for some ci(t), as required.
Repeating this procedure with all Jordan blocks, we finally get

ρ : (
∧

(W 1 ⊕W p), d) → (Ω∗(M), d).

Clearly Hp(
∧
(W 1 ⊕W p)) = K1, so ρ∗ is an isomorphism on degree p. For degree

p + 1, Hp+1(
∧
(W 1 ⊕ W p)) is generated by the elements a · b, where b ∈ Gj0

corresponds to some v ∈ Kj0 generating a Jordan block (equivalently, v /∈ I).
These elements generate coker(ϕ∗

p − Id), i.e.

Hp+1(
∧

(W 1 ⊕W p)) ∼= coker(ϕ∗
p − Id).

An element v = vj0 is sent, by ρ, to a p-form α̃j0 on M , which satisfies

[α̃j0 |N×{t}] = [αj0 ] +

j0−1∑
i=1

ci[αi] ,

for some ci = ci(t), following the previous notation. Therefore the class [dt ∧ α̃j0 ]
corresponds to [dt] ∧ [αj0 ], in the notation of Lemma 12. So

ρ∗ : Hp+1(
∧

(W 1 ⊕W p)) → Hp+1(M)

is the injection into the subspace [dt]∧ coker(ϕ∗
p − Id). This completes the proof of

the theorem. �
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Note that, in the notation of Proposition 2, we have that C1 = W 1, Cp = G1

and Np = G2 ⊕ . . .⊕Gr. Also take w ∈ Gr. Then a · w ∈ I(N), d(a · w) = 0, but
a · w is not exact. Hence

Corollary 16. Under the conditions of Theorem 15, if r ≥ 2, then M is non-
formal. Moreover, if r = 1, then M is p-formal (in the sense of Definition 3).

Applying this to symplectic mapping tori, we have the following. Let N be a
compact symplectic 2n-manifold, and assume that ϕ : N → N is a symplectomor-
phism such that the map induced on cohomology ϕ∗

1 : H1(N) → H1(N) does not
have the eigenvalue λ = 1. As ϕ∗

2 : H2(N) → H2(N) always has the eigenvalue
λ = 1 (ϕ∗ fixes the symplectic form), then we have that Nϕ is 2-formal if and only
if the eigenvalue λ = 1 of ϕ∗

2 has multiplicity r = 1.
If n = 2, then Nϕ is a 5-dimensional co-symplectic manifold with b1 = 1. In

dimension 5, Theorem 4 says that 2-formality is equivalent to formality. Therefore
we have the following result:

Corollary 17. 5-dimensional non-formal co-symplectic manifolds with b1 = 1 are
given as mapping tori of symplectomorphisms ϕ : N → N of compact symplectic 4-
manifolds N , where ϕ∗

1 does not have the eigenvalue λ = 1 and ϕ∗
2 has the eigenvalue

λ = 1 with multiplicity r ≥ 2.

Finally, let us mention that an analogue of Theorem 15 for p = 1 is harder to
obtain. However, at least we can still say that if λ = 1 is an eigenvalue of ϕ∗

1 with
multiplicity r ≥ 2, then M = Nϕ is non-formal (by Remark 14). In addition, one
can also obtain a non-formal mapping torus such that λ = 1 is an eigenvalue of ϕ∗

1

with multiplicity r = 1, e.g. by taking a non-formal symplectic nilmanifold N and
multiplying it by S1. Next, we give an example of a 5-dimensional formal mapping
torus Nϕ with no co-symplectic structure and such that λ = 1 is an eigenvalue of
ϕ∗
1 with multiplicity r = 1.
Let G(k) be the simply connected completely solvable2 3-dimensional Lie group

defined by the equations

de1 = −ke1 ∧ e3, de2 = ke2 ∧ e3, de3 = 0,

where k is a real number such that exp(k)+ exp(−k) is an integer different from 2.
Let Γ(k) be a discrete subgroup of G(k) such that the quotient space P (k) =

Γ(k)\G(k) is compact (such a subgroup Γ(k) always exists; see [24] for example).
Then P (k) is a completely solvable solvmanifold.

We can use Hattori’s theorem [18] which asserts that the de Rham cohomology
ring H∗(P (k)) is isomorphic to the cohomology ring H∗(g∗) of the Lie algebra g

of G(k). For simplicity we denote the left invariant forms {ei}, i = 1, 2, 3, on G(k)
and their projections on P (k) by the same symbols. Thus, we obtain

• H0(P (k)) = 〈1〉,
• H1(P (k)) = 〈[e3]〉,
• H2(P (k)) = 〈[e12]〉,
• H3(P (k)) = 〈[e123]〉.

