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Abstract. The role of thermal and non-Gaussian noise on the dynamics of driven short overdamped
Josephson junctions is studied. The mean escape time of the junction is investigated considering Gaussian,
Cauchy-Lorentz and Lévy-Smirnov probability distributions of the noise signals. In these conditions we
find resonant activation and the first evidence of noise enhanced stability in a metastable system in the
presence of Lévy noise. For Cauchy-Lorentz noise source, trapping phenomena and power law dependence
on the noise intensity are observed.

1 Introduction

The diffusion in overdamped Josephson junctions (JJs) is
one of the most important examples of the wider non-
equilibrium statistical problem of overdamped Brownian
motion in tilted or randomly switching periodic poten-
tials [1–4]. Moreover, JJs present a wide range of ap-
plications. In particular, in recent years, the JJs have
been used to implement both superconducting quan-
tum bits [5–8] and nanoscale superconducting quantum
interference devices for detecting weak magnetic flux
changes [9]. Josephson junctions, in fact, represent good
candidates to realize solid state superconducting quantum
bits (qubits) for quantum information processing. For this
reason, JJs have been studied at very low temperature
in devices making use of charge [10], flux [11] and phase
qubits [12]. Moreover, JJs are widely used for their high
sensitivity to magnetic flux changes [9].

The environment affects strongly the behavior of JJs,
working both at high and low temperatures. In high tem-
perature superconductors (HTSs) the presence of low fre-
quency noise, whose intensity is related to the fluctuations
in the bias current, temperature and magnetic field, was
experimentally found [13]. In the low temperature super-
conductive devices it is also very difficult to avoid the
influence of environment, that constitutes mainly a de-
coherence source for the system. In fact, a weak current
noise can affect the coherence time in Josephson vortex
qubits [6,14].

In this framework the study of transient dynamics of
Josephson junctions in the presence of noise sources is
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very interesting for the understanding of the interaction
between these systems and the environment. In particular,
the effects of noise strongly influence the current-voltage
characteristic of Josephson junctions [15–18].

Recent experimental works led to the realization of
overdamped Josephson junctions with non-hysteretic cur-
rent voltage characteristics and high temperature stabil-
ity [19–24]. These devices, realized with the possibility of
tuning the internal damping with temperature, can be
good candidates to measure the escape time from the
metastable state, i.e. the initial superconductive state of
the overdamped Josephson junction. We note that the
ultrafast rapid single-flux-quantum (RSFQ) digital cir-
cuits are based on a reproduction of quantum pulses due
to spasmodic changing by 2π of the phase difference of
damped Josephson junctions. The major restriction in the
development of RSFQ logic circuits is given by the influ-
ence of the fluctuations [25–33], which are the main source
of error when an RSFQ circuit operates at high speed. In
fact, the time interval between input and output pulses
of the Josephson juctions that compose the RSFQ cir-
cuit is directly connected with the average escape time
from the superconductive state and depends on the noise
intensity. Therefore it is important to investigate the in-
fluence of fluctuations on temporal characteristics of over-
damped Josephson junctions. Finally, we note that our
model could be considered as an approximation to study
the dynamics in moderately damped Josephson junctions,
where crossover temperature and plasma frequency, whose
values are important for determining dynamical regimes,
can be defined [34,35].

Moreover, noise induced effects due to thermal fluc-
tuations, such as resonant activation (RA) and noise
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enhanced stability (NES), have been theoretically pre-
dicted in overdamped JJs [32,33] and, recently, experimen-
tally revealed in underdamped JJs [36–38]. Specifically, in
reference [37] the contemporaneous presence of RA and
NES in underdamped JJs has been observed, finding that
the average escape times can be enhanced or lowered by
using different initial conditions. In reference [38], a min-
imum and a maximum of the average escape time as a
function of the characteristic time of the temperature fluc-
tuations have been observed. In other words, RA together
with an enhancement of the life time of the metastable
state can be caused not only by the oscillating barrier of
the potential profile but also by the oscillating tempera-
ture.

The presence of non-Gaussian noise signals has been
found experimentally in many systems. The α-stable
distributions are a very useful tool for modeling non-
Gaussian noise sources. A recent example of a system with
non-Gaussian environmental interaction, where the noise
is well modeled by an α-stable distribution, is a wire-
less ad hoc network with a Poisson field of co-channel
users [39]. Other interesting examples are constituted
by not fully thermalized systems or, in general, systems
driven away from thermal equilibrium. These can mani-
fest physical properties related to non-Gaussian noise sig-
nals, such as large energy fluctuations with heavy-tailed
probability distributions. Non-equilibrated heat reservoir
can be thus considered as a source of non-Gaussian
noises [40–42]. Recently, the dynamics of a JJ in the pres-
ence of non-Gaussian noise has been analyzed. The ef-
fect of non-thermal noise on the average escape time from
the metastable state (superconducting state) of a current-
biased JJ, coupled with non equilibrium current fluctua-
tions, was experimentally investigated [43,44].

