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We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-
mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solu-
tions. We also study the intra-dumbbell dynamics due to the relative motion of the two constituent
elastically-coupled disks. Our main focus is on effects of the crowding fraction φ and the particle
structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement
(TAMSD), the displacement probability-density function (PDF) and the displacement autocorrela-
tion function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells,
e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive
regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two
distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of
the diffusivity on φ, and the features of the displacement-ACF. We attribute these regimes to a
crowding-induced transition from a viscous to a viscoelastic diffusion medium upon growing φ. We
also analyze the relative motion in the dimers, finding that larger φ suppress their vibrations and
yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(φ)
of translational and rotational motion of the dumbbells an exponential decay with φ for weak and a
power-law D(φ) ∝ (φ−φ⋆)2.4 for strong crowding is found. A comparison of simulation results with
theoretical predictions for D(φ) is discussed and some relevant experimental systems are overviewed.

I. INTRODUCTION

A. Historical prologue

In 1827, R. Brown observed under a microscope the
erratic motion of micron-sized granules released from
pollen grains1. The paradigmatic stochastic process—
named later Brownian motion (BM)—was physically in-
terpreted by A. Einstein2 in his annus-mirabilis 1905
paper (and in later studies3,4). The probability-density
function (PDF) P (x, t) of one-dimensional BM with the
long-time diffusion coefficient D satisfies the diffusion

equation, ∂P (x,t)
∂t = D ∂2P (x,t)

∂x2 , introduced in 1855 by

A. Fick5. The derivation of BM2 is based on the as-
sumptions of independence of motion of a given particle
from other particles and of identically distributed par-
ticle displacements that become independent after a fi-
nite correlation time (yielding a finite second moment).
The era of ”random walks” started with the papers of L.
Bachelier6, W. Sutherland7, A. Einstein2, K. Pearson8,
and M. Smoluchowski9.

The solution of the diffusion equation for a single par-
ticle at position x with P. Dirac’s10 delta-function initial
condition P (x, t0 = 0) = δ(x − x0) is the Gaussian PDF
[after C. Gauß11] at time t,

P (x, t) = exp

[

− (x − x0)
2

4Dt

]

/
√

4πDt. (1)

This PDF yields the linear growth of the mean-squared

displacement (MSD),

〈x2(t)〉 =

∫

x2P (x, t)dx = 2Dt, (2)

a hallmark of BM. All ensemble-averaged quantities are
denoted by angular brackets below. The diffusivity of
a spherical tracer of radius R at the absolute temper-
ature T , denoted D(T ), is linked to the (dynamical)
fluid viscosity η via the Einstein-Smoluchowski-Stokes
relation2,9,

D = kBT /γ, (3)

where γ = 6πηR is the drag constant and kB is the Boltz-
mann constant.

In 1908, P. Langevin derived Eqs. (2) and (3) using a
microscopic inherently stochastic approach12 for a spher-
ical particle of finite mass m. Starting from I. Newton’s
second law13—from his annus mirabilis 1666 (marked
also by the ”Great Plague”)—using G. Stokes’ drag—
introduced in 185114 for slowly moving bodies in viscous
fluids—and the random force ξ(t) [taken to be centered
white Gaussian noise], the stochastic differential equation
was postulated,

m
d2x(t)

dt2
= −γ

dx(t)

dt
+ ξ(t), (4)

(named later after Langevin). As Eq. (4) takes inertia
into account, at short times when t ≪ τ0, where

τ0 = m/γ (5)
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(A) (B) (C)

FIG. 1: (A) Dumbbell-shaped dimer of our simulation model.
(B) Diluted system of dimers at crowding fraction φ = 0.05.
(C) Highly crowded system of dumbbells at φ = 0.45. We refer
the reader to the supplementary video files (with 360 simu-
lation steps corresponding to the duration 0.18 × δτ per one
second of the videos) illustrating the dynamics of dumbbells
at φ = {0.15, 0.35, 0.65}.

is the characteristic time of momentum relaxation for
translational motion [the damping constant is 1/τ0], a
ballistic behavior of the MSD,

〈

x2(t)
〉

≈ (kBT /m)t2, (6)

emerges, while the linear MSD growth (2) sets in at long
times, for t ≫ τ0

15–17. The features of BM executed by
ellipsoidal particles was first theoretically considered by
F. Perrin in Refs,18,19.

B. Anomalous diffusion, macromolecular crowding,

and spreading of non-spherical particles

Standard BM has been generalized in numerous math-
ematical models of anomalous diffusion over the last
decades20–24. These models feature a characteristic non-
linear growth of the MSD with time24–29,

〈x2(t)〉 = 2Dβtβ . (7)

Here, the generalized diffusion coefficient is Dβ and the
anomalous-diffusion scaling exponent is β. The disper-
sion law for BM follows from (7) for β = 1, while sub-
diffusion corresponds to 0 < β < 1, superdiffusion to
β > 1 (for actively driven systems), and hyperdiffusion—
often found in highly nonequilibrium and dynamically
”accelerating” systems—to β > 2. Following growing
evidence for experimental systems, a number of new
statistical models were proposed in recent years to de-
scribe anomalous diffusion24–27. The list includes frac-
tional BM30–34, generalized/fractional Langevin equation
motion35–37, scaled BM38–41, extensions of continuous-
time random-walk models39,42–48, and heterogeneous dif-
fusion processes33,49,50.∗

∗As an example, superdiffusion detected in the cytoplasm of Acan-

thamoebae was attributed to persistent active motions caused by

In the cell cytoplasm, the average degree of crowding is
the volume fraction taken from the aqueous phase27,53–71

by proteins, diverse macromolecules, complexes, and cell
organelles. In cells, the fraction of crowders φ can
reach φ ∼ 30 . . . 40% with concentrations of various pro-
teins and macromolecules up to ∼300. . . 400 mg/ml. In
colloidal systems, the crowding fractions can be even
higher triggering liquid-glass phase transitions72–76 (see
Refs.77,78 for glass transitions in 2D).

Space-filling and crowding in excluded-volume
solutions—causing effective ”labyrinthization” and
”porosityzation” of the diffusive environment (also with
tracer-crowders interactions79)—is considered as a cause
of subdiffusion of passive particles in densely crowded
systems. This is interlinked to implications of vis-
coelasticity in space-restricted surroundings and in the
presence of multiple boundaries, nontrivially affecting
the tracer diffusion, even in the limit of transport with
small diffusion coefficients and particle speeds.

Normal and anomalous diffusion in the crowded so-
lutions of anisotropic and/or non-spherical—as well
as of spherical but non-isotropically interacting80,81—
molecules was examined in a number of studies82–103, in-
cluding some recent experimental investigations96,99,104.
The diffusive properties of molecules of dumbbell-,
ellipsoid-, and rod-like shape82,96,97,100,101,104–109, pro-
tein molecules110,111, active and passive dimers with
anisotropic mobility89,102,106,112–114, self-propelled mas-
sive particles with time-dependent mass109, colloidal
dimers and flexible multimers115,116, stiff self-propelled
filaments in crowded solutions117, trimer-like tracers in
2D93,95 and tetrahedral patchy particles in 3D81,118, as
well as the dynamics of elongated particles with fluctu-
ating and oscillating shapes119–121 were studied recently
as well.

A dumbbell-shaped dimer, see Fig. 1A, is an example
of a simple linear crowder for which the effects of inter-
particle interactions and shape variations on the trans-
lational and rotational diffusion dynamics can be exam-
ined. Under conditions of dense packing, the motion of
a given crowder is no longer independent of that of the
neighboring crowders, see Fig. 1C. This invalidates one
of the assumptions for BM. As a result, subdiffusion can
emerge (as we show below) due, in part, to anticorrela-
tions of consecutive displacements of the particles in such
a highly crowded system.

The examples of physical systems where diffusion of
anisotropic crowders is of importance include anisotropic
crowders in the cell cytoplasm55,63, rod-shaped grains122

in various granular gases123–125, molecular components
of ultra-dense ionic liquids126,127 and other complex
fluids98,128, diffusion of proteins and enzymes on/in

myosin-II motors and cell locomotion51. Conversely, subdiffusion
is often associated with the passive motion of tracers in crowded,
polymer containing, ”restrictive” environments giving rise to an-
tipersistent motion, such as the cytoplasm of biological cells52.
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crowded lipid membranes29,129–132 of biological cells, to
mention a few.

This paper is organized as follows. We start in Sec. II
by describing the model potentials and simulation scheme
of dense 2D solutions of dumbbell-shaped crowders. In
Sec. III the main results of our computer simulations
are presented and examined based on a number of stan-
dard statistical quantifiers. The latter include the MSD,
the time-averaged MSD (TAMSD), the exponents and
transport coefficients, the PDFs, the non-Gaussianity pa-
rameter, and various autocorrelation functions (ACFs).
In Sec. IV some physical applications are discussed. In
Apps. A and B, correspondingly, some details of the sim-
ulation scheme and some auxiliary figures are presented.

II. PHYSICAL MODEL

A. Interaction potentials and main equations

We consider an ensemble of identical 2D dumbbell-
shaped dimers in 2D solution. Each dimer, see Fig. 1A,
consists of two disks of diameter σ connected by an elastic
spring represented by the harmonic potential,

Uharm(r) = k (r − r0)
2
/2. (8)

Here, r0 = 1.5σ is the equilibrium disk-to-disk distance
and k = 100 × kBT /σ2 is Hooke’s constant. In addi-
tion, the standard Lennard-Jones 6-12 potential is used
to parameterize the interactions between the disks, †

ULJ(r) = −4ǫ
[

(σ/r)
6 − (σ/r)

12
]

. (9)

The parameter ǫ sets the interaction strength (ǫ = 1kBT
below). The minimum of the interaction energy Umin

is at rmax = 21/6σ ≈ 1.12σ. The repulsive branch of
the Lennard-Jones potential (9) at r < rmax is used in
the simulations, yielding the Weeks-Chandler-Anderson
potential137–139 . It is given by expression (9) shifted up
by Umin at r < rmax and by U = 0 at r > rmax. As
r0 > rmax the disks of the neighboring dimers can get
closer than those of the same one.

The respective Langevin equation for the position of
the ith monomer-disk ri(t) is given by

m
d2

ri(t)

dt2
= −γ

dri(t)

dt
−

2N
∑

j=1,
j 6=i

∇

(

ULJ(rij)θ
(

21/6σ − rij

))

− ∇(Uharm(ri′i′′)) + ξi(t). (10)

†Here, the r−12-term models a strong short-range repulsion [stem-
ming from the quantum-mechanical exclusion in overlapping elec-
tron clouds], whereas the r−6-term mimics a weak long-range van-
der-Waals-like attraction, as in the models of diatomic molecules
and chemical bonds133–136.

Here, θ(x) is the unit-step function, the sum runs over
all 2N disks of N dumbbells, and ξ(t) is Gaussian white
noise with zero mean 〈ξ(t)〉 = 0 and delta-function140

correlations

〈ξ(t)ξ(t′)〉 = 4γkBT δxyδ(t − t′). (11)

Here, δxy is Kronecker’s delta-symbol that renders the
noise in (11) independent for x and y components. The
noise strength is coupled to the temperature and the fric-
tion coefficient via the fluctuation-dissipation relation.
The distance ri′i′′ in Eq. (10) is the separation of the
two disks i′ and i′′ in the same ith dimer.

B. Self-diffusivity and crowding

All dimers are located in a square box of area L2, but
due to periodic boundary conditions their motion is effec-
tively unconfined. For N dimers occupying the area A =
2π(σ/2)2 the packing fraction φ in the box is φ = NA/L2.
‡ We fix the system size to L = 20σ for simulations to
be manageable on a PC without causing artificial self-
interactions. The number N of dimers and the respec-
tive φ fractions used in our simulations as listed in Tab.
I. As our main interest is to study the consequences of
crowding and thus fluid inertia145–147 and hydrodynamic
interactions90,148,149—often non-negligible for actively-
driven and quickly moving particles—are not explicitly
included in our model of the passively diffusing dimers.

N = 1 13 38 63 89 115 140 166

φ ≈ 0.004 0.05 0.15 0.25 0.35 0.45 0.55 0.65

TABLE I: Numbers of dimers N and the corresponding pack-
ing fractions φ used in simulations.

C. Simulation algorithms and system equilibration

We set γ = 1 in most of the computer simulations—
at m = 1 and k = 100 a free isolated dimer has a
small damping ratio and, thus, executes underdamped
motion—and compute time series of length Tsim = 108 ×
∆t. We use the standard combination of parameters150

for defining the characteristic time scale93,

δτ = 200 × ∆t = σ
√

m/(kBT ) ≈ 1 ns, (12)

where the disk diameter is set to σ = 6 nm, the mass
m is estimated from the average molecular weight of

‡Note that the maximal packing fraction of identical disks in 2D
is141–143 φmax = π/(2

√
3) ≈ 0.9069 (the hexagonal packing), while

in 3D the maximal packing density of identical spheres is (see, e.g.,
Ref.144) φmax = π/(3

√
2) ≈ 0.7405 (the so-called ”cannon-ball”

packing).
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crowding molecules in the nucleus151 (with MW≈ 68
kDa60), and the temperature is set to T = 272.15 K. The
length of simulated traces is Tsim = 0.5 ms. The latter
is, thus, comparable to typical time-scales in computer-
simulations data-sets and single-particle-tracking exper-
iments. All distances and times are expressed below in
units σ and δτ , respectively.

We equilibrate the system for the time Teq before the
actual measurements start, see Fig. S1 for a detailed
scheme. For a dimer of size Rcr and diffusivity D(φ) we
define Tcr as the typical time for a dimer to diffuse over a
distance of its own size93, i.e. Tcr = R2

cr/D(φ). To allow
proper mixing of the dimers in the course of simulations,
we equilibrate for Teq = 2 × 104 × δτ for all φ values (so
that Teq ≥ 102 × Tcr).

At the start of the simulations, the dimers are placed in
a regular pattern and the disks of each dimer are further
than r0 apart. The memory of these initial conditions
is lost in the results presented below after equilibration
of the system, for all φ values. § After equilibrating the
system for Teq, at every time-step we record four physical
observables for each dimer: the x and y coordinates of its
center of mass (COM), denoted as xCOM(t) and yCOM(t),
the angle Θ(t) between its axis and the x-axis, see Fig.
1A, and the relative distance between the disks in the
dimer, d(t). Their displacements separated by a lag time
∆ are denoted as

δ{x,y}(t, ∆) = {x, y}COM(t + ∆) − {x, y}COM(t),

(13)

δr(t, ∆) = Θ(t + ∆) − Θ(t), δd(t, ∆) = d(t + ∆) − d(t).

By symmetry, the behaviors of δx and δy are statisti-
cally identical, so we present only the results for the x-
coordinate below.

We employ the velocity Verlet algorithm150 to simulate
Eq. (10), see App. A for the detailed description, with
the integration time step ∆t = 0.05× δτ and the number
of iterations 108. We start measuring after the system
reaches the equilibrium state. In Fig. S1 we show a sim-
plified flow-chart of simulations: after the initial setup,
the integration loop is executed and Eqs. (A5) are re-
peatedly evaluated.

III. MAIN RESULTS

Below the data from our computer simulations are ana-
lyzed and the diffusive properties of the dumbbell-shaped
dimers are examined for both translational and rotational
motion. We employ the standard physical observables

§Note that, as in Ref.93, the time Tcr grows with φ because D(φ) is a
decreasing function of the crowding fraction φ (as we demonstrate
below). Therefore, the most crowded system is taken below as
a ”reference” for the characteristic diffusion time, namely Tcr =
Tcr(φmax = 0.65).
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FIG. 2: (A) Translational TAMSD in units of σ2 and (B)
rotational TAMSD in units of rad2 of the dumbbell-shaped
crowders given by Eq. (14) plotted versus lag time for varying
crowding fractions φ. The ballistic and linear asymptotes at
short and long times, respectively, are shown in each panel as
the thin lines. Parameters: the mass of the disk is m = 1,
the friction coefficient is γ = 1 yielding the velocity-relaxation
time τ0 = 1 × δτ , the strength of the potential is ǫ = 1 kBT ,
the trace length is T = 5×105, and the averages are computed
for an ensemble of N = 40 trajectories. The lag time ∆ and
the trajectory length T are given in units δτ ≈ 1 ns in this
and all other plots. The values for the crowding fractions φ
are provided in the legend.

such as the MSD and the TAMSD, their respective scal-
ing exponents and generalized diffusivities, the displace-
ment PDFs, and the ACFs.

A. TAMSD and MSD

We compute the translational TAMSD for the COM
positions (denoted as δ2

x) and the rotational TAMSD for

the angles Θ (denoted as δ2
r) of the ith dimer as the slid-

ing averages along respective time series recorded from
simulations of Eq. (10) via the standard definition24,25,93

δ2
i,{x,r}(∆) =

1

T − ∆

∫ T−∆

0

δ2
i,{x,r}(t, ∆) dt. (14)

Here, T is the total length of the recorded trajectories
and ∆ is the lag time24,25. All time-averaged quantities
are denoted by an overline below. The mean TAMSD
after averaging over N trajectories is

〈

δ2(∆)
〉

=
1

N

N
∑

i=1

δ2
i (∆). (15)

In Fig. 2 we show the behavior of the computed
translational and rotational TAMSDs of a single dimer
versus the lag time ∆ for varying crowding fraction φ.
Initially, for lag times ∆ . 0.1 × δτ, the diffusion of
dimers is found to be ballistic and the magnitude of the
mean TAMSDs is almost the same for all φ fractions ex-
amined: in this short-time regime the dimers perform
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free motion without collisions, with the average speed
√

〈v2〉eq =
√

kBT /m given by Eq. (6). With increasing

φ this regime shrinks to progressively shorter times. The
ballistic regime at short times is also detected in simu-
lations of diffusion of a single dimer (corresponding to
φmin = 0.004), with the MSD results presented in Fig.
S2 for varying γ values. ¶

Physically, when a dimer diffuses only a fraction of its
size from the initial location it does not yet feel any hin-
drance by collisions with the neighboring crowders and,
thus, moves with a constant temperature-dependent ve-
locity, see Eq. (6). This yields the quadratic growth of
the MSD [see Eq. (6) and Eq. (16) below] and of the
mean TAMSD at short times, as shown in Figs. 2 and
S2. As physically expected, as the friction coefficient in-
creases and corresponding the relaxation times for trans-
lational and rotational motion become shorter, the region
of ballistic MSD growth gets limited to shorter times, see
Fig. S2.

At intermediate lag times, a crossover behavior of
the TAMSD in the crowded solutions of dimers is ob-
served (see Fig. 2) and the computed mean TAMSDs
curves start to split for different crowding fractions φ.
This regime is realized in the region of lag times ∆ ≈
0.1 . . . 10 × δτ. At the end of this interval, the transla-
tional and rotational TAMSDs grow almost linearly with
lag time. This ballistic-to-linear TAMSD crossover de-
pends on φ and is characterized by the first-collision time
(see Sec. III B for the analysis of scaling exponents).

Finally, at very long times, both TAMSDs grow lin-
early with ∆ and follow BM (2) with φ-dependent effec-
tive diffusivities (see Sec. III C below).

When comparing the behaviors at γ = 1 we observe
that for small crowding fractions φ the MSDs of both
translational and angular motions are almost equivalent
in the entire range of times to the theoretically expected
results for

〈

x2(t)
〉

and
〈

Θ2(t)
〉

. Indeed, for the MSD of a
single dimer obeying a potential-free version of Eq. (10)
one expects the MSD growth15,16,145,152

〈

x2(t)
〉

≈ 2Dxt
[

1 − τ0

t

(

1 − e−t/τ0

)]

, (16)

also known in polymer physics for the average extension
of a fluctuating worm-like chain (see §127 in Ref.153). For
the rotational MSD

〈

Θ2(t)
〉

we use Eq. (16) with the
friction coefficient extracted from the diffusivity results
of computer simulations based on relation (3), while the
particle mass is now being exchanged with the moment
of inertia of the dimer (computed with the potential-
equilibrated monomer-monomer separation r0 = 1.5σ us-
ing the known mass of the monomer disks). This gives

¶Note that for the rotational diffusion the cumulative angle is com-
puted in the simulations and, thus, the angle difference is not

bounded by 2π. Therefore, for n full rotations of a dumbbell in
units of panel (B) of Fig. 2 the azimuthal MSD amounts to (2πn)2.

the characteristic time of rotational relaxation of the mo-
tion, denoted τ0,Θ. The diffusion of dimers is anisotropic
with respect to their axes at short times, when t ≪ τ0,Θ,
and it turns isotropic at long times, when t ≫ τ0,Θ.

The crossover from the short-time ballistic to the long-
time linear behavior of the rotational and translational
MSD and mean TAMSD takes place at times ∼ τ0 and
∼ τ0,Θ, respectively, for weakly crowded systems and
does so monotonically in terms of reduction of the time-
local scaling exponent, see Eq. (17) below. In contrast,
the crossover emerges at considerably earlier times for
highly crowded solutions of the dumbbells, see Figs. 2
and 3, accompanied by a nonmonotonic variation of the
respective exponents βx and βr. At high crowding frac-
tions at intermediate times—where the subdiffusive be-
havior is most pronounced, see also Fig. 3—the theoret-
ically expected and observed MSD are rather disparate
in magnitude, see Fig. S3.

We emphasize that for star-shaped crowders a
similar—but even more pronounced—non-monotonicity
in the variation of these scaling exponents was detected at
intermediate lag times, i.e., in the crossover region from
the ballistic to the linear diffusion regime, see Fig. 6B
in Refs.93,94. ‖ We find an equivalence of the ensemble-
and time-based averaging for translational and rotational
motion of the dimers. Namely, both in the short- and

long-time regimes, we observe
〈

δ2
x(∆)

〉

≈
〈

x2(∆)
〉

and
〈

δ2
r(∆)

〉

≈
〈

Θ2(∆)
〉

indicative of ergodic behavior in

this Boltzmann-Khinchin sense24,25, see Fig. S4. This
observation agrees with the results for the diffusion in
crowded solutions of star-shaped crowders examined in
Refs.93,94 (see also Sec. IVB below). We emphasize
also an extremely small dispersion of individual TAMSDs
around their mean, both for conditions of weak crowd-
ing (expected156 for massive-BM motion15,16) and heavy
crowding, see the results in Fig. S4. This fact thus
confirms the ergodicity of self-diffusion of dumbbells in
crowded dispersions also in terms of the reproducibility
of the TAMSD realizations24,25, for both translation and
rotational motion. ∗∗

‖Note that a nonmonotonic variation of the TAMSD scaling expo-
nent with lag time was also detected, e.g., for anomalous diffu-
sion of proteins and lipids on/in lipid membranes130,131 and in the
model of tracer diffusion in driven lattice Lorentz gases of immobile
obstacles154,155.

∗∗We do not quantify here the spread of individual TAMSDs and
the respective dispersion determining the value of the ergodicity
breaking parameter24,25,93. We assess ergodicity157 of the system
solely from the equivalence of the MSD and the mean TAMSD at
short lag times.
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normalized with respect to D0 = D(φ = 0.004) correspond-
ing to a single dimer in the simulation box, see Tab. I. (B)
Loge-scale representation of the simulation data from panel
(A), with the same asymptotes shown.

B. Time-local scaling exponents

To examine the φ-dependence of the TAMSD in more
detail, the time-local scaling exponents βx and βr are
evaluated as158

β{x,r}(∆) =
d log

(〈

δ{x,r}(∆)2
〉)

d log(∆)
. (17)

As follows from Fig. 3, crowding of the dimers has a pro-
found impact on the behaviour of the scaling exponents
at intermediate lag times, ∆ ≈ 0.1 . . . 10 × δτ . Namely,
at very short times both scaling exponents βx and βr

equal two for all crowding fractions of the dimers (the
ballistic regime, see Eq. (6)), while for long lag times
they both expectedly approach unity. In a dilute system,
the crossover from the ballistic to the linear growth of
the TAMSD occurs similarly to that for the MSD of a
massive BM particle15, see also Eq. (16). Namely, the

scaling exponent decreases monotonically from β{x,r} = 2
at short to β{x,r} = 1 at long times, see Fig. S2.

The translational and rotational motion of the dimers
are correlated in terms of variations of their scaling ex-
ponents. We observe distinct subdiffusive βx and βr for
the most crowded conditions, with the subdiffusion be-
ing more pronounced for rotational than for translational
motion, compare the values of the dips at φ = 0.65 in
Figs. 3A and 3B. These reduced values of βr at interme-
diate lag times and at high φ values are physically con-
nected with a stronger impediment of rotational motion
of a dimer by its neighbors, as compared to restrictions
on possible translational motion of the same dumbbell.
††

We refer the reader to Figs. 21 and 22 in Ref.106 for
the analysis of

〈

x2(t)
〉

and
〈

Θ2(t)
〉

in highly crowded 2D
solutions of active dumbbells. This system also reveals
nonmonotonic variations of the scaling exponents in the
transitional regime after the initial ballistic growth, with
more pronounced subdiffusion for rotations for φ & 0.6.
‡‡

C. Diffusion coefficients

In the long-time limit, the exponents βx and βr con-
verge to unity for all φ values, Fig. 3. Therefore, the φ-

dependence of the mean TAMSDs
〈

δ2
x(∆)

〉

and
〈

δ2
r(∆)

〉

at long times stems solely from the φ-dependence of the
respective translational Dx and rotational Dr diffusivi-

††Note that variation of the moment of inertia of the dumbbell—
e.g., via altering its mass distribution and size—one can tune the
rotational relaxation time τ0,Θ. Coincidentally, for the currently
chosen model parameters the regions of the TAMSD-based sub-
diffusion for translational and rotational motions are observed at
nearly the same lag times, see panels (A) and (B) of Fig. 3. Sim-
ulating dimers with the same geometric shape and total mass but
with significantly different moment of inertia I—positioning, e.g.,
artificially the whole mass in the central point of the dimer and
thus making I = 0—could also be performed. This would answer
the question regarding coupling and inter-relation of the diffusion
properties (the region of subdiffusion, values of the scaling expo-
nents, etc.) for translational and rotational motion of crowded
solutions stemming from the inertia of the dumbbells versus from
correlations in their motion.

‡‡Note that the diffusion of 2D dimers has recently also been consid-
ered experimentally and theoretically in Ref.102, with the focus on
translational-rotational coupling. Specifically, at low φ ≈0.14 real-
ized in experiments102 the diffusion of nearly independent dimers
was assumed. In contrast, our dumbbells are often at high φ, when
the assumption of ”independence” is violated. In addition to ob-
taining the low-order moments, a generalized scattering function
was derived102. It was found that translational-rotational coupling
is caused by anisotropic diffusion of the dimers parallel and per-
pendicular to their axis, also detected in granular gases123. While
we observe a similar coupling of motion, see Fig. 3, no longitudi-
nal and transversal diffusivities of the dumbbells were recorded in
current computer simulations.
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ties, evaluated in this regime of long-time BM as

D{x,r} (∆) =
〈

δ{x,r}(∆)2
〉

/(2∆). (18)

The fits of the TAMSD(∆) are executed at lag times in
the region ∆ = 102 . . . 104×δτ. The normalized diffusivi-
ties Dx and Dr as functions of varying crowding fractions
φ are found to display similar behaviors. At small φ, both
translational and rotational diffusivities decay exponen-
tially,

D{x,r}(φ) ∝ e−φ/φexp , (19)

as evidenced in Fig. 4B.
The law (19) at small crowding fractions is also con-

sistent with the linear-in-φ decrease of the diffusivity
predicted theoretically and observed experimentally for
concentrated suspensions of spheres in 3D, D(φ) ≈ 1 −
φ/φexp, see, e.g., Refs.159,160 and also Ref.103,161. A
(slightly compressed) exponential decay of the tracer dif-
fusivity in various hydrogel-like polymeric networks due
to effects of steric obstruction was found and rationalized
recently in Ref.162.

For large φ, we find a power-law dependence on the
crowding fraction, see Fig. 4B. Similar dependencies
were detected, e.g., for a system of polydisperse hard
disks77,163 near the glass-transition point at nearly criti-
cal fractions of the crowding particles φ∗, namely

D{x,r}(φ) ∝ (φ − φ∗)2.4. (20)

Similar values of the ”critical exponent” were proposed
for tracer self-diffusion in 3D hard-sphere suspensions,
where D(φ) ∝ (φ − φ∗)2, see Refs.164,165. The depen-
dence (20) is also in agreement with the results of mode-
coupling theory166,167. We find that the magnitudes of
the translational and rotational diffusivities are affected
by varying φ values to a similar extent, in part because
motions of disks imply also changes in orientation of the
dimer (and, thus, changes in the angle Θ(t)). Of course,
the relatively small scaling window available only allows
for a relatively qualitative analysis.

This fact contrasts to some extent the properties of dif-
fusion in the crowded solutions of three-arm stars studied
in Refs.93,94, where the D(φ) ∝ (φ − φ∗)2...2.4 depen-
dence was also detected. Namely, the translational self-
diffusion of stars was found reduced more pronouncedly
in crowded conditions, as compared to their rotational
diffusion, see Fig. 7 of Ref.93. This is a physically ex-
pected trend because of a more isotropic overall appear-
ance of the star-shaped crowders, as compared to the
elongated, ellipsoidal-like shape of the dumbbells here.
The translational motion for the stars and rotational mo-
tion of the dumbbells are, therefore, expected to be di-
minished stronger at a fixed high fraction of crowding.

In Fig. 4 we plot the dependencies (19) and (20) as
the best fits in their respective ranges of fractions φ, re-
alized for the parameters 1/φexp ≈ 4.4 and φ∗ ≈ 0.77 for
our computer simulation data (see the legend of Fig. 4).

The crossover between these two apparent regimes—an
exponential decay (19) in absence of subdiffusion (vis-
cous) and a roughly quadratic dependence (20) for sub-
diffusion (viscoelastic)—takes place at φ ≈ 0.35 . . . 0.45.
Therefore, it occurs in the same range where the subd-
iffusive behavior for the TAMSD starts to emerge, see
Fig. 3. We emphasize that—in contrast to the stronger
subdiffusion for rotational motion of the dimers under
conditions of moderate-to-severe crowding (see Fig. 3)—
the translational and rotational diffusion coefficients are
affected by self-crowding to a nearly the same degree, see
Fig. 4.

We refer the reader to the studies of concentrated dis-
persions of (identical) spheres and of colloidal suspen-
sions in 3D74,159,160,164,165,168–177 examining the effects
of hydrodynamic interactions. In a number of these stud-
ies, the dependence of the long-time self-diffusion coeffi-
cient of the spheres [with hydrodynamics] was proposed
to have a quadratic form,

D(φ) ∝ (φ − φ̄)2, (21)

comparing well with experiments165,172, see Eq. (20).
Hydrodynamic effects were considered in detail also
in Refs.65,176; we also refer to the recent comparative
analysis177 and to Refs.161,175,178–180 for the examination
of translational and rotational diffusion in dense suspen-
sions of charged colloids, see also Ref.176. A detailed
experimental study of self-diffusion in concentrated so-
lutions of bovine serum albumin proteins—including an
in-depth discussion of the D(φ)-dependence in the pres-
ence of hydrodynamic and electrostatic interactions—can
be found in Ref.110.

D. Dimer-displacements PDF

The PDFs of translational p(δx) and rotational p(δr)
displacements of dumbbells, computed in the range ∆ =
0.1 . . . 80× δτ, are plotted in Fig. 5 for the most crowded
system at φ = 0.65. At short lag times, for ∆ = 0.1× δτ,
the PDFs for both types of motion expectedly have
Gaussian-like profiles. At longer times, the translational
PDF remains nearly Gaussian, while the rotational PDF
becomes nearly Laplacian (e.g., exponential, as quanti-
fied in Sec. III E below). This feature is visible from
the nearly straight tails of the PDF in log-linear scale,
as presented in Fig. 5B. This fact indicates that the ro-
tations of dumbbells on large azimuthal angles are much
more frequent than the expectation from a Gaussian form
of the rotational PDF. We stress here that the statisti-
cal observables examined for the crowded solutions of
dumbbells in Secs. IIID, III E, III F, and IIIG are new
compared to the analysis of self-diffusion of star-shaped
crowders performed in Refs.93,94.
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FIG. 5: (A) Translational and (B) rotational displacement-
PDFs for the highest crowding fraction φ = 0.65, computed
for several values of the lag time ∆ (see the legend) and for
other parameters (such as m, γ, τ0, ǫ, and T ) as in Fig. 2.

E. Non-Gaussianity parameter

The degree of non-Gaussianity of the PDF shapes of
both translational and rotational displacements of the
dumbbells is quantified in terms of the non-Gaussianity
parameter G27. It is related to the kurtosis (denoted as
Kurt below) of the PDF distributions of the displace-
ments of the dimers as

G{x,r}(∆) = Kurt
[

p
(

δ{x,r}(∆)
)]

/3 − 1

=
1

3

〈

[

δ{x,r}(∆) −
〈

δ{x,r}(∆)
〉]4

〉

(〈

δ2
{x,r}(∆)

〉

−
〈

δ{x,r}(∆)
〉2

)2 − 1. (22)

Here, the nth moment of the PDF of the displacements

p(δ{x,r})—denoted as
〈

δn
{x,r}

〉

below—is defined for nat-

ural numbers n ≥ 1 as

〈

δn
{x,r}

〉

=

∫ ∞

∞

δn
{x,r}p

(

δ{x,r}

)

dδ{x,r}. (23)

Thus, in expressions (22) and (23) the ensemble-averaged
moments are used, as compared to the TAMSDs given by
Eqs. (14) and (15).

In Fig. 6 we present the lag-time dependencies of the
non-Gaussianity parameters (22) for varying crowding
fractions φ. Corroborating the Gaussian PDFs at short
times (see Fig. 5) the values of G{x,r} are comparatively
small in this regime. The values of Gx and Gr increase
and reach a maximum at intermediate lag times. At long
lag times, extending to the regime of BM for the respec-
tive MSD and TAMSD, the values of Gx and Gr tend
to relatively small values again. These nearly Gaussian
PDFs for the displacement distributions obtained from
our simulations at very long times—in the BM-regime of
the MSD at ∆ = 80×δτ , as shown in Fig. 6—are also ex-
pected theoretically from the central limit theorem. Note
here that the longest time ∆ = 10× δτ for the computed
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FIG. 6: Non-Gaussianity parameter (22) for (A) translational
and (B) rotational motion of the dumbbells plotted against
the lag time ∆ for a set of varying φ (see the legend). The
lines connecting the points guide the eye. Note that panels
(A) and (B) have different vertical scales.

rotational displacement-PDF in Fig. 5B is still consid-
erably shorter than the longest time ∆ = 80 × δτ in the
plot of Fig. 6B for the respective computed Gr.

As expected, the most pronounced deviations from
Gaussianity are detected for the displacement distribu-
tions p

(

δ{x,r}

)

at the maximal crowding fraction, φ =
0.65. The maximum of the translational non-Gaussianity
parameter is Gx ≈ 0.2, while the maximum of the rota-
tional non-Gaussianity parameter is significantly larger,
Gr ≈ 1. The latter fact indicates again a nearly Lapla-
cian shape of the rotational-displacements PDF illus-
trated in Fig. 5B. §§ We also demonstrate in Fig. S5
that the second moments for the PDFs p

(

δ{x,r}(∆)
)

—
when computed from the simulation data shown in Fig.
5—reveal similar features in their lag-time dependencies
in the range ∆ = 0.1 . . . 80 δτ for varying φ fractions, as

those of the respective TAMSDs
〈

δ2
{x,r}(∆)

〉

shown in

Fig. 2A,B.

F. ACF of displacements and rotations

We now evaluate the velocity-ACF Cx for the trans-
lational displacements δx, rotational displacements δr

and the displacements δd of the relative coordinate in
the dimers. With the time difference τ between the
two displacements—the correlation time—the ACF is ob-
tained as the time average,

Cx(τ, ∆) = vx(τ, ∆)vx(0,∆)

=
1

T − ∆ − τ

∫ T−∆−τ

0

δx(t + τ, ∆)δx(t, ∆)

∆2
dt, (24)

§§We remind the reader here that Kurt=3 for a Gaussian PDF in
1D, while Kurt=6 for a Laplacian distribution. Therefore, Eq.
(22) gives for these two cases G = 0 and G = 1, respectively.
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puted for varying crowding fractions φ (see the legend). The
presented ACFs are normalized to the respective initial values
at τ = 0. Parameters: the lag time in Eq. (24) is ∆ = 1× δτ .

where the factor 1/∆2 stems from the definition of the
”velocity”, vx(t) = [x(∆ + t) − x(t)]/∆ ≡ δx(t, ∆)/∆.
The dependencies of the time-averaged ACFs for rota-
tional motion and relative-displacement motion of the
disks in a dimer, Cr and Cd, respectively, are calculated
analogously to expression (24). As the displacements in
the integrand of Eq. (24) are shifted by τ , the time av-
eraging is executed along the recorded trajectories up to
the trace length (T − ∆ − τ).

In Fig. 7, we present the translational and rotational
displacement-ACFs plotted against the correlation time
τ for varying φ. For weak-crowding conditions, the de-
cay of the displacement-ACFs Cx and Cr is monotonic,
while for very crowded systems the ACFs display a non-
monotonic behavior. Specifically, initially at τ ≤ ∆ the
normalized ACFs start decreasing from unity, reaching a
minimum at τ = ∆. At later stages, for longer correlation
times τ, the ”recovery” of the ACFs to zero from the re-
gion of negative values is detected in the simulation data,
see panels (A) and (B) of Fig. 7 for translation and ro-
tational motions, respectively. The displacement-ACFs
for larger ∆ values presented in Fig. S7 clearly reveal a
trend of progressively shallower minima at later ∆. ¶¶

These anticorrelations at τ = ∆ in the highly crowded
solutions physically indicate a likely reversal of motion of
the dumbbells in the consecutive time step, often referred
to as antipersistence. The form of the displacements-
ACFs Cx and Cr themselves are reminiscent of those for
subdiffusive processes of fractional BM and of motion
governed by the fractional Langevin equation24–26,31,32.

¶¶Note that a similar trend was experimentally detected, e.g., for
the diffusion of doxorubicin181 drug molecules in confined silica
nanoslits in Ref.182, while deeper minima of the velocity-ACFs at
later time shifts were found, in contrast, for chromatin dynamics in
computer simulations of viscoelastic subdiffusion of chromosomal
loci in Ref.183.
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FIG. 8: (A) Normalized displacement ACF Cd of the relative
coordinate of a single dimer (φ = 0.004) as a function of the
correlation time τ . This crowding fraction corresponds to a
single dimer in the simulation box, see Tab. I. The decay of
the ACF amplitude is fitted by the envelope function Cenv
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given by (25). (B) Data from panel (A) in loge-scale (shown
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decay).
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FIG. 9: Displacement ACF Cd for (A) φ = 0.05 and (B)
φ = 0.15. The red circles are given by Eq. (25).

These two models of non-Brownian diffusion are often
used for the mathematical description of subdiffusion in
crowded and viscoelastic media26,184. ∗∗∗

G. Relative-coordinate ACF

The normalized ACF Cd(τ)/Cd(0) for displacements
of the relative coordinate—defined in the time-averaged
sense as in Eq. (24)—is plotted versus τ for φ = 0.004 (a
single dimer in the simulation box) in Fig. 8. The oscil-
lations of Cd(τ) indicate vibrational ”breathing modes”

∗∗∗Note that the direct comparison of the computed ACFs from sim-
ulations with those of, for instance, fractional Brownian motion
with a constant Hurst exponent H is not straightforward due to
the fact that the time-local anomalous-diffusion exponents in the
simulations vary strongly with lag time, see Fig. 3.
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by α0/α from Eq. (25) shown as function of crowding fraction
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listed in the legends. Here, α0 = α(φ = 0.004) and the error
bars are indicated.

of the dimers and the exponentially decaying amplitude
of these oscillations is due to the damping effects of the
environment. As effective damping increases with φ, the
oscillations become suppressed and their amplitudes de-
cay faster with time as φ grows, compare the results of
Fig. 8 for a single dimer to those of Figs. 9 and 10 ob-
tained for crowding fractions φ = {0.05, 0.15, 0.25, 0.35}.

We compare these oscillations of the dumbbells to
those of a noise-driven damped harmonic oscillator (see
§25 of Ref.185). The period of Cd(τ) oscillations, de-
noted by T, is found to be only moderately dependent
on φ, see Fig. S8A. For the frequency of dimer oscilla-
tions, ω = 2π/T, for weak crowding [and no effects of
the neighbors] we find an excellent agreement with the
eigenfrequency of the damped harmonic oscillator16,185

ω0 = 2k/m [for free oscillations, with the reduced mass
m/2].

With increasing φ the simulation data predict increas-

ing frequency of Cd(τ) oscillations. Physically, this trend
is expected because—for a given energy ”influx” into the
system due to fluctuations of the thermal bath—the re-
duced space available for expansion of the dumbbells in
progressively more crowded solutions gives rise to oscilla-

tions at higher frequencies. The frequency of the damped
oscillator, however, has the opposite trend with increas-
ing crowding fraction [if we assume that α(φ) ∝ γ(φ), as
in Fig. S8B]. In both cases, however, rather insignificant
ω(φ) variations are found, as quantified in Fig. S8.

The φ-dependence of the decay rate α(φ) of the en-
velope function Cenv

d (τ) of the oscillating ACF-function
Cd(τ) is determined from the exponential fit

Cenv
d (τ) ∝ e−α(φ)×τ , (25)

as shown in Fig. 11. To relate α(φ) to the exponential de-
pendence of D(φ) in Fig. 4 and Eq. (19), the normalized
inverse decay constant is shown in Fig. 11B. We find
that, similarly to D(φ), the reciprocal constant 1/α(φ)
decays nearly exponentially with φ and only the most
crowded solutions reveal deviations from this behavior.
The inverse representation was chosen in Fig. 11A in or-
der to compare the resulting dependence of α0/α(φ) to
a decreasing D(φ) in Fig. 4A [because α(φ) ∝ γ(φ) and
γ(φ) ∝ 1/D(φ) in virtue of relation (3)]. The decaying
oscillations of the displacement-ACF Cd(τ) of the dumb-
bells are typical for a damped harmonic oscillator16,185.
This similarity is expected because Eq. (10) reduces to
the Langevin equation of a randomly driven harmonic os-
cillator when a single dimer is considered. In the dilute
regime the Lennard-Jones interactions can in the first
order be neglected because the distance between the two
monomers is ∼ r0. In addition, as proposed in Ref.16,
it gives a physical meaning to the decay rate α ∼ 1/τ0.
Therefore, the vibrations of the dimers for weakly crowded

systems can be rationalized by those of randomly driven
harmonic oscillators with the crowding-fraction depen-
dent damping constant, γeff(φ).

We note that some deviations from the behavior (25)
observed at large φ in Fig. 11 indicate a potential change
to another diffusion regime. Due to worsening accuracy
of the simulation data for α in this regime, however, the
crossover is not clear. This high-density regime may be
modeled by a fractional Langevin equation with power-
law memory kernel in the presence of an external har-
monic potential32,35. To be confident about these ob-
servations significantly more elaborate simulations are
needed.

IV. DISCUSSION AND CONCLUSIONS

A. Summary of the main results

Based on the results of extensive computer simulations
we studied the stochastic dynamics of a crowded system
of dimers in two distinct regimes of crowding fractions
φ. In the region of small φ, at φ . 0.35, we observed
standard BM of the dimers supported by the behavior of
the scaling exponent in Fig. 3 and by variation of the
displacement-ACF of the COM of the dumbbells shown
in Fig. 7. Note that the deviations of the ACF from
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zero at larger τ values are due to progressively worsening
statistics. In this weak-crowding regime, the effects of
crowding can be modeled via an effective constant γeff,
compare Figs. 3 and S2. Using Eq. (3), the variation
of γeff(φ) obtained from Fig. 4 is, therefore, also nearly
exponential with φ, see expression (19).

At high-crowding conditions, with φ & 0.35, we
observed subdiffusive scaling exponents (with particu-
larly severe subdiffusion for rotational motion) and the
displacement-ACFs displaying anticorrelations indicative
of, e.g., viscoelastic-type subdiffusion24. We found that
translational and rotational motion of the dimers are
coupled in the region of intermediate lag times where
crowding-induced subdiffusion is detected, see Fig. 3 and
also Refs.91,102. In this regime, with increasing crowding
fractions φ the diffusivity decreases according to a power-
law form, Eq. (20).

A model that combines subdiffusion and anticorrela-
tions is subdiffusive fractional Brownian motion186 as
well as the closely related model of motion governed by a
fractional Langevin equation187. These two mathemati-
cal models of anomalous but ergodic diffusion are often
associated with the physical motion of [endogenous and
exogenous] tracers in viscoelastic environments24,52,128,
such as those of the cell cytoplasm and of artificially
crowded fluids in vitro. Thus, we can interpret the two
distinct regimes regarding the observed effects of crowd-
ing on the diffusion of the dimers as those of a viscous liq-
uid at low φ and viscoelastic liquid at high φ fractions. A
concentration-dependent transition between viscous and
viscoelastic diffusion was also proposed in Ref.188.

B. Physical rationales and further discussion

We found two distinct diffusion regimes in our crowded
system of passively diffusing dumbbells. In dilute sys-
tems, we obtained a behavior consistent with standard
BM featuring Gaussian displacement-PDFs and nearly
exponentially decaying (Laplacian) rotational ACFs.
The effect of φ on the diffusion could be modeled here
as effective damping, obtained from the exponential de-
crease of the diffusivity with φ, see Eq. (19). Simi-
larly, the damping of internal vibrations of the dimers
was shown to depend exponentially on φ. It was found
to give rise to a quicker decay of oscillations in the re-
spective internal-ACF describing relative separations of
monomers in a given dumbbell.

For highly crowded systems, we instead observed tran-
sient subdiffusion of the dumbbells and the non-Gaussian
PDFs of their anticorrelated displacements. In this
regime, the average diffusivity of the dumbbells was
shown to decrease as a power law with increasing crowd-
ing fraction φ, Eq. (20).

We tentatively attribute these two different diffu-
sion regimes found in simulations to a crowding-induced
crossover from a purely viscous to a viscoelastic behavior
of the diffusion environment. Physically, this viscoelas-

ticity at high φ can stem from shape-responsiveness and
”concerted” motions of neighboring dumbbells. Namely,
noise-driven ”jiggling” of dimers leads to highly frequent
collisions and interactions between them. A finite adapt-
ability of elastically responsive dumbbells can thus give
rise to correlated shape deformations of the neighbors at
high φ values. A displacement of a dimer COM position
from its equilibrium value gets reversed by the elastic
environment of the neighbors leading to anticorrelated
motions of a given dumbbell, see Fig. 7. To verify this
hypothesis, further studies should be done to include a
φ-dependence of inter-monomer forces and for different
number of neighbors.

Recent Bayesian model-assessment analysis189–191 as
well as modern machine-learning approaches192–198 could
then determine relative probabilities of possible diffusion
models involved. In the end, certain predictions regard-
ing the diffusion characteristics based on physical prop-
erties of the environment of crowders might be possible.

We also observed this transition for the diffusion of sin-

gle non-connected monomers characterized by a crossover
of the diffusivity dependencies, see Fig. S6. Here, the
transition occurs at somewhat higher φ values because
solely the Lennard-Jones potential is the source of elastic-
ity in this modified system. This suggests that more com-
plex crowders—such as a linear chain of inter-connected
monomers97—should exhibit such a transition from vis-
cous to viscoelastic behavior at smaller φ fractions, as
compared to those for the dumbbells (work in progress).

To discuss the effects of the dumbbell shape on the
diffusive characteristics, we highlight now the key differ-
ences of the current results to those for the diffusion of
star-shaped crowders reported earlier in Ref.93. For the
star-shaped crowders, transient subdiffusion was found to
occur for all crowding fractions (up to φ = 0.55), while
only the most crowded dimer-based systems were shown
to exhibit such a behavior, see Figs. 2 and 3. Simi-
larly, the power-law dependence of the diffusivity on the
crowding fraction, D(φ), was observed in Ref.93 for all

φ values, while for the dimers we observed this depen-
dence only in a high-φ regime. Moreover, the crowding
fraction corresponding to the glass transition value φ∗

for the star-shaped crowders93 was smaller than that for
the dumbbell-shaped crowders examined in this study,
φ∗

star ≈ 0.52 versus φ∗
dumb ≈ 0.77, respectively. For star-

shaped crowders93, at ”intermediate” time scales strong
variations of both super- and subdiffusive behaviors were
observed94, with a more anomalous TAMSD scaling ex-
ponent detected for rotational than for translational mo-
tion, similarly to the dimers. Moreover, the diffusion
of star-shaped crowders was found ergodic for small φ
values93.

These deviations can, in part, be due to different struc-
tures of the two types of crowders. The inner monomer
of a star-like crowder93,94 is connected to three other
monomers by springs and, thus, its environment is ef-
fectively ”viscoelastic” independent of φ value. In con-
trast, a disk in a dumbbell is connected to only one other
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monomer, allowing for a more ”viscous” medium at low
φ. The difference of φ∗

star and φ∗
dumb can be explained

by a simpler structure of dimers facilitating their denser
packing prior to reaching the glass-transition point.

Although an elastic dimer can be considered as a model
of shape-asymmetric proteins132,199, 3D computer simu-
lations with electrostatic interactions and hydrodynamic
effects63—instead of 2D simulations without these two
effects—are required to approach the problem of macro-
molecular crowding as realized in many biological cells.
Crowding by shape-elongated molecules can have impli-
cations onto the properties of biomolecular reactions66

(including protein folding and protein-protein associa-
tion) as well as of polymer and DNA looping. The dif-
fusion in the crowded solutions of anisotropic proteins in
lipid membranes100,101 and the elongated particles (such
as short fragments of DNA and rod-like viruses) adsorbed
on lipid membranes200–205 are also relevant areas and bio-
physical systems.

Finally, size- and shape-asymmetric particles (charged
dumbbells76 and neutral molecules) can also build some
constituents of ionic liquids126,127,206,207. Dumbbell-
shaped molecules functionalized with ionic liquids were
proposed, e.g., as ”hybrid” electrolyte for lithium-metal
batteries208. Soft dumbbell particles with opposite
charges209–212 and their applications to dipolar liquids
and gels can also be mentioned.
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Appendix A: Simulation scheme

To simulate Eq. (10), we use the numerical Verlet ve-
locity algorithm for the positions and velocities of the
ith particle. We use it separately for the x- and y-
component, but present below only the expressions for
the x-component, namely

xi(t + ∆t) = ai,x(t)∆t2/2 + vi,x(t)∆t + xi(t), (A1)

vi,x(t + ∆t) = [ai,x(t) + ai,x(t + ∆t)]∆t/2 + vi,x(t).
(A2)

The integration time-step is ∆t = 0.005. For the accel-
eration of the ith disk, with x-component ai,x(t), we use
the forces from the potentials (8) and (9) yielding

mai,x(t) =









−
2N
∑

j=1,
j 6=i

∇

(

ULJ(rij)θ
(

21/6σ − rij

))

−∇Uharm(ri′i′′(t))]x . (A3)

We describe friction via the γ-dependent coefficients
c{x1,x2}(∆t) and c{v1,v2,v3}(∆t) given by (see Ref.150)

cx1 =
[

∆t/τ0 − 1 − e−∆t/τ0

]

τ2
0 , cx2 =

[

1 − e−∆t/τ0

]

τ0,

cv1 = cx2 +
cx2

∆t/τ0
+ τ0, cv2 =

cx1

∆t
; cv3 = e−∆t/τ0 ,

(A4)

so that

xi(t + ∆t) = cx1ai,x(t) + cx2vi,x(t) + xi(t) + ξ̃x(t),
(A5)

vi,x(t + ∆t) = cv1ai,x(t) + cv2ai,x(t + ∆t) + cv3vi,x(t) + ξ̃vx
(t),

(A6)

where the noise is modeled by random variables ξ̃x(t)

and ξ̃vx
(t), At γ → 0—that physically corresponds to

the limit of undamped motion and of the Newtonian13

dynamics—expressions (A5) and (A6) turn into (A1) and
(A2).

Appendix B: Supplementary figures
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FIG. S1: Flow-chart of computer simulations, with initializa-
tion of the system and integration loop.
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FIG. S2: (A) Translational MSD for the COM motion of a
single dimer governed by Eq. (4) (see also Eq. (17) in Ref.152)
for varying friction coefficient γ, with kBT = 1 and m = 1.
(B) MSD scaling exponent for the simulation data of panel
(A), calculated via Eq. (17).
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FIG. S3: (A) Translational and (B) rotational MSD for diffu-
sion of dimers at different crowding fractions φ (see the legend,
symbols), plotted for γ = 1 for the TAMSD data of Fig. 2,
with the analytical result (16) shown as the solid curves.
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FIG. S4: Direct comparison of the translational (A) and ro-
tational (B) MSDs (the solid black curves) and the TAMSDs
(the colored curves) for self-diffusion of dumbbells at two lim-
iting crowding fractions, φmin = 0.004 and φmax = 0.65 (yield-
ing fast and slow diffusion, respectively, see the legend). The
results are plotted from the TAMSD data of Fig. 2 and the
MSD data of Fig. S3. Note that, as the integration lag-time
interval was splitted into two domains to facilitate the perfor-
mance, a minor discontinuity at ∆ = 1 × δτ is visible in the
data.
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2 Einstein A. Über die von der molekularkinetischen
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17:21–86.

7 Sutherland W. LXXV. A dynamical theory of diffusion for
non-electrolytes and the molecular mass of albumin. The
London, Edinburgh, and Dublin Philosophical Magazine
and J Science. 1905;9(54):781–785.

8 Pearson K. The problem of the random walk. Nature.
1905;72:294.

9 von Smoluchowski M. Zur kinetischen Theorie der Brown-
schen Molekularbewegung und der Suspensionen. Ann
Physik. 1906 Jan;326:756–780.

10 Dirac PAM. The physical interpretation of the quan-

100 101 102 103
-0.2

0

0.2

0.4

0.6

0.8

1

C
x
(

)/
C

x
(0

)

 =     5

         10

         50

       100

       300

FIG. S7: The same as in Fig. 7, evaluated for the same
parameters except for larger values of the lag time, see the
legend. All the curves approach unity at vanishing τ values
(the region is not shown in the plot for presentation purposes).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

11

12

13

14

15

16

17

18

19  =2  /T

 =(
0
2 -  2)1/2

A B

FIG. S8: (A) Variation of the oscillation period T(φ) of the
ACFs Cd(τ)—as obtained from the simulation data of Figs.
8, 9, and 10—versus crowding fraction φ. (B) Comparison of
the recalculated frequencies ω(φ) = 2π/T(φ) plotted versus
φ to the frequency of the damped harmonic oscillator16,185.
The latter is given by ωosc(φ) =

√

ω2
0 − α(φ)2, where the

eigenfrequency is ω0 and we assumed α(φ) ∝ γ(φ) ∝ 1/D(φ).

tum dynamics. Proc Royal Soc London Ser A.
1927;113(765):621–641.

11 Gauß CF. Theoria motus corporum coelestium in section-
ibus conicis solem ambientium. Hamburgi: sumtibus Frid.
Perthes et I. H. Besser; 1809.

12 Langevin P. Sur la théorie du mouvement brown-
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Rotation libre et dépolarisation des fluorescences. Trans-
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Uhlenbeck model for self-propelled particles with inertia;
2021. Available from: https://arxiv.org/abs/2108.

14005.
110 Roosen-Runge F, Hennig M, Zhang F, Jacobs RMJ, Sz-

tucki M, Schober H, et al. Protein self-diffusion in crowded
solutions. Proc Natl Acad Sci U S A. 2011;108(29):11815–
11820.

111 Heinen M, Zanini F, Roosen-Runge F, Fedunov D, Zhang
F, Hennig M, et al. Viscosity and diffusion: crowding and
salt effects in protein solutions. Soft Matter. 2012;8:1404–
1419.

112 Kurzthaler C, Leitmann S, Franosch T. Intermediate scat-
tering function of an anisotropic active Brownian particle.
Sci Rep. 2016;6:36702.

113 Debnath T, Ghosh PK, Nori F, Li Y, Marchesoni F, Li B.
Diffusion of active dimers in a Couette flow. Soft Matter.
2017;13:2793–2799.

114 Sprenger AR, Fernandez-Rodriguez MA, Alvarez L, Isa L,
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Will K, et al. Granular gases of rod-shaped grains in
microgravity. Phys Rev Lett. 2013 Apr;110:144102.
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Weron A. Classification of particle trajectories in living
cells: Machine learning versus statistical testing hypoth-

esis for fractional anomalous diffusion. Phys Rev E. 2020
Sep;102:032402.

196 Gajowczyk M, Szwabinski J. Detection of anomalous dif-
fusion with deep residual networks. Entropy. 2021;23(6).

197 Reyes A, Viera-Lopez G, Morgado-Vega JJ, Altshuler E.
yupi: Generation, tracking and analysis of trajectory data
in Python; 2021. Available from: https://arxiv.org/

abs/2108.06340.
198 Pinholt HD, Bohr SSR, Iversen JF, Boomsma W, Hatza-

kis NS. Single-particle diffusional fingerprinting: A
machine-learning framework for quantitative analysis of
heterogeneous diffusion. Proc Natl Acad Sci U S A.
2021;118(31):e2104624118.

199 Caetano DLZ, Metzler R, Cherstvy AG, de Carvalho SJ.
Adsorption of lysozyme into a charged confining pore.
bioRxiv. 2021;Available from: https://www.biorxiv.

org/content/early/2021/07/12/2021.07.11.451934.
200 Simunovic M, Srivastava A, Voth GA. Linear aggregation

of proteins on the membrane as a prelude to membrane re-
modeling. Proc Natl Acad Sci U S A. 2013;110(51):20396–
20401.

201 Cherstvy AG, Petrov EP. Modeling DNA condensation on
freestanding cationic lipid membranes. Phys Chem Chem
Phys. 2014;16:2020–2037.

202 Simunovic M, Voth GA. Membrane tension controls the
assembly of curvature-generating proteins. Nature Comm.
2015;6:7219.

203 Voth GA, Callan-Jones A, Bassereau P. When physics
takes over: BAR proteins and membrane curvature.
Quant Cell Biol. 2015;25:780–792.

204 Ghosh SK, Cherstvy AG, Petrov EP, Metzler R. Inter-
actions of rod-like particles on responsive elastic sheets.
Soft Matter. 2016;12:7908–7919.

205 Petrova AB, Herold C, Petrov EP. Conformations and
membrane-driven self-organization of rodlike fd virus par-
ticles on freestanding lipid membranes. Soft Matter.
2017;13:7172–7187.

206 Spohr HV, Patey GN. Structural and dynamical proper-
ties of ionic liquids: The influence of ion size disparity. J
Chem Phys. 2008;129(6):064517.

207 Caetano DLZ, Bossa GV, de Oliveira VM, Brown MA,
de Carvalho SJ, May S. Differential capacitance of an
electric double layer with asymmetric solvent-mediated
interactions: mean-field theory and Monte Carlo simula-
tions. Phys Chem Chem Phys. 2017;19:23971–23981.

208 Yang G, Oh H, Chanthad C, Wang Q. Dumbbell-shaped
octasilsesquioxanes functionalized with ionic liquids as hy-
brid electrolytes for lithium metal batteries. Chemistry of
Materials. 2017;29(21):9275–9283.

209 Dussi S, Rovigatti L, Sciortino F. On the gas-liquid phase
separation and the self-assembly of charged soft dumb-
bells. Mol Phys. 2013;111(22-23):3608–3617.

210 Budkov YA. Statistical theory of fluids with a complex
electric structure: Application to solutions of soft-core
dipolar particles. Fluid Phase Equil. 2019;490:133–140.

211 Budkov YA. Nonlocal statistical field theory of dipo-
lar particles forming chain-like clusters. J Mol Liq.
2019;276:812–818.

212 Budkov YA, Kalikin NN, Kolesnikov AL. Molecular the-
ory of the electrostatic collapse of dipolar polymer gels.
Chem Comm. 2021;57:3983–3986.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459157doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459157



