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the first derivative this substitution, the positive constants !
and � have to be chosen such that the following conditions be
satisfied:

�ð1� cosð!T�ÞÞ ¼
ffiffiffiffiffiffi
T�

p
, i.e. f ðj��i jÞ ¼

ffiffiffiffiffiffiffi
j��i j

p
at ��i ¼ T�

�! sinð!T�Þ ¼ 1

2
ffiffiffiffiffiffi
T�

p , i.e.
df ðj��i jÞ
d j��i j

¼
d

ffiffiffiffiffiffiffi
j��i j

p
d j��i j

at ��i ¼ T�:

From these expressions, we retrieve (35) and (36).

Figure A1. Comparison of function f ðj��i jÞ defined in (34) with
ffiffiffiffiffiffiffi
j��i j

p
.
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This article investigates the problem of non-fragile synchronisation control for complex networks with time-
varying coupling delay and missing data. A stochastic variable satisfying the Bernoulli random binary
distribution is utilised to model the missing data. Based on the Gronwall’s inequality, an exponential
synchronisation condition is obtained ensuring the exponential mean-square stability of the error system. Then a
sufficient condition for designing the non-fragile synchronisation controller is proposed. Finally, a simulation
example is given to show the efficiency of the proposed design methods.
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1. Introduction

Complex dynamical networks (CDNs) which consist of
interacting dynamical entities with an interplay
between dynamical states and interaction patterns
have attracted extensive attention in the past decades
due to the fact that many systems in nature can be
modelled by CNDs, for example, power grids, com-
munication networks and the World Wide Web (Liu,
Wang, Liang, and Liu 2008, 2009, 2012; Liu, Zhao,
and Hill 2010). As an important collective behaviour of
CDNs, synchronisation has been widely studied (Wu
and Chua 1995; Wang and Chen 2002; Cao, Li, and
Wei 2006; Duan, Wang, Chen, and Huang 2009; Lu
and Ho 2010, 2011; Wang, Liu, Liu, and Shi 2010;
Yang and Cao 2010a; Wang, Wang, and Liu 2010b;
Yang, Cao, and Lu 2011; Xiang and Wei 2011; Lee,
Park, Ji, Kwon, and Lee 2012). In most of the work on
the synchronisation of CDNs, it is assumed that the
network can work well during all the time, that is,
signals can always be transmitted successfully.
However, in practical applications, the network may
fail occasionally, that is, there may be a non-zero
probability that the signals contain missing data. For
example, on 26 December 2006, tens of submarine fibre
cables were destroyed in the earthquake of Taiwan; as
a result, the Internet from the Chinese Mainland to
North America, Europe, Southeast Asia and some
other places were paralysed (Wang, Xiao, and Wang
2010a). Very recently, in Wang, Xiao, and Guan

(2010c) and Wang, Xiao, and Wang (2010d) the global

synchronisation of CDNs with network failures has

been studied based on the description of the switching

system. The networked synchronisation control prob-

lem of CDNs with time-varying delay has been

investigated in Wang, Zhang, Wang, and Yang

(2010e), where both the data packet dropouts and

network-induced delays have been taken into account

in the synchronisation controller design. In Huang,

Ho, Lu, and Kurths (2012) the partial synchronisation

problem of stochastic CDNs has been investigated.

Unlike the existing results, the CDNs considered in

Huang et al. (2012) suffers from a class of communi-

cation constraint, that is, only part of nodes’ states can

be transmitted.
It should be pointed out that in the existing results

on synchronisation control of CDNs, an absolutely

indispensable assumption is that the designed control-

ler is exactly implemented (Li, Zhang, Hu, and Nie

2011; Shen, Wang, and Liu 2012). However, in

practical, as a part of a closed-loop system, the

designed controller should be able to tolerate some

uncertainty in its coefficients due to the fact that the

uncertainty is not avoided, and it may be caused by

many reasons, such as finite word length in digital

systems, the imprecision inherent in analogue systems

and the need for additional tuning of parameters in the

final controller implementation, and thus it is required

that there exists a non-zero (although possibly small)
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margin of tolerance around the controller designed,
that is, to design a non-fragile controller such that the
controller is insensitive to uncertainties (Keel and
Bhattacharyya 1997). The non-fragile control problem
has been widely investigated by many researchers (Keel
and Bhattacharyya 1997; Yue and Lam 2005; Xu,
Lam, Yang, and Wang 2006; Li and Jia 2009; Shu,
Lam, and Xiong 2009). For example, in Shu et al.
(2009) the non-fragile exponential stabilisation for a
class of discrete-time linear systems with missing data
in actuators, and the non-fragile exponential stabilisa-
tion for a class of discrete-time linear systems with
missing data in actuators. Yue and Lam (2005) have
studied the design problem of non-fragile guaranteed
cost controller for uncertain descriptor systems with
delays and a controller has been designed to guarantee
that the closed-loop system is regular, impulse-free
and exponentially stable and an upper bound of the
guaranteed cost function. Although the importance of
the non-fragile control problem has been widely
recognised, no related results have been established
for CDNs. Correspondingly, it is meaningful
and interesting to study the non-fragile synchronisa-
tion of CDNs. The main purpose of this article,
therefore, is to shorten such a gap by making the first
attempt to deal with the non-fragile synchronisation
control for CNDs with time-varying coupling delay
and missing data.