The relevance of the Lévy distributions appeared in
many physical, natural and social complex systems. The
Lévy-type statistics, in fact, is observed in various scien-
tific areas, where scale-invariance phenomena take place
or can be suspected [45–48] (for a recent review on
Lévy-flights see Ref. [49] and references there). The large
amount of experimental observations of Lévy noise sources
in different physical, biological and complex systems deter-
mined an increasing interest in the role of non-Gaussian
noise in other research fields, such as the transient dy-
namics of Josephson junctions. In particular, the role of
the Lévy noise in the motion of an overdamped particle
in a periodic potential has recently attracted great atten-
tion [50–52]. Moreover, Lévy flights in periodic potentials
have been investigated in references [53,54].

The aim of this research work is to study the effects of
Gaussian and non-Gaussian noise sources on the transient
dynamics of point overdamped Josephson junctions. The
noise simulates both the interaction of the system with the
environment and the application of an external randomly
fluctuating source on the system. The latter circumstance
is motivated by the possibility to profit by the effects of
the noise sources. We study the effects of thermal and non-
thermal noise sources on the escape time of the junctions,
investigating the mean lifetime of the metastable state, i.e.

the superconducting state, in the presence of a periodical
driving force. In this physical context, we observe reso-
nant activation and the first evidence of noise enhanced
stability in the presence of Lévy noise. A trapping phe-
nomenon in the case of Cauchy-Lorentz noise is observed.
A similar phenomenon was found in underdamped limit
in reference [55].

The paper is organized as follows. In the next section
the Lévy noise properties are summarized. In Section 3
the transient dynamics of short JJs is analyzed. Finally,
in Section 4 we draw the conclusions.

2 Lévy noise

The investigation of the effects of non-Gaussian noise has
been performed using α-stable distributions as a model
to generate non-Gaussian random signals [56]. Lévy pro-
cesses are characterized by stationary independent incre-
ments [57,58], which means that {L(t), t ≥ 0} is a Lévy
process if, for every t, τ ≥ 0, the increment L(t+τ)−L(t)
is independent of the process {L(t′), 0 ≤ t′ < t} and fol-
lows the same law as L(τ). In particular, L(0) = 0. The
random variable L(t) can be divided into the sum of an ar-
bitrary number of independent and identically distributed
random variables, as it follows from the decomposition [49]
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That is, the probability distribution of L(t) belongs to the
class of infinitely divisible distributions (i.d.d.) [59–64].
Its second characteristics, i.e. the logarithm of character-
istic function of the random variable L(t) in the Lévy-
Khinchine form [64], is

φ (k, t) = ln
〈

eikL(t)
〉

=

∫

∞

−∞

(

eikx − 1 − ik sin x
) ρ(x, t)

x2
dx, (2)

where ρ(x, t) is the canonical measure density (with re-
spect to the first argument) [49].

A subclass of i.d.d. is that of the stable distributions.
The most general expression for the characteristic function
of the random stable process [64,65] is

ϕ(k) = exp [ikµ − |σk|α (1 − iβ sgn(k)Φ)] (3)

where sgn(k) is the sign function with

{

Φ = tan(πα/2), for all α �= 1

Φ = −(2/π) log |k|, for α = 1.
(4)

Such distributions form a four-parameter family of con-
tinuous probability distributions with two shape parame-
ters α and β, a scale parameter σ and a real number µ.
Specifically, α (0 < α ≤ 2) is the index of stability
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Fig. 1. (Color online) Probability density function for the
four stable distributions: Gaussian (black solid line), Cauchy-
Lorentz (red dashed point line), Lévy-Smirnov (green dashed
line) and Lévy-Smirnov reflected (blue dotted line). Here µ = 0
and σ = 1.

Table 1. Stable distributions and corresponding values of the
characteristic parameters.

