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Abstract: We give a general formulation of a non-Gaussian conditional linear AR(1)

model subsuming most of the non-Gaussian AR(1) models that have appeared in the

literature. We derive some general results giving properties for the stationary process

mean, variance and correlation structure, and conditions for stationarity. These results

highlight similarities and differences with the Gaussian AR(1) model, and unify many

separate results appearing in the literature. Examples illustrate the wide range of prop-

erties that can appear under the conditional linear autoregressive assumption. These

results are used in analysing three real data sets, illustrating general methods of estima-

tion, model diagnostics and model selection. In particular, we show that the theoretical

results can be used to develop diagnostics for deciding if a time series can be modelled

by some linear autoregressive model, and for selecting among several candidate models.
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1 Introduction

We frequently encounter time series which are clearly non-Gaussian. Particular forms of

non-normality, such as series of counts, proportions, binary outcomes or non-negative

or heavy-tailed observations are all common. In the course of analysing various non-

Gaussian series, we have encountered more than 30 different models described as having

first order autoregressive (AR(1)) structure. This diversity makes it difficult to see just

what AR(1) structure is, and to decide how to proceed in a particular modelling situation.

In this paper we discuss first-order conditionally linear autoregressive models. Linear

AR(1) structure is simple, useful and interpretable in a wide range of contexts. Our aims

are two-fold. We want to derive theoretical results analogous to standard Gaussian re-

sults which will allow us to better understand AR(1) structure and to see similarities and

differences among the various AR(1) models in the literature. We also want to develop

data-analytic methods to aid the practitioner in using these many models in a given situ-

ation.

In Section 2 we give a general formulation of linear AR(1) structure, and in Section 3

we review some of the models which fit within our general formulation. More limited

surveys of some of the non-Gaussian models are found in Lewis (1985), McKenzie (1985a)

and Sim (1994). A more detailed survey is given in Grunwald et al. (1995).

Theoretical results concerning stationarity, moments and correlation structure have been

proven for many particular AR(1) models, but in fact under very mild assumptions many

of these properties can be derived in much more generality. In Section 4 we derive these

new general results which are very useful in understanding AR(1) structure and in for-

mulating or selecting models appropriate to given situations.

Section 5 considers the application of these models in data analysis. We discuss param-

eter estimation, and in particular the issue of selecting among several possible AR(1)

models for a given series. We use a general parametric bootstrap diagnostic proposed by
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Tsay (1992) to show that it is possible to distinguish between various AR(1) models on a

given sample space.

In analysing Gaussian series, AR(1) models often appear as building blocks in more com-

plex models, for instance as a means of including correlated errors in regression (e.g.,

Judge et al., 1985) or smoothing (e.g., Altman, 1990 or Hart, 1991). We mention some

possible extensions to non-Gaussian models in Section 7.

Various alternative approaches to modelling non-Gaussian time series have been pro-

posed including the Bayesian forecasting models of West, Harrison and Migon (1985)

or Harvey and Fernandes (1989), state space models as in Kashiwagi and Yanagimoto

(1992), Kitagawa (1987) or Fahrmeir (1992), and the transformation approach of Swift

and Janacek (1991). These alternative approaches are outside the range of this paper.

2 The conditional linear AR(1) model

Let {Yt}, t = 0, 1, . . . be a time-homogeneous first order Markov process on sample space

Y ⊆ IR with conditional (transition) distribution function F (yt | yt−1). We assume Y0 has

a fixed but (usually) arbitrary distribution, and for some results that Y0 has the stationary

distribution of Yt when it exists.

Let m(Yt−1) ≡ E(Yt |Yt−1) denote the conditional mean of Yt. We say {Yt} has first order

conditional linear autoregressive (CLAR(1)) structure if

m(Yt−1) = φYt−1 + λ (2.1)

where φ and λ are any real numbers. When the sample space Y is not the entire real line,

restrictions on φ and λ may be required to ensure that m(Yt−1) remains in the parameter

space of F (yt | yt−1). We assume appropriate restrictions for any model we consider.

The conditional distribution function F (yt | yt−1) may depend on other parameters be-
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sides φ and λ, and we let θ be a vector of these parameters (θ may be null if there are no

other parameters). The usual Gaussian AR(1) model

(Yt − µ) = φ(Yt−1 − µ) + Zt , Zt
iid∼ N(0, σ2) (2.2)

is a special case where F denotes a normal distribution, Y = IR, λ = (1− φ)µ and θ = σ

since [Yt |Yt−1] ∼ N(m(Yt−1), σ2).

The CLAR(1) class includes nearly all of the non-Gaussian AR(1) models that have been

proposed in the literature, and allows derivation of some very general theoretical re-

sults as in Section 4. The definition also conveys the original idea of autoregression—

regressing the series on previous values of itself.

An alternative definition of first order autoregressive structure is obtained by requiring

an exponentially decaying autocorrelation function (ACF)

ρk = Corr[Yt, Yt−k] = φk, k = 1, 2, . . . . (2.3)

In Section 4.5 we show that under very mild conditions, (2.3) is implied by CLAR(1), but

the converse is not true. There are a few processes in the literature that have exponen-

tially decaying ACF (2.3) but do not have linear conditional mean (2.1). For example, the

minification processes of Tavares (1977, 1980a, 1980b) and Lewis and McKenzie (1991)

and the product AR processes of McKenzie (1982). Our general results below do not

apply to these models.

3 Literature on non-Gaussian AR(1) models

We give a brief review of models and methods that have appeared in the literature on

non-Gaussian AR(1) models, in order to illustrate the number and variety of individual

models subsumed under the CLAR(1) class. In our recent review of non-Gaussian AR(1)
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Method Model formulation

Innovation Yt = φYt−1 + Zt, (3.1)
Conditional distribution [Yt |Yt−1] ∼ (m(Yt−1),θ) (3.2)
Random coefficient Yt = φtYt−1 + Zt (3.3)
Thinning Yt = φ ∗ Yt−1 + Zt (3.4)
Random coefficient thinning Yt = φt ∗ Yt−1 + Zt (3.5)

Table 1: Methods of constructing non-Gaussian linear AR(1) models. Where relevant, Zt
iid∼

(λ,θ), {φt} represents an iid sequence of random coefficients such that Eφt = φ and {φt} is
independent of {Zt}, and φ ∗ Y represents the “thinning” operation.

models we summarized more than 30 models (Grunwald et al., 1995). Most models were

on the sample spaces IR (eight models), (0,∞) (nine models) or {0, 1, . . . , } (eight mod-

els) but other sample spaces included (0, 1), {0, 1, . . . , N} and (−π, π). Nearly all of the

AR(1) models we found are contained in the CLAR(1) class, but differ in other properties,

illustrating the range of CLAR(1) models.

Several general methods have been used to construct non-Gaussian AR(1) models. All of

these methods lead to models satisfying CLAR(1), and some models can be equivalently

constructed in several different ways. Let Y ∼ (λ,θ) denote a random variable with mean

λ and any other parameters contained in θ, withm(Yt−1) as in (2.1). One could replace the

innovations form (2.2) by a similar form with non-Gaussian innovations to give models

of the form shown in (3.1) of Table 1. Any such model retains the linear conditional mean

(2.1) (provided the mean of the innovations exists) and so is CLAR(1). This method has

been used to construct models on IR or (0,∞) using particular innovations distributions

by Gaver and Lewis (1980), Lawrance (1982), Dewald and Lewis (1985), Bell and Smith

(1986), Anděl (1988), Rao and Johnson (1988), Hutton (1990), Sim (1993), Lye and Martin

(1994), and using a general innovation distribution on IR by Brockwell and Davis (1991).

Alternatively, one could specify the conditional distribution associated with (2.1) to be of

a particular form, as shown in (3.2) of Table 1. These models are again CLAR(1). Zeger

and Qaqish (1988), Li (1994), Diggle et al. (1994), Shephard (1995) and Hyndman (1999)
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have used this method to construct models on IR, (0,∞) and {0, 1, . . . , N}.

Extensions to the innovations method have been proposed by replacing φYt−1 by ran-

dom variables Xt where E[Xt |Yt−1] = φYt−1. The resulting models retain the linear

conditional mean and so are CLAR(1). Random coefficient models represent one such

approach and have been used by Lawrance and Lewis (1981), Nicholls and Quinn (1982),

McKenzie (1985a), McKenzie (1985b), Sim (1986), and Lewis et al. (1989) to construct

models on IR, (0,∞), {0, 1, . . . , } or (0, 1).

The thinning operation in (3.4) and (3.5) denoted by ∗ is defined as φ ∗ X =
∑N(X)
i=1 Wi

where N(X) is a non-negative integer random variable and {Wi} is a sequence of iid

random variables, independent of N(X), such that E[N(X)Wi |X] = φX . The most com-

mon form of thinning is binomial thinning where N(X) = X and Wi
d= Bin(1, φ), where

Bin(n, p) denotes a binomial variable, but several other possibilities for N(X) and Wi

have been proposed. Thinning has been used by McKenzie (1985a), Al-Osh and Alzaid

(1987), Alzaid and Al-Osh (1988), McKenzie (1988), Al-Osh and Aly (1992), Sim (1990),

and Franke and Seligmann (1993) to construct AR(1) models on (0,∞) or {0, 1, . . . , }.

Random coefficients combined with thinning was used by McKenzie (1985a) to obtain

models on {0, 1, . . . , }.

Several other methods have yielded non-Gaussian AR(1) models that are CLAR(1), in-

cluding those of Kanter (1975), Jacobs and Lewis (1978a,b), McKenzie (1985a), Sim (1990),

and Al-Osh and Aly (1992).

4 Stochastic properties CLAR(1) models

We now give general results describing the stochastic structure of CLAR(1) models.

These results are similar in form to those for the Gaussian AR(1) model and so facili-

tate comparisons with that case. They also unify many individual results in the litera-

ture, and show the wide variety of stochastic behavior that can be obtained within the



Non-Gaussian conditional linear AR(1) models 7

CLAR(1) class. Understanding these stochastic properties will be of practical use in de-

veloping methods for analyzing non-Gaussian time series in later sections. Some of the

results have been derived in particular cases, but not, to our knowledge, in this general

setting. Results are stated below, with proofs given in Appendix 1.

4.1 Stationary process mean

Under very mild assumptions, the stationary process mean can be easily derived from

the linear conditional mean (2.1) without any knowledge of the distributions involved.

Proposition 1 For a CLAR(1) process, if |E(Y0)| <∞ and |φ| < 1 then

limt→∞ E(Yt) = λ/(1− φ) ≡ µ. If E(Y0) = µ, then E(Yt) = µ for t ≥ 0.

When |φ| < 1 and E(Y0) = µ, we can rewrite (2.1) asm(Yt−1) = φYt−1 +(1−φ)µ, showing

the conditional mean m(Yt−1) to be a combination of the previous observation and the

stationary process mean.

4.2 Stationary process variance

Further assumptions are needed to obtain results for higher moments. In exponential

family theory, the class of distributions with quadratic variance function includes the

most common probability distributions and gives a class of distributions for which many

theoretical results are available (Morris, 1982, 1983). Even without the exponential family

structure, the assumption of quadratic conditional variance includes all of the models in

this paper and allows simple and general expressions for stationary process variances,

as given in Proposition 2 below. Note, however, that it doesn’t include the conditional

Cauchy model (e.g., Brockwell and Davis, 1991, section 13.3) which has infinite variance,

or the von Mises model (Breckling, 1989) which has a non-quadratic conditional variance

relationship.
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The conditional distribution [Yt |Yt−1] has quadratic conditional variance if

v(m(Yt−1)) ≡ Var(Yt |Yt−1) = am(Yt−1)2 + bm(Yt−1) + c (4.1)

where a, b and c are constants possibly depending on µ or θ (we suppress this dependence

in the notation). In particular, note that a ≥ 0 unless the sample space Y is finite. Values

of a < 0 can occur for finite sample spaces, as illustrated in the examples below.

Proposition 2 For a CLAR(1) process, suppose [Yt |Yt−1] has quadratic conditional variance

(4.1), and |φ| < 1; and assume E(Y0) = µ.

1. If a = −1 then Var(Yt) = v(µ) for all t ≥ 1.

2. If a 6= −1 and |φ| < 1/|a+ 1|
1
2 then

lim
t→∞

Var(Yt) =
v(µ)

1− (a+ 1)φ2
.

When |φ| < 1/|a+1|
1
2 or a 6= 1, if we assume Var(Y0) = v(µ)/(1−(a+1)φ2), then it follows

that Var(Yt) = v(µ)/(1 − (a + 1)φ2) for all t ≥ 1. Proposition 2 clarifies the analogy with

the Gaussian stationary marginal variance (see Example 1 below), and the close relation

between conditional and stationary marginal variances in CLAR(1) models.

For a conditional variance relation more general than quadratic, say Var(Yt |Yt−1) =

f(m(Yt−1)), we can obtain the expression

Var(Yt) = Var[E(Yt |Yt−1)] + E[Var(Yt |Yt−1)] = φ2Var(Yt−1) + E[f(m(Yt−1))]

but little more can be said in general. With further assumptions on f , results for higher

moments analogous to Proposition 2 could also be derived.
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4.3 Conditions for stationarity

When a CLAR(1) model is defined to have a specific marginal distribution for Yt for

all t, the process is clearly stationary. In other cases the form or even the existence of

a stationary distribution may not be known. We now give conditions under which a

CLAR(1) model has an ergodic distribution with moments represented by the limits in

Propositions 1 and 2.

The results of Feigin and Tweedie (1985) give the necessary tools for finding conditions

for stationarity in terms of the conditional distribution, based on methods developed

for a Markov chain on a general state space. A few technical assumptions are required,

which we give in condensed form—details may be found in Feigin and Tweedie (1985) or

in more generality in Meyn and Tweedie (1993). To show the required irreducibility for an

AR(1) model it suffices (and is generally easy) to show that the support of the conditional

distribution F (yt | yt−1) is the entire sample space Y for each yt−1 ∈ Y . This holds for all

CLAR(1) models discussed in this paper. We also require that Yt is a Feller chain, and this

holds if the transition from Yt−1 = yt−1 to Yt is a pointwise continuous function of yt−1;

this is again true for all CLAR(1) models discussed in this paper.

The following result gives a sufficient but not necessary condition for existence of an

ergodic distribution π on Y , in the sense that for every y ∈ Y ,

‖Pt(y, ·)− π(·)‖ → 0 as t→∞ (4.2)

where Pt(y,A) = Pr(Yt ∈ A |Y0 = y) and ‖ · ‖ denotes the total variation norm. We give a

result for the two cases Y = IR and Y ⊆ [0,∞), which include all of the CLAR(1) models

discussed in this paper.

Proposition 3 Assume {Yt} is a CLAR(1) model and that it is also an irreducible Feller chain.

Then consider two cases
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Case I: Y = IR. If E
[
|Yt −m(Yt−1)|

∣∣∣ Yt−1 = y
]
< B for all y and some finite B, and if |φ| < 1,

then {Yt} is ergodic, and then convergence in (4.2) is geometrically fast.

Case II: Y ⊆ [0,∞). If 0 ≤ φ < 1 then {Yt} is ergodic, and then convergence in (4.2) is geomet-

rically fast.

These conditions are sufficient but may not be necessary, and in some cases such as the

conditionally Gamma model in Example 3 below, {Yt} may be ergodic even for some

φ ≥ 1.

It is not obvious that the limits of sequences of moments given in Propositions 1 and 2

correspond to the moments of the ergodic distribution when it exists. Using Theorem 2

of Feigin and Tweedie (1985) and methods similar to those in the proof of Proposition

3 (taking g(y) = yk + 1 for the kth moment), it can be shown that for an AR(1) process

which is ergodic, if the limits of the sequences in Propositions 1 and 2 are finite, they do

in fact represent the moments of the ergodic distribution. Moreover, from Theorem 14.3.1

of Meyn and Tweedie (1993), we can also see that if the limits in Proposition 2 are infinite

then the stationary process has infinite marginal variance. Hence, at least for irreducible

Feller models, we do have that the limits in Propositions 1 and 2 give the stationary

moments as we would hope.

The boundedness condition in Case I cannot be dispensed with; it is easy to construct

examples where the conditional mean m(Yt−1) is linear and satisfies |φ| < 1, but where

no stationary distribution exists. However, weaker conditions than the boundedness may

suffice in some cases.

4.4 Examples

The results above give insight into the stationary process structure, as we illustrate in the

following examples. In particular this illustrates that CLAR(1) models on a given sample

space can have quite different stochastic properties. This is useful in developing model
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diagnostic and selection methods as discussed in Section 5.

1. If the conditional variance (4.1) is finite and does not depend on m(Yt−1) (a = b = 0

and c < ∞) then Var(Yt) = c/(1 − φ2). This is the case for Gaussian stationary

processes (c = σ2 gives the usual result), and also for any model of the innovations

form Yt = φYt−1 + Zt with Zt iid with finite variance (then c = Var(Zt)). For these

models the stationary variance is greater than the innovations variance by the factor

1/(1− φ2).

2. If the conditional variance is finite and linear (a = 0, b 6= 0), then again Var(Yt) =

v(µ)/(1 − φ2). This is similar in form to the usual Gaussian result and more gen-

erally to the previous example but now the stationary variance depends on the

stationary process mean µ in the same way that the conditional variance depends

on the conditional mean. An example of such a model is a conditionally Poisson

model: [Yt |Yt−1] ∼ Pn(m(Yt−1)) where Pn(m) denotes a Poisson distribution with

mean m. This model has Y = {0, 1, . . .}, λ ≥ 0, φ ≥ 0, λ + φ > 0 and θ null. Then

a = 0, b = 1 and c = 0, and

Var(Yt) =
µ

1− φ2
for 0 ≤ φ < 1 .

3. If the conditional variance is quadratic with a > 0, an ergodic distribution exists

but there will be values of |φ| < 1 for which limt→∞ Var(Yt) is infinite. (This will

also be true if a < −2, but we do not know of any such models in the literature.)

An example is a conditionally Gamma model: [Yt |Yt−1] ∼ G(r, r/m(Yt−1)) where

G(r, α) denotes a Gamma distribution with shape parameter r, rate parameter α,

mean r/α and variance r/α2. Here, Y = (0,∞), λ ≥ 0, φ ≥ 0, λ+ φ > 0 and θ = r.

This gives Var(Yt |Yt−1) = m(Yt−1)2/r so a = 1/r, b = 0 and c = 0, and

Var(Yt) =
µ2/r

1− φ2(r + 1)/r
for 0 ≤ φ <

(
r
r+1

) 1
2 < 1.
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Here, because of the heavy tails of the conditional distribution, the marginal vari-

ance is infinite for some values of φ < 1, with a greater region of infinite variance

for smaller r (greater conditional skewness). For instance, if r = 1, [Yt |Yt−1] is

exponentially distribution with mean m(Yt−1), then Var(Yt |Yt−1) = m(Yt−1)2 and

Var(Yt) =
µ2

1− 2φ2
for 0 ≤ φ < 1√

2
≈ 0.707 .

However, Grunwald and Feigin (1996) have studied this and similar models, and

show that the conditionally Gamma model is ergodic for some values of φ ≥ 1,

with a greater region of ergodicity for smaller r. For example, the conditionally

exponential model is ergodic for φ < exp{−ψ(1)} ≈ 1.77 (ψ(r) = d
dr log Γ(r) is the

digamma function) when λ > 0. When φ satisfies the same condition and λ = 0,

Yt → 0 almost surely. Meyn and Tweedie (1993, p.226) mention in general the

possibility of ergodicity when φ > 1.

4. Values of a < 0 are possible only when Y is finite. Therefore Var(Yt) is also finite

and Proposition 2 gives the variance for allowable values of |φ| < 1. An example

is the conditionally Binomial process: [Yt |Yt−1] ∼ Bin(n, p(Yt−1)) with p(Yt−1) ≡

m(Yt−1)/n, Y = {0, 1, . . . , n}, µ ∈ [0, n], 0 ≤ φ ≤ 1, µ + φ > 0, µ + φ < n + 1

and θ = n. Var(Yt |Yt−1) = np(Yt−1)(1 − p(Yt−1)) = −m2(Yt−1)/n + m(Yt−1) so

a = −1/n, b = 1 and c = 0. Proposition 2 gives

Var(Yt) =
np(1− p)

1− φ2(n− 1)/n
for 0 ≤ φ ≤ 1

where p ≡ µ/n. The stationary distribution is a distribution on {0, 1, . . . , n} with

variance greater (unless n = 1 or φ = 0) than the Binomial.

5. For models with random coefficients and iid innovations, Yt = φtYt−1 + Zt, Zt iid,

Var(Yt |Yt−1) = Y 2
t−1Var(φt) + Var(Zt)

=
Var(φt)
φ2

m2(Yt−1)− 2λ
Var(φt)
φ2

m(Yt−1) + λ2 Var(φt)
φ2

+ Var(Zt),
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so a = Var(φt)/φ2 and the condition for finite stationary marginal variance is

|φ| < 1

(Var(φt)/φ2 + 1)
1
2

i.e. φ2 < 1−Var(φt) ≤ 1. This agrees with the eigenvalue condition for vector AR(p)

random coefficient models given by Feigin and Tweedie (1985) Theorem 4 when

p = 1.

Some algebra shows that in this case,

Var(Yt) =
Var(φt)µ2 + Var(Zt)
1− [Var(φt) + φ2]

.

These results reduce to those for iid innovations models with constant coefficients

(φt = φ) since then Var(φt) = 0.

6. For models with thinning and iid innovations, direct calculation using the condi-

tional variance formula gives

Var(Yt |Yt−1) = Var(Wi)E[N(Yt−1) |Yt−1] + Var(Zt)

+ [E(Wi)]2Var(N(Yt−1) |Yt−1) .

In general, nothing more can be said, but special cases can be easily calculated. For

instance, if N(x) = x,

Var(Yt) =
Var(Wi)µ+ Var(Zt)

1− φ2
.

This result includes several standard results for branching processes with immigra-

tion.
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4.5 Autocorrelation structure

Many authors have defined specific models and proven both the linear conditional mean

(2.1) and the exponentially decaying ACF results (2.3) using special methods. We now

show that this is typically unnecessary, since under very mild conditions the exponen-

tially decaying ACF is a consequence of the linear conditional mean (2.1) and holds very

generally. This is particularly useful since (2.1) is typically much easier to check than

(2.3). This and related results clarify the use and interpretation of the ACF as a model

diagnostic for general AR(1) structure.

Proposition 4 For a CLAR(1) process with |φ| < 1 and Var(Yt) <∞ constant in time,

ρk = Corr[Yt, Yt−k] = φk, k = 1, 2, . . . .

This result is mentioned in Heyde and Seneta (1972) in the context of branching processes,

but does not seem to have appeared in such generality in the non-Gaussian time series

literature.

The result is very useful in analyzing data. If the sample ACF does not appear to be

exponentially decaying as in (2.3) then the model does not have CLAR(1) structure. (As

mentioned previously, exponentially decaying ACF is also consistent with some models

outside the CLAR(1) class.) Proposition 4 also makes it clear that the sample ACF will

not help in determining which of several possible CLAR(1) models is most appropriate

for a given series.

Standard errors for sample autocorrelations are useful in interpreting the sample ACF,

and in fact this standard result holds generally also. Let Rk denote the lag k sample

autocorrelation. Under the null hypothesis that Y1, . . . , Yn are iid with constant Var(Yt) <

∞, then ρk = 0 for k 6= 0 and R1, . . . , Rh are approximately iid normal with mean 0 and

variance 1/n. (This result can be proved by examining the proof of Bartlett (1946), and
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is also given in Brockwell and Davis (1991), Example 7.2.1.) Thus, the usual ±1.96/
√
n

bands for the ACF hold very generally, and there is typically no need to use simulation

methods like those used by Sim (1994) and Grunwald and Hyndman (1998).

5 Modelling

5.1 Estimation

If the conditional distribution is known, it is relatively easy to compute maximum like-

lihood estimates for parameters in CLAR(1) models. The likelihood can be calculated

using the first-order Markov property of the models:

L(y1, . . . , yn;φ, λ,θ) = π(y1)
n∏
t=2

p(yt | yt−1)

where p(yt | yt−1) denotes the conditional density or the conditional probability function

and π(y1) denotes the marginal density or marginal probability function. If π(y1) is un-

known, the likelihood conditional on y1 can be calculated by omitting π(y1) in the above

expression. Hence, if the conditional distribution is known, maximum likelihood esti-

mates can always be found, at least numerically.

However, several difficulties can arise with maximum likelihood estimators. If the con-

ditional density function has discontinuities (as with many of the models on (0,∞) for

example), then the likelihood will also be discontinuous and numerical optimization is

very difficult. See the comments by Raftery in the discussion of Lawrance and Lewis

(1985). Maximum likelihood estimators can also be extremely non-robust for some mod-

els (e.g., Anděl (1988)).

Ordinary least squares regression of Yt against Yt−1 gives a less efficient but simpler and

more robust estimation method. For CLAR(1) models, ordinary least squares gives unbi-

ased estimators of λ and φ. Parameters in θ must be estimated by other means, possibly
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including maximum likelihood conditional on φ̂ and λ̂.

5.2 Model selection and diagnostics

In a given data analysis, the sample space will be known. The ACF can be compared

with (2.3) to determine if some CLAR(1) model may be appropriate, but typically there

will still be several possible CLAR(1) models on that sample space. By Proposition 4,

the ACF cannot be used to select among them. A particular model is often assumed for

computational convenience or familiarity, as in Sim (1994). Standard diagnostics such as

residuals are usually used to show that a proposed model could be appropriate. Exami-

nation of the marginal distribution is also recommended, but even with QQ plots against

the given theoretical marginal distribution, there is often too much variability for these to

be of much practical use. Additionally, there are often several different CLAR(1) models

with the same form of marginal distribution (see Example 3 below), and QQ plots of the

series cannot distinguish them.

To our knowledge there has not been any study of methods for model selection among

several possible AR(1) models, or of the extent to which the various CLAR(1) models

on a given sample space can be distinguished in practice. The problem is challenging

because series are often short, distributions are non-Gaussian, models are not nested,

and all models being considered share some features such as (2.1) and (2.3) so differences

may be subtle. In this section we show how an understanding of the stochastic properties

of each model, as given in Section 4, can be used to develop model diagnostics.

Tsay (1992) developed a very general approach to model diagnostics for time series based

on using parametric bootstrap samples to assess the adequacy of a fitted model. The

premise is that series simulated from the fitted model should share the stochastic proper-

ties of the series being modelled. Tsay proposed specifying a particular characteristic or

functional, such as τ defined below, of the series or model, obtaining its sampling distri-

bution using the parametric bootstrap on the fitted model, and comparing the observed
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value for the series with this distribution. We have found this approach particularly use-

ful in situations like those in this paper. Grunwald et al. (1997) used this approach to

discover and study some surprising properties of Bayesian time series models, even in

cases when the fit had passed a set of standard residual diagnostics. Sim (1994) also used

this method to show that a particular model gave an adequate fit for a given positive

series, but did not consider distinguishing among several possible models for the series.

We now illustrate the methods described above with three real data series. In some cases,

models are easily distinguishable even with short series and moderate correlation, while

in other cases specialized diagnostics based on particular stochastic properties of the

models under consideration are needed.

6 Examples

6.1 Example 1: Weekly incidence of MCLS

Consider the series of 52 weekly counts of the incidence of acute febrile muco-cutaneous

lymph node syndrome (MCLS) in Totori-prefecture in Japan during 1982, given by Kashi-

wagi and Yanagimoto (1992). In that year, a nationwide outbreak of MCLS was reported.

The authors used a state space model to estimate a postulated underlying smooth disease

rate. An alternative analysis, useful for other purposes, is based on CLAR(1) models. Fig-

ure 1 shows the series and the sample ACF. These are consistent with (2.3) and a CLAR(1)

model on sample space Y = {0, 1, . . .}. (The non-significant negative correlations for lags

10–17 are not unusual for short CLAR(1) series even in the Gaussian case.) We considered

two CLAR(1) models:

1. INAR(1) (McKenzie, 1985a, 1988; Al-Osh and Alzaid, 1987):

Yt = φ ∗ Yt−1 + Zt =
Yt−1∑
i=1

Wi + Zt
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with Zt
iid∼ Pn(λ) and Wi

iid∼ Bin(1, φ).

2. Conditionally Poisson (Example 2, Section 4.4):

[Yt |Yt−1] ∼ Pn(m(Yt−1))

with m(Yt−1) = φYt−1 + λ.

Figure 1 about here

The INAR(1) model also appears in the stochastic processes literature as an infinite server

(M/M/∞) queue (Parzen, 1962) and as a Poisson branching process with immigration

(Heyde and Seneta, 1972, for instance). Least squares conditional on y1 was used to es-

timate φ and λ in each model. The result was φ̂ = 0.524 and λ̂ = 0.802 (the estimated

parameters are the same for the two models since LS does not use distributional infor-

mation).

Using Proposition 2 the marginal variances of the models are Var(Yt) = µ for INAR(1),

and Var(Yt) = µ/(1 − φ2) for the conditionally Poisson model. (The INAR model has

Poisson marginal distribution; an explicit form for the marginal distribution of the latter

model is not directly available.) This difference in the theoretical relationship between

marginal variance and marginal mean suggests the diagnostic τ ≡ Var(Yt)/E(Yt). Esti-

mates of τ are given by the ratio τ̂ = s2
y/y where y and s2

y are the series sample mean

and variance respectively. For the MCLS series, τ̂ = 1.818. Simulating 100 series from

each fitted model, computing τ̂ for each, and constructing 95% intervals from the 2.5 and

97.5 percentiles of each set of estimates gave (0.529, 1.437) for INAR(1) and (0.893, 2.180)

for the conditionally Poisson model. The series is consistent with the conditionally Pois-

son model, but despite its short length and moderate correlation, it can be seen that the

INAR(1) does not give a large enough variance to model this series.
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6.2 Example 2: Gold particles

We repeated this procedure for another series on the same sample space, the first 60 val-

ues of the series of counts of gold particles as given by Guttorp (1991). Graph similar

to those in Figure 1 (not shown) show the series and sample ACF are again consistent

with CLAR(1) structure. LS estimates are φ̂ = 0.583 and λ̂ = 0.636. Using the same two

models and τ as in Example 1, τ̂ = 0.850 for the series and the INAR(1) and conditionally

Poisson percentile intervals were (0.583, 1.458) and (0.885, 2.041) respectively. This series

is consistent with INAR(1), but again despite its short length and moderate correlation,

it can be seen to have too small a variance to have arisen from a conditionally Poisson

model. Examination of the physical experiment (Chandrasekhar, 1954) shows that the

INAR(1) model is expected to be appropriate, though for the full series of 1598 observa-

tions the ACF shows substantial additional variation (Grunwald and Hyndman, 1998).

Examples 1 and 2 together show that no single CLAR(1) model on a given sample space

will suffice.

6.3 Example 3: Rainfall data

Weiss (1985) gave half-hourly riverflow and rainfall data for the Hirnant river, Wales,

for November and December, 1972. Here we consider a period of 72 consecutive half-

hours with some recorded rainfall (observations #1574–1645) as an example of a series on

Y = (0,∞). (More sophisticated models could impose a binary Markov chain to allow for

periods with no rain, along with a positive AR(1) model for rain amounts—see Stern and

Coe (1984), Grunwald and Jones (1999), or Hyndman and Grunwald (2000) for instance.)

The left graph in Figure 2 shows the series. The ACF (not shown) is again consistent with

CLAR(1) structure.

Figure 2 about here
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We consider three models for series on (0,∞) that are based on exponential distributions.

We use the notation Exp(µ) to denote exponential random variable with mean 1/µ.

1. EAR(1) (Gaver and Lewis, 1980):

Yt = φYt−1 + Zt where Zt ∼


0 w.p. φ

Exp(1/µ) w.p. 1− φ.

2. Thinning model of Sim (1990):

Yt = φ ∗ Yt−1 + Zt =
N(Yt−1)∑
i=1

Wi + Zt

where Zt
iid∼ Exp(1/λ), Wi

iid∼ Exp(1/λ) and N(x) ∼ Pn(φx/λ).

3. Conditionally exponential (Example 3, Section 4.4 with r = 1):

[Yt |Yt−1] ∼ Exp(1/m(Yt−1))

with m(Yt−1) = φYt−1 + λ.

The first two models have exponential marginal distributions. The middle graph in Fig-

ure 2 shows an exponential QQplot of the 72 values. Simulations from exponential dis-

tributions can show this much deviation from a straight line.

We first considered three test statistics: the positive/negative ratio (pn) for diagnosing

time-irreversibility, as discussed by Tsay (1992); the coefficient of skewness; and the ratio

of series variance to series mean. The first two were used by Sim (1994). Table 2 shows

the results of 100 simulations from each of the three models (models were fitted using

least squares). Skewness and variance/mean ratio are inconclusive and do not reject

any of the models, despite the marginal distributions having quite different forms. The

pn rejects EAR(1). Viewing graphs of simulated series also makes it clear that EAR(1)

could not have generated this series. In particular, EAR(1) requires yt ≥ φyt−1, and on
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a graph of yt versus yt−1 this shows up as a lower bound at yt = φyt−1, which is not

evident in the lagged plot in the right panel of Figure 2. Further examination of model

properties as in Section 4 shows that the thinning model has conditional variance linear

in m(Yt−1) (and so also in Yt−1), while the conditional model has conditional variance

quadratic in m(Yt−1) and Yt−1. This suggested the statistic τ defined by the ratio of the

variance of yt for periods with yt−1 greater than median yt−1 to the variance of yt for

periods with yt−1 less than median yt−1. The column labelled “condvar” in Table 2 shows

the percentile intervals and observed value. The thinning and innovations models now

seem unlikely, and the theoretical results in Section 4 of this paper helped develop an

appropriate diagnostic.

Statistic
Model pn skew ratio condvar
EAR(1) (0.127, 0.340) (0.614, 2.447) (0.194, 1.191) (0.494, 9.393)
Thinning (0.732, 1.367) (0.430, 2.427) (0.253, 0.920) (1.439, 16.031)
Conditional (0.868, 1.448) (1.297, 5.630) (0.276, 13.109) (2.147, 471.520)
Observed 1.152 1.330 0.722 20.372

Table 2: 95% intervals for model diagnostics for the Hirnant rainfall series.

7 Conclusions and extensions

We have defined a large class of non-Gaussian first-order autoregressive models with lin-

ear conditional mean and we have derived several new theoretical results in this general

setting. This work clarifies AR(1) structure for non-Gaussian models, unifies many sep-

arate results in the literature on non-Gaussian AR(1) models, and provides a theoretical

basis for developing practical methods of model diagnostics and selection.

Despite the more than 25 different CLAR(1) models that have appeared in the literature,

the CLAR(1) class still provides a limited selection of models for real data because of its

linear conditional mean assumption and relatively simple correlation structure. How-

ever, CLAR(1) models can be used as building blocks for more complex models. For
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example, a vector xt of covariates can be included by defining a model that satisfies

E[Yt |Yt−1,xt] = φYt−1 + λ+ x′tβ − φx′t−1β .

This is particularly easy for innovations or conditional models.

Grunwald and Hyndman (1998) show how a smooth mean function µt can be included

by setting

E[Yt |Yt−1] = φYt−1 + µt − φµt−1.

This is analogous to smoothing with correlated errors in the Gaussian case (see Altman,

1990 or Hart, 1991). If the conditional distribution is an exponential family form, these

models are closely related to the Generalized Additive Models of Hastie and Tibshirani

(1990).

When the conditional distribution is an exponential family form, some authors (Zeger

and Qaqish, 1988, Li, 1994, Shephard, 1995, and Diggle et al. (1994) for instance) have

considered using a link function g(·) as in Generalized Linear Models (McCullagh and

Nelder, 1989), giving

g(m(Yt−1)) = λ+ φYt−1 .

Of course, unless the link is the identity, this model does not give a linear dependence

between the conditional mean and the previous observation, but this is not necessarily a

deficiency and has some advantages. A link function can give a wider range of allowable

values of φ and λ, and allows the methods and software of Generalized Linear Models

to be used. However, the ACF is then somewhat more difficult to relate to the models,

and the properties of the models, particularly the range of φ which gives stationarity,

are affected. For instance, Zeger and Qaqish (1988) show that the conditionally Poisson

model with log link function is stationary only for φ ≤ 0. A similar effect has been noted

in models for spatial correlation, as in the auto-Poisson model of Besag (1974), which is

also capable of modelling only negative correlation. As Example 2 in Section 6 above
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illustrates, this approach will also not provide the full range of models needed for real

data. Modifications of the GLM approach include transforming Yt−1 (Zeger and Qaqish,

1988) or working with linear approximations (Shephard, 1995).
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Appendix: Proofs of results in Section 4

We will repeatedly use three standard results:

Convergence of geometric series: If |k| < 1 then the recursion xt = kxt−1 + A has limit

A/(1− k) as t→∞, and if x0 = A/(1− k) then xt = A/(1− k) for t ≥ 1.

Double expectation formula: For random variables X and Y with E(X) < ∞, E(Y ) =

E[E(Y |X)] (Bickel and Doksum, 1977, 1.1.20).

Conditional variance formula: For random variables X and Y with E(X) <∞,

Var(Y ) = Var[E(Y |X)] + E[Var(Y |X)] (Bickel and Doksum, 1977, 1.6.12).

Proof of proposition 1:

From (2.1) and the double expectation formula, E(Yt) = φE(Yt−1)+λ so the result follows

directly from the convergence of geometric series with xt = E(Yt), k = φ and A = λ. 2

Proof of proposition 2:

By the conditional variance formula we have

Var(Yt) = E[v(m(Yt−1))] + Var(m(Yt−1)) .

Direct calculation gives E(m(Yt−1)) = µ, E[m2(Yt−1)] = φ2E(Y 2
t−1) + (1 − φ2)µ2 and

Var(m(Yt−1)) = φ2Var(Yt−1). Thus

Var(Yt) = E(am2(Yt−1) + bm(Yt−1) + c) + φ2Var(Yt−1) = φ2(a+ 1)Var(Yt−1) + v(µ) .

By convergence of geometric series with xt = Var(Yt), k = φ2(a + 1) and A = v(µ), the

limit is as stated. 2
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Proof of proposition 3:

Using Theorem 1 of Feigin and Tweedie (1985), the results will hold if we take the func-

tion g(y) = |y|+ 1 and can find a δ > 0 and a compact set A such that

E[g(Yt) |Yt−1 = y] ≤ (1− δ)g(y) for y ∈ Ac .

Case I: The model can be stated in terms of innovations Zt ≡ Yt −m(Yt−1) (which are not

necessarily iid), giving Yt = m(Yt−1) + Zt. Then by the hypothesis on Zt,

E[g(Yt) |Yt−1 = y] ≤ |φ| |y|+ |λ|+B + 1 .

Since |φ| < 1, take δ > 0 with |φ| < 1− δ < 1, and then

|φ| |y|+ |λ|+B + 1 < (1− δ)g(y)

whenever

|y| > |λ|+B + δ

1− δ − |φ|
≡ α .

So taking A = [−α, α] gives the required result.

Case II: Directly from the definition, since Yt ≥ 0,

E[g(Yt) |Yt−1 = y] = φy + λ+ 1 .

A similar argument to that in Case I leads to α = (λ+ δ)/(1− δ − φ) and A = [0, α]. 2

Proof of proposition 4:

Let Xt = Yt − µ so that E(Xt) = 0. Induction and the double expectation formula give

E(Xt |Xt−k) = φkXt−k, as follows: It is true for k = 0 since E(Xt |Xt−0) = φ0Xt. Assum-
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ing it to be true for some k > 0,

E(Xt |Xt−(k+1)) = E[E(Xt |Xt−k) |Xt−(k+1)] = E(φkXt−k |Xt−(k+1)) = φk+1Xt−(k+1)

since by (2.1), E(Xj |Xj−1) = φXj−1. Now,

Cov(Yt, Yt−k) = E(XtXt−k) = E[Xt−kE(Xt |Xt−k)] = φkE(X2
t−k) = φkVar(Yt−k).

Dividing by Var(Yt−k) gives the result. 2
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Figure 1: Weekly counts of MCLS in 1982 in Totori-prefecture, Japan, with the sample ACF.
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Figure 2: Half-hourly rainfall at river Hirnant at periods 1574–1645, exponential QQplot and

lag one scatterplot of series.