In this article, we pay attention to the problem of
non-fragile synchronisation control for complex net-
works with time-varying coupling delay and missing
data, which is modelled by a stochastic variable
satisfying the Bernoulli random binary distribution.
An exponential synchronisation condition is pro-
posed and the design method of the non-fragile
synchronisation controller is also given in terms
of an LMI approach. Finally, the feasibility of the
proposed design methods is shown by a simulation
example.

Notation: The notations used throughout this article
are fairly standard. Rn and Rm�n denote the n-dimen-
sional Euclidean space and the set of all m� n real
matrices, respectively. The notation X4Y (X5Y),
where X and Y are symmetric matrices, means that
X�Y is positive definite (positive semidefinite). I and 0
represent the identity matrix and a zero matrix,
respectively. The superscript ‘T’ represents the trans-
pose and diag{� � �} stands for a block-diagonal matrix.
jj � jj denotes the Euclidean norm of a vector and its
induced norm of a matrix. Pr{�} means the occurrence
probability of the event � and Pr{�j�} means the
occurrence probability of � conditional on �. E{x} and
E{xjy}, respectively, mean the expectation of the
stochastic variable x and the expectation of the

stochastic variable x conditional on the stochastic

variable y. � denotes the notation of the Kronecker

product. For an arbitrary matrix B and two symmetric

matrices A and C,

A B

� C

� �

denotes a symmetric matrix, where ‘*’ denotes the

term that is induced by symmetry. Matrices, if

their dimensions are not explicitly stated, are assumed

to have compatible dimensions for algebraic

operations.

2. Preliminaries

Consider the following CDN consisting of N identical

coupled nodes with each node being an n-dimensional

dynamical system:

_xiðtÞ ¼ f ðxiðtÞÞ þ
XN
j¼1

GijAxj ðt� �ðtÞÞ þ uiðtÞ,

i ¼ 1, 2, . . . ,N ð1Þ

where xi(t) and ui(t) are, respectively, the state variable

and the control input of the node i, A¼ (aij)n�n2Rn�n

is the constant inner coupling matrix of the nodes

and G¼ (Gij)N�N is the the outer-coupling matrix

of the network. If there is a connection from node j

to node i (i 6¼ j), then Gij¼ 1, otherwise, Gij¼ 0 (i 6¼ j).

The diagonal elements of matrix G are defined by

Gii ¼ �
XN

j¼1,j 6¼i

Gij, i ¼ 1, 2, . . . ,N: ð2Þ

The scalar �(t) denotes the time-varying delay

satisfying

05 �ðtÞ4 �, _�ðtÞ4� ð3Þ

where �4 0 and �4 0 are known constants. f :

Rn!Rn is a continuous vector-valued function and

satisfies the following sector-bounded condition

(Wang, Liu, and Liu 2008):

½ f ðxÞ � f ð yÞ �Uðx� yÞ�T½ f ðxÞ � f ð yÞ � Vðx� yÞ�4 0,

8x, y 2 Rn ð4Þ

where U and V are constant matrices of appropriate

dimensions.
Let ei(t)¼ xi(t)� s(t) be the synchronisation

error, where s(t)2Rn is the state trajectory of the

unforced isolate node _sðtÞ ¼ f ðsðtÞÞ. It can be seen that
_eiðtÞ ¼ _xiðtÞ � f ðsðtÞÞ. Substituting (1) into _ei(t) and

noting (2), we can get the following error dynamics
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margin of tolerance around the controller designed,
that is, to design a non-fragile controller such that the
controller is insensitive to uncertainties (Keel and
Bhattacharyya 1997). The non-fragile control problem
has been widely investigated by many researchers (Keel
and Bhattacharyya 1997; Yue and Lam 2005; Xu,
Lam, Yang, and Wang 2006; Li and Jia 2009; Shu,
Lam, and Xiong 2009). For example, in Shu et al.
(2009) the non-fragile exponential stabilisation for a
class of discrete-time linear systems with missing data
in actuators, and the non-fragile exponential stabilisa-
tion for a class of discrete-time linear systems with
missing data in actuators. Yue and Lam (2005) have
studied the design problem of non-fragile guaranteed
cost controller for uncertain descriptor systems with
delays and a controller has been designed to guarantee
that the closed-loop system is regular, impulse-free
and exponentially stable and an upper bound of the
guaranteed cost function. Although the importance of
the non-fragile control problem has been widely
recognised, no related results have been established
for CDNs. Correspondingly, it is meaningful
and interesting to study the non-fragile synchronisa-
tion of CDNs. The main purpose of this article,
therefore, is to shorten such a gap by making the first
attempt to deal with the non-fragile synchronisation
control for CNDs with time-varying coupling delay
and missing data.

In this article, we pay attention to the problem of
non-fragile synchronisation control for complex net-
works with time-varying coupling delay and missing
data, which is modelled by a stochastic variable
satisfying the Bernoulli random binary distribution.
An exponential synchronisation condition is pro-
posed and the design method of the non-fragile
synchronisation controller is also given in terms
of an LMI approach. Finally, the feasibility of the
proposed design methods is shown by a simulation
example.