Distribution α β

Gaussian S2(σ, 0, µ) 2 0

Cauchy-Lorentz S1(σ, 0, µ) 1 0

Lévy-Smirnov S1/2(σ, 1, µ) 1/2 1

Lévy-Smirnov (reflected) S1/2(σ,−1, µ) 1/2 –1

or characteristic exponent and indicates the asymptotic
behaviour of the distribution (long-tail power law for α
strictly less than 2), β (∈[−1, 1]) is an asymmetry pa-
rameter, σ is any positive real number which provides for
α = 2 a measure of the width of the distribution, µ is
any real number [65] indicating, for α > 1 and β = 0, the
median of the distribution. Considering Lévy distributed
noise sources, σα is the noise intensity. Probability dis-
tributions for different values of α and β are shown in
Figure 1 [65,66]. We note that for β = 0, a Lévy symmet-
ric α-stable distribution is obtained. By considering, for
µ = 0, β = 0 and σ = 1, the series expansion valid for
large arguments |x| ≫ 0 [67], we obtain for large values of
x the following asymptotic expression characterized by a
power law behaviour [65]

lα,β(x; 1, 0) ∼ |x|−(1+α), x → ∞, (5)

which is deeply connected with the divergence of all mo-
ments 〈xn〉 for n ≥ 2 and α < 2.

An α-stable (or Lévy) distribution is denoted by
Sα(σ, β, µ). When µ = 0 and σ = 1 the distribution is
named standard [56]. The Gaussian, Cauchy-Lorentz and
Lévy-Smirnov distributions are stable, and their proba-
bility density functions are analytically known. In Ta-
ble 1 the values of the characteristic parameters of these
three stable distributions (shown in Fig. 1) are given. In
comparison with the Gaussian case, Cauchy-Lorentz dis-
tribution is narrower in the central part, while at the
extremities it goes to zero with less steepness than the
Gaussian case (fat tails). The Lévy-Smirnov distribution

is shown for β = −1, 1. The case for β = −1 corre-
sponds to a curve reflected with respect to the y-axis. The
Lévy-Smirnov distribution presents a heavy tail going to
zero, with a steepness lower than both the Gaussian and
Cauchy-Lorentz case.

In Figures 2a, 2b the one- and two-dimensional tra-
jectories of a particle subjected to Gaussian, Cauchy-
Lorentz and Lévy-Smirnov noise signals are shown. The
trajectories are obtained considering the position of the
particle subjected to a noise signal with intensity given
by σα = 2γ. Throughout the present work, different al-
gorithms are used to simulate the Gaussian and non-
Gaussian Lévy noise sources [56,66]. In particular the time
step is (∆t)1/α, with α = 2 for Gaussian distribution
and 0 < α < 2 for non-Gaussian Lévy distributions. The
one-dimensional trajectory, drawn in Figure 2a and corre-
sponding to the noise signal with Cauchy-Lorentz distri-
bution, presents jumps followed by displacement in space
with amplitude smaller than the Gaussian case. The pres-
ence of jumps is related to the heavy tails of the distribu-
tion (see Fig. 1): the probability to get high values of the
random variable x is greater than in the Gaussian case.
Moreover, the probability to get smaller values is less than
the Gaussian case and this is evident by the comparison
of the central part of the Cauchy-Lorentz and Gaussian
distributions (see Fig. 1). This behavior explains the lim-
ited space displacement of the trajectory corresponding to
the Cauchy-Lorentz distribution for relatively low noise
intensities at short times. The one-dimensional trajectory
corresponding to the Lévy-Smirnov distribution shows a
diffusion governed by very intense jumps. This behavior
is due to the heavier tail of the Lévy-Smirnov distribu-
tion. In fact, the probability to get very high values of the
random variable is greater than the Gaussian and Cauchy-
Lorentz cases. The two-dimensional trajectories provide a
comparison between the different diffusion properties of
the particle subjected to the three noise signals at short
times. In particular, in Figure 2b it is worth noting that
the trajectory corresponding to the Cauchy-Lorentz distri-
bution diffuses in space less than the Gaussian one, while
the jumps of the trajectory corresponding to the Lévy-
Smirnov distribution provide a very intense spatial diffu-
sion of the particle.

3 Short Josephson junctions

3.1 Model

The theoretical description of the dynamics of an over-
damped Josephson junction is based on the resistively
shunted junction (RSJ) model [68,69], in which a ficti-
tious Brownian particle is moving in a washboard poten-
tial [70,71]. The position of this fictitious particle repre-
sents the phase difference ϕ between the superconducting
wave functions on each side of the junction [68,69].