Therefore, there exists a real number a such that the cohomology class a[e12] is
integral. Hence there exists a principal circle bundle π : N(k) → P (k) with Euler

2A solvable Lie group G is completely solvable if for every X ∈ g, the eigenvalues of the map
adX are real.
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class a[e12] and a connection 1-form e4 whose curvature form is ae12 (we use the
same notation for differential forms on the base space P (k) and their pull-backs via
π to the total space N(k)).

One can check that the de Rham cohomology groups H∗(N(k)) are:

• H0(N(k)) = 〈1〉,
• H1(N(k)) = 〈[e3]〉,
• H2(N(k)) = 0,
• H3(N(k)) = 〈[e124]〉,
• H4(N(k)) = 〈[e1234]〉.

Moreover, the manifold N(k) is formal. In fact, let (Ω∗(N(k)), d) be the de Rham
complex of differential forms on N(k). The minimal model of N(k) is a differential
graded algebra (M, d), with

M =
∧

(a, b),

where the generator a has degree 1, the generator b has degree 3, and d is given
by da = db = 0. The morphism ρ : M → Ω∗(N(k)), inducing an isomorphism on
cohomology, is defined by

ρ(a) = e3,

ρ(b) = e124.

According to Definition 3, we have C1 = 〈a〉 and N1 = 0. Thus N(k) is 1-formal
and hence it is formal by Theorem 4.

Now, let M be the 5-dimensional compact manifold defined as M = N(k)× S1.
Denote by e5 the canonical 1-form on S1. Then M is formal. Clearly M is a
mapping torus. But M does not admit co-symplectic structures since H2(M) =
〈[e35]〉, and so any closed 2-form F satisfies F 2 = 0.

5. Geography of non-formal compact co-symplectic manifolds

In this section we consider the following problem:

For which pairs (m = 2n + 1, b), with n, b ≥ 1, are there compact
co-symplectic manifolds of dimension m and with b1 = b which are
non-formal?

It will turn out that the answer is the same as for compact smooth manifolds
[14], i.e., that there are non-formal examples if and only if m = 3 and b ≥ 2, or
m ≥ 5 and b ≥ 1. We start with some straightforward examples:

• For b = 1 and m ≥ 9, we may take a compact non-formal symplectic
manifold N of dimension m−1 ≥ 8 and simply connected. Such a manifold
exists for dimensions ≥ 10 by [1], and for dimension equal to 8 by [15]. Then
consider M = N × S1.

• For m = 3, b = 2, we may take the 3-dimensional nilmanifold M0 defined
by the structure equations de1 = de2 = 0, de3 = e1∧ e2. This is non-formal
since it is not a torus. The pair η = e1, F = e2 ∧ e3 defines a co-symplectic
structure on M0 since dη = dF = 0 and η ∧ F �= 0.

• For m ≥ 5 and b ≥ 2 even, take the co-symplectic compact manifold M =
M0 × Σk × (S2)�, where Σk is the surface of genus k ≥ 0, � ≥ 0, and
(S2)� is the product of � copies of S2. Then dimM = m = 5 + 2� and
b1(M) = 2 + 2k.
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• For m = 5 and b = 3, we can take M1 = N × S1, where N is a compact
4-dimensional symplectic manifold with b1 = 2. For example, take N as the
compact nilmanifold defined by the equations de1 = de2 = 0, de3 = e1 ∧ e2,
de4 = e1∧e3, which is non-formal and symplectic with ω = e1∧e4+e2∧e3.

• For m ≥ 7 and b ≥ 3 odd, take M = M1 × Σk × (S2)�, k, � ≥ 0.

Other examples with b1 = 2 and m = 5 can be obtained from the list of 5-
dimensional compact nilmanifolds. According to the classification in [2, 21] of
nilpotent Lie algebras of dimension < 7, there are 9 nilpotent Lie algebras g of
dimension 5, and only 3 of them satisfy dimH1(g∗) = 2, namely

(0, 0, 12, 13, 14 + 23), (0, 0, 12, 13, 14), (0, 0, 12, 13, 23).

