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Non-Gaussian Versus Non-Rayleigh Statistical 
Properties of Ultrasound Echo Signals 
Jian-Feng Chen, James A. Zagzebski, Senior Member, IEEE, and Ernest L. Madsen 

Abstrucl- Parameters  expressing  the non-Gaussian and  the 
non-Rayleigh properties  of  ultrasound echo signals are derived 
for  the  case  of a pulsed  transducer  insonifying a medium con- 
taining  randomly  distributed scatterers. Both  parameters  depend 
on the  measurement system, including the  transducer  field  and 
pulse  frequency content, as well as on the medium’s  properties. 
The latter is expressed  in terms of the  number  of scatterers 
per  unit  volume  and  the second and fourth moments of the 
medium’s scattering functions. A simple relationship between 
the  parameters describing the non-Gaussian and non-Rayleigh 
properties is  derived  and  verified experimentally. 

S 
I. INTRODUCTION 

EVERAL  articles  have been published in recent years 
that describe the use  of  high moments of ultrasonic  echo 

signals to estimate the scatterer  concentration in an insonified 
medium.  Earlier  literature  described  applications of these tech- 
niques in underwater acoustics [ l ] ,  [ 2 ] ,  [3] while more recent 
papers [4], [5]  involve  their use in medical ultrasonography. 
In each  case, the experimenters  compute the ratio of the 
fourth moment to the square of the second moment of the 
time-domain echo  signal.  However,  substantial  differences 
exist among the  expressions  for the scatterer  number  density 
computed by the various  authors and in the  interpretation of the 
results. In particular,  Sleefe and Lele [4]  apply  their  analysis 
to the RF  echo signal and relate  the  scatterer  number  density 
to the  deviation of the above  ratio  from that expected  for 
Gaussian  statistics. Weng  and Reid [5] compute  the  ratio of the 
fourth to the square of the second moment of the  magnitude of 
the echo  signal. A scatterer  “clustering  parameter”  is  estimated 
from  the  deviation of this  ratio  from that expected if Rayleigh 
statistics  apply. 

We have  also  developed  a method for  estimating the scat- 
terer  number  density [6]. In our  approach,  an  “effective 
scatterer  number  density”  is  measured, which is the actual 
scatterer  number  density multiplied by a  frequency  dependent 
factor that depends on the  differential  scattering  cross  sections 
of all  scatterers.  The  analysis  is  done in the  frequency  domain 
but it explicitly  retains both the temporal nature of the data 
acquisition and the properties of the ultrasound field  in arriving 
at a  frequency  dependent  effective  scatterer  number  density. 
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The  purpose of the work described in this paper is to de- 
rive relationships  between  non-Gaussian and/or non-Rayleigh 
statistical  properties of echo  signals and the characteristics 
of the insonified media. To do  this, we first rederive  our 
expressions  related  to the scatterer  number  density, but using 
the  time-domain  echo  signal  analogous  to work by previous 
investigators.  Equations  for  the  scatterer  number  density that 
are  similar  to those of Sleefe and Lele  [4] and of  Weng and 
Reid [5] are  obtained when one computes  moments of the 
RF signal or of the envelope of the signal,  respectively.  The 
basic expressions used  in our  derivations  involve both the 
properties of the medium and complete  characterization of the 
measurement  system.  Thus,  our  results  provide  further insight 
into the meaning of the  statistical  parameters measured by 
the  above  authors. Under narrow bandwidth  conditions, it  is 
indicated by Denbigh and Smith  [3] that a  simple  relationship 
exists  for  the  scatterer  number  density  computed  from the 
moments of the radio-frequency  signal and from the envelope 
of the signal.  This  relationship is derived  here and is verified 
experimentally. 