Non-thermal noise sources could be also present in the
system or could be applied externally to it. Therefore, the
theoretical investigation of the escape from the metastable
state in a JJ, out of its zero voltage state and driven by
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Fig. 2. (Color online) (a) One-dimensional trajectories of the free diffusion of a particle subjected to noise signals with Gaussian,
Cauchy-Lorentz and Lévy-Smirnov distributions; (b) two-dimensional trajectories of the free diffusion of a particle subjected to
noise signals with Gaussian, Cauchy-Lorentz and Lévy-Smirnov distributions. In both panels, the noise intensity is σα = 2γ,
with γ = 0.04.

thermal as well as non-Gaussian noise, will be performed
by considering the following Langevin equation for the
phase dynamics

dϕ

dt
= −ωc

dU(ϕ, t)

dϕ
− ωc(iTN (t) + inG(t)), (6)

where iTN (t) and inG(t) are a Gaussian thermal noise
and a non-Gaussian noise source, respectively. The current
inG(t) is a white Lévy noise such that the time integral

over an increment ∆t, L(∆t) =
∫ t+∆t

t ξα(τ)dτ , is a Lévy
process with characteristic function given by [50,72,73]

φ (k, t) = exp [−∆t|σk|α (1 − iβ sgn(k)Φ)] , (7)

where the parameter µ is equal to zero, Φ is given by equa-
tion (4), α is the Lévy index and σα is the noise intensity.
The expression of the dimensionless phase potential is

φ (k, t) = ln
〈

eikL(t)
〉

=

∫

∞

−∞

(

eikx − 1 − ik sinx
) ρ(x, t)

x2
dx, (8)

U(ϕ, t) = 1 − cos(ϕ) + i(t)ϕ, (9)

where
i(t) = i0 + A sin ωt, (10)

with i0 = ib/ic the constant dimensionless bias current,
A sin ωt the driving current with dimensionless amplitude
A = is/ic and frequency ω (ib and is represent the bias
current and the driving current amplitude respectively). In
the following, the times and frequency will be normalized
to the inverse of the characteristic frequency 1/ωc and
to the characteristic frequency ωc of the JJ, respectively
(ωc = 2eRNIc/�, ic is the critical current, R−1

N = GN is
the normal conductivity of the JJ, e is the electron charge
and � = h/2π, with h the Planck constant). The thermal
fluctuations have the usual statistical properties

〈iTN (t)〉 = 0, 〈iTN (t)iTN (t + τ)〉 = 2γδ(τ)/ωc, (11)

Fig. 3. (Color online) Washboard Josephson junction poten-
tial in the presence of an oscillating driving current. Screen
shot of the potential profile at three different instants within
one oscillation period T0: t = 0, t = T0/4 and t = (3/4)T0.
The arrows indicate the potential minimum corresponding to
the initial condition for the fictitious particle (ϕ0 = arcsin i0),
and the potential maximum corresponding to the threshold
position of the particle (ϕth = π − arcsin i0).

where γ = 2ekT
�ic

is the dimensionless intensity of fluctua-
tions, T is the temperature and k is the Boltzmann con-
stant.

In Figure 3 the periodic potential profile, subjected
to an oscillating driving current, is shown at three differ-
ent times of the period of oscillation T0. The dynamics
of the system is studied considering as initial position of
the particle the zero-voltage superconductive state, cor-
responding to one of the minima of the potential profile
(ϕ0 = arcsin i0 in Fig. 3, with i0 the dimensionless bias
current (see Eq. 10)). When the particle is moving along
the potential, the junction switches to the resistive state
and a voltage develops.

The maximum, indicated in Figure 3 at ϕth = (π −
arcsin i0), is chosen as the threshold phase value for the
escape event. When the particle reaches the threshold,
namely when its phase is equal or greater than ϕth, the
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phase difference varies in time and the junction switches
to the resistive state.

The transition from the superconductive state to the
resistive state is induced on the junction by the applica-
tion of a polarizing current exceeding the critical current
value ic. In the deterministic regime, at low driving fre-
quency, the particle reaches the threshold approximately
after one quarter of the period of oscillation and the es-
cape time is tescape ≈ T0/4. This no longer occurs in the
presence of noise, when the particle moves randomly along
the curve. Because of the interactions with the environ-
ment, the superconductive state becomes a metastable
state for the system and the transition can occur even
if the polarization current is less than the critical cur-
rent value. In this case, the phase difference ϕ can escape
from the metastable state by macroscopic quantum tun-
neling through the potential barrier [74] or by thermal
activation (TA) over the potential barrier [75], depending
on the value of the temperature T with respect to the
cross-over temperature defined as Tco = �ωp/2πk. Here
ωp is the plasma frequency, which characterizes the oscil-
lations of the phase difference around the local minimum
of the potential and k is the Boltzman constant [44]. The
cross-over temperature is the temperature below which
the phase difference over the junction behaves quantum
mechanically, the escape events occur primarily by quan-
tum tunneling trough the barrier, and the thermal fluc-
tuations can be neglected. For temperatures greater than
Tco the viceversa happens. In other words we have quan-
tum tunneling regime for T < Tco and thermal activation
regime for T > Tco.