In the description of the Lie algebras g, we are using the structure equations with
respect to a basis e1, . . . , e5 of the dual space g∗. For instance, (0, 0, 12, 13, 14+23)
means that there is a basis {ej}5j=1 satisfying de1 = de2 = 0, de3 = e1 ∧ e2,

de4 = e1∧e3 and de5 = e1∧e4+e2∧e3; equivalently, the Lie bracket is given in terms
of its dual basis {ej}5j=1 by [e1, e2] = −e3, [e1, e3] = −e4, [e1, e4] = [e2, e3] = −e5.

Also, from now on we write eij = ei ∧ ej .

Proposition 18. Among the 3 nilpotent Lie algebras g of dimension 5 with
dimH1(g∗) = 2, those that have a co-symplectic structure are

(0, 0, 12, 13, 14 + 23), (0, 0, 12, 13, 14).

Proof. Clearly the forms η and F given by

η = e1, F = e25 − e34

satisfy dη = dF = 0 and η ∧ F 2 �= 0, and so they define a co-sympectic structure
on each of those Lie algebras.

To prove that the Lie algebra (0, 0, 12, 13, 23) does not admit a co-sympectic
structure, one can check it directly or use the fact that the direct sum of (0, 0,
12, 13, 23) with the 1-dimensional Lie algebra has no symplectic form [2]. �

Remark 19. Let N denote the 5-dimensional compact nilmanifold associated to the
Lie algebra n with structure (0, 0, 12, 13, 23). Then N has a closed 1-form; indeed,
de1 = de2 = 0. By Tischler’s Theorem [25], N is a mapping torus. However, it
is not a symplectic mapping torus, since it is not co-symplectic. We describe this
mapping torus explicitly. Since N is a nilmanifold, we can describe the structure at
the level of Lie algebras. The map n → R, (e1, . . . , e5) → e1 gives an exact sequence

(8) 0 −→ k −→ n −→ R −→ 0

of Lie algebras, and one sees immediately that k is a 4-dimensional symplectic
nilpotent Lie algebra, spanned by e2, . . . , e5, with structure (0, 0, 0, 23) (with respect
to the dual basis of k∗). The fiber of the corresponding bundle over S1 is the
Kodaira-Thurston manifold KT . Taking into account the proof of Proposition 10,
the Lie algebra extension (8) is associated to the derivation D = ad(e1) of k. In
other words, n = R⊕Dk. A computation shows that this derivation is not symplectic
with respect to any symplectic form on k, and Proposition 10 implies that n is not
co-symplectic. The map ϕ := exp(D) is a diffeomorphism of KT which does not
preserve any symplectic structure of KT , and N = KTϕ.
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The previous examples leave some gaps, notably the cases m = 3, b ≥ 3, and
m = 5, b = 1. By [14], we know that there are compact non-formal manifolds with
these Betti numbers and dimensions. Let us see that there are also non-formal
co-symplectic manifolds in these cases.

Proposition 20. There are non-formal compact co-symplectic manifolds with m ≥
3, b1 ≥ 2.

Proof. We consider the symplectic surface Σk of genus k ≥ 1. Consider a symplec-
tomorphism ϕ : Σk → Σk such that ϕ∗ : H1(Σk) → H1(Σk) has the form

ϕ∗ =

(
1 0
1 1

)
⊕
(

1 0
0 1

)
⊕ . . .⊕

(
1 0
0 1

)
,

with respect to a symplectic basis ξ1, ξ2, . . . , ξ2k−1, ξ2k of H1(Σk). Consider the
mapping torus M of ϕ. The symplectic form of Σk induces a closed 2-form F on
M . The pull-back η of the volume form of S1 under M → S1 is closed and satisfies
that η ∧ F > 0. Therefore M is co-symplectic.

Now ϕ∗ξ1 = ξ1+ξ2 and ϕ∗ξi = ξi, for 2 ≤ i ≤ 2k. By Lemma 12, the cohomology
of M is

H1(M) = 〈a, ξ2, . . . , ξ2k−1, ξ2k〉,
H2(M) = 〈F, a ξ1, a ξ3, . . . , a ξ2k−1, a ξ2k〉,

where a = [η]. So b1 = 2k ≥ 2. By Theorem 13, the Massey product 〈a, a, ξ2〉 does
not vanish, and so M is non-formal.