11. THEORY 

A.  The  Non-Rayleigh  Properties of the  Time 
Domain  Echo Signal Envelope 

We consider  a  situation where a  pulsed  transducer  is used 
to  insonify  a medium containing  sparse, randomly distributed 
scatterers.  The  complex  echo  signal U ( t )  can be represented 
as a  superposition of signals  due to all scatterers in the beam. 
That is, [7] 

M 

i= l  

where 
+W 

ui(ril t )  = l dwT(w)A,(w)e-i”t 

. Q i ( W ) A 2 ( r ; , w ) .  ( 2 )  

In this  expression, & ( W )  is termed “the  angular  distribution 
function” [S] at a 180” scattering angle for  a  scatterer at 
position ri l T ( w )  is  a  complex  transfer  function  relating the net 
instantaneous  force on the transducer  at the angular  frequency 
W to the detected  voltage. A,(w) is a complex  superposition 
coefficient corresponding to the frequency  composition of the 
emitted  pulse.  The beam pattern of  the transducer is accounted 
for with A(r ,w) ,  the Rayleigh  integral  for the case in which 
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the normal  component of the velocity at  any instant of time is 
the  same at all points on the radiating surface. It  is given by [9] 

S 

where the integration is over the transducer surface, r’ points 
to an element ds’ on the transducer  surface,  and the complex 
wavenumber is denoted by k = W / C ( W )  + i a ( w ) ,  where c(w)  
is  the speed of sound and a ( w )  is  the attenuation coefficient. 
The sum in (1) is  over all scatterers M which significantly 
contribute to the echo signal at time t for  each transducer 
location. These scatterers are located in a volume AR, which 
is defined by the ultrasound field produced by the transducer 
and  by  the ultrasound pulse. 

When the positions of all scatterers are  independent,  the 
first moment associated with the echo signal (ui(ri, t ) )  is 
approximately zero. Then, the incoherent intensity (also  called 
the  second  moment)  is  given by 

( I ( t>> = ( U ( W * ( t ) )  
M h1 c c Ui(Ti, t)u;(rj! t )  

M = 0 i = l  j=1 

where P ( M )  is the probability that there are M scatterers 
in AR and the < . . . > denotes  an  ensemble average. The 
ensemble  average  is related to the statistical properties of the 
variable u(r, t ) ,  i.e.,  it  is independent of specific realizations 
ui(ri, t ) .  Thus, the label i is unnecessary. The incoherent 
intensity is simplified to 

( ~ ( ~ ) ) ~ ( M ) ( l l , ~ ( ~ . ~ ) l 1 2 )  (3) 

where we have used the fact that 

(ui(r, t)uJ(r ,  t ) )  = 0 

unless i = j ,  and 

+a 

h1 =o 

In (3), the quantity (liu(r,t)l12) denotes the ensemble  av- 
erage  over both scatterers and  space. Let ( . . . denote  just 
the ensemble average over “sets” of scatterers, where each set 
includes scatterers identical to  one  another,  on a one-to-one 
basis, but unlike those in other  sets.  Then, 

art 

Similarly, because for random scatterer positions (u(r, t ) )  M 

0, the fourth moment of the complex  echo  signal is given by 

+m 

= c P ( M )  
M =O 

The contributions of terms  containing (U; (ri, t)ul* (Ti, t ) )  are 
negligible when m # n, since the product varies approxi- 
mately as exp[2i(m - n ) k ~ , ] .  Therefore,  only three classes of 
significant (incoherent) terms  exist  for  each M :  

1) M terms  for which i = j = k = 1 ,  
2 )  M ( M  - 1) terms  for which i = j # k = 1 ,  
3) M ( M  - 1) terms  for which i = 1 # k = j .  
Thus we have 

where  we have  assumed that the number of scatterers in 
follows the Poisson  distribution,  and 

c P ( M ) M ( M  - 1) = ( M ) 2  

M =O 

The ratio of the fourth moment to the  square of the second 
moment is  given by 

0) M 2(1 + 2i) 
where 

where ( N )  is  the scatterer number  density.  Equation (4) is 
the time domain  analog to ( I  1) in [6] which involves the 
frequency  domain. 

The quantity 1/a is a measure of the deviation of the 
statistical properties of the echo signal from those of the 
Rayleigh distribution. When the average  number of scatterers 
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contributing to the echo signal is large, the statistical  properties 
approach those of  the Rayleigh  distribution, where l/” + 0 
and the ratio of the fourth  moment to the square of the second 
moment + 2. 