The Langevin equation (6) has been integrated by us-
ing the Euler method and the α-stable distributions of the
noise signals have been numerically simulated using the
Chambers-Mallows-Stuck method [56]. The time spent by
the particle to reach ϕth, starting from ϕ0, under the in-
fluence of the fluctuating potential and the noise signal
is the first passage time and constitutes the lifetime of
the superconductive metastable state. Up to 50 000 simu-
lations of the particle trajectory have been performed to
collect the corresponding first passage times. The aver-
age of these times is the mean escape time (MET) of the
junction. The dimensionless bias current i0 of the driving
signal was kept under the critical current value (ib < ic),
while the values of the amplitude A (Eq. (10)) have been
chosen such as the particle is, during the oscillation of the
driving current, in the superconductive (i(t) < ic) and in
the resistive state (i(t) > ic), alternatively.

3.2 Simultaneous action of non-Gaussian and thermal
noise

To study the simultaneous influence of thermal and
non-Gaussian noise on the dynamics of a point JJ we
consider in equation (6) a Lévy noise generated by a
Cauchy-Lorentz distribution. The intensity of the two
noise signals are indicated by γTN and γCauchy-Lorentz.
The results, obtained by numerically solving equation (6),
are displayed in Figures 4 and 5. Here, the behavior of

Fig. 4. (Color online) Log-Log plot of MET vs. ω for different
thermal noise intensities γTN and for fixed Lévy noise inten-
sity γCauchy-Lorentz. Namely, γTN = 0.0, 0.02, 0.2, 2, 20, and
γCauchy-Lorentz = 0.02. Here i0 = 0.8 and A = 0.7.

Fig. 5. (Color online) Log-Log plot of MET vs. γCauchy-Lorentz

for different thermal noise intensities γTN . Namely, γTN =
0.0, 0.001, 0.01, 0.1, 1.0, 10.0 and fixed frequency ω = 0.5. The
other parameter values are as in Figure 4.

MET as a function of the driving signal frequency and
the intensity of the Cauchy-Lorentz noise is shown. The
curve of Figure 4 corresponding to γTN = 0.0 shows a non-
monotonic behavior with a minimum, that is the signature
of the RA phenomenon [76–85]. The resonant activation
effect is a robust enough phenomenon to be observed also
in the presence of Lévy noise sources. By increasing the
thermal noise intensity γTN , the non-monotonic behav-
ior of the MET as a function of the frequency is modi-
fied. This modification becomes evident for γTN ≥ 0.2.
While the position of the minimum is slightly affected by
the presence of the thermal noise signal, the METs for
low and high frequency values decrease. For very high fre-
quency values, that is for very fast fluctuations of the po-
tential profile, the mean escape time is equal to the cross-
ing time over the average barrier “seen” by the Brownian
particle [76–78]. The average barrier coincides with that
obtained with the potential profile at t = 0 (see Fig. 3)
and whose height is ∆U = U(ϕth − U(ϕ0)) ≃ 2.1. By us-
ing the Kramers formula for the average escape time [75],
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we obtain a lower MET by increasing the thermal noise
intensity. For very low frequencies, that is for very slow
fluctuations of the potential barrier, the average escape
time is equal to the average of the crossing times in the
highest and lowest configurations of the barrier, and the
slowest process determines the value of the average escape
time [76–78]. Again, an increase of the thermal noise inten-
sity produces a decreasing of MET. By further increasing
γTN , the typical RA behavior of MET vs. ω disappears
because the thermal noise intensity becomes comparable
with the height of the potential barrier γTN ≃ ∆U(ϕ) ≃ 2.

The curves of Figure 5 show a non-monotonic behav-
ior with a maximum that reveals the presence of NES
effect [86–89], which is the first observation of this effect
with Lévy noise. In the absence of thermal noise (γTN = 0
in Fig. 5), the behavior of the MET as a function of the
noise intensity is non-monotonic with a maximum in corre-
spondence of γMax

Cauchy-Lorentz ≃ 0.6. Low thermal noise sig-
nals do not affect the behavior of the NES curve, till their
intensity is lower than γMax

Cauchy-Lorentz ≃ 0.6. When the

intensity of the thermal noise exceeds this value (curves
corresponding to γTN = 1.0 and γTN = 10.0 in Fig. 5),
the thermal effects are more effective than those due to the
Cauchy noise and the non-monotonic behavior is modified.
The maximum of the curve decreases and it is shifted in
correspondence of Cauchy noise intensities of the same
order of magnitude of the thermal noise intensities. The
simultaneous presence of two noise sources produces an in-
crease of the overall noise intensity “felt” by the system.
Therefore, all the MET values are lowered (see the curves
for γTN = 1.0, 10.0 in Fig. 5). Moreover the maximum
is shifted, because of the larger region of the potential
profile spanned by the fictitious particle before reaching
the threshold (see Figs. 3 and 5). Then, for intensities of
the Cauchy noise exceeding those of the thermal noise,
the curves follow the behavior obtained in the absence of
thermal noise. Moreover all the curves of MET coalesce
together at higher noise intensities, when the structure of
the potential profile becomes irrelevant for the dynamics
of the particle. The MET has a power-law dependence
on the noise intensity [49]. The simultaneous presence of
thermal and Cauchy noise sources in a point JJ produces
different effects on the noise induced phenomena consid-
ered. At high thermal noise intensities RA disappears and
the MET becomes independent on the frequency, while
NES phenomenon still persists.

3.3 Effects of non-Gaussian noise

For low temperatures of the system (around the cross-
over value (T ≈ Tco)), we can neglect thermal fluctua-
tions with respect to the non-Gaussian noise sources. Our
starting point is now equation (6), with iTN (t) = 0.0 and
inG(t) given by Cauchy-Lorentz, reflected Lévy-Smirnov
and Gaussian distributions. The minus sign of inG(t) in
equation (6) indicates that the reflected Lévy-Smirnov dis-
tribution has been considered. By this way the Lévy jumps
push the particle in the positive ϕ direction. We note that
by considering the Lévy-Smirnov distribution with β = 1

(green dashed line in Fig. 1), the Brownian particle moves
along the potential profile in the opposite direction with
respect to the threshold phase (see Fig. 3). As a result,
the MET becomes very large and diverges in the limit
γ → 0, for all values of ω, as found in simulations. For
this reason, the corresponding numerical results are not
here shown. The curves of the MET as a function of the
frequency of the driving current signal are shown in Fig-
ure 6. In each panel, the behavior of METs corresponding
to noise signals with Gaussian, Cauchy-Lorentz and Lévy-
Smirnov distributions are shown. In Figures 6a−6d, the
noise intensity increases as γ = 0.005 (panel a), γ = 0.02
(panel b), γ = 0.05 (panel c) and γ = 0.5 (panel d). The
RA phenomenon is observed for all three noise sources in
panels a−c of Figure 6, and only for Gaussian noise in
panel d (see also Ref. [32] for this case). For the noise
intensities of Figures 6a–6c, the curves corresponding to
the Gaussian and Cauchy-Lorentz distributions show sim-
ilar behavior. Conversely, the MET values corresponding
to the Lévy-Smirnov distribution, for all the frequencies
and noise intensities investigated, are shorter than in the
Gaussian and Cauchy-Lorentz case.

This is more evident in the position of the minima of
the three different curves. For high noise intensity, γ = 0.5
in Figure 6d, the non-monotonic behavior disappears for
non-Gaussian noise sources. The dynamics of the system
is noise-driven and the METs are independent on the driv-
ing current frequency. The METs for Gaussian and Lévy-
Smirnov noise have values shorter than in the low noise in-
tensity case and the escape of the particle becomes faster.
In addition the Gaussian case presents METs shorter than
the Cauchy-Lorentz case. The one- and two-dimensional
trajectories for the three noise sources of Figure 2 provide
an explanation of the MET behaviors shown in Figure 6.
The Lévy jumps of Lévy-Smirnov noise push the parti-
cle out of the metastable state in a very fast way. The
greater is the noise intensity, the faster the escape pro-
cess. Moreover, in the presence of Cauchy-Lorentz noise,
the combination of the driving signal and the limited
space displacement of the trajectories has the effect to
increase the MET values with respect to the Gaussian
case.

In order to check the robustness of the NES effect with
respect to the bias current, amplitude and frequency of the
driving force, we consider different values of these param-
eters, obtaining the behavior of the MET as a function
of the noise intensity in these new conditions. The results
are shown in Figures 7a and 8. Specifically, in Figure 7a
the curves corresponding to the Gaussian and Cauchy-
Lorentz distributions show NES effect as in Figure 5. For
very low noise intensity, namely γ < 10−3, all the three
curves tend to the same MET value. This is the deter-
ministic lifetime of the superconductive state, which is of
the same order of magnitude of T0/4, with T0 the pe-
riod of the oscillating potential barrier. By increasing the
noise intensity, the MET of the curve corresponding to the
Lévy-Smirnov distribution decreases monotonically, be-
cause greater Lévy jumps push the particle very fast out of
the superconductive state, making the MET shorter. The
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Fig. 6. (Color online) Log-Log plot of MET as a function of ω for Gaussian, Cauchy-Lorentz and Lévy-Smirnov distributions
of the noise signals, for four different noise intensities. Namely, (a) γ = 0.005, (b) γ = 0.02, (c) γ = 0.05 and (d) γ = 0.5. In all
graphs i0 = 0.8 and A = 0.7. The legend in panel (a) refers to all panels.