Similarly, take Σk where k ≥ 2. We consider a symplectomorphism ψ : Σk → Σk

such that ψ∗ : H1(Σk) → H1(Σk) has the form

ψ∗ =

(
1 0
1 1

)
⊕
(

1 0
1 1

)
⊕

(
1 0
0 1

)
⊕ . . .⊕

(
1 0
0 1

)
.

Then the mapping torus M of ψ has b1 = 2k − 1 ≥ 3 and odd, and M is co-
symplectic and non-formal.

For higher dimensions, take M × (S2)�, � ≥ 0. �

Remark 21. Notice that the case k = 1 in the first part of the previous proposition
yields another description of the Heisenberg manifold.

Proposition 22. There are non-formal compact co-symplectic manifolds with m ≥
5, b1 = 1.

Proof. It is enough to construct an example for m = 5. Take the torus T 4 and the
mapping torus T 4

ϕ of the symplectomorphism ϕ : T 4 → T 4 such that

(9) ϕ∗ =

⎛⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 1 −1

⎞⎟⎟⎠

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NON-FORMAL CO-SYMPLECTIC MANIFOLDS 4475

on H1(T 4). Taking η as the pull-back of the 1-form θ on S1 and F = e1∧e2+e3∧e4,
we have that T 4

ϕ is co-symplectic. The map ϕ∗ on H2(T 4) satisfies:

ϕ∗([e1 ∧ e2]) = [e1 ∧ e2],

ϕ∗([e1 ∧ e3) = [e1 ∧ e3]− [e1 ∧ e4],

ϕ∗([e1 ∧ e4]) = [e1 ∧ e4],

ϕ∗([e2 ∧ e3]) = [e2 ∧ e3]− [e2 ∧ e4],

ϕ∗([e2 ∧ e4]) = [e2 ∧ e4],

ϕ∗([e3 ∧ e4]) = [e3 ∧ e4].

Then b1(T
4
ϕ)=1 asH1(T 4

ϕ)=〈a〉, with a=[η]. AlsoH2(T 4
ϕ)=〈[e12], [e14], [e24], [e34]〉.

In particular, notice that Im (ϕ∗− Id) = 〈[e14], [e24]〉. Then [e14] ∈ ker(ϕ∗− Id) and
[e14] ∈ Im (ϕ∗ − Id). So Theorem 13 gives us the non-formality of T 4

ϕ.

For higher dimensions, take M = N × (S2)�, where � ≥ 0. Then dimM = 5+2�
and b1(M) = 1. �

Remark 23. Let us show that the 5-manifold T 4
ϕ is not a solvmanifold, that is,

it cannot be written as a quotient of a simply connected solvable Lie group by a
discrete co-compact subgroup.3 The fiber bundle

T 4 −→ T 4
ϕ −→ S1

gives a short exact sequence at the level of fundamental groups,

(10) 0 −→ Z
4 −→ H −→ Z −→ 0,

where H = π1(T
4
ϕ). Since Z is free and Z4 is abelian, one has H = Z � Z4. Now

suppose that T 4
ϕ is a solvmanifold of the form Γ\G. Clearly, it is Γ ∼= H. According

to [22], we have a fibration

N −→ T 4
ϕ −→ T k

where N is a nilmanifold and T k is a k-torus. Since b1(T
4
ϕ) = 1, we have k = 1

and N is a 4-dimensional nilmanifold. This gives another short exact sequence of
groups

0 −→ Δ −→ Γ −→ Z −→ 0,

where Δ = π1(N). But we know that there is a unique surjectionH1(Γ) = Z⊕T −→
Z (where T is a torsion group) and that, composed with the natural surjection
Γ −→ Γ/[Γ,Γ] = H1(Γ), this gives a unique homomorphism Γ −→ Z. Hence, the
extension Δ −→ Γ −→ Z is the same as (10). Therefore Δ = Z4. The Mostow
fibration of Γ\G = T 4

ϕ coincides with the mapping torus bundle. At the level of Lie

groups, it must be G = R� R4 with semidirect product

(t, x) · (t′, x′) = (t+ t′, x+ f(t)x′)

with f a 1-parameter subgroup in GL(4,R), i.e., f(t) = exp(tg) for some matrix
g. Moreover, f(1) = exp(g) = ϕ∗. But ϕ∗ cannot be the exponential of a matrix.
Indeed, if g has real eigenvalues, then ϕ∗ has positive eigenvalues. If g has purely
imaginary eigenvalues and diagonalizes, so does ϕ∗. Also, if g has complex conjugate

3If we define a solvmanifold as a quotient Γ\G, where G is a simply connected solvable Lie
group and Γ ⊂ G is a closed (not necessarily discrete) subgroup, then any mapping torus Nϕ,

where N is a nilmanifold, is of this type (see [22]).
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eigenvalues but does not diagonalize, then ϕ∗ has two Jordan blocks. None of these
cases occur.