Notation: The notations used throughout this article
are fairly standard. Rn and Rm�n denote the n-dimen-
sional Euclidean space and the set of all m� n real
matrices, respectively. The notation X4Y (X5Y),
where X and Y are symmetric matrices, means that
X�Y is positive definite (positive semidefinite). I and 0
represent the identity matrix and a zero matrix,
respectively. The superscript ‘T’ represents the trans-
pose and diag{� � �} stands for a block-diagonal matrix.
jj � jj denotes the Euclidean norm of a vector and its
induced norm of a matrix. Pr{�} means the occurrence
probability of the event � and Pr{�j�} means the
occurrence probability of � conditional on �. E{x} and
E{xjy}, respectively, mean the expectation of the
stochastic variable x and the expectation of the

stochastic variable x conditional on the stochastic

variable y. � denotes the notation of the Kronecker

product. For an arbitrary matrix B and two symmetric

matrices A and C,

A B

� C

� �

denotes a symmetric matrix, where ‘*’ denotes the

term that is induced by symmetry. Matrices, if

their dimensions are not explicitly stated, are assumed

to have compatible dimensions for algebraic

operations.

2. Preliminaries

Consider the following CDN consisting of N identical

coupled nodes with each node being an n-dimensional

dynamical system:

_xiðtÞ ¼ f ðxiðtÞÞ þ
XN
j¼1

GijAxj ðt� �ðtÞÞ þ uiðtÞ,

i ¼ 1, 2, . . . ,N ð1Þ

where xi(t) and ui(t) are, respectively, the state variable

and the control input of the node i, A¼ (aij)n�n2Rn�n

is the constant inner coupling matrix of the nodes

and G¼ (Gij)N�N is the the outer-coupling matrix

of the network. If there is a connection from node j

to node i (i 6¼ j), then Gij¼ 1, otherwise, Gij¼ 0 (i 6¼ j).

The diagonal elements of matrix G are defined by

Gii ¼ �
XN

j¼1,j 6¼i

Gij, i ¼ 1, 2, . . . ,N: ð2Þ

The scalar �(t) denotes the time-varying delay

satisfying

05 �ðtÞ4 �, _�ðtÞ4� ð3Þ

where �4 0 and �4 0 are known constants. f :

Rn!Rn is a continuous vector-valued function and

satisfies the following sector-bounded condition

(Wang, Liu, and Liu 2008):

½ f ðxÞ � f ð yÞ �Uðx� yÞ�T½ f ðxÞ � f ð yÞ � Vðx� yÞ�4 0,

8x, y 2 Rn ð4Þ

where U and V are constant matrices of appropriate

dimensions.
Let ei(t)¼ xi(t)� s(t) be the synchronisation

error, where s(t)2Rn is the state trajectory of the

unforced isolate node _sðtÞ ¼ f ðsðtÞÞ. It can be seen that
_eiðtÞ ¼ _xiðtÞ � f ðsðtÞÞ. Substituting (1) into _ei(t) and

noting (2), we can get the following error dynamics

of CND (1):

_eiðtÞ ¼ gðeiðtÞÞ þ
XN
j¼1

GijAej ðt� �ðtÞÞ þ uiðtÞ,

i ¼ 1, 2, . . . ,N ð5Þ

where g(ei(t))¼ f(xi(t))� f(s(t)). It should be pointed

out that g(ei(t)) is dependent on xi(t) and s(t). However,

in order to avoid cumbersome notations, we will use

the simpler symbol g(ei(t)) instead of g(xi(t), s(t))

(Wang, Ho, and Liu 2005).
In this article, we consider the following controller

forms:

uci ðtÞ ¼ ðKi þ DKiðtÞÞeiðtÞ, i ¼ 1, 2, . . . ,N ð6Þ

where Ki is controller gain matrix to be deter-

mined, uci ðtÞ 2 Rn is the output of the controller

and DKi represents the possible controller gain fluctu-

ation. It is assumed that DKi has the following

structure:

DKi ¼ HiDiðtÞEi ð7Þ

where Di(t)2Rk�l is an unknown time-varying matrix

satisfying

DiðtÞTDiðtÞ4 I ð8Þ

and Hi and Ei are known constant matrices.
The data-missing phenomenon probably occurs

when the control signal uci ðtÞ is transmitted. In this

article, we model the data loss phenomena via a

stochastic approach (Shen, Wang, Shu, and Wei 2008;

Wang, Ho, Liu, and Liu 2009; Wang et al. 2010a,b).

Then the control input with data missing can be

described as

uiðtÞ ¼ �ðtÞuci ðtÞ, i ¼ 1, 2, . . . ,N ð9Þ

where

Prf�ðtÞ ¼ 1g ¼ �, Prf�ðtÞ ¼ 0g ¼ 1� �

where �2 [0, 1] is a known constant.
By substituting (6) and (9) into (5), we obtain

_eiðtÞ ¼ gðeiðtÞÞ þ
XN
j¼1

GijAej ðt� �ðtÞÞ

þ �ðtÞðKi þ DKiðtÞÞeiðtÞ, i ¼ 1, 2, . . . ,N: ð10Þ

It is clear that (10) can be rewritten as

_eðtÞ ¼ �gðeðtÞÞ þ ðG� AÞeðt� �ðtÞÞ
þ �ðtÞðKþHDðtÞEÞeðtÞ ð11Þ

where

K ¼ diagfK1,K2, . . . ,KNg,

H ¼ diagfH1,H2, . . . ,HNg,

DðtÞ ¼ diagfD1ðtÞ,D2ðtÞ, . . . ,DNðtÞg,

E ¼ diagfE1,E2, . . . ,ENg,

eðtÞ ¼

e1ðtÞ

e2ðtÞ

..

.

eNðtÞ

2
6666664

3
7777775
, �gðeðtÞÞ ¼

gðe1ðtÞÞ

gðe2ðtÞÞ

..

.

gðeNðtÞÞ

2
6666664

3
7777775
:

We give the following definition and lemmas which

will be useful in the sequel.

Definition 2.1: The CDN (1) is said to be exponen-

tially mean-square synchronised if the error system

(11) is exponentially mean-square stable, i.e. there exist

two constants �4 0 and �4 0 such that

EfkeðtÞk2g4�e��t sup
��4�40

keð�Þk2: ð12Þ

Lemma 2.2 (Park, Ko, and Jeong 2011): For any

matrix M S
� M

� �
5 0, scalars �4 0, �(t)4 0 satisfying

05 �(t)4 �, vector function _xðtþ �Þ : ½��, 0 � ! Rn such

that the concerned integrations are well defined, then

��
Z t

t��
_xð�ÞTM _xð�Þd�4$ðtÞTO$ðtÞ ð13Þ

where

$ðtÞ ¼ xðtÞT xðt� �ðtÞÞT xðt� �ÞT
� �T

,

O ¼
�M M� S S

� �2Mþ Sþ ST �SþM

� � �M

2
64

3
75:

Lemma 2.3 (Xie 1996): Let L¼LT, H and E be real

matrices of appropriate dimensions with F satisfying

FTF4 I. Then, LþHFEþETFTHT5 0, if and only if

there exists a scalar �4 0 such that Lþ ��1HHTþ
�ETE5 0 or equivalently

L H �ET

� �I 0

� � �I

2
64

3
755 0: ð14Þ

Our goal is to design a set of controllers (6) such

that the CDN (1) is exponentially mean-square syn-

chronised. In other words, we want to find a gain

matrix K such that the error system (11) is exponen-

tially mean-square stable.
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3. Main results

In this section, we first provide two sufficient condi-

tions on exponential mean-square stability of the error

system (11). Then, we investigate the design problem of

exponential mean-square synchronisation for CND

(1). Before presenting the main results, for the sake of

presentation simplicity, we denote

�U ¼ ðIN �UÞTðIN � VÞ
2

þ ðIN � VÞTðIN �UÞ
2

,

�V ¼ � ðIN �UÞT þ ðIN � VÞT

2
:

Theorem 3.1: The error system (11) is exponentially

mean-square stable if there exist matrices P4 0,

Q14 0, Q24 0, Z S
� Z

� �
5 0 and scalars �4 0 and

�4 0 such that

X11 X12 S X14 X15 X16

� X22 X23 0 X25 0

� � X33 0 0 0

� � � ��I �Z 0

� � � � �Z 0

� � � � � �Z

2
666666664

3
777777775
5 0 ð15Þ

where

X11 ¼ �PðKþHDðtÞEÞ þ �ðKþHDðtÞEÞTPþQ1

þQ2 � Z� � �Uþ �I,
X12 ¼ PðG� AÞ þ Z� S,

X14 ¼ P� � �V,

X15 ¼ ��ðKþHDðtÞEÞTZ,
X16 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

p
ðKþHDðtÞEÞTZ,

X22 ¼ �ð1� �ÞQ2 � 2Zþ Sþ ST,

X23 ¼ �Sþ Z,

X25 ¼ �ðG� AÞTZ,
X33 ¼ �Q1 � Z:

Proof: Consider the following Lyapunov functional

for the system (11):

VðtÞ ¼ V1ðtÞ þ V2ðtÞ þ V3ðtÞ þ V4ðtÞ ð16Þ

where

V1ðetÞ ¼ eðtÞTPeðtÞ,

V2ðetÞ ¼
Z t

t��
eðsÞTQ1eðsÞds,

V3ðetÞ ¼
Z t

t��ðtÞ
eðsÞTQ2eðsÞds,

V4ðetÞ ¼ �

Z 0

��

Z t

tþ�
_eðsÞTZ _eðsÞds d�:

Define the infinitesimal operator L of V(et) as follows

(Gao, Wu, and Shi 2009):

LVðetÞ ¼ lim
h!0þ

1

h
fEfVðetþhÞjetg � VðetÞg: ð17Þ

Taking the derivative of (16) along the solution of

system (11) yields

EfLV1ðtÞg ¼ 2EfeðtÞTP _eðtÞg

¼ 2EfeðtÞTPð �gðeðtÞÞ þ ðG� AÞeðt� �ðtÞÞ

þ �ðKþHDðtÞEÞeðtÞÞg, ð18Þ

EfLV2ðtÞg ¼ EfeðtÞTQ1eðtÞ � eðt� �ÞTQ1eðt� �Þg,
ð19Þ

EfLV3ðtÞg ¼ EfeðtÞTQ2eðtÞ

� ð1� _�ðtÞÞeðt� �ðtÞÞTQ2eðt� �ðtÞÞg

4EfeðtÞTQ2eðtÞ

� ð1� �Þeðt� �ðtÞÞTQ2eðt� �ðtÞÞg, ð20Þ

EfLV4ðtÞg ¼ E �2 _eðtÞTZ _eðtÞ � �
Z t

t��
_eðsÞTZ _eðsÞds

� �

4Ef�2ð �gðeðtÞÞþ ðG�AÞeðt� �ðtÞÞ

þ�ðKþHDðtÞEÞeðtÞÞTZð �gðeðtÞÞ
þ ðG�AÞeðt� �ðtÞÞþ�ðKþHDðtÞEÞeðtÞÞ

þ �2�ð1��ÞeðtÞTðKþHDðtÞEÞT

�ZðKþHDðtÞEÞeðtÞþ$ðtÞTO$ðtÞg, ð21Þ

where Lemma 2.2 is applied and

$ðtÞ ¼ eðtÞT eðt� �ðtÞÞT eðt� �ÞT
� �T

,

O ¼
�Z Z� S S

� �2Zþ Sþ ST �Sþ Z

� � �Z

2
64

3
75:

On the other hand, it follows from (4) that for any

�4 0

yðtÞ ¼ �
eðtÞ
�gðeðtÞÞ

" #T �U �V

� I

" #
eðtÞ
�gðeðtÞÞ

" #
4 0: ð22Þ

D
ow

nl
oa

de
d 

by
 [

Y
eu

ng
na

m
 U

ni
ve

rs
ity

] 
at

 1
8:

37
 1

1 
Fe

br
ua

ry
 2

01
3 



	 International Journal of Control	 559

3. Main results

In this section, we first provide two sufficient condi-

tions on exponential mean-square stability of the error

system (11). Then, we investigate the design problem of

exponential mean-square synchronisation for CND

(1). Before presenting the main results, for the sake of

presentation simplicity, we denote

�U ¼ ðIN �UÞTðIN � VÞ
2

þ ðIN � VÞTðIN �UÞ
2

,

�V ¼ � ðIN �UÞT þ ðIN � VÞT

2
:

Theorem 3.1: The error system (11) is exponentially

mean-square stable if there exist matrices P4 0,

Q14 0, Q24 0, Z S
� Z

� �
5 0 and scalars �4 0 and

�4 0 such that

X11 X12 S X14 X15 X16

� X22 X23 0 X25 0

� � X33 0 0 0

� � � ��I �Z 0

� � � � �Z 0

� � � � � �Z

2
666666664

3
777777775
5 0 ð15Þ

where

X11 ¼ �PðKþHDðtÞEÞ þ �ðKþHDðtÞEÞTPþQ1

þQ2 � Z� � �Uþ �I,
X12 ¼ PðG� AÞ þ Z� S,

X14 ¼ P� � �V,

X15 ¼ ��ðKþHDðtÞEÞTZ,
X16 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

p
ðKþHDðtÞEÞTZ,

X22 ¼ �ð1� �ÞQ2 � 2Zþ Sþ ST,

X23 ¼ �Sþ Z,

X25 ¼ �ðG� AÞTZ,
X33 ¼ �Q1 � Z:

Proof: Consider the following Lyapunov functional

for the system (11):

VðtÞ ¼ V1ðtÞ þ V2ðtÞ þ V3ðtÞ þ V4ðtÞ ð16Þ

where

V1ðetÞ ¼ eðtÞTPeðtÞ,

V2ðetÞ ¼
Z t

t��
eðsÞTQ1eðsÞds,

V3ðetÞ ¼
Z t

t��ðtÞ
eðsÞTQ2eðsÞds,

V4ðetÞ ¼ �

Z 0

��

Z t

tþ�
_eðsÞTZ _eðsÞds d�:

Define the infinitesimal operator L of V(et) as follows

(Gao, Wu, and Shi 2009):

LVðetÞ ¼ lim
h!0þ

1

h
fEfVðetþhÞjetg � VðetÞg: ð17Þ

Taking the derivative of (16) along the solution of

system (11) yields

EfLV1ðtÞg ¼ 2EfeðtÞTP _eðtÞg

¼ 2EfeðtÞTPð �gðeðtÞÞ þ ðG� AÞeðt� �ðtÞÞ

þ �ðKþHDðtÞEÞeðtÞÞg, ð18Þ

EfLV2ðtÞg ¼ EfeðtÞTQ1eðtÞ � eðt� �ÞTQ1eðt� �Þg,
ð19Þ

EfLV3ðtÞg ¼ EfeðtÞTQ2eðtÞ

� ð1� _�ðtÞÞeðt� �ðtÞÞTQ2eðt� �ðtÞÞg

4EfeðtÞTQ2eðtÞ

� ð1� �Þeðt� �ðtÞÞTQ2eðt� �ðtÞÞg, ð20Þ

EfLV4ðtÞg ¼ E �2 _eðtÞTZ _eðtÞ � �
Z t

t��
_eðsÞTZ _eðsÞds

� �

4Ef�2ð �gðeðtÞÞþ ðG�AÞeðt� �ðtÞÞ

þ�ðKþHDðtÞEÞeðtÞÞTZð �gðeðtÞÞ
þ ðG�AÞeðt� �ðtÞÞþ�ðKþHDðtÞEÞeðtÞÞ

þ �2�ð1��ÞeðtÞTðKþHDðtÞEÞT

�ZðKþHDðtÞEÞeðtÞþ$ðtÞTO$ðtÞg, ð21Þ

where Lemma 2.2 is applied and

$ðtÞ ¼ eðtÞT eðt� �ðtÞÞT eðt� �ÞT
� �T

,

O ¼
�Z Z� S S

� �2Zþ Sþ ST �Sþ Z

� � �Z

2
64

3
75:

On the other hand, it follows from (4) that for any

�4 0

yðtÞ ¼ �
eðtÞ
�gðeðtÞÞ

" #T �U �V

� I

" #
eðtÞ
�gðeðtÞÞ

" #
4 0: ð22Þ

Thus,

EfLVðtÞg4EfLV1ðtÞ þ LV2ðtÞ þ LV3ðtÞ � yðtÞg

4E
$ðtÞ
�gðeðtÞÞ

" #T

L
$ðtÞ
�gðeðtÞÞ

" #8<
:

9=
;

where

L ¼

X̂11 X12 S X14

� X22 X23 0

� � X33 0

� � � ��I

2
6664

3
7775þ

X15

X25

0

�Z

2
6664

3
7775Z

X15

X25

0

�Z

2
6664

3
7775

T

þ

X16

0

0

0

2
6664

3
7775Z

X16

0

0

0

2
6664

3
7775

T

and

X̂11 ¼ �PðKþHDðtÞEÞ þ �ðKþHDðtÞEÞTP
þQ1 þQ2 � Z� � �U:

By using the Schur complement, it can be obtained

immediately from (15) that

EfLVðtÞg4 ��EfkeðtÞk2g: ð23Þ

Noticing (16) and (23), we have

�EfkeðtÞk2 4EfVðtÞg4EfVð0Þg � �
Z t

0

EfkeðsÞk2gds

ð24Þ

where �¼ �min(P), which implies that

EfkeðtÞk2 4 EfVð0Þg
�

� �

�

Z t

0

EfkeðsÞk2g ds: ð25Þ

Finally, similar to Shen et al. (2012), it follows from

Gronwall’s inequality that

EfkeðtÞk2g4 EfVð0Þg
�

e�
�
�t ð26Þ

which, from Definition 2.1, means that the system (11)

is exponentially mean-square stable. This completes

the proof. œ

It is noted that (15) is not an LMI and thus is

unsolvable using standard numerical tools. Based on

Lemma 2.3, we can get the following LMI condition,

which can be applied for checking the stability of

system (11).

Theorem 3.2: The error system (11) is exponentially

mean-square stable if there exist matrices P4 0,

Q14 0, Q24 0, Z S
� Z

� �
5 0 and scalars �4 0, �4 0

and "4 0 such that

~X11 X12 S X14
~X15

~X16 �PH "ET

� X22 X23 0 X25 0 0 0

� � X33 0 0 0 0 0

� � � ��I �Z 0 0 0

� � � � �Z 0 ��ZH 0

� � � � � �Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
ZH 0

� � � � � � �"I 0

� � � � � � � �"I

2
66666666666666664

3
77777777777777775

50 ð27Þ

where X12, X14, X22, X23, X25 and X33 are given in

Theorem 3.1, and

~X11 ¼ �PKþ �KTPþQ1 þQ2 � Z� � �Uþ �I,
~X15 ¼ ��KTZ,

~X16 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

p
KTZ:

Proof: Rewriting (15), we can get

~X11 X12 S X14
~X15

~X16

� X22 X23 0 X25 0

� � X33 0 0 0

� � � ��I �Z 0

� � � � �Z 0

� � � � � �Z

2
666666666664

3
777777777775

þ

�PH

0

0

0

��ZH

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
ZH

2
666666666664

3
777777777775

�DðtÞ E 0 0 0 0 0
� �

þ

ET

0

0

0

0

0

2
666666666664

3
777777777775

DðtÞ

� �HTPT 0 0 0 ��HTZT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
HTZT

� �
50:

ð28Þ

Based on Lemma 2.3, we can find the above inequality

is equivalent to (27). This completes the proof. œ

In the following, we will develop a design result

based on Theorem 3.1.

Theorem 3.3: The CDN (1) is exponentially mean-

square synchronised if there exist matrices P¼ diag{P1,

P2, . . . ,PN}4 0, Q14 0, Q24 0, Z S
� Z

� �
5 0,
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X¼diag{X1,X2, . . . ,XN}, and scalars �4 0 and "4 0

such that

where

X̂11 ¼ �Xþ �XT þQ1 þQ2 � Z� � �U,

X̂15 ¼ ��XT,

X̂16 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

p
XT,

X̂25 ¼ �ðG� AÞTP,

and the other parameters follow the same definitions as

those in Theorem 3.1. Furthermore, the desired control-

lers gain matrices are given by

Ki ¼ P�1
i Xi, i ¼ 1, 2, . . . ,N: ð30Þ

Proof: By Lemma 2.3, it can be easily obtained from

(29) that there exists a small enough �4 0 such that

L11 X12 S X14 X̂15 X̂16

� X22 X23 0 X̂25 0

� � X33 0 0 0

� � � ��I �P 0

� � � � �2PþZ 0

� � � � � �2PþZ

2
66666666664

3
77777777775

þ

�PH

0

0

0

��PH

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
PH

2
66666666664

3
77777777775

DðtÞ E 0 0 0 0 0
� �

þ

ET

0

0

0

0

0

2
66666666664

3
77777777775

DðtÞ

� �HTPT 0 0 0 ��HTPT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
HTPT

� �
50

ð31Þ

where L11 ¼ X̂11 þ �I. On the other hand, define

matrix J¼ diag{I, I, I, I,PZ�1,PZ�1} and X¼PK.

Then, pre- and post-multiplying (15) with J and JT,
respectively, we obtain that (15) is equivalent to

L11 X12 S X14 X̂15 X̂16

� X22 X23 0 X̂25 0

� � X33 0 0 0

� � � ��I �P 0

� � � � �PZ�1P 0

� � � � � �PZ�1P

2
666666664

3
777777775

þ

�PH

0

0

0

��PH

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
PH

2
666666664

3
777777775
DðtÞ E 0 0 0 0 0

� �
þ

ET

0

0

0

0

0

2
666666664

3
777777775
DðtÞ

� �HTPT 0 0 0 ��HTPT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
HTPT

� �
50:

ð32Þ

Noting Z4 0, we have �PZ�1P4�2PþZ. Thus, it
is clear that if (31) holds, then (32) holds, which implies
that (15) holds. This completes the proof. œ

Remark 1: In Theorem 3.3, the non-fragile control-
lers are designed such that CDN (1) is exponentially
mean-square synchronised. It is noted that the
obtained condition is formulated by LMI which can
be checked easily. To the best of our knowledge, it is
the first time to deal with the non-fragile synchroni-
sation control for CNDs with time-varying coupling
delay and missing data.

4. Numerical example

In this section, we illustrate the effectiveness of the
methods proposed in this article via an example, which

X̂11 X12 S X14 X̂15 X̂16 �PH "ET

� X22 X23 0 X̂25 0 0 0

� � X33 0 0 0 0 0

� � � ��I �P 0 0 0

� � � � �2Pþ Z 0 ��PH 0

� � � � � �2Pþ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

p
PH 0

� � � � � � �"I 0

� � � � � � � �"I

2
66666666666666664

3
77777777777777775

5 0 ð29Þ
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X¼diag{X1,X2, . . . ,XN}, and scalars �4 0 and "4 0

such that

where

X̂11 ¼ �Xþ �XT þQ1 þQ2 � Z� � �U,

X̂15 ¼ ��XT,

X̂16 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

p
XT,

X̂25 ¼ �ðG� AÞTP,

and the other parameters follow the same definitions as

those in Theorem 3.1. Furthermore, the desired control-

lers gain matrices are given by

Ki ¼ P�1
i Xi, i ¼ 1, 2, . . . ,N: ð30Þ

Proof: By Lemma 2.3, it can be easily obtained from

(29) that there exists a small enough �4 0 such that

L11 X12 S X14 X̂15 X̂16

� X22 X23 0 X̂25 0

� � X33 0 0 0

� � � ��I �P 0

� � � � �2PþZ 0

� � � � � �2PþZ

2
66666666664

3
77777777775

þ

�PH

0

0

0

��PH

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
PH

2
66666666664

3
77777777775

DðtÞ E 0 0 0 0 0
� �

þ

ET

0

0

0

0

0

2
66666666664

3
77777777775

DðtÞ

� �HTPT 0 0 0 ��HTPT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
HTPT

� �
50

ð31Þ

where L11 ¼ X̂11 þ �I. On the other hand, define

matrix J¼ diag{I, I, I, I,PZ�1,PZ�1} and X¼PK.

Then, pre- and post-multiplying (15) with J and JT,
respectively, we obtain that (15) is equivalent to

L11 X12 S X14 X̂15 X̂16

� X22 X23 0 X̂25 0

� � X33 0 0 0

� � � ��I �P 0

� � � � �PZ�1P 0

� � � � � �PZ�1P

2
666666664

3
777777775

þ

�PH

0

0

0

��PH

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
PH

2
666666664

3
777777775
DðtÞ E 0 0 0 0 0

� �
þ

ET

0

0

0

0

0

2
666666664

3
777777775
DðtÞ

� �HTPT 0 0 0 ��HTPT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
HTPT

� �
50:

ð32Þ

Noting Z4 0, we have �PZ�1P4�2PþZ. Thus, it
is clear that if (31) holds, then (32) holds, which implies
that (15) holds. This completes the proof. œ

Remark 1: In Theorem 3.3, the non-fragile control-
lers are designed such that CDN (1) is exponentially
mean-square synchronised. It is noted that the
obtained condition is formulated by LMI which can
be checked easily. To the best of our knowledge, it is
the first time to deal with the non-fragile synchroni-
sation control for CNDs with time-varying coupling
delay and missing data.

4. Numerical example

In this section, we illustrate the effectiveness of the
methods proposed in this article via an example, which

X̂11 X12 S X14 X̂15 X̂16 �PH "ET

� X22 X23 0 X̂25 0 0 0

� � X33 0 0 0 0 0

� � � ��I �P 0 0 0

� � � � �2Pþ Z 0 ��PH 0

� � � � � �2Pþ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

p
PH 0

� � � � � � �"I 0

� � � � � � � �"I

2
66666666666666664

3
77777777777777775

5 0 ð29Þ

is borrowed from Li et al. (2011). Consider CND (1)

with three nodes. The outer-coupling matrix is

assumed to be G¼ (Gij)N�N with

G ¼
�1 0 1

0 �1 1

1 1 �2

2
64

3
75:

The time-varying delay is chosen as �(t)¼ 0.2þ
0.05sin(10t). A straightforward calculation gives

�¼ 0.25 and �¼ 0.5. The nonlinear function f is

taken as

f ðxiðtÞÞ ¼
�0:5xi1 þ tanhð0:2xi1Þ þ 0:2xi2

0:95xi2 � tanhð0:75xi2Þ

� �
:

It is easy to verify that the above nonlinear function f

satisfies the sector-bounded condition (4) with

U ¼
�0:5 0:2

0 0:95

� �
, V ¼

�0:3 0:2

0 0:2

� �
:

The inner-coupling matrix is set as

A ¼
1 0

0 1

� �

and

H1 ¼H2 ¼H3 ¼
0:1 0

0 0:1

� �
, E1 ¼E2 ¼E3 ¼

0:2 0

0 0:2

� �
:

In this example, we choose �¼ 0.5. By using the

Matlab, we solve LMI (29) and get the following

feasible solution:

P1 ¼
13:0142 �0:2224

�0:2224 11:0223

� �
, P2 ¼

13:0142 �0:2224

�0:2224 11:0223

� �
, P3 ¼

12:3715 �0:1988

�0:1988 10:5999

� �

X1 ¼
�26:5095 �3:3592

�0:5756 �45:3826

� �
, X2 ¼

�26:5095 �3:3592

�0:5756 �45:3826

� �
, X3 ¼

�26:9928 �3:1111

�0:4548 �44:3870

� �

Q1 ¼

10:1217 �0:2482 �0:3126 0:0086 �0:1983 �0:0016

�0:2482 7:7729 0:0086 �0:1965 �0:0020 �0:2136

�0:3126 0:0086 10:1217 �0:2482 �0:1983 �0:0016

0:0086 �0:1965 �0:2482 7:7729 �0:0020 �0:2136

�0:1983 �0:0020 �0:1983 �0:0020 10:0788 �0:2559

�0:0016 �0:2136 �0:0016 �0:2136 �0:2559 7:6567

2
666666664

3
777777775

Q2 ¼

10:1307 �0:2945 �0:0397 0:0018 �0:3642 0:0100

�0:2945 7:2801 0:0018 �0:0089 0:0109 �0:3184

�0:0397 0:0018 10:1307 �0:2945 �0:3642 0:0100

0:0018 �0:0089 �0:2945 7:2801 0:0109 �0:3184

�0:3642 0:0109 �0:3642 0:0109 10:6499 �0:3285

0:0100 �0:3184 0:0100 �0:3184 �0:3285 7:5098

2
666666664

3
777777775

Z ¼

9:8046 �0:1546 0:1776 �0:0058 �0:6736 0:0140

�0:1546 8:6869 �0:0058 0:0988 0:0136 �0:4695

0:1776 �0:0058 9:8046 �0:1546 �0:6736 0:0140

�0:0058 0:0988 �0:1546 8:6869 0:0136 �0:4695

�0:6736 0:0136 �0:6736 0:0136 10:1544 �0:1526

0:0140 �0:4695 0:0140 �0:4695 �0:1526 8:9728

2
666666664

3
777777775

S ¼

2:3151 �0:0659 �0:0744 0:0018 0:6237 �0:0124

�0:0835 1:7482 0:0023 �0:0712 0:0021 0:6012

�0:0744 0:0018 2:3151 �0:0659 0:6237 �0:0124

0:0023 �0:0712 �0:0835 1:7482 0:0021 0:6012

0:5644 �0:0102 0:5644 �0:0102 1:4451 �0:0425

0:0041 0:5614 0:0041 0:5614 �0:0725 1:0118

2
666666664

3
777777775
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Figure 2. State trajectory e2(t) of the error system (11) without controllers.
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Figure 1. State trajectory e1(t) of the error system (11) without controllers.

D
ow

nl
oa

de
d 

by
 [

Y
eu

ng
na

m
 U

ni
ve

rs
ity

] 
at

 1
8:

37
 1

1 
Fe

br
ua

ry
 2

01
3 



	 International Journal of Control	 563

0 2 4 6 8 10
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2
x 104

Time t

e21 (t)
e22 (t)

Figure 2. State trajectory e2(t) of the error system (11) without controllers.
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Figure 1. State trajectory e1(t) of the error system (11) without controllers.
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Figure 4. State trajectory e1(t) of the error system (11) with designed controllers.
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Figure 3. State trajectory e3(t) of the error system (11) without controllers.
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Figure 6. State trajectory e3(t) of the error system (11) with designed controllers.
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Figure 5. State trajectory e2(t) of the error system (11) with designed controllers.
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Figure 5. State trajectory e2(t) of the error system (11) with designed controllers.

and �¼ 17.5719, "¼ 15.3160. Then we can obtain the
gain matrices of the desired controllers as follows:

K1 ¼
�2:0386 �0:3286

�0:0933 �4:1240

� �
,

K2 ¼
�2:0386 �0:3286

�0:0933 �4:1240

� �
,

K3 ¼
�2:1832 �0:3188

�0:0838 �4:1935

� �
:

The state trajectories of the error system (11) without
controllers and with the above controllers are given
in Figures 1–3 and Figures 4–6, respectively,
where x1(0)¼ [2 1]T, x2(0)¼ [�2 3]T, x3(0)¼ [�2 4]T,
s(0)¼ [6 9]T. It is clear that the error system (11)
without controllers is unstable, and the state trajecto-
ries of the error system (11) with designed controllers
converge to zero, that is, thus the CDN (1) with
designed controllers is synchronised.

5. Conclusions

In this article, the non-fragile synchronisation control
problem has been considered for complex networks
with time-varying coupling delay and missing data.
The missing data has been modelled by a stochastic
variable satisfying the Bernoulli random binary distri-
bution. An exponential stability condition of the error
system has been proposed based on Gronwall’s
inequality. Based on the condition, a set of non-fragile
synchronisation controllers has been designed. A
simulation result has demonstrated the successful
application of the proposed design methods.
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