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Non-Gaussian noise spectroscopy with
a superconducting qubit sensor
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Accurate characterization of the noise influencing a quantum system of interest has far-

reaching implications across quantum science, ranging from microscopic modeling of

decoherence dynamics to noise-optimized quantum control. While the assumption that noise

obeys Gaussian statistics is commonly employed, noise is generically non-Gaussian in nature.

In particular, the Gaussian approximation breaks down whenever a qubit is strongly coupled

to discrete noise sources or has a non-linear response to the environmental degrees of

freedom. Thus, in order to both scrutinize the applicability of the Gaussian assumption and

capture distinctive non-Gaussian signatures, a tool for characterizing non-Gaussian noise is

essential. Here, we experimentally validate a quantum control protocol which, in addition to

the spectrum, reconstructs the leading higher-order spectrum of engineered non-Gaussian

dephasing noise using a superconducting qubit as a sensor. This first experimental demon-

stration of non-Gaussian noise spectroscopy represents a major step toward demonstrating a

complete spectral estimation toolbox for quantum devices.
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F
or any dynamical system that evolves in the presence of
unwanted disturbances, precise knowledge of the noise
spectral features is fundamental for quantitative under-

standing and prediction of the dynamics under realistic condi-
tions. As a result, spectral estimation techniques have a long
tradition and play a central role in classical statistical signal
processing1. For quantum systems, the importance of precisely
characterizing noise effects is further heightened by the challenge
of harnessing the practical potential that quantum science and
technology applications promise. Such detailed knowledge is key
to develop noise-optimized strategies for enhancing quantum
coherence and boosting control fidelity in near-term inter-
mediate-scale quantum information processors2, as well as for
overcoming noise effects in quantum metrology3,4. Ultimately,
probing the extent and decay of noise correlations will prove
crucial in determining the viability of large-scale fault-tolerant
quantum computation5.

Thanks to their exquisite sensitivity to the surrounding
environment, qubits driven by external control fields are naturally
suited as “spectrometers”, or sensors, of their own noise6,7.
Quantum noise spectroscopy (QNS) leverages the fact that open-
loop control modulation is akin to shaping the filter function (FF)
that determines the sensor’s response in frequency space8–12 and,
in its simplest form, aims to characterize the spectral properties of
environmental noise as sensed by a single qubit sensor. By now,
QNS protocols employing both pulsed and continuous control
modalities have been explored, and experimental implementa-
tions have been reported across a wide variety of qubit platforms
—including nuclear spins13, superconducting quantum cir-
cuits14–17, semiconductor quantum dots18–21, diamond nitrogen
vacancy centers22,23, and trapped ions24. Notably, knowledge of
the underlying noise spectrum has already enabled unprece-
dented coherence times to be achieved via tailored error
suppression25.

While the above advances clearly point to the growing sig-
nificance of spectral estimation in the quantum setting, they all
rely on the assumption that the target noise process is Gaussian—
that is, one- and two-point correlation functions suffice to fully
specify the noise statistical properties. However, the Gaussian
assumption needs not be justified a priori and it should rather be
validated (or falsified) by the QNS protocol itself. A number of
realistic scenarios motivate the consideration of non-Gaussian
noise regimes. Statistical processes that are responsible for elec-
tronic current fluctuations in mesoscopic devices or the 1/f noise
ubiquitously encountered in solid-state quantum devices are not
Gaussian in general26. In superconducting circuits, previous
studies have shown that a few two-level defects within Josephson
tunnel junctions can interact strongly with the qubit27–31, the
resulting decoherence dynamics showing marked deviations from
Gaussian behavior under both free evolution and dynamical
decoupling protocols7,32,33. More generally, non-Gaussian noise
statistics may be expected to arise whenever a qubit is operated
outside a linear-response regime, either due to strong coupling to
a discrete environment34 or to a non-linear energy dispersion
relationship. The latter feature, which has long been appreciated
to influence dephasing behavior at optimal points35, is common
to all state-of-the-art superconducting qubit archetypes36–39.
Thus, statistical correlations higher than second order and their
corresponding multi-dimensional Fourier transforms must be
taken into account for complete characterization. From a signal-
processing standpoint, this translates into the task of higher-order
spectral estimation40.

In this work, we experimentally demonstrate non-Gaussian
QNS by building on the estimation procedure proposed by Norris
et al.41. While we employ a flux-tunable superconducting qubit as
a sensor, our methodology is portable to other physical testbeds

in which classical dephasing noise is the dominant decoherence
mechanism. We show how non-Gaussianity distinctively modifies
the phase evolution of the sensor’s coherence, resulting in an
observable signature to which the spectrum (or power spectral
density, PSD) is completely insensitive and which is instead
encoded in the leading higher-order spectrum, the bispectrum.
Unlike the original proposal41, the QNS protocol we introduce
here makes use of a statistically motivated maximum likelihood
approach. This renders the estimation less susceptible to
numerical instability, while allowing measurement errors to be
incorporated and both the PSD and the bispectrum to be inferred
using a single measurement setup. In order to obtain a clean
benchmark for our spectral estimation procedure, we engineer a
non-Gaussian noise model by injecting Gaussian flux at the
sensor’s degeneracy point, resulting in non-Gaussian frequency
noise. The noise implementation is validated by verifying the
observed power dependence of the leading cumulants against the
expected one. Both the reconstructed PSD and the bispectrum are
found to be in quantitative agreement with theoretical predictions
within error bars.

Results
Non-Gaussian dephasing noise. Before introducing our experi-
mental test bed, we present the general setting to which our
analysis is relevant: a qubit sensor evolving under the combined
action of non-Gaussian classical dephasing noise and suitably
designed sequences of control pulses. By working in an interac-
tion frame with respect to the internal qubit Hamiltonian and the
applied control, and letting ħ= 1, the controlled open-system
Hamiltonian may be written as H(t)= yp(t)B(t)σz/2, where B(t) is
a stochastic process describing dephasing noise relative to the
qubit’s eigenbasis defined by the Pauli operator σz. The control
switching function yp(t) accounts for a sequence p of instanta-
neous π rotations about the x or y axis, starting from initial value
yp(0)=+1 and toggling between ±1 with every application of a
pulse. Under such a pure-dephasing Hamiltonian, the qubit
coherence is quantified by the time-dependent expectation value
〈σ+(t)〉≡ e−χ(t)+iϕ(t)〈σ+(0)〉, where the influence of the noise is
captured by the decay and phase parameters χ(t) and ϕ(t). These
parameters may be formally expanded in terms of noise cumu-
lants, C(k)(t1, …, tk), k∈ {1, 2, …, ∞}, with χ(t) taking contribu-
tion only from even cumulants and ϕ(t) only from odd
cumulants41. Physically, the kth-order cumulant is determined by
the multi-time correlation functions E[B(t1), …, B(tj)], with j ≤ k,
where E[⋅] denotes the ensemble average over noise realizations.

Since the statistical properties of Gaussian noise are entirely
determined by one- and two-point correlation functions,
cumulants of order k ≥ 3 vanish identically. By contrast, for
non-Gaussian noise, all cumulants can be non-zero in principle.
Assuming that noise is stationary, so that the mean of the process
E[B(t)]= C(1)(0)≡ μB is constant, the phase parameter may be
written as ϕ(t)= μBFp(0, t)+ φ(t), with the Fourier transform
Fpðω; tÞ �

R t

0dse
�iωsypðsÞ being the fundamental FF associated to

the control12. This expression separates the phase due to the noise
mean, which arises for both Gaussian and non-Gaussian noise,
from a genuinely non-Gaussian phase φ(t), which captures the
contribution of all odd noise cumulants with k ≥ 3. For
sufficiently small time or noise strength, we can neglect terms
of order k > 3 in the cumulant expansion, leading to

χðtÞ �
1

2π

Z

R

dωjFpðω; tÞj
2SðωÞ; ð1Þ

φðtÞ � �
1

3!ð2πÞ2

Z

R
2
d~ωGpð~ω; tÞS2ð~ωÞ; ð2Þ
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where ~ω � ðω1;ω2Þ and the second and third noise
cumulants enter the qubit dynamics through their Fourier
transforms: the PSD or spectrum, SðωÞ �

R

R
dτe�iωτCð2Þð0; τÞ,

and the second-order polyspectrum or bispectrum,
S2ð~ωÞ �

R

R
2d~τe�i~ω�~τCð3Þð0; τ1; τ2Þ, with ~τ � ðτ1; τ2Þ. In the

frequency domain, the influence of such spectra is “filtered”
by a corresponding generalized FF—in particular,
Gpð~ω; tÞ � Fpð�ω1; tÞFpð�ω2; tÞFpðω1 þ ω2; tÞ

12. Since, to lead-
ing order, non-Gaussian features arise in our setting from S2ð~ωÞ,
non-Gaussianity of a noise process will be detected and
characterized through measurements of φ(t).

Experimental setup and noise validation. Our circuit quantum
electrodynamics (QED) system42,43 contains an engineered flux
qubit44, which is designed to enable fast single-qubit gates with
high fidelity at its flux degeneracy point (Fg > 99.9%; see Supple-
mentary Notes 1 and 2). Single-qubit operations are performed
using cosine-shaped microwave pulses, applying an optimal-
control technique to suppress leakage to higher levels45. Inductive
coupling to a local antenna is used to modulate the external flux
Φ threading the qubit loop interrupted by Josephson junctions
(Fig. 1a, b). Near the degeneracy (or optimal35) point Φ=Φ0/2,
with Φ0 the flux quantum, the |0〉→ |1〉 transition frequency ωq

has an approximately quadratic dependence on the external flux
Φ (Fig. 1c). Hence, a sufficiently slow time-dependent external
flux Φ(t) enables adiabatic modulation of the qubit frequency,
leading to

BðtÞ ¼ β
Φ
½ΔΦðtÞ�2; ΔΦðtÞ � ΦðtÞ �Φ0=2; ð3Þ

where βΦ is the quadratic coefficient in the dispersion relation
between qubit frequency and flux. Crucially, any non-linear
function of a Gaussian process leads to non-Gaussian noise. In

particular, the quadratic function implemented in Eq. (3) trans-
duces zero-mean Gaussian flux noise into non-Gaussian qubit-
frequency noise (Fig. 1c, d). Assuming that the noise is entirely
contributed by the applied ΔΦ(t), and that SΦ(ω) denotes the
corresponding PSD, the mean μB, PSD S(ω), and bispectrum
S2(ω1, ω2) of B(t) are, respectively, given by

μB ¼
β
Φ

2π

Z

R

dωS
Φ
ðωÞ; ð4Þ

SðωÞ ¼
β2
Φ

π

Z

R

duS
Φ
ðuÞS

Φ
ðω� uÞ; ð5Þ

S2ðω1;ω2Þ ¼
4β3

Φ

π

Z

R

duS
Φ
ðuÞS

Φ
ðω1 þ uÞS

Φ
ðω2 � uÞ: ð6Þ

In the experiment, we choose SΦ(ω) to be a zero-mean Lorentzian
function, SΦ(ω)= (P0/πωc)/[1+ (ω/ωc)2], where ωc/2π (=0.5
MHz) and P0 denote the cutoff frequency and the power of the
applied flux noise, respectively. As is apparent from Eqs. (4)–(6),
cumulants of order k= 1, 2, and 3 are distinguished by their
linear, quadratic, and cubic dependence on power, respectively.

We first validate the intended engineered non-Gaussian noise
by demonstrating consistency of the measured power dependence
of χ and ϕ with the above prediction. The qubit is initialized to
the +y axis by applying a π/2 pulse about x (rotation Rx(π/2)),
and Gaussian flux noise is injected while it evolves in the xy plane
of the Bloch sphere for time T. During this evolution, we apply a
Carr–Purcell–Meiboom–Gill (CPMG) sequence consisting of two
refocusing π pulses about y (Fig. 2a). At the end of this sequence
(t= T), the effect of the first cumulant of the noise cancels out
(Fp(0, T)= 0) and, as a result, the measured phase becomes solely
determined by odd cumulants of order k ≥ 3: ϕ(T)= φ(T). To
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estimate both ϕ and χ, we measure 〈σx〉 and 〈σy〉 by applying
appropriate tomography pulses at time t= T, before readout in
the σz-basis.

Figure 2b, c shows χ and ϕ as a function of injected flux noise
power P0 for both the experiment (blue triangles) and Monte
Carlo simulations accounting for all cumulants of the applied
noise (orange squares, see Supplementary Note 5). Substituting
Eqs. (5) and (6) into Eqs. (1) and (2), we also plot the resulting
ideal weak-power behavior (gray solid) considering only the
leading-order cumulants of order two and three for χ and ϕ,
respectively. For sufficiently small P0, these ideal values are in
good agreement with data from both experiment and simula-
tion, showing that χ and ϕ obey the quadratic and cubic power
dependences that are expected for the square of a Gaussian
flux-noise process under the CPMG sequence. In particular, the
cubic dependence of ϕ at small P0 corroborates the presence of
a non-zero third-order cumulant, which would not exist for
Gaussian noise. Deviations of the simulations and experimental
data from the ideal behavior at large P0 are attributable to the
contribution of cumulants of order k > 3. The quantitative
agreement between theory, experiment, and simulation
observed at low power demonstrates our capability to produce
and sense engineered noise that dominates over native one over
the relevant parameter regime and exhibits well-controlled
cumulants, a necessary first step in the experimental validation
of non-Gaussian QNS.

Non-Gaussian noise spectroscopy. Having established that χ and
ϕ follow their expected behavior, we move on to fully char-
acterizing the first three cumulants of our engineered noise source
by measuring its mean, PSD, and bispectrum. Since the noise
mean, μB, manifests itself through a qubit-frequency shift, it can
be measured from a simple parameter estimation scheme based
on Ramsey interferometry. By contrast, we aim to perform a non-
parametric estimation of both the PSD and bispectrum, that is, to
reconstruct them at a set of discrete points in frequency space
without assuming a prior functional form. Figure 3 illustrates our
protocol for simultaneous estimation of the PSD and bispectrum,
in which filter design—the selection of pulse times in a control
sequence so that the corresponding FF has a particular shape—is
instrumental. Building on ref. 13, applying M≫ 1 repetitions of a
“base” pulse sequence p∈ {1, 2,⋯, P}, with duration T, shapes the
FF |Fp(ω,MT)|2 into a frequency comb with narrow teeth probing
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S(ω) at harmonics kωh, with k an integer and ωh≡ 2π/T (Fig. 3a,
b). This result generalizes to filters relevant to higher-order
spectra12: under sequence repetition, Gpð~ω;MTÞ becomes a two-
dimensional (2D) “hyper-comb” with teeth probing S2ð~ωÞ at
~ω 2 f~kωhg, where ~k � ðk1; k2Þ with k1 and k2 integers (Fig. 3d).

For both the PSD and bispectrum, distinct pulse sequences
have the effect of giving different weights to the comb teeth,
granting access to complementary information about S(kωh) and

S2ð
~kωhÞ, enabling their reconstruction. More specifically, in both

cases, the basic steps of our protocol consist of (i) applying a set
of sufficiently distinct pulse sequences p (Fig. 3a); (ii) measuring
the corresponding decay and phase parameters; and (iii) solving
the resulting systems of linear equations, which give χp(MT) and

φp(MT) as a function of S(kωh) and S2ð
~kωhÞ. Since classical noise

has a spectrum with even symmetry, S(ω)= S(−ω), the PSD is
specified across all frequency space by its values at positive
frequencies. Likewise, the bispectrum is completely specified by
its values over a subspace D2 known as the principal domain41,46,
illustrated in Fig. 3c. Reconstructing the bispectrum over D2 and
exploiting the symmetries that S2ð~ωÞ exhibits (shown in Fig. 3c)
thus suffices to retrieve the bispectrum over the whole relevant
frequency domain.

Figure 4 presents experimental results for determining the mean
and PSD, which suffice to characterize the noise process in the
Gaussian approximation. To measure μB by Ramsey interfero-
metry, we apply a pair of π/2 pulses with a drive at frequency ωd,
first about x at time t= 0 (Rx(π/2)), and then about y at time t= T
(Ry(π/2)). We choose a pulse interval T= 50 ns, which is short
enough for cumulants of order higher than one to be negligible,

but long enough to avoid pulse overlap. The qubit polarization at
time tf after the two pulses is then 〈σz(tf)〉 ≈ (D+ μB)T′, where
D≡ ωq− ωd is the drive detuning, and T′ is an effective time
interval that accounts for the finite-width pulse shape (see
Supplementary Note 6). Thus, plotting 〈σz(tf)〉 as a function of D
produces a straight line whose x-intercept is −μB, leading to an
estimate that is insensitive to the pulse shape to first order in the
cumulant expansion. Figure 4a presents data for measurements of
〈σz(tf)〉, and shows how we isolate the contribution of the
engineered noise source by performing the sequence with (blue
data set) and without (black data set) applied noise. The mean of
the engineered noise is estimated by subtracting the x-intercepts
of the straight lines that are fitted to each data set. Performing
these fits under the conditional normal model of linear
regression (see Supplementary Note 6) yields the estimate
μestB =2π ¼ 127:1 ± 7:56 kHz, where the uncertainty corresponds
to the 95% confidence interval calculated from the asymptotic
normal distribution of qubit polarization.

To estimate the PSD by the comb approach outlined above, we
use both a period of free evolution (p= 1) andM= 10 repetitions
of base sequences p= 2, …, 11 illustrated in Fig. 3a (see
Supplementary Note 4 for the actual pulse times). For M≫ 1, the
FF entering the decay constant in Eq. (1) becomes approximately

jFpðω;MTÞj2 � M
T
jFpðω;TÞj

2 P

1

k¼�1

δðω� kωhÞ, which enables us

to sample the PSD at the harmonic frequencies in terms of the
(known) control FFs,

χpðMTÞ �
M

T

X

k2K1

jFpðkωh;TÞj
2SðkωhÞ: ð7Þ

Here, we have used the even symmetry of the PSD, and the high-
frequency decay of the PSD and FFs to truncate the comb to a
finite set of positive harmonics, K1 ≡ {0, …, K− 1}. Rather than
solving the above linear system by matrix inversion as in ref. 13,
we employ a statistically motivated maximum-likelihood estimate
(MLE), which takes experimental error into account (see
Supplementary Note 7). Using measurements of χp(MT) for each
of the same P= 11 control sequences to be used for the
bispectrum estimation, we find a well-conditioned system for
K= 8.

Figure 4b compares the experimentally estimated PSD at the
K= 8 harmonics (blue triangles) with the ideal PSD obtained
from Eq. (5) for our engineered noise (solid gray line) and Monte
Carlo simulations of the QNS protocol (orange squares). The
experimental and simulated estimates of the PSD are plotted
along with 95% confidence intervals obtained from the
asymptotic normal distribution of the decay constants. Figure 4c
shows the experimental and simulated values of χp(MT) that were
used as input for the reconstructions, along with ideal values
obtained by substituting Eq. (5) into Eq. (1) and approximating
the FF by the ideal (infinite) comb as given above. The PSD is
slightly underestimated at zero frequency in both the experiment
and Monte Carlo simulation since the FF of sequence p= 1
(a 960-ns-long free induction decay) is comparable in bandwidth
to the PSD, whereas the reconstruction procedure assumes the
PSD is sampled by infinitely narrow FFs. The disagreement of the
experimental and simulated χp(MT) for p= 1 with the ideal value
is also explained by the non-negligible bandwidth of the FF
(Fig. 4c). Apart from these well-understood discrepancies at
ω= 0, the quantitative agreement of the experimental reconstruc-
tion with simulations and ideal values is remarkable, which
demonstrates that our protocol is able to reliably characterize
Gaussian features of the applied noise.

We are now in a position to present our key result: the
reconstruction of the noise bispectrum. As anticipated, this entails
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a higher-dimensional analog of the comb-based approach used
for the PSD. We estimate the non-Gaussian phase given in
Eq. (2) by subtracting the contribution of the noise mean
from the total measured phase, φp(MT)= ϕp(MT)− μBFp(0, MT),
where we replace μB by μestB experimentally determined
above. After M≫ 1 repetitions of sequence p, the FF becomes a
2D comb (Fig. 3d), and the non-Gaussian phase becomes a

sampling of the bispectrum at the harmonics ~kωh, that is,

φpðMTÞ ¼ � M
3!T2

P

~k2Z2

Gpðωh
~k;TÞS2ðωh

~kÞ: Since both the filter

and bispectrum decay at high frequencies, we can truncate this

sum to a finite number of ~k ¼ ðk1; k2Þ. As the bispectrum is
completely specified by its values on the principal domain, we
may further restrict our consideration to a subset of harmonics,

K2 � f~k1; ¼ ;~kNg � D2 (Fig. 3d). The non-Gaussian phase then
becomes

φpðMTÞ ¼ �
M

3!T2

X

~k2K2

mðωh
~kÞRe½Gpðωh

~k;TÞ�S2ðωh
~kÞ; ð8Þ

where the multiplicity mðωh
~kÞ accounts for the number of points

equivalent to S2ðωh
~kÞ by the symmetry properties of the

bispectrum. Also on account of these symmetries, the imaginary

component of Gpðωh
~k;TÞ cancels when the sum is restricted to

D2 (see Supplementary Note 8).
By measuring the non-Gaussian phase for P ≥N

different control sequences, we can construct a vector
~φ ¼ ½φ1ðMTÞ; ¼ ;φPðMTÞ�T and a linear system of the form

~φ ¼ A~S2; Apn ¼ �
M

3!T2
mðωh

~knÞRe½Gpðωh
~kn;TÞ�; ð9Þ

where~S2 ¼ ½S2ðωh
~k1Þ; ¼ ; S2ðωh

~kNÞ�
T contains the bispectrum at

the harmonics in K2 and A is a P ×N reconstruction matrix. The
simplest way to estimate the bispectrum from this linear system is
the least-squares estimate employed in ref. 41, involving the
(pseudo-)inverse of the reconstruction matrix,~Sest2 ¼ A�1~φ. As in
the case of PSD estimation, a potential drawback of this
inversion-based approach is numerical instability stemming from
an ill-conditioned A, which occurs when the FFs have a high
degree of spectral overlap. Since ill-conditioning makes the least-
squares estimate sensitive to even small errors in the measured
phases, we again utilize a maximum-likelihood approach with

optional regularization to further increase stability (see Supple-
mentary Note 8). From the asymptotic Gaussian distribution of
the measurement outcomes of ~φ, the regularized maximum-
likelihood estimate (RMLE) is found as

~SRMLE
2 ¼ argmin

~S2

1

2
ðA~S2 �~φÞTΣ�1ðA~S2 �~φÞ þ λD~S2

�

�

�

�

2

2

� 	

;

ð10Þ

where ||⋅||2 denotes the L2-norm and λ ≥ 0 parametrizes the
strength of the regularization47. Due to its dependence on the
covariance matrix Σ, the RMLE down-weights phase measure-
ments with larger error. Numerical stability is increased by the

regularizer λD~S2
�

�

�

�

2

2
, which acts as an effective constraint. When

the smoothing matrix D is proportional to I, the regularizer
reduces to the well-known Tikhonov (or L2) form. Since the
numerical stability afforded by regularization comes at the cost of
additional bias, choosing the regularization strength is a
nontrivial task. In Supplementary Note 8, we detail how we have
selected λ based on the so-called “L-curve criterion”. Interestingly,
since A is sufficiently well-conditioned for the sequences we have
chosen, we find that regularization gives negligible benefit.
Accordingly, we use λ= 0 (which recovers standard MLE) in
our experimental reconstructions.

Figure 5a compares the results of the non-Gaussian spectral
estimation for the harmonics in the principal domain for the
experiment (blue triangles) with both the ideal bispectrum
obtained from Eq. (6) (gray circles) and from Monte Carlo
simulations (orange squares). To estimate the experimental
bispectrum, we input the measured data for ~φ and Σ shown in
Fig. 5b into~SRMLE

2 given by Eq. (10). The ideal values of φp, also
shown in Fig. 5b, are obtained by substituting Eq. (6) into Eq. (2).
We further display 3D representations of the full bispectra,
obtained by applying relevant symmetries to the data on D2, for
the ideal (Fig. 5c) and experimental (Fig. 5d) cases, respectively.
Ignoring error bars, the reconstructed bispectrum appears to be
an overestimate with respect to the ideal one. This error may be
attributed to noise during the finite-duration control pulses used
in the experiment, leading to effective pulse infidelity. Upon
taking the error bars in Fig. 5a into consideration, however, the
ideal and simulated values of the bispectrum lie within the 95%
confidence intervals of the experimental reconstruction, suggest-
ing that this estimation error is statistically insignificant and thus
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successfully extending the validation of our QNS protocol to the
leading non-Gaussian noise cumulant.

Although the theoretical bispectrum falls within the 95%
confidence interval of the estimate, reducing the magnitude of
uncertainties is clearly necessary to push the application of non-
Gaussian QNS to uncontrollable native noise, whose strength
may be comparatively weak. We note that the spectral
characterization of the non-Gaussian noise process engineered
in this experiment requires an extremely precise estimation of μB.
Since reconstructions of the bispectrum are obtained using
φp(MT)= ϕp(MT)− μBFp(0, MT), the uncertainty in μestB propa-
gates to φp(MT) when p has zero filter order, i.e. Fp(0, MT) ≠ 0.
These sequences play a crucial role in estimating the bispectrum
at the “zero points”, grid points (ω1, ω2) with ω1= 0 or ω2= 0.
Since μB is much larger than the third cumulant for the current
noise process, even a small relative uncertainty in μestB can lead to
greater error in the bispectrum estimate at the zero points, as the
error bars in Fig. 5a attest.

Discussion
In summary, we experimentally demonstrated high-order spectral
estimation in a quantum system. By producing and sensing
engineered noise with well-controlled cumulants, we were able to
successfully validate a spectroscopy protocol that reconstructs
both the PSD and the bispectrum of non-Gaussian dephasing
noise. Our theory and experimental demonstration lay the
groundwork for future research aiming at complete spectral
characterization of realistic non-Gaussian noise environments in
quantum devices and materials. Theoretically, we expect that the
regularized maximum-likelihood estimation approach to QNS we
invoked here will prove crucial to ensure stable spectral recon-
structions in more general settings. Devising alternative estima-
tion protocols based on optimally band-limited control
modulation and multitaper techniques48 appears especially
compelling, in view of recent advances in the Gaussian
regime24,49. We believe that obtaining a complete spectral char-
acterization will ultimately provide deeper insight into the physics
and interplay of different microscopic noise mechanisms,
including non-classical non-Gaussian noise, as possibly arising
from photon-number-mediated non-linear couplings50.

Data availability
The data that support the findings of this study may be made available from the
corresponding authors upon request and with the permission of the US Government
sponsors who funded the work.

Code availability
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the work.
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