Remark 24. The example constructed in the proof of Proposition 22 can be used
to give another example of a 5-dimensional non-formal co-symplectic manifold with
b1 = 1 which is not a solvmanifold.

Take N = T 4 and ϕ : N → N satisfying (9). We may arrange it so that ϕ
fixes the neighborhood of a point p ∈ N . Take the (symplectic) blow-up of N at p,

Ñ = N#CP 2, and the induced symplectomorphism ϕ̃ : Ñ → Ñ . Let M = Ñϕ̃ be
the corresponding mapping torus. Clearly, M is co-symplectic, it has b1(M) = 1

and the eigenvalue λ = 1 of ϕ∗ : H2(Ñ) → H2(Ñ) has multiplicity 2, hence M

is non-formal. But M cannot be a solvmanifold since π2(M) = π2(Ñ) = Z is
non-trivial.

6. A non-formal solvmanifold of dimension 5 with b1 = 1

In this section we show an example of a non-formal compact co-symplectic4 5-
dimensional solvmanifold S with first Betti number b1(S) = 1. Actually, S is the
mapping torus of a certain diffeomorphism ϕ of a 4-torus preserving the orientation,
so this example fits in the scope of Proposition 22.

Let g be the abelian Lie algebra of dimension 4. Suppose g = 〈e1, e2, e3, e4〉,
and take the symplectic form ω = e14 + e23 on g, where 〈e1, e2, e3, e4〉 is the
dual basis for the dual space g∗ such that the first cohomology group H1(g∗) =
〈[e1], [e2], [e3], [e4]〉. Consider the endomorphism of g represented, with respect to
the chosen basis, by the matrix

D =

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
−1 0 −1 0
0 −1 0 1

⎞⎟⎟⎠ .

It is immediate to see that D is an infinitesimal symplectic transformation. Since g
is abelian, it is also a derivation. Applying Proposition 10 we obtain a co-symplectic
Lie algebra

h = Rξ ⊕ g

with brackets defined by

[ξ, e1] = −e1 − e3, [ξ, e2] = e2 − e4, [ξ, e3] = −e3 and [ξ, e4] = e4.

One can check that h = 〈e1, e2, e3, e4, e5 = ξ〉 is a completely solvable non-
nilpotent Lie algebra. We denote by 〈α1, α2, α3, α4, α5〉 the dual basis for h∗. The
Chevalley-Eilenberg complex of h∗ is

(
∧

(α1, . . . , α5), d)

4Recall that the definition of a co-symplectic manifold in this paper differs from that used in
other papers, such as [16].
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with differential d defined by

dα1 = −α1 ∧ α5,

dα2 = α2 ∧ α5,

dα3 = −α1 ∧ α5 − α3 ∧ α5,

dα4 = −α2 ∧ α5 + α4 ∧ α5,

dα5 = 0.

Let H be the simply connected and completely solvable Lie group of dimension
5 consisting of matrices of the form

a =

⎛⎜⎜⎜⎜⎜⎜⎝
e−x5 0 0 0 0 x1

0 ex5 0 0 0 x2

−x5e
−x5 0 e−x5 0 0 x3

0 −x5e
x5 0 ex5 0 x4

0 0 0 0 1 x5

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where xi ∈ R, for 1 ≤ i ≤ 5. Then a global system of coordinates {xi, 1 ≤ i ≤ 5}
for H is defined by xi(a) = xi, and a standard calculation shows that a basis for
the left invariant 1-forms on H consists of

α1 = ex5dx1, α2 = e−x5dx2, α3 = x5e
x5dx1 + ex5dx3,

α4 = x5e
−x5dx2 + e−x5dx4, α5 = dx5.

This means that h is the Lie algebra of H. We notice that the Lie group H may
be described as a semidirect product H = R �ρ R

4, where R acts on R
4 via the

linear transformation ρ(t) of R4 given by the matrix

ρ(t) =

⎛⎜⎜⎝
e−t 0 0 0
0 et 0 0

−te−t 0 e−t 0
0 −tet 0 et

⎞⎟⎟⎠ .