From ( 2 )  and (7), l / a  depends both on the measurement 
system and the medium. Insight  into  the  latter  dependency  is 
gained by assuming conditions  for which terms  can be factored 
out of the integral in ( 2 ) .  For  example, if each  scattering 
function $*(W) is approximately  independent of frequency 
over the bandwidth of the measurement  system, we have 

ui(7-i.t) N *i(W,)Sl(ri, t )  

where W, is the center  frequency of the system and 

+x 
Sl(ri ,  t )  1 dwT(w)A,(w)e-i”tA2(ri, W ) .  

Substituting (8) and (8’) into (7), we have 

2 1 
-N- 

QI - N e f f ( w o )  

where vi ( T i ,  t )  Re ui(ri, t ) ,  Re  means  “the real part of’ the 
quantity  following  and,  again, the sum  is  over  all  scatterers 
which contribute  to the echo  signal  at  time t. ui(ri ,  t )  is  a 
real, random  variable with a  zero  ensemble  average. 

Using methods  similar to those of the previous  section, we 
find that the second  and  fourth  moments of the echo signal 
voltage are  given by 

and 

(9) ( J 2 ( t ) )  (V4(t)) 
+m 

for this special case. N,E(w,) is  referred  as  an  “effective 
scatterer  number”  density; it  was defined previously [6] as, 

Equation (6) is essentially the same as (7) in  Weng and 
Reid [5 ] ,  who assume the echo  signal  statistics  follow  a 
k-distribution  as  derived by Jakeman [lo]. Weng and Reid 
refer to QI as a  “clustering  parameter” in the  k-distribution. 
Experimentally they find  it has  a  “linear  relation with the  log- 
scaled  scatterer  concentration.”  Our  derivation  shows that this 
parameter  is  related in a  complicated way to both characteris- 
tics of the  measurement  system  as well as to the  properties of 
the scattering  medium and that it  is  proportional  to the scatterer 
number  density.  The  latter  could, of course, be dominated by 
large  scatterers, if present,  perhaps  fulfilling  the  embodiment 
of a  cluster  for  specific  conditions. 

B .  Non-Gaussian  Properties of the Time 
Domain Echo Signal  Voltage 

Alternative uses of statistical  moments of ultrasound echo 
signals have focused on the  time-domain  echo  signal [4], [ l l ]  
rather than the complex  amplitude. We derive an expression 
for  these  moments,  assuming that the experimental  conditions 
are the same as  in the previous  dicussion. From (l) ,  the real 
echo  signal  voltage at time t is given by 

M 

V ( t )  = C V i ( r z ,  t )  (1 1) 
i=l 

In deriving (1 3) we have used the  fact that the contributions of 
terms  contributing  to (.uy(r, t ) )  are  negligible when m = 2n+ 
1. The  summation  results in M terms for which i = j = IC = 1 
and 3 M ( M  - 1) involving i = j # IC = l , i  = l # IC = j , i  = 

Thus, the ratio of the fourth moment to the square of the 
I C # j = E .  

second moment of the RF signal  is  given by 
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where 

is a measure  of the deviation of this ratio  from that which 
applies  for Gaussian statistics. For large ( N ) .  1/,3 + 0. 

Similar to section 11-A, if each scattering function $ i (w)  is 
approximately independent of the ultrasound frequency  over 
the  bandwidth of the measurement system, we have 

where 
+x 

S2(ri, t )  E Re 1 dw.T(w)A,(w)e-'"tA2(r,;w) (16') 

and Ne~(w,) is the effective scatterer number  density. If (16) 
is solved  for (N), the expression is analogous  to that used by 
Sleefe  and  Lele [4] to estimate the scatterer number density. 

C .  The Relationship  Between N and@ 

As suggested by Denbigh  and Smith [3], the relationship 
between  the parameters N and 19 can be derived. For band- 
limited pulses, we have 

U(,-, t )  a(,-, t)eL('@(r,t)-2"(Jt)  

and 

u(r ,  t )  zz n ( r ,  t )  cos (@(r> t )  - . h o t )  

where u(r, t )  is a real function dependent  on both the angular 
distribution function of a scatterer located at r and the ul- 
trasound pressure amplitude at  that position, while @(r. t )  is 
a phase factor that also  depends  on r and W ,  is the central 
frequency of  the pulse. 

For scatterers located in  the far field of a flat circular disk 
transducer. or in the focal region of a focused transducer 
a(r ,  t )  depends mainly on the distance  from the beam axis and 
the scattering function, while @(r7 t )  depends mainly on  the 
axial distance. Thus it can be assumed that a(r ,  t )  and @(r, t )  
are  random variables which are statistically independent and 
4(r ,  t)  can be regarded as being uniformly distributed  over 27r 
radians. In  that case, we have 

Thus, we see that there is a simple relationship between the 
"non-Rayleigh parameter", [ x  derived from  the  magnitude of 
the complex  echo signal and the "non-Gaussian parameter", 

derived from  the real RF  echo signal voltage. They contain 
essentially the same information about the scattering medium. 

111. EXPERIMENTAL VERIFICATION 

The  relationship  between (1 and was  verified  by measuring 
the scattered echo  signals  from three phantoms. each  contain- 
ing a different scatterer number  density.  Phantoms  consist  of 
agar gel. with 73 f 5 pm glass beads as scatterers. The  speed 
of sound in each phantom is 1555 m/s and the attenuation 
coefficient is 0.068 dB/cm/MHz. They were placed in water 
in the focal region of either of two broad-band ultrasound 
transducers. One transducer is 3.5 MHz, has a 19.2 mm 
aperture and a radius of curvature of 9.65 cm, while the 
other transducer is 5.0 MHz with an  18.6  mm aperture and 
a radius of curvature of 8.5 cm.  Each transducer was  excited 
with single cycle  pulses at its center frequency (3.5 and 5.0 
MHz, respectively). 

The resultant time domain  echo  signals were truncated using 
a 5.0 1 s  rectangular gate. They  were recorded on a digital 
oscilloscope  and stored in a computer  for off-line analysis. 
The  sampling  frequency of the  oscilloscope was 100 MHz.  For 
each transducer and  each phantom echo  signals were recorded 
for 40 different locations, realized by translating the sample 
perpendicularly to the transducer axis. Each translation step 
was 4.0 mm.  Since the full width at half-minimum (FWHM) of 
the beam was less than the translation steps in the interrogated 
region, successive waveforms  were uncorrelated. 

The square magnitude  of the complex echo signal was 
found by applying a Hilbert transform to each gated waveform 
and then summing  the squared real  and imaginary parts. The 
moments of the signal envelope were  then  computed using 

n n, 

where 71 is the number  of  waveforms and ' m  is the number 
of sample points wthin the time gate  function. The parameter 
2 / n  was then computed using (6). 

The  moments of  the RF echo signal were calculated in a 
similar fashion, only now the actual sampled signal values 
recorded by the digital oscilloscope were substituted into 
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TABLE I 

CONCENTRATIONS.  IN EACH CASETHE RATIO o l d  IS EQUAL TO 1, AGREEING WITH THE THEORETICAL P R E D I ~ I O N  
EXPERIMENTAL VALUES FOR THE NON-hYLEIGH PARAMmR a AND THE NON-GAUSSIAN PARAMETER d FOR DImRENT SCARERER 

Transducers 3.5 MHz 5.0 MHz 
Phantoms 134kc m / c c  750kc 134/cc 4ooIcc 75Olcc 

21“  2.79 f 0.43  1.05 f 0.18  0.57 f 0.10 

13 0.72 f 0.11 1.92 f 0.33  3.61  0.65 
13.9 f 1.4 4.80 f 0.58 2.47 f 0.34 3 / ?  4.14 f 0.65 1.56 f 0.27  0.83 f 0.15 

0.22 f 0.01 0.62 f 0.07  1.20 f 0.15 CI 0.72 f 0.11  1.90 f 0.33  3.51 f 0.62 
9.26 f 0.33  3.23 f 0.39  1.66 f 0.21 

0.22 f 0.02 0.62 f 0.08 1 .21  f 0.16 
a/$  1.00 f 0.33  0.99 f 0.39  0.97 f 0.36 1.00 f 0.20 1.00 f 0.19  0.99 f 0.23 

TABLE I1 
VALUES OF c\. AND ,j VERSUS AXIAL DISTANCE OF THE CENTER OF THE SAMPLE 
VOLUME R O M  THE FOCAL POINT OF THE T RANSDUCER, DEMONSTR,4TING A BEAM 
WIDTH  EFFECT. THE  400/ CC PHANTOM AND 5.0 MHz TRANSDUCER WERE USED 

Distance 

Point 
2,’” 3 .23%  0.39  2 .85  r t0 .33  1 .44f0.35  0 .73 f 0 . 2 0  
a 0.62 f 0.07 0.70 f 0.08 1.39 f 0.34 2.74 f 0.75 

319 4.80 f 0.58  4.28 f 0.50  2.16 f 0.53  1.09 f 0.30 
d 0 . 6 2 f 0 . 0 8  0 . 7 0 f 0 . 0 8   1 . 3 9 f 0 . 3 4   2 . 7 5 f 0 . 7 6  

c./f l 1 . 0 0 f 0 . 1 8   1 . 0 0 f 0 . 1 6   1 . 0 0 f 0 . 3 4   1 . 0 0 f 0 . 3 9  

from Focal 0.0 mm  7.7 mm 15.4 mm 23.1 mm 

the  above  expression. 3 / p  was then determined  for  each 
experimental  situation,  i.e.,  each phantom and transducer. 

Results  are  summarized  on Table I. The parameters cy and 
p are  listed  for  each phantom for both the 3.5 and 5.0 MHz 
focused  transducers.  Results  presented  are  means and standard 
deviations  for nine sets of repeated  measurements.  The last  row 
in Table I presents the ratio of a / p  for  each  experiment.  This 
ratio is equal to 1.0, agreeing with the  theoretical  prediction 
in (17). 

For fixed experimental  conditions, both N and p are found 
to be proportional to the scatterer  number  density, as expected. 
For example, when the scatterer  number  density is increased 
from  400/cc  to  750/cc (x1.87), a increases by a  factor of 
1.85 for the 3.5 MHz experimental  data and 1.94 for  the 
5.0 MHz data.  These  results  also show that N and p are 
related  to  the  transducer  beam  cross-sectional area. Values of 
(Y and p obtained using the 5.0 MHz transducer  are  lower than 
corresponding  values  obtained using the 3.5 MHz transducer 
due to the  greater beam cross-sectional  area of the  latter 
transducer.  The  standard  deviations  in Table I originate mainly 
from  statistical  fluctuations in the echo  signals and the resultant 
moments.  Because the statistical  uncertainty  is  related  to  the 
average  number of scatterers  contributing to the echo  signal 
[ 121, the  standard  deviations of a and p are also  lower  for the 
5.0 MHz transducer  data than the 3.5 MHz data.  For  either 
transducer,  because the  beam area in the focal region is smaller 
than the beam area in other  regions, the values of (Y and p 
for  the  focal region are  always  smaller than those from  other 
regions.  This is shown in Table 11. 

Iv. DISCUSSION AND CONCLUSION 

Theoretical  expressions  for the non-Rayleigh and the non- 
Gaussian  parameters  applied to signals from a medium con- 
taining randomly distributed  scatterers  are  derived in this 
paper.  These  parameters  are  related  both  to  the  properties 
of the measurement  system,  including the system frequency 
response and the transducer  ultrasound  field,  as well as to 

the insonified medium. The  latter  dependency  is  expressed 
here in terms of a  scatterer  number  density and moments of 
the scattering  function. At  low scatterer  concentrations, if the 
scatterers  are  independent and randomly distributed, a and p 
are proportional  to  the  scatterer  number  density. 

In contrast to these  results, Weng and Reid [5] found 
experimentally  a  non-Rayleigh  parameter  proportional to the 
log of the scatterer  number  density.  Their  measurements were 
made for  samples  having  greater  scatterer  number  densities 
than ours, ranging from 2 x lo3 cm-3 to 6 x lo4 cmp3. 
We do not know the  reason  for the difference  between those 
authors’  results and ours,  but note that other  factors, such 
as  particle  clustering, volume coherent  effects  or  changes in 
attenuation  between  phantoms with low scatter  number  density 
and phantoms with higher  scatterer  number  density, may be 
responsible.  Attenuation of higