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Summary. We show how to calculate statistical properties of non-Gaussian
random fields. We apply this method to determine the mean size and frequency of
occurrence of high and low level excursions of the Rayleigh, Maxwell, Chi-
squared, lognormal, rectangular and Gumbel type I random fields. These results
permit us to calculate the expected size and frequency of fine-scale hotspots and
coldspots expected in the microwave background distribution on the sky under
the assumption that it possesses non-Gaussian statistics of the above-mentioned
types. This generalizes and extends previous studies which confined attention to
the simpler case in which the microwave background radiation was assumed to be
a Gaussian random field. We also discuss whether it will be possible to determine
observationally whether the underlying statistics of the temperature fluctuations
in the microwave background are indeed Gaussian as predicted by the standard
theory of inflation.

1 Introduction

Observational evidence that rich clusters of galaxies are more strongly clustered than galaxies
(Bahcall & Soneira 1983; Klypin & Kopylov 1983; Ling, Frenk & Barrow 1986) led to the
introduction of the idea of ‘biased’ galaxy formation (Kaiser 1984) wherein the distribution of
luminous matter is not assumed to be a faithful representation of the total mass distribution. Since
luminous galaxies are most likely to form in the highest density regions and the maxima of a
Gaussian field are more strongly clustered than the underlying field this may provide a natural
explanation for the strong clustering of Abell clusters. Davis et al. (1985) recognized that the
identification of galaxies only with 30 peaks in the mass distribution could reconcile the results of
simulated galaxy clustering with the observed covariance function in cosmological models
possessing a present density close to the critical density. Subsequently, various ideas were put
forward to show how a bias could be introduced into the galaxy formation process by physical
processes occurring in the Universe after recombination (Rees 1985; Couchman & Rees 1986;
Silk 1985; Dekel & Silk 1986). A priori it is by no means obvious that biasing is inevitable. One
could easily imagine a form of ‘anti-biasing’ in which the densest regions of the Universe undergo
very rapid evolution through a luminous phase and are now dark voids.
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Motivated by these questions a number of detailed mathematical analyses have been made
concerning the statistical properties of regions of high density in Gaussian random fields (Kaiser
1984; Politzer & Wise 1984; Peacock & Heavens 1985;0tto, Politzer & Wise 1986; Jensen &
Szalay 1986; Bardeen et al. 1986; Coles 1986; Couchman 1986, 1987) following the earlier
introduction of this general idea in a pioneering paper of Doroshkevich (1970), [see also Sunyaev
1972 and Marochnik, Nasel’skii & Zabotin 1980). All these analyses make use of the extensive
literature on the statistics of Gaussian random fields, the most notable surveys being those of Rice
(reprinted in Wax 1954), Adler (1981) and Vanmarcke (1983).

The importance of considering the maxima of random fields has also been recognized (Sazhin
1985a, b; Zabotin & Nasel’skii 1985) in connection with predicting the map of fine-scale micro-
wave temperature fluctuations expected over the celestial sphere as a result of the gravitational
potential fluctuations in the Universe that gave rise to galaxies and clusters. A comprehensive
study of this problem has been completed by Bond & Efstathiou (1987) and Vittorio &
Juszkiewicz (1987). All these analyses of the microwave background assume that the temperature
fluctuations are a Gaussian random field.

We should point out that there is particular interest in the possible non-Gaussian nature of
fluctuations in the Universe. Although fluctuations generated during an inflationary de Sitter
phase are expected to be Gaussian (with a scale-invariant spectrum), those generated during an
inflationary stage which is not exactly exponential will not, in general, be Gaussian (nor will they
be scale invariant). The initial fluctuations present at recombination are necessarily non-Gaus-
sian fluctuations in vacuum string theories for the origin of large-scale structure. It is also clear
that initially Gaussian fluctuations become non-Gaussian under the influence of non-linear
gravitational clustering. Although the mathematical analysis is considerably more complicated in
the non-Gaussian case there exist a number of physically realistic non-Gaussian fields which can
be treated analytically using various mathematical tricks. All these examples can be related in
some functional way to the Gaussian so that certain aspects of the Central Limit Theorem, can be
exploited. We can avoid much of the analytical complexity involved in the treatment of two-
dimensional random fields by constructing them from one-dimensional random processes (this
trick was used by Coles (1986) to obtain results for a three-dimensional Gaussian field in
connection with the problem of rich-cluster correlations). We find that it is possible to deduce the
expected number of regions where the field exceeds some level and also the expected area of such
regions. We apply these results to the microwave background sky and compare them with those
obtained earlier for the Gaussian case. The examples we consider exhibit a wide range of
probabilistic behaviours, from those which are very similar to the Gaussian to some which are
qualitatively different.

The layout of the paper is as follows: in Section 2 we demonstrate how to calculate the required
statistical properties of non-Gaussian random fields, using the mean upcrossing rate of a random
process. In Section 3 we apply the method to various non-Gaussian fields and in Section 4 we
discuss the various normalizations required in order to compare Gaussian and non-Gaussian
behaviour. In Section 5 we apply these results to the case of microwave background temperature
fluctuations and compare the results for Gaussian and non-Gaussian fluctuations. Finally, in
Section 6, we discuss briefly whether observations of the microwave background might allow us to

determine whether the spectrum of fluctuation in the Universe possesses Gaussian or non-
Gaussian statistics.

2 Average properties of upcrossings

In this section we shall determine mean properties of the peaks of random fields from the rate of
upcrossing of the field in its excursions above some general level. First, we establish a useful
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expression for the upcrossing rate of a one-dimensional random process X(6).
We introduce notations

X(0)=x, (2.1)

%= X@-XO 22)
Now define the joint probability density function of x and y, by g,(x, y,) and assume that

e 84(X, y9)=p (¥, y) (23)
where y=dX/d6. Define the upcrossing of the level u to be an event such that

X(0)<u<X(q); q=0. (2.4)

Using (2.2), we see this event is equivalent to the simultaneous requirement that X(0)<u and
y,>[u—X(0)]/q. Hence, we consider the associated joint probability

1
J(u)= (; PX(0)<u and y,>[u—-X(0)]/q] (2.5
1 {# *
= —f dx g,(x. ) dy. (2.6)
qJ-= (u—x)/q

If we introduce new variables (u, v) such that (x, y)=(u—qzv, z) then (2.6) becomes

J(u)= fm dzf1 8,(u—qzv, z) dv. 2.7
0 0

Hence, if there exists some function 4(z) such that, for any u, g

fw zh(z)<e and g,(u, 2)<h(z), (2.8)
0

then,

thO J,(u)= Jm zp(u, z) dz. 2.9)
- 0

The function p(x, y) is the joint distribution function of X(6) and X'(¢) and for Gaussian
processes it will be a bivariate Gaussian. In what follows we shall denote the upcrossing rate of
level u, (2.9), by N,; that is:

N,= f zp(u, z) dz. (2.10)
0

The one-dimensional upcrossing formula (2.10) can be used to calculate the mean number and
size of peaks above a given threshold for two-dimensional random fields, whether or not they are
Gaussian. In Section 3 we shall evaluate N, for a number of non-Gaussian fields.

We denote the duration of excursions of a one-dimensional random field X(6) above a level
X(6)=u by 6,, and the duration of the intervening excursions below this level by 8, as illustrated
in Fig. 1.
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Figure 1. Definition of the quantities 6, and 8, introduced in the text. Their values generate the distributions of the
durations of the excursions of a random process X(#) above and below the threshold X (6)=u respectively.

Then, we have the following expectation values if the probability density function (pdf) of the
field is f(x):

1
E[6,+6.]= — 2.11
[6.+61= 5 @11)
M—fwf()d—Q() 2.12
E.+oy ), TV TRV (2.12)
where Q(u) is the complementary cumulative distribution function (ccdf). Hence
Q(u)
E[6)= —. 2.13
o= =% @.13)

We can obtain expectation values for the area A, of a two-dimensional isotropic random field
above some threshold level, u, by considering two orthogonal and independent one-dimensional
processes X1(6) and XP(6). Thus,

E[A]=E[6] E[67], (2.14)
so, by (2.13),

_ (2’
E[Au]—< N, ) . (2.15)

We should emphasize that since the shapes of the areas above some level crossing are not known a
priori and can only be computed in the case of a Gaussian field, the ‘areas’ computed here are
representative two-dimensional quantities equal to the square of a characteristic length scale.
This procedure produces the correct result for the Gaussian case and will give reliable compara-
tive results since the same criterion is used in each non-Gaussian case.

Consider a large plane area A. We can express the subarea within it at which the field exceeds a
certain level u in two different ways and equate them to obtain

E[A)uA=Q(u) A (2.16)
where g, is the mean number of regions above the level u per unit area. Hence,
N;
O (2.17)

T EAL T 0w
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The formulae (2.15) and (2.17) enable us to calculate mean sizes and frequencies of excursions of
any two-dimensional random field for which we can calculate N, and Q(«) in simple form. In the
next section we shall do this for six non-Gaussian distributions and compare the results with those
obtained for the two-dimensional Gaussian random field.

3 The calculation of N, and Q(u)

We shall be interested in a group of non-Gaussian processes which can be derived from the
standard Gaussian process. We denote the second spectral moment of these processes by o%;
hence, if the processes possess a covariance function £(6) then*

F=—E"(0). (3.1)

In this section X (6) will denote a one-dimensional Gaussian random processes with zero mean
and unit variance. For comparative reference we give the results for a Gaussian field first.

(i) Gaussian
The joint distribution function p(x, y) is a bivariate normal distribution with

1 x2 2
,y)= -—— -, 3.2
p(x,y) 2;m,exP( > 20%) (3.2)
where Y(6)=X'(6). Hence, from (2.10), we have
N,= 2 < “2) (3.3)
= —exp|— — .
27 P 2

and the ccdf, Q(u), is a standard tabulated function (Abramowitz & Stegun 1965, table 26.5) for
the one-dimensional Gaussian:

0w = 5= W ep (- 5) (3.4)

where ®(u) is the infinite series

1 1.3 1.3.5
D(u) =1~ = + — - +
Uu

4 (3.5)
u

ub

This case is particularly simple because if X and Y are stationary Gaussian processes then
they are necessarily independent and hence the joint distribution (3.2) is a separable function
of x and y.

(ii) Rayleigh
If X1(8) and X,(6) are independent standard Gaussian processes then the Rayleigh process is
defined by

R(0)=[X1(6) + X3(0)]"” (3.6)
and it possesses a pdf

fr(u) = u exp (—- ’;‘2_) . 3.7

*Qur definition of ¢} differs from that of Bond & Efstathiou (1987) and Bardeen et a/. (1986) and equals one-half and
one-third of their values in the two- and three-dimensional cases respectively.
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Given that X;(6) =x; we have

o aX{(6)+nXy6)
R'(6) = T (3.8)

Since X;(#) and X,(¢) are independent and normally distributed, R'(¢) will be normally
distributed with zero mean and variance o3. [The latter deduction can be verified by noting
that the variance of the right hand side of (3.8) is (x}01+x30%)/(x1+x3)=01%.]

The distribution of R'(8) conditional on X;(6) = x; is independent of x; and hence independent
of R. Therefore

S S
pu, y) = ‘/ﬁa] exp ( > 20%) (3.9)
=Prob[(R=u) and (R'=y)]. (3.10)

So, using (2.10), we have

*® uo, u?
N, = ,y)dy = — -—]. 3.11
JO yp(u, y) dy Jz—ﬂexp( 2) (3.11)

The ccdf for (3.7) is just

2

Q(u) = exp (— %) = 0y(u). (3.12)

(1)) Maxwell
This is a generalization of (ii) defined by

M(6) =[X1(6) + X3(6) + X3(0)]"* (3.13)

where X; are independent standard Gaussians, and the pdf is

2

fu(u) =2/ u* exp <— ug) - (3.14)
Proceeding as in Section 3.2 we find that

o 5 u2

=—ulexp |- = (3.15)

T 2

and
2

Qoo=2Qmo+ﬁunuen>(—%> (3.16)

where Q,(u) is defined by (3.12).

(iv) Chi-squared y?
If we have n independent standard Gaussian processes X;(6), i=1, .. .n then the chi-squared
process of order # is defined by

26 = 3 X¥0) (3.17)
i=1
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and possesses the pdf

1 [u\"? exp (—u/2)
==-(2Z —_—= = 3.18
wo=2 (5)" s 9
From (3.17) it follows that
dy.(6 "
w0 = 29 _ 13 x6) x10). (3.19)
dé i=1
We can rewrite (2.10) as
N,= E(¥} [ xn = u) f(xa=u) (3.20)
where
Y= max [0, ¥,(0)]. (3.21)
First consider
E[¥;] X;= X;(0) = x; and y, = u]. (3.22)
Now the distribution of W, given that X; =x;(i=1, 2, . . . n) and y, = u is normal with mean zero
and variance equal to 4uo?. Thus
2uo?\ 12
E(¥;| X;=x; and y,=u) = ( £ 1) : (3.23)
b 4
and since the right-hand-side is independent of the individual x; we have
!
2uo?\ 12
E(¥;ltn=u) = ( uol) : (3.24)
4

So, using (3.18), we find the mean upcrossing rate to be (see Sharpe 1978 and Hasofer 1974 for
a more laborious derivation of this result)

oy (u>("“1)/2 exp (—u/2)

2 T(n/2)

N,
o

and the ccdf reduces to one- and two-point gamma functions:

(3.25)

Tr(n/2, u/2
O(u) = —(’li—/(n—/g”)/—) = 0,(u). (3.26)

Q(u) is also a tabulated function (Abramowitz & Stegun 1965, table 26.8).

(v) Lognormal
If X(6) is the standard Gaussian process then

Y(6) = exp [X(6)], (3.27)

Y'(6) = X'(6) exp [X(0)] (3.28)

defines the lognormal process with pdf

fuw) = u}ﬁ exp [~4 (log 4)?. (3.29)
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Since
1 u?
P(X =u)=— - — 3.30
X =u T exp ( 2) (3.30)
we have
1 u oyl
—_— L) 3.31
p(u, y) 270, 5P ( 5 20%) (3.31)

The joint distribution of Y and Y’, II(Y, Y), is related to P(X, X') by
n(y, v = PX, X" |/ (3.32)

where || J||=1/Y? is the Jacobian of the transformation (X, X') — (log Y, Y'/Y) defined by
(3.27) and (3.28). Hence

1 1 (log 6)? W?
I(y=60,Y=y)=— — - - 3.33
( V) =5 200, P [ 2 200 (3:33)
and we obtain, after some algebra, that for the lognormal process
0 log u)?
N, = 2L exp [— (—gi)] (3.34)
27 2

That is, Y crosses the level u as frequently as X crosses the level log u (compare cf. equation 3.3)
as expected.
The ccdf for the lognormal is simply

Q(u) = Qi(log u). (3.35)

(vi) Rectangular
If X, and X, are independent standard Gaussian processes then

Z = exp [} (X1 + X?3)] (3.36)
has uniform density on the interval [0, 1]. Defining a Rayleigh process

R= (X}+ X3 (3.37)
we have

Z = exp (—R?/2) (3.38)

and it is straightforward to evaluate the Jacobian of the transformation (R, R") — (Z, Z') to
obtain the joint probability distribution

M(Z=u; Z'=v) =

1 v?
- . 3.39
J27ou exp < 2u20%> (3.%)

Hence, integrating, we obtain the upcrossing rate from equation (2.10) to be

N, =22 (3.40)
27

The ccdf is discontinuous:

Q(u)=1-u, u=sl
=1, u>1 (3.41)
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(vii) Gumbel type 1
The Gumbel type I distribution has pdf
p(x) = exp [-x—exp (—x)], —o<x< oo (3.42)
and is well-known in the study of order statistics.*
The associated Gumbel type II and type III distributions can be obtained via a transformation

x — logx in (3.42) and differ in the domain of dependence. If X, and X, are Gaussians with unit
variance and zero mean then the process

Xi+X3
‘——2> (3.43)

H(Xl, Xz) = —10g ( 2

has the Gumbel-I density because 3(Xi+ X3) possesses an exponential distribution. The joint
probability of the Gumbel-I process and its derivative is thus

(, v) = — 3 xp (cu) + - exp (~u) 3.44
v) = xp | = — — exp (- — - .
p(u, Zolere p 5 p(—u 207 exp (—u (3.44)

and the upcrossing rate is

N, = a4 exp [— = exp (—u)] . (3.45)
v 2

The ccdf is given by

Q(u) =1— exp [— exp (—u)]. (3.46)

In all the examples calculated above the abundance and size of low-intensity regions can be
obtained by noting that the requisite downcrossing rate of the field below some level is equal to
the upcrossing rate in each case whilst the complementary cumulative function Q(u) should be
replaced by the cumulative function P(u) = 1 — Q(u) in the expressions (2.13)—(2.17). We should
point out that the non-Gaussian processes (ii)—(vii) admit exact solutions for the mean frequency
and size of excursions because they are all at some level related to Gaussian processes. However,
the form of the resulting processes is sufficiently varied and comprehensive to provide a useful
guide as to the robustness of the conclusions drawn about the statistics of excursions using solely
Gaussian processes. Some of our examples (ii)—(iv) behave in a very similar fashion to the
Gaussian process whilst the others do not. To keep the algebra simple we have used underlying
Gaussian processes with unit variance. Different distributions are obtained if the underlying
process has variance o2. For reference, the means and variances of the distributions (i)—(viii)
obtained in the general case are displayed in Table 1 and distribution functions for the case 0> =1
are shown in Fig. 2.

The transformations which we have applied to the Gaussian process in order to obtain analytic
expressions for the marginal distributions are by no means unique. For example, in the case of the
rectangular distribution (vi), instead of choosing Z as in (3.36) we could have taken

Z= (L> arctan (X,;/X;) (3.47)
2

*The Gumbel distribution arises in the study of first-ranked members of independent subsamples in sampling theory
(Gumbel 1966). It has been used in a study of first-ranked galaxies in rich clusters and loose groups by Bhavsar &
Barrow (1985) to determine whether their first-ranked member galaxies have properties consistent with having been
selected from a single underlying population. If independent subsamples are taken from an underlying probability
distribution possessing an exponential tail then the probability distribution of the first-ranked members of the
independent subsamples will approach the universal Gumbel form in the limit that the population becomes large.
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Table 1. Means and variances of the probability distributions studied in

Section 3.

Distribution

Gaussian
Rayleigh
Maxwell
Chi-squared (y2)
Lognormal
Rectangular
Gumbel type I

Mean, u

0

ofx/2
ol8/x

no?

exp (30?)
(14021
y*—log (0?)

*y=0.577 . . . is Euler’s constant.

Variance, Z?

02

2-7/2) 0?

(3-8/m) 02

2no*

exp (@)X [exp (09)-1]
o4(1+20%)1(1+0?)2
/6

which also has a rectangular marginal distribution on [0, 1]. However, it is a different process and

leads to intractable integrals.

It is probable that our method could be extended to several other more complicated non-
Gaussian processes like Weibull, Student-¢, Fisher-Z and Snedecor-F.

0 06,
0-84 0-57
2
% G 04
3 F-]
g Ray!leigh & 0¥ n=2
0-44
Maxwell 0-24
.2 n=5
02 014
n=30
0-0 . . . . 0-0 ’ y
1 2 3 4 S 0 20 30 40 50
X } ¢
{i) i)
1'0'1 1»01
0-8 1 0-8-
>
=
* 0-64 0-64
2 0-6 ‘g
2 F
g a
£ 04 04
0-2 02
00— ¢ ¢ ®© 17 u —Z 7 o0 1 Z 3 & %

x
(iii)

Figure 2. Probability densities for (i) Rayleigh and Maxwell; (ii) Chi-squared with n=2, 5 and 30; (iii) lognormal, and

(iv) Gumbel-I distributions.

{iv)
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We have concentrated attention upon only two statistical properties of the extrema of the
stochastic fields (i)—(vii) above because these are both mathematically tractable and physically
relevant in astronomical applications. However, in the case of Gaussian fields it is possible to go
further and calculate the probability distribution function of the sizes of excursion regions above a
threshold u in the limit of large u as (Belyaev & Nosko 1969)

oix?
Lt Pluf,=x] =exp | — s | (3.48)
If we specialize results of Longuet-Higgins (1957) to the case of isotropic Gaussian fields then the
mean length of contour per unit area of the field reduces to

0= Lo | -5 (3.49)

= —exp |~ .
207 | 207

where o2 is the variance and o, is defined by equation (4.1). It does not appear to be possible to

produce results analogous to (3.49) for the non-Gaussian fields we have studied.

4 A comparison of Gaussian and non-Gaussian behaviour

Before we can compare meaningfully the statistics of Gaussian and non-Gaussian excursions we
need to standardize the distributions (i)—(vii). This we do in two ways:

(a) We determine number densities and areas of two-dimensional fields above a standard level
u defined to be a fixed number of rms units from the mean. Alternatively, (and more realistically
if we wish to use observations to distinguish between Gaussian and non-Gaussian underlying
statistics using the high-level excursion behaviour), lacking a good estimate of the rms fluctua-
tion, we could compare the behaviour at different percentile levels.

(b) We standardize the derivative part of the bivariate distribution. A measure of the ‘noisi-
ness’ of a Gaussian process with covariance function &(6) is provided by

0} = —&"(0) = (mean square derivative). (4.1)

Hence, we standardize by introducing a relative noisiness parameter, 3, defined in general* by

1 /mean square derivative 2
- = ( ! ) (4.2)

27 variance

where the variance is given by £(0).

The mean square derivatives and variances together with the form of N, in terms of £ for the
examples given in Section 3 are listed in Table 2.

In Table 2 the noisiness of the Gumbel-I distribution and the consequent form of N,(/f) are
based upon a different definition of 5. We note that, for a Gaussian process,

f D Ndu=2 =N (4.3)
du=—= .
e 2
so by reference to this case we define a dimensionless noise parameter for the Gumbel-I as
N 1
Bi= "= (4-4)

J2x (variance)'?’

- *The Gumbel-I distribution is exceptional and cannot be treated in this manner because the mean square derivative
does not exist. A different normalization is proposed for this distribution below.
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Table 2. Mean square derivatives, variances and computations of the expected number of excursions,
N,, above the level u for the distributions listed in Table 1.

Distribution Mean square Variance Upcrossing rate

derivative N.(B)
Gaussian o} 1 B exp (—u?/2)
Rayleigh o} 2—-m/2 [27(2—7/2)]"2 Bu exp (—u?/2)
Maxwell o} 3-8/7 2(3—8/m)"2 Bu? exp (—u?/2)
% 4not 2n P 2/n(u/2)®V2 [exp (—u/2))/(T(n/2)
Lognormal eo} e(e—1) Be—1)12 exp [— (log u)/2]
Rectangular ai/3 1/12 Bu(m/2)12
Gumbel type I* - /6 B,/ 3) exp [—(u/2)—exp (—u)]

*f . is defined by equation (4.4) and given by equation (4.5) for the Gumbel-I distribution.

For Gumbel-I, N = o; and so

B+ (Gumbel) = gy/_3 . (4.5)
T

32

Hence, for Gumbel-I, equation (3.40) becomes

T

No=fu e [— ;—' —exp (—u)] . | (4.6)

5 Application to the cosmic microwave background

In this section we shall apply the results obtained in Section 4 to the temperature distribution of
the microwave background radiation over the celestial sphere. This problem has been studied,
under the assumption that the angular fluctuations, AT(6), in the measured temperature of the
radiation constitute a Gaussian random process, by Sazhin (1985a, b), Zabotin & Nasel’skii
(1985) and Bond & Efstathiou (1987). Our computations generalize these earlier results to the
case where the temperature fluctuations are described by a stochastic field with non-Gaussian
statistics.

As usual we shall assume that the temperature fluctuations are described by a two-dimensional
stochastic process on a plane of area 47 rather than on a sphere. In order to compute the variance,
22, and noise parameter, S, of the process we would need to know the power spectrum of the
density inhomogeneities in the underlying cosmological model.

The results obtained are displayed in Tables 3, 4, 5 and 6 and in Figs 3 and 4. The case of a
Gaussian field is included for comparison. In order to obtain an equivalence with the results of
Sazhin (1985a, b) one requires a noisiness parameter £ of roughly 12, which, in their notation
produces for the Gaussian case 02/0? = 472*=6000. This gives a # which is measured in units of
sr71. Our threshold level, u, is labelled by v=—5, —4, . . ., 4,5 where

u=pu+v: (5.1)

and u# and 22 are the mean and variance of the distribution in question (see Table 1). Our v
corresponds to that defined by Bond & Efstathiou (1987) in the Gaussian case. Only in the
Gaussian case are the results for the number and size distributions of the excursion symmetric
under change of sign of v. In Figs 3 and 4 and Tables 3-6 there is a symmetry between the statistics
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Table 3. Expected sizes of excursion regions above level u or below level —u (defined in terms of rms
from the mean by equation 5.1) in units of 10-4 sr. The noisiness (see equations 4.2 and 4.5) has been
taken to have the value §=12 in the examples shown.

v
-4 -3 -2 -1 +1 +2 +3 +4 +5
Gaussian 0.7 1.0 2.0 4.8 4.8 2.0 1.0 0.7 -
Rayleigh - - - 2.8 7.1 3.9 2.5 2.0 -
Maxwell - - 0.2 3.3 6.5 3.4 2.2 1.8 -
Lognormal - - - - 2.1 1.4 1.0 0.9 0.9
Rectangular - - - 44.2 11.1 - - - -
Gumbel-I - - 3.1 10.4 3.8 1.0 0.3 0,07 0.02
X;,n:l - - - - 5.6 4.1 3.2 2.6 2.3
2 - - - - 5.5 3.7 2.8 2.2 1.9
3 - - - 1.7 5.5 3.5 2.5 2.0 1.6
4 - - - 2.4 5.4 3.3 2.4 1.9 1.6
5 - - - 2.9 5.4 3.2 2.3 1.7 1.5
10 - - 0.2 3.7 5.3 2.9 2.0 1.5 0.9
20 - - 0.4 4.1 5.1 Z 7 1.7 1.2 0.6
30 - - 1.1 4.2 5.1 2.6 1.6 1.1 0.4
50 - - 1.3 4.4 5.0 2.5 1.5 0.8 -

Table 4. Expected numbers of hot (cold) spots on the microwave sky above (below) the levels u
(=) in units of the rms from the mean defined by equation (5.1). The noisiness (see equations
4.2 and 4.5) has been taken to have the value =12 in the examples shown.

v
-4 -3 -2 -1 +1 +2 +3 +4 +5
Gaussian 6 165 1457 4196 4196 1457 165 6 -
Rayleigh - - - 7454 2877 1200 285 40 -
Maxwell - - 2961 6236 3133 1248 261 28 -
Lognormal - - - - 5741 2802 2131 1368 926
Rectangular - - - 601 8367 - - - -
Gumbel-I - - 28 1591 4708 5573 5848 5923 5945
x;.n:l - - - - 2692 1561 870 470 251
2 - - - - 3079 1698 833 386 167
3 - - - 6852 3261 1742 785 321 125
4 - - - 6043 3374 1757 741 278 94
5 - - - 5664 3451 1763 707 248 77
10 - - 111 5030 3651 1751 593 161 44
20 - - 665 4727 3797 1713 488 102 22
30 - - 869 4610 3865 1690 433 78 7
50 - - 1050 4505 3937 1654 377 62 -
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Table 5. Expected sizes of hotspots at different percentile levels in units of 10-sr. The noisiness (see
equations 4.2 and 4.5) has been taken to have the value B=12 in the examples shown.

Percentile
75% 90% 95% 97.5% 99% 99.5% 99.9% 99.95% 99.99%

Gaussian 6.8 3.6 2.6 2.0 1.6 1.3 1.0 0.9 0.7

Rayleigh 9.2 5.6 4.3 3.5 2.8 2.4 1.9 1.7 1.4

Maxwell 8.6 5.1 3.9 31 2.5 2.2 1.7 1.5 1.4

Lognarmal 4.0 2.1 1.5 1.2 0.9 0.7 0.5 0.5 0.3
Rectangular 4.9 0.5 0.1 0.03 0.005 0.001 4x10"° 1x107°  4x10”’
Gumbel 1 8.2 2.5 1.1 0.5 0.2 0.1 0.02 0.01 0.002

x2.n=1 8.2 5.2 4.0 3.3 2.6 2.3 1.7 1.6 1.3

2 8.0 4.8 3.7 3.0 2.4 2.1 1.6 1.5 1.2

3 7.8 4.6 3.5 2.9 2.3 2.0 1.5 1.3 1.1

4 7.7 4.5 3.4 2.8 2.2 1.9 1.5 1.3 1.1

5 7.6 4.4 3.3 2.7 22 1.9 1.4 1.2 1.1

10 7.5 4.2 3.1 2.5 2.0 1.7 1.3 1.1 1.0

20 7.3 4.0 3.0 2.4 1.9 1.6 1.2 1.1 0.9

30 7.2 4.0 2.9 2.3 1.8 1.6 1.2 1.1 0.9

50 7.1 3.9 2.9 23 1.8 1.5 1.2 1.0 0.9

100 7.0 3.8 2.8 2.2 1.7 1.5 1.1 1.0 0.8

of upcrossings above a level u and downcrossings below a level —u only in the Gaussian case.
However, in all the non-Gaussian examples it is possible to carry out a transformation of u — —u
to interchange the results for the high and low level crossings.

Looking first at the results for Rayleigh, Maxwell and y?, it is clear that although the numerical
values for the numbers and areas of hot spots are different in these cases, the form of the curves
are rather similar. As expected, higher order y2 processes give results close to the Gaussian [this
is expected because the form of equation (3.17) means, that with higher n, processes will tend to
the Gaussian by virtue of the Central Limit Theorem]. Indeed, asymptotically these processes all
have an expected hotspot area which goes as 1/u?. At this point one might conjecture that this
similarity in high level excursion behaviour is related to the fact that these distributions are all of
exponential type in the sense of Gnedenko (1941) (see also Gumbel 1966).* However, the
Gumbel distribution is itself of exponential type but has an expected hotspot area that falls
exponentially as u— «. However, we conjecture that bivariate distributions, both of whose
marginal distributions are of exponential type, will have the 1/u? high-level behaviour.

The lognormal distribution is extremely positively skew and the hotspot behaviour therefore
exhibits a long positive tail. Note that, apart from a constant factor the behaviour of this process at
different percentile levels is exactly the same as that of the Gaussian process. This would be true
for any process which is a unique function of a single Gaussian process.

* A distribution is defined to be of exponential type if its probability density function F’( x) satisfies

(),
o dx \ F'(x)

so all statistical moments must exist and the distribution must be unbounded either to the left or to the right.
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Table 6. Expected numbers of hotspots occurring at different percentile levels. The noisiness (see equations
4.2 and 4.5) has been taken to have the value #=12 in the examples shown.

Percentile

75% 90% 95% 97.5% 99% 99.5% 99.9% 99.95%  99.99%

Gaussian 4592 3502 2418 1553 807 474 129 72 18
Rayleigh 4948 2247 1462 890 449 258 67 37 9
Maxwell 3649 2464 1627 1008 503 288 74 42 9
Lognormal 7890 6018 4155 2668 1387 815 222 124 31
Rectangular 6396 2.3x10% 5.13x10% 1.08x10° 2.79x10° 5.63x10° 2.84x10% 5.68x10% 2.84x107
Gumbel-I 3853 5081 5512 5731 5863 5909 5944 5949 5952
XZ.n=1 3854 2419 1554 952 476 274 72 40 10
2 3940 2619 1703 1049 524 300 79 43 10

3 4015 2727 1785 1102 551 317 83 45 11

4 4069 2799 1840 1138 570 328 85 47 11

5 4110 2852 1880 1166 584 337 88 48 .12

10 4181 2999 1995 1244 628 364 95 52 13

20 4315 3120 2093 1313 665 385 101 56 14

30 4360 3178 2142 1349 684 397 105 58 14

50 4407 3242 2194 1386 707 411 109 60 15
100 4458 3310 2253 1427 732 427 114 63 15

In the case of the rectangular distribution, although the distribution of the fluctuations is
symmetric about the mean, the upcrossing rate is not symmetric and the characteristics of the
hotspots are therefore different to those of the coldspots. Note also that all of the hotspots and
coldspots are confined within a narrow range of the mean because the rectangular distribution is
bounded to the left and to the right. (The previous cases have probability distributions which are
bounded only to the left.)

The Gumbel-I example demonstrates a very peculiar behaviour which is unlike the other cases.
In all previous examples, as the level v increases so both the number of hotspots and their mean
areas decrease. In the Gumbel-I case the number of hotspots above the level v tends to a constant
as v— o although the mean area of the regions becomes very small so that the total flux received
from these regions goes to zero. Although this example is not physically very realistic it does
demonstrate that one can use our method to treat fields which differ markedly from the Gaussian
case.

In all cases it can be seen that greater differences in behaviour are displayed at levels u specified
in terms of standard deviations from the mean rather than at levels specified by percentiles. This
suggests that good estimates of # and = would improve the prospects for using these properties as
discriminators between Gaussian and non-Gaussian fluctuations.

Our results are not immediately comparable with those given by Bond & Efstathiou (1987)
because their calculations refer to local maxima and not just regions above some threshold level.
One region above a level u might well include several local maxima above the level. To apply our
method to the form of fluctuations studied by Bond & Efstathiou (adiabatic and isocurvature
modes of cold dark matter) one would have to choose a different value of § to that used above.
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Their notation (y and 6,) is related to our 8 by
472B= /8 (52)

and 42 is then in units of arcmin~2. This corresponds to values which are somewhat larger than
studied by Sazhin. (5 goes from 40.8 to 49.4 for the adiabatic modes and # = 10.2 for isocurvature
modes when measured in the units used by Sazhin.) Our results for the Gaussian case are in
agreement with those of Bond & Efstathiou (1987) and Vittorio & Juszkiewicz (1987) but differ
by a factor of 2 from those in Sazhin (1985a, b) due to a numerical error in the latter papers.

6 Discussion

We have developed a simplified method for calculating the expected sizes and numbers of spots of
high and low temperature in the cosmic microwave background when its temperature variations
are non-Gaussian. The non-Gaussian fields we have studied range from those which just depart
slightly from the Gaussian case (e.g. y2 with large n) to those where the behaviour is markedly
different (e.g. rectangular and Gumbel-I). This is significant of the fact that our method can be
used to treat a very wide class of stochastic fields derivable from the Gaussian.

Our results indicate that small departures from the Gaussian can lead to processes where the
high-level behaviour is only slightly different from the Gaussian case. This has been known
experimentally for some time in the case of clustering of density perturbations in three dimen-
sions where the linear theory (which assumes Gaussian behaviour) is known to be fairly accurate
even when the rms density fluctuation is of order the mean density, so indicating that the
distribution of fluctuations is asymmetric about the mean and therefore non-Gaussian.

We consider the statistical properties of the high-level and low-level regions to be of very great
importance when analysing any observed temperature fluctuations in the future. The first
fluctuations to be seen will be from those areas where the microwave background fluctuations
exceeds some level imposed by system noise in the antenna and receiver of the experimental
system being used to measure the sky temperature. Good independent measurements of the
mean level and rms deviation would improve the chances of being able to discriminate between
Gaussian and non-Gaussian fluctuations using these high and low-level properties of the micro-
wave background on small angular scales. But, until it is possible to reduce the system noise level
very much below the rms fluctuations intrinsic to the sky, the temperature map obtained by the
measuring device will be censored to some extent. One would be unable to test the complete
distribution of fluctuations for goodness of fit to a Gaussian and so be unable to base any goodness
of fit test on properties of the high or low level regions.

Although our results for the expected numbers and expected areas of hotspots and coldspots*
serve as a useful guide to the behaviour of the processes under consideration, our method cannot
be used to place confidence limits on these quantities as it does not enable us to calculate further
details of the sampling distributions of these quantities. If we wish to do this using the high or low
level behaviour we must simulate Gaussian and non-Gaussian temperature patterns and investig-
ate by means of numerical experiments the power of the properties of high and low-level regions
as discriminators between Gaussian and non-Gaussian fluctuations.

Notwithstanding these practical problems we can pose the question as to whether we could
hope to test the hypothesis that hotspots above some temperature level possess statistics gener-
ated by a Gaussian field with some level of noisiness # by using the mean spot size as a test
statistic. Let us, for illustration, suppose that some set of n hotspots generated by underlying
*The hotspots referred to here are not related to the hotspots of large angular scale which arise in open (negative

spatial curvature) anisotropic universes as a result of geodesic focussing effects (Novikov 1968; Barrow, Juszkiewicz
& Sonoda 1983, 1985).
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Gaussian fluctuations is observed and that this set constitutes a random sample from a population
with a distribution of sizes given by equation (3.48). The size of the sample (which is determined
theoretically by the noisiness level 8, and, in practice, by the fraction of the sky covered by
observations) and the distribution (3.48) together determine a confidence interval for the mean
spot size and this can be used as the basis for a test of the above hypothesis against some
alternative. The family of y2 distributions provides a useful set of distributions to use as
alternatives as the distributions range from very close to the Gaussian (when » is large) to very
different (when # is small). We have studied the case when =12 and found that it is not possible
to reject the Gaussian hypotheses with 99 per cent confidence using hotspots above levels v>3 if
the hotspots are actually generated by y2 fluctuations of order n>5, even if a complete map of the
microwave sky is available. In practice, we would clearly not have a map of the whole sky (due to
point source subtraction, obscuration due to galactic emission etc.) and further limitations would
be introduced by uncertainties in the estimates of the mean and rms level of the fluctuations so
that even the example given above is extremely optimistic. Therefore, the mean spot size above a
given temperature level will not be sensitive enough to discriminate between underlying Gaussian
statistics and a whole set of other distributions which produce hotspots with similar characteristics
for the same value of the noisiness parameter. Prospects are improved if £ is larger (as would be
the case in fluctuations produced in the cold dark matter model which has lots of power on small
scales and leads to f~40-50) since the number of hotspots increases as f#? and hence the
associated confidence level for discrimination varies as f~!. Even so, it is still unlikely that the
mean size would be a useful way to discriminate between Gaussian and non-Gaussian fluctuations
in the cold dark matter model even if large microwave sky maps were available. However, this
does not exclude the possibility that there may exist some other statistical feature beside mean
frequency and area of hotspots that can be used to discriminate different underlying statistics
significantly.

We conclude that studies of more detailed properties of high level regions of non-Gaussian
fields are needed in order to obtain a useful discriminator between Gaussian and non-Gaussian
fluctuations. Such studies might also help to alleviate the problem of separating true temperature
fluctuations from confusion produced by integrated point sources because such confusion would
undoubtedly manifest non-Gaussian statistics.
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