Thus the operation on the group H is given by

a·x = (a1+x1e
−a5 , a2+x2e

a5 , a3+x3e
−a5−a5x1e

−a5 , a4+x4e
a5−a5x2e

a5 , a5+x5),

where a = (a1, . . . , a5) and similarly for x. Therefore H = R �ρ R
4, where R is a

connected abelian subgroup, and R4 is the nilpotent commutator subgroup.
Now we show that there exists a discrete subgroup Γ of H such that the quotient

space Γ\H is compact. To construct Γ it suffices to find some real number t0 such
that the matrix defining ρ(t0) is conjugate to an element A of the special linear
group SL(4,Z) with distinct real eigenvalues λ and λ−1. Indeed, we could then find
a lattice Γ0 in R4 which is invariant under ρ(t0), and take Γ = (t0Z)�ρ Γ0. To this
end, we choose the matrix A ∈ SL(4,Z) given by

(11) A =

⎛⎜⎜⎝
2 1 0 0
1 1 0 0
2 1 2 1
1 1 1 1

⎞⎟⎟⎠ ,
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with double eigenvalues 3+
√
5

2 and 3−
√
5

2 . Taking t0 = log( 3+
√
5

2 ), we have that the
matrices ρ(t0) and A are conjugate. Indeed, put

(12) P =

⎛⎜⎜⎜⎜⎜⎝
1 −2(2+

√
5)

3+
√
5

0 0

1 1+
√
5

3+
√
5

0 0

0 0 log( 2
3+

√
5
)

2(2+
√
5) log( 3+

√
5

2 )

3+
√
5

0 0 log( 2
3+

√
5
) − (1+

√
5) log( 3+

√
5

2 )

3+
√
5

⎞⎟⎟⎟⎟⎟⎠ ;

then a direct calculation shows that PA = ρ(t0)P . So the lattice Γ0 in R
4 defined

by

Γ0 = P (m1,m2,m3,m4)
t,

where m1,m2,m3,m4 ∈ Z and (m1,m2,m3,m4)
t is the transpose of the vector

(m1,m2,m3,m4), is invariant under the subgroup t0Z. Thus Γ = (t0Z)�ρ Γ0 is a
co-compact subgroup of H.

We denote by S = Γ\H the compact quotient manifold. Then S is a 5-
dimensional (non-nilpotent) completely solvable solvmanifold.

Alternatively, S may be viewed as the total space of a T 4-bundle over the circle
S1. In fact, let T 4 = Γ0\R4 be the 4-dimensional torus and ϕ : Z → Diff(T 4) the
representation defined as follows: ϕ(m) is the transformation of T 4 covered by the
linear transformation of R4 given by the matrix

ρ(mt0) =

⎛⎜⎜⎝
e−mt0 0 0 0

0 emt0 0 0
−mt0e

−mt0 0 e−mt0 0
0 −mt0e

mt0 0 emt0

⎞⎟⎟⎠ .

So Z acts on T 4 × R by

((x1, x2, x3, x4), x5) �→ (ρ(mt0) · (x1, x2, x3, x4)
t, x5 +m),

and S is the quotient (T 4 × R)/Z. The projection π is given by

π[(x1, x2, x3, x4), x5] = [x5].

Remark 25. We notice that S is a mapping torus associated to a certain symplecto-
morphism Φ : T 4 → T 4. Indeed, since D is an infinitesimal symplectic transforma-
tion, its exponential exp(tD) is a 1-parameter group of symplectomorphisms of R4.
Notice that exp(tD) = ρ(t). We saw that there exists a number t0 ∈ R such that
ρ(t0) preserves a lattice Γ0

∼= Z4 ⊂ R4. Therefore the symplectomorphism ρ(t0)
descends to a symplectomorphism Φ of the 4-torus Γ0\R4, whose mapping torus is
precisely Γ\H.

Next, we compute the real cohomology of S. Since S is completely solvable,
Hattori’s theorem [18] says that the de Rham cohomology ring H∗(S) is isomorphic
to the cohomology ring H∗(h∗) of the Lie algebra h of H. For simplicity we denote
the left invariant forms {αi}, i = 1, . . . , 5, on H and their projections on S by the
same symbols. Thus, we obtain

• H0(S) = 〈1〉,
• H1(S) = 〈[α5]〉,
• H2(S) = 〈[α1 ∧ α2], [α1 ∧ α4 + α2 ∧ α3]〉,
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• H3(S) = 〈[α3 ∧ α4 ∧ α5], [(α1 ∧ α4 + α2 ∧ α3) ∧ α5]〉,
• H4(S) = 〈[α1 ∧ α2 ∧ α3 ∧ α4]〉,
• H5(S) = 〈[α1 ∧ α2 ∧ α3 ∧ α4 ∧ α5]〉.

The product H1(S)⊗H2(S) → H3(S) is given by

[α1 ∧ α4 + α2 ∧ α3] ∧ [α5] = [(α1 ∧ α4 + α2 ∧ α3) ∧ α5] and [α1 ∧ α2] ∧ [α5] = 0.

Theorem 26. S is a compact co-symplectic 5-manifold which is non-formal and
with first Betti number b1(S) = 1.

Proof. Take the 1-form η = α5, and let F be the 2-form on S given by

F = α1 ∧ α4 + α2 ∧ α3.

Then (F, η) defines a co-symplectic structure on S since dF = dη = 0 and η∧F 2 �= 0.
We prove the non-formality of S from its minimal model [24]. The minimal

model of S is a differential graded algebra (M, d), with

M =
∧

(a)⊗
∧

(b1, b2, b3, b4)⊗
∧

V ≥3,

where the generator a has degree 1, the generators bi have degree 2, and d is given
by da = db1 = db2 = 0, db3 = a · b2, db4 = a · b3. The morphism ρ : M → Ω∗(S),
inducing an isomorphism on cohomology, is defined by

ρ(a) = α5,

ρ(b1) = α1 ∧ α4 + α2 ∧ α3,

ρ(b2) = α1 ∧ α2,

ρ(b3) =
1

2
(α1 ∧ α4 − α2 ∧ α3),

ρ(b4) =
1

2
α3 ∧ α4.

Following the notation in Definition 3, we have C1 = 〈a〉 and N1 = 0; thus S is
1-formal. We see that S is not 2-formal. In fact, the element b4 · a ∈ N2 · V 1 is
closed but not exact, which implies that (M, d) is not 2-formal. Therefore, (M, d)
is not formal. �

Remark 27. It can be seen that S is non-formal by computing a quadruple Massey
product [24] 〈[α1 ∧ α2], [α5], [α5], [α5]〉. As α1 ∧ α2 ∧ α5 = 1

2d(α1 ∧ α4 − α2 ∧ α3)
and (α1 ∧ α4 − α2 ∧ α3) ∧ α5 = d(α3 ∧ α4), we have

〈[α1 ∧ α2], [α5], [α5], [α5]〉 =
1

2
[α3 ∧ α4 ∧ α5].

This is easily seen to be non-zero modulo the indeterminacies.

Remark 28. Theorem 26 can also be proved with the techniques of section 5. By
Remark 25, S is the mapping torus of a diffeomorphism ρ(t0) of T 4 = Γ0\R4.
Conjugating by the matrix P in (12), we have that S is the mapping torus of A
in (11) acting on the standard 4-torus T 4 = Z4\R4. The action of A on 1-forms
leaves no invariant forms, so b1(S) = 1. The action of A on 2-forms is given by the
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matrix ⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 4 2 2 1 0
1 2 2 1 1 0
−1 2 1 2 1 0
0 1 1 1 1 0
1 0 1 −1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with respect to the basis {e12, e13, e14, e23, e24, e34}. This matrix has eigenvalues

λ = 1
2 (7 ± 3

√
5) (simple) and λ = 1, with multiplicity 3 (one block of size 1 and

another of size 3). Theorem 15 implies the non-formality of S.

Remark 29. We notice that the previous example S may be generalized to dimension
2n + 1 with n ≥ 2. For this, it is enough to consider the (2n + 1)-dimensional
completely solvable Lie group H2n+1 defined by the structure equations

• dαj = (−1)jαj ∧ α2n+1, j = 1, . . . , 2n− 2;
• dα2n−1 = −α1 ∧ α2n+1 − α2n−1 ∧ α2n+1;
• dα2n = −α2 ∧ α2n+1 + α2n ∧ α2n+1;
• dα2n+1 = 0.

The co-symplectic structure (η, F ) is defined by η = α2n+1, and F = α1 ∧ α2n +
α2 ∧ α2n−1 + α3 ∧ α4 + · · ·+ α2n−3 ∧ α2n−2.
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