Fig. 7. (Color online) (a) Log-Log plot of MET vs. γ for noise signals with Gaussian, Cauchy-Lorentz and Lévy-Smirnov
distributions. Here ω = 0.5, i0 = 0.5 and A = 1.0. (b) One dimensional trajectories of free diffusion for a particle subjected to
Gaussian, Cauchy-Lorentz and Lévy-Smirnov noise sources with γ = 0.04. Inset: two-dimensional trajectories corresponding to
those of the main panel.

Lévy jumps are responsible for the great diffusion power of
the Lévy-Smirnov noise source (see curves of Fig. 2 shown,
for convenience, also in Fig. 7b). In the range of noise in-
tensity 10−3 < γ < 1, the curve corresponding to the
Gaussian distribution presents a maximum at γ ≃ 0.04.
This nonmonotonic behavior is a typical signature of the
NES phenomenon [89], due to a temporary trapping effect.
Here, this occurs when the mean escape time of the par-
ticle from the metastable state (superconductive state) is

close to three quarter of the oscillation period of the driv-
ing force. In other words, the mean passage time to reach
the maximum of the potential profile at ϕth, starting from
ϕ0 (see Fig. 3), should be almost equal to (3/4)T0. In fact,
for ω = 0.5 we have (3/4)T0 = 3π = 9.42 ≃ METmax =
9.31 (see MET curve for Gaussian noise in Fig. 7). At this
time, the potential reaches its maximum reverse slope and
the particle is pushed back inside the potential well, un-
dergoing a temporary trapping phenomenon.
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Fig. 8. (Color online) Log-Log plot of MET vs. γ for noise signals with Gaussian, Cauchy-Lorentz and Lévy-Smirnov distribu-
tions. The values of the system parameters are: (a) ω = 1.0, i0 = 0.5 and A = 0.7; (b) ω = 0.1, i0 = 0.5 and A = 1.0.

For higher noise intensities, even in the presence of a
reverse slope of the potential profile, the particle escapes
from the potential well and the MET decreases till the
noise intensity value γ ≃ 102. Here, the curve shows a sec-
ond maximum which indicates the presence of a second
weak NES effect. The MET corresponding to the second
maximum results shorter than the MET of the first max-
imum, because of the increased noise intensity. It is also
worth noting that, because of the NES effect, the parti-
cle undergoes temporary trapping phenomena preventing
the escape of the junction from the initial superconductive
state, even if the escape event should take place because
the current i(t) exceeds the critical value ic during the
oscillation. The non-monotonic behavior is also present in
the curve corresponding to the Cauchy-Lorentz distribu-
tion. The maximum of the curve is shifted towards higher
noise intensity values with respect to the Gaussian case.
This could be related to the fact that at short times the
typical displacement of the Cauchy-Lorentz distribution
is characterized by shorter steps (limited space displace-
ment) with respect to the Gaussian case (see Fig. 2).
These short times are of the same order of magnitude
of the MET of the JJ analyzed. The comparison of the
one-dimensional free diffusion trajectories of a particle un-
der the influence of Gaussian and Cauchy-Lorentz noise
(Fig. 7b), in correspondence of low noise intensity, namely
γ = 0.04, provides an useful hint to explain this behavior.
In Figure 7a, while at γ = 0.04 the curve corresponding
to the Gaussian noise reaches the maximum, that corre-
sponding to the Cauchy-Lorentz noise continues to grow,
and the mean lifetime of the metastable state increases
with the noise intensity. From Figures 7b it is evident
that, even if at t = 5 the trajectory corresponding to the
Cauchy-Lorentz noise presents a jump, during the follow-
ing time interval, the particle displacement is smaller than
that of the Gaussian noise case. This means that at short
times the particle fluctuates randomly in the potential
well with an amplitude smaller than in the Gaussian case.
As a consequence, the temporary trapping phenomenon
is prolonged and the MET continues to grow, reaching

its maximum value at a higher value of the noise in-
tensity. For higher noise intensities the oscillation of the
potential profile is no longer able to trap the particle
and the MET decreases. Finally the MET vs. γ is ana-
lyzed in the high and low frequency regime. By increasing
the driving frequency, a trapping phenomenon occurs at
ω = 1. A threshold frequency ωth exists, in fact, which
does not allow the fictitious particle to move from the
potential well to the next valley during one period T0 of
the driving signal. This means that for driving frequency
ω > ωth, the particle is trapped within a length equal
to the distance between two successive minima of the po-
tential profile. As a consequence, the MET diverges in
the limit γ → 0. The value of the threshold frequency
increases with increasing bias current and/or maximal
current across the junction [33,87,88]. For the parameter
values here considered (i0 = 0.5 and A = 0.7) the thresh-
old frequency is ωth = 0.24 [33]. This behavior is shown
in Figure 8a for all the noise sources investigated. Specif-
ically, for the Gaussian noise case the first maximum in
the curve of Figure 7a disappears because the dynamics
of the system is dominated by the very fast oscillation of
the potential. We note that a minimum of MET is present
for a noise intensity value of the same order of the barrier
height (∆U(ϕ) ≃ 2.1 and γmin ≈ 3) [33,89]. The second
maximum, appearing for ω = 0.5 (Fig. 7a), persists in cor-
respondence of γ ≃ 102. For Lévy-Smirnov noise, the MET
curve decreases monotonically for higher noise intensities.
Because of the intense Lévy jumps, the fictitious particle
“does not see” the fine structure of the potential profile.
The differences between the diffusion due to a Gaussian
noise source and that caused by a Cauchy-Lorentz noise
source are also present in this case, in the range of noise in-
tensities 1 < γ < 30. Because of the limited space displace-
ment of the Cauchy-Lorentz noise source at short times, a
slightly nonmonotonic behavior persists (very weak NES
effect) with a shift, as observed at ω = 0.5 (see Fig. 7a).

The behavior of the MET in the low frequency regime
(ω = 0.1) is shown in Figure 8b. Here the amplitude of
the periodic driving is A = 1.0. For low noise intensities,
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γ < 10−2, all the curves tend to the deterministic lifetime
of the superconductive state, which is of the same order of
magnitude of T0/4. The MET curve for the Lévy-Smirnov
noise decreases monotonically with noise intensity as in
Figure 7a. For 10−1 < γ < 1 the Gaussian noise sig-
nal pushes the particle out of the potential well during
the first quarter of the oscillation period and the MET is
lower than T0/4. There is no possibility to have a tempo-
rary trapping of the particle, as observed with ω = 0.5 in
Figure 7a, because of the slow oscillation of the potential
that permits the particle to escape before the reversing of
the potential slope. Therefore, the first maximum found
in Figure 7a in correspondence of γ ≃ 0.04 disappears.
Then, for increasing noise intensity the curve shows the
second maximum at γ ≃ 102, as observed for ω = 0.5 in
Figure 7a.

The curve corresponding to the Cauchy-Lorentz dis-
tribution shows NES effect with the same maximum at
γ ≃ 1 observed at higher frequency ω = 0.5 (Fig. 7a). The
limited diffusion due to the Cauchy-Lorentz noise allows
the temporary trapping phenomenon of the particle inside
the potential well, even at the very low frequency ω = 0.1.

4 Conclusions

We presented a study on the transient dynamics of an
overdamped point Josephson junction in the framework
of the RSJ model. We investigated the effects of Gaussian
and non-Gaussian noise sources on the mean lifetime of
the superconductive metastable state, by numerically solv-
ing equation (6). The resonant activation and noise en-
hanced stability are robust enough phenomena to be ob-
served also in the presence of Lévy noise sources. In this
paper we report on the first observation of NES effect
in a metastable system with Lévy noise. For temperature
greater than the cross-over value, the simultaneous pres-
ence of thermal and Cauchy noise sources in a point JJ
affects differently the noise induced effects considered. At
high thermal noise intensities RA disappears, while NES
phenomenon still persists. Moreover, for high intensities of
Cauchy-Lorentz noise, the behavior of MET vs. γ shows
a power-law dependence.

For low temperatures of the system, by neglecting ther-
mal fluctuations, the effects of non-Gaussian noise sources
on the transient dynamics of a point JJ has been analyzed.
The presence of non-Gaussian noise can speed up the es-
cape of the particle from the metastable state decreasing
the MET of the junction, as observed for Lévy-Smirnov
noise in the RA phenomenon. The limited diffusion of the
trajectories of the Cauchy-Lorentz noise, at short times,
produces MET values higher than those obtained with
Gaussian noise. By a suitable choice of the parameter val-
ues that characterize the system, such as bias current,
amplitude and frequency of the periodic driving signal,
temporary and permanent trapping phenomena can be
observed. This produces an increase of the mean lifetime
of the metastable state and therefore of the MET. The
knowledge of the effects of different non-Gaussian noise
sources on the dynamics of a Josephson junction is useful

to better understand and control the response of super-
conductive devices based on the Josephson junction. In
particular, the results of our numerical investigation can
provide useful information before the realization of exper-
imental setups which are, sometimes, very expensive.

Authors acknowledge the financial support by MIUR and
CNISM-INFM.
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