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Abstract— This paper presents a non-gaited motion planner
for humanoid robots navigating very uneven and sloped terrain.
The planner allows contact with any pre-designated part of the
robot’s body, since the use of hands or knees (in addition to feet)
may be required to balance. It uses a probabilistic, sample-based
approach to compute each step. One challenge of this approach
is that most randomly sampled configurations do not satisfy
all motion constraints (closed-chain, equilibrium, collision). To
address this problem, a method of iterative constraint enforce-
ment is presented that samples feasible configurations much more
quickly. Example motions planned for the humanoid robot HRP-2
are shown in simulation.

Index Terms— Humanoid robots, motion planning, non-gaited
locomotion, multi-step planning, equilibrium.

I. INTRODUCTION

A key constraint on the motion of a legged robot—in

particular a humanoid robot—is maintenance of equilibrium.

At each instant, the reaction forces at contacts with the envi-

ronment must exactly compensate for the other forces acting

on the robot. In flat horizontal terrain, a gaited motion can

be pre-computed to satisfy this constraint. However, in highly

irregular terrain (e.g., rocky outdoor terrain, broken urban

environment after an earthquake, lunar surface), the contacts

that a robot can possibly make are arbitrarily distributed, and

sometimes sparse. As a result, each motion step may be unique

and its planning requires deliberate reasoning about contacts,

equilibrium, and collision.

In this paper, we present a motion planner for humanoid

robots navigating rigid, severely uneven, possibly sloped ter-

rain. In such terrain, foot contacts do not always suffice to

achieve equilibrium. So, our planner can make use of any pre-

designated part of the robot’s body (e.g., feet, hands, knees)

to achieve balance. We have successfully tested our planner

on a computer model of the humanoid robot HRP-2 of AIST

[1] operating in various virtual environments. Though still

preliminary, our results demonstrate the ability of our planner

to compute complex motions in difficult terrain.

We assume the motion of a humanoid robot consists of

a sequence of steps, each of which maintains a fixed set of

contacts with the environment. A transition from one step to

the next either breaks a contact or makes a new one. As in

dexterous manipulation [2], planning the motion of a humanoid

requires computing both a sequence of contacts and trajectories

to achieve them.

One way to make planning faster is to solve these two

sub-problems separately. For example, if the terrain is nearly

flat, then it does not matter much where a humanoid robot

places its feet. So, it is appropriate first to worry about the

robot’s overall motion (e.g., by modeling the robot as a vertical

cylinder sliding among obstacles) and then to follow this

motion with a regular gait. Alternatively, if the terrain is very

rough, useful contacts are sparse and arbitrarily distributed. So,

it makes more sense to choose the contacts before computing

the trajectories [3].

The second approach (“contact-before-motion”) is the one

we use here. We begin by sampling a number of useful

contacts—associations between points on the robot and points

on the terrain. Each set of contacts forms a potential stance,

at which the robot can take a step. A distinct feasible space

corresponds to each stance: it is the set of robot configurations

at which the stance contacts are achieved, the equilibrium

constraint is satisfied1, and the robot is collision-free (except

at the intended contacts). We search a stance-adjacency graph

for a sequence of stances to reach a goal. Two nodes (stances)

in this graph are connected if they differ by a single contact

and contain a feasible configuration in common. We convert

a sequence of stances into a continuous motion by planning a

one-step trajectory in the feasible space of each stance. Upon

failure, graph search resumes.

Overall, our work extends this contact-before-motion plan-

ning approach, which was previously developed for free-

climbing robots [4], [5], to humanoid robots with more degrees

of freedom. We also make two additional contributions:

• Our planner allows the robot to make contact with any

pre-designated point on its body. So, it allows the robot

to walk on relatively easy terrain, use its hands as needed

in severely broken and steep terrain, and crawl when

obstacles prevent the robot to move standing up.

• Our planner, which embeds a Probabilistic Roadmap

(PRM) technique [6] to compute one-step trajectories,

employs numerical techniques to sample the feasible

space at each stance more quickly by reducing the sam-

pling rejection rate.

This paper gives an overview of our planner, focusing pri-

marily on the second contribution listed above. It is organized

in two parts. The first part discusses our adaptation of the

planner of [3] to humanoid motion planning. The second part

describes our sampling method. We demonstrate in simulation

the ability of our planner to generate motions for HRP-2 in

environments that require the use of hands for mobility (in

particular, rough terrain, high ledges, and ladders).

1In this paper, we only consider quasi-static equilibrium.



Fig. 1. Three types of contact, showing contact normals and friction cones.

II. HUMANOID LOCOMOTION PLANNING

A basic method for navigating around obstacles on flat

ground approximates the humanoid as a cylinder (or other

bounding volume), plans a 2D collision-free path of this

cylinder, and follows the path with a fixed gait [7], [8]. This

method can generate motions very quickly, since it takes

advantage of the substantial body of research on both 2D path

planning and on creating stable, dynamic walking gaits for

humanoid robots.

Other approaches have been developed for piecewise-flat

terrain (e.g., with stairs), where the robot must step over, onto,

or under obstacles. These methods consider each step individu-

ally. One method searches a grid-based terrain decomposition

using bounds on step length and height, placing individual

footsteps with kinematic planning of the lower body [9].

Another method uses a library of feasible steps [10], [11].

Our work addresses humanoid locomotion in very uneven or

sloped terrain. It is an extension of previous work on motion

planning for a four-limbed free-climbing robot [3]. This robot

climbed an inclined, planar wall by making frictional point

contacts at scattered “climbing holds.” Because the location of

each hold was arbitrary, the climbing motion was non-gaited,

and each “step” was often unique. Therefore, a PRM planner

was used to compute each step. We extend this planner to hu-

manoid robots with an enhanced model of contact (Section III)

and an improved method of sampling (Section VI).

III. CONTACT MODELING

We assume that all robot links and the environment are

perfectly rigid. When a point pR on the surface of a robot

link touches a point pE on the surface of the environment, we

call this association a point contact. We only consider points

pE where there is a unique plane tangent to the environment

surface. The point contact is then characterized by the outer

normal to this plane (pointing away from the environment)

and a coefficient of friction µ. The reaction forces that the

environment can generate span a friction cone of half-angle

tan−1 µ, whose apex is pR = pE and whose axis is oriented

along the outer normal. (In fact, in the rest of this paper, it

is only necessary that the range of possible reaction forces be

a convex set.) A point contact allows the robot link to rotate

freely about the fixed pR.

We model other types of contact between the robot and the

environment by groups of k > 1 point contacts (pR
i , pE

i ), i =
1, ..., k, occurring simultaneously, where all points pR

i belong

to the same robot link. When k = 2, we have an edge contact

that allows the robot link to rotate freely about the fixed

line passing through pR
1 and pR

2 . When k > 2, we have a

face contact that fully constraints the link’s orientation. By

convention, each point pR
i in a face contact is located at a

vertex of the convex hull of the overlap between the robot

link and the environment. Each type of contact is illustrated

in Figure 1.

In advance, we designate a set of features (points, edges,

and faces) on the robot at which contact is allowed. There is

no restriction on this set, but once it has been chosen, no other

points on the robot’s surface may touch the environment. A

contact is generated by picking a feature and placing it against

a point in the environment. This process is repeated many times

to construct a discrete set of candidate contacts.

This raises the question, “which points in the environment

should be allowed contact with which robot features?” Ideally,

the set of candidate contacts should be large enough to allow

the robot to reach a goal, but not too large to overwhelm the

planner. Hence, picking the “right” contacts is critical. In our

current implementation, we do this either at random or by

hand. We are currently investigating better techniques, based

either on local properties such as the range of reaction forces

at a contact or on other considerations such as the distribution

of contacts.

IV. STATIC EQUILIBRIUM TEST

A configuration q of the humanoid robot is specified by

the translation and orientation of an arbitrarily selected root

link and a set of joint angles. This parameterization is 36-

dimensional for the HRP-2 robot.

Consider a configuration q where the robot makes k point

contacts with the environment. Three kinds of forces act on the

robot: joint torques τ , reaction forces fi(i = 1, ..., k) at contact

points pi, and gravity g. The robot is in static equilibrium if

these forces sum to zero, the joint torques are within their

limits τmax, and the contact forces fi lie in their respective

friction cones FCi. This yields the equilibrium conditions

|τ | ≤ τmax

G(q) = τ +
∑

i

JT
i (q)fi

fi ∈ FCi for all i

(1)

where G(q) is the generalized gravity vector, and Ji is the

contact point Jacobian.

For a given configuration q, conditions (1) can conserva-

tively approximated as a linear program (LP) by inscribing

a polyhedral pyramid inside each friction cone. If the LP is

infeasible, the configuration q is not in equilibrium. If any

feasible solution (τ, f1, ..., fk) can be found then these torques

and contact forces keep the robot in equilibrium at q.

A simpler test can be derived by assuming the robot to be

a rigid body, or equivalently assuming infinite torque limits.

Denoting the robot’s center of mass by CM(q) and the gravity



force by mg, we get the rigid-body equilibrium conditions [4]:
∑

i

fi + mg = 0

∑

i

pi × fi + CM(q) × mg = 0

fi ∈ FCi for all i

(2)

These conditions are necessary (but not sufficient) for the

robot to be in equilibrium at q. In [4] a method is presented

that transforms them into a convex support polygon in the

horizontal plane over which CM(q) must lie. This polygon

is fully determined by the contacts. For sufficiently actuated

robots, torque limits are rarely violated. Then checking if

CM(q) lies over the support polygon can quickly reject many

configurations before testing the more expensive conditions

(1). In Section VI, the support polygon will be used to sample

feasible configurations with higher success rate.

V. OVERVIEW OF PLANNER

The structure of our planner is very similar to the one

described in [3]. It consists of a multi-step and a single-step

planner.

The multi-step planner is given a start and a goal config-

uration of the robot, as well a set CONTACT of candidate

contacts. We define a stance σ to be any set of contacts from

CONTACT such that no point on either the robot or terrain

participates in more than one contact. The feasible space Fσ

of the robot is the set of all configurations q where the robot

achieves all contacts in σ and is in static equilibrium and

collision-free . Two stances σ1 and σ2 are adjacent if σ1 ⊂ σ2

and if σ2\σ1 contains a single contact from CONTACT. Hence,

a motion that switches from σ1 to σ2 reaches a new contact,

while a motion that switches from σ2 to σ1 breaks an existing

contact. This definition can be generalized to allow motions

that switch from a face contact to an edge contact on the face’s

boundary (e.g., moving from contact with the entire foot to just

the toes), or similarly move from an edge to a point.

Let σstart and σgoal be the stances at the start and goal con-

figurations, respectively. The multi-step planner must first cre-

ate a sequence of adjacent stances (σ0 = σstart, σ1, ..., σn =
σgoal) likely to contain a feasible motion. It does so by

searching a stance graph Γ, whose nodes are stances, and

two adjacent stances σ1 and σ2 are connected with an edge if

Fσ1
∩ Fσ2

is non-empty. The stance graph is defined in this

way because experiments show that for free-climbing robots

[3], if Fσi−1
∩Fσi

and Fσi
∩Fσi+1

are non-empty, then most

of the time, a feasible path exists between them. This is true

for humanoid robots as well. Therefore, a sequence of stances

in Γ is likely to admit a feasible motion.

The stance graph is constructed incrementally by expanding

adjacent stances σi+1 only if it can be shown that Fσi
∩Fσi+1

is non-empty. This is done by attempting to sample a transition

configuration qi ∈ Fσi
∩ Fσi+1

. At qi, a feasible motion can

change stance from σi to σi+1 or vice versa. Despite the fact

that most infeasible stances can be quickly recognized (e.g.

contacts are too far apart) and discarded, many go undetected

and must be sampled. Therefore, a critical factor in the speed of

multi-step planning is discerning feasible steps from infeasible

ones by sampling feasible transition configurations as quickly

as possible. We present our approach in the next section.

After the multi-step search produces a sequence of stances,

it tries to transform this sequence into a continuous feasible

path. In each Fσi
, i = 0, ..., n, the single-step planner is

called to connect the transition configurations qi−1 and qi

(where q−1 is the start configuration and qn is the goal).

Because feasible spaces are too complex to represent exactly,

while all feasibility constraints can be efficiently tested at any

configuration, our one-step planner is a sampling-based PRM

planner (see Section VII). Upon failure of the one-step planner

to transform the sequence of stances into a feasible motion,

the multi-step planner is resumed to produce another candidate

sequence of stances.

VI. SAMPLING TRANSITION CONFIGURATIONS

Our planner should efficiently sample a transition configu-

ration in the intersection of two feasible spaces Fσ and Fσ′

at σ and σ′. This operation is challenging for two reasons:

• First, due to the contact constraints, each feasible space

has fewer dimensions than the robot’s configuration space

C, hence has zero measure in C. So, pure rejection

sampling, which consists of sampling C and then testing

if the generated sample lies in Fσ ∩Fσ′ , does not work.

• The equilibrium and collision constraints reduce the size

of Fσ ∩Fσ′ (but not its dimensionality). In our tests, it is

often the case that less than 1% of the configurations sat-

isfying the contact constraints also satisfy the equilibrium

and collision constraints.

Below we will compare two sampling methods that dif-

fer in their sampling philosophy. The first method (direct

parameterization) directly generates samples to satisfy the

contact constraints, but allows samples to be rejected by

equilibrium and collision constraints. The second (iterative

constraint enforcement, or ICE) uses an iterative, numerical

technique that spends more time per sample in an attempt

to reduce the rejection rate. Our experiments show that ICE

samples transition configurations faster.

A. Direct Submanifold Parameterization

Assume without loss of generality that σ′ ⊂ σ. For the

robot to be at a configuration in Fσ ∩Fσ′ , it must achieve all

the contacts in the larger stance σ, which imposes a number of

closed-loop kinematic constraints. The set of all configurations

satisfying the contact constraints forms a lower dimensional

submanifold of C.

A direct parameterization allows explicit sampling of the

submanifold where the contact constraints are satisfied [12].

The closed chain is divided into “floating” and “trailing” joints.

First, the floating joint angles are sampled at random. Then,

the trailing joint angles are determined using analytic non-

redundant inverse kinematics (IK). So, the submanifold is

directly parameterized by the floating joint angles.



A sample may fail if there is no inverse kinematics solution

for the trailing joints. For this reason, the random loop gener-

ator (RLG) technique proposed in [12] incrementally samples

each floating joint angle along the chain in such a way that the

rest of the chain meets a simple necessary condition to close

the loop. This condition is that the endpoint of the sub-chain

whose configuration has been sampled lies within a spherical

approximation of the workspace of the rest of the chain. But

this approximation works poorly when joints have tight limits

(especially for the trailing chain). Our experiments with the

HRP-2 robot indicate that it often results in low success rate.

B. Iterative Constraint Enforcement

RLG generates few samples that satisfy equilibrium and

collision constraints. Furthermore, analytical IK solutions for

position and orientation constraints are often unavailable.

These shortcomings led us to develop a sampling approach that

handles general robot kinematics and also reduces the rejection

rate.

Our approach is much like numerical IK, a second common

method for sampling closed chain kinematics [13], which uses

iterative numerical root-solving methods to move an initial

configuration into the submanifold of C where the contact

constraints are satisfied. Numerical IK can be viewed as

iterative enforcement of contact constraints. Our ICE method

uses the same framework to iteratively enforce equilibrium and

collision constraints as well.

1) Contact Enforcement: We use the following approach

to enforce contact constraints. Define an error function Cσ(q)
that is zero when all contacts are achieved. Starting from some

initial configuration, we use a Newton-Raphson method to

solve Cσ(q) = 0. At each cycle this method calculates the

pseudo-inverse of the Jacobian matrix of the robot contact

points and takes a step in configuration space to reduce the

constraint residual. This repeats until the residual is below

some tolerance or cannot be reduced further. Tests show that

major speedups are obtained by choosing initial configurations

that do not violate too much Cσ(q) = 0. To do this, we use

the RLG technique to pick floating joint angles at random and

the Cyclic Coordinate Descent [14] technique to pick values

of the trailing joint angles that almost close the loop.

2) Equilibrium Enforcement: Since σ′ ⊂ σ, the robot must

break a contact when it switches from σ to σ′. So, the

equilibrium constraint must be satisfied for the smaller stance

σ′. On difficult terrain this constraint can be very limiting.

Often, only a tiny fraction of configurations satisfying the

contact constraints also satisfy the equilibrium test.

To enforce samples to directly satisfy the equilibrium con-

straint, we use the support polygon derived from (2). We

sample a point p = (px, py) in its interior and we enforce

the CM of the robot at the sampled configuration to lie in the

vertical line passing through p. To do this we simultaneously

solve for Cσ(q) = 0 and the constraints CMx(q) = px and

CMy(q) = py using the same Newton-Raphson technique. As

above, this computes the pseudo-inverse of a Jacobian matrix,

TABLE I

SAMPLING RESULTS FOR DOUBLE-LEGGED STANCE ON FLAT GROUND

Direct Parm. ICE

Method RLG Numerical IK All

% Successfully Solved 5.4 89 26
% Pass Equilibrium 0.02 0.9 —
% Pass Collision 0.02 0.4 —

Time / sample (ms) 0.83 9.1 69
Time / feasible sample (s) 4.2 2.3 0.27

but here the Jacobian includes both the contact points and the

projection of the CM on the horizontal plane.

3) Collision Retraction: Collisions with the environment

and self-collisions are detected using the PQP package [15]. To

eliminate unnecessary self-collision checks, we pre-compute

all possibly colliding pairs of links.

In highly constraining environments, a large fraction of

samples are in collision. To avoid rejecting too many sam-

pled configurations, we retract colliding configurations out of

collision. This approach has been previously used in several

PRM planners to increase the number of configurations sam-

pled in difficult areas of the configuration space (e.g. narrow

corridors) [16], [17]. We incorporate it into ICE as follows.

After generating a sample, we use PQP to detect if there is

a collision. If so, we estimate the deepest penetrating point

and normal using a method similar to [18] and we construct a

function d(q) that approximates the penetration distance as a

function of q by assuming the point and normal to be constant.

On the next iteration, we solve for Cσ(q) = 0, CMx(q) = px,

CMy(q) = py , and d(q) = ǫ (where ǫ is a small separation

distance) by extending the Jacobian matrix to the deepest

penetrating points.

C. Experimental Results

We compare some experimental results of the transition

sampling strategies. Table I reports results for the HRP-2

standing on two feet on flat horizontal ground. The support

polygon is 10cm x 20cm under the left foot. The direct

parameterization of RLG is compared to two ICE methods.

“Numerical IK” only enforces contact constraints, using the

method described in Sec. VI-B.1. “All” performs full ICE

as described above. We generated 10,000 samples with each

technique on a 2.8 GHz Pentium IV. A sample is considered

solved successfully if it has a valid analytical IK solution

(in RLG) or achieves convergence (in the ICE methods).

For successfully solved samples, we incrementally tested the

equilibrium constraint and the collision constraints to reject

infeasible samples, so that feasible samples remain after the

collision test. All times include constraint testing. Note that

ICE generates samples that are collision free and almost always

satisfy equilibrium (no samples in this case violated the torque

limits).

RLG generates each sample very quickly, but very few

successfully solve IK. Numerical IK takes more time per

sample, but has a much higher IK success rate. In both cases,

nearly all samples failed the equilibrium test. ICE converges



Fig. 2. Local planning on the constraint manifold. Orange configurations are
moved into feasible space.

less often than Numerical IK, but almost always converges on

a feasible sample, causing it to be 16 times faster than RLG.

Other experiments demonstrate similar speed gains when the

support polygon is small (up to several times the size of the

HRP-2 footprint). However, for larger support polygons (up to

1m in width or even unbounded), including CM enforcement in

the iterative process becomes counterproductive, because most

configurations will already satisfy equilibrium constraints. In

such cases, experiments show that performing ICE without

CM enforcement is superior. Therefore, our planner chooses

to enforce a random CM position when the area of the support

polygon is small (under a specified threshold), but not when

the support polygon is large.

VII. SINGLE-STEP ROADMAP CONSTRUCTION

To connect two transition configurations, our single-step

planner uses a variant of the PRM planner (called SBL)

presented in [19]. Like SBL, our planner constructs a roadmap

made of two trees of sampled feasible configurations. Each tree

is rooted at one of the two transition configurations, and edges

connect feasible configurations. At each cycle, the planner

expands either tree by first picking a node q at random, then

sampling a new feasible configuration q′ in a δ-neighborhood

of q, and connecting q to q′ with an edge. The planner regularly

performs a connection step. First, an additional edge is placed

bridging the two trees, creating a sequence of feasible config-

urations from one transition configuration to the other. Then,

“local” feasible paths are planned between configurations in

this sequence. When the connection succeeds, it returns a

complete path between the two transition configurations. When

the planner exceeds a specified time limit, it terminates with

failure. We make some adjustments to basic SBL for planning

with closed-chain constraints.

• Neighborhood sampling: We first sample the neighbor-

hood of q in C. Then, we solve contact constraints using

numerical IK as described in Section VI-B.1. We repeat

until we get a feasible configuration q′.

• Node connection: Straight-line paths in configuration

space are not feasible, so we deform the straight path

between two nodes q and q′ into feasible space. To

do so, we recursively bisect the path segment until its

length is below some small threshold (see Fig. 2 for

an illustration). We project the midpoint of each path

segment into feasible space using the procedure described

in Section VI. On failure, the edge from q to q′ is removed

from the roadmap.

VIII. EXAMPLE MOTIONS

We show several examples of motions generated using

our planner for the HRP-2 robot in very different types of

terrain. A constant coefficient of friction is assumed for all

examples. Since PRM planners produce paths that randomly

explore the robot’s entire configuration space, we employed a

postprocessing step to make the initially jerky motions look

more smoother and more natural.

Fig. 3 depicts a simple 0.5m stair-step that cannot be

climbed by the HRP-2 only using footsteps, yet permitting

hand contact admits a feasible motion. Six foot contacts were

placed in a row, and six right hand finger contacts were placed

in various positions and orientations on the ledge. The planner

found a 9-stance sequence in about 90s, with roughly 45s spent

on stance graph search and one-step planning each.

Fig. 4 depicts frames from a motion starting in a steep-

walled depression in the ground, which requires using the

hands to climb out and start walking. Frames 2-4 show the

robot using its hands for support as it climbs to higher

ground. The terrain was generated from a heightfield of fractal

noise in a 3m x 3m area, and is depicted as topographical

map. The candidate contacts given to the planner were 800

randomly distributed footholds and fingertip contacts. The final

motion uses 19 steps. Because of the multitude of available

contacts, the planner explored thousands more stances than

were required to plan the motion. Despite the fact that the

one-step motions were planned in just less than 3 minutes,

searching the stance graph took over 3 hours.

Fig. 5 depicts a ladder climbing motion. 45 candidate

contacts were manually generated in obvious locations for the

feet and hands. The stance graph search is efficient, taking

only 7 minutes, primarily because the candidate contacts were

well-placed to permit a large number of feasible stances. The

limiting factor was one-step motion planning, which took about

3 hours, likely due to the presence of narrow passages in the

feasible space caused by rungs of the ladder.

These examples demonstrate the versatility of our planner

to handle a variety of terrain, but also expose the fact that

the high-quality candidate contact placements are critical for

efficient operation.

IX. CONCLUSION

We take a contact-before-motion approach to non-gaited mo-

tion planning for humanoid robots. Our planner first searches

for a sequence of steps that make useful contacts with the

terrain. This is accomplished by sampling feasible transition

configurations between stances. Upon completion, each indi-

vidual step is planned using a PRM planner. This approach

allows us to automatically create motions for rough terrain,

using any part of the body for contact.

Our main technical contribution is a strategy for increas-

ing the success rate of sampling transition configurations. A

numerical technique iteratively refines samples to satisfy the

constraints of the feasible space.

A critical issue in the use of such a planner is starting with

a set of useful candidate contacts. Future work should address



Fig. 3. 0.5m stair-step requiring the use of hands

Fig. 4. Using hands to climb out of a depression in fractal noise terrain

Fig. 5. Climbing a ladder

automatically characterizing and extracting useful contacts

from an environment model. Similarly, unnecessary contacts

could be avoided during planning with additional work on

analyzing contact reachability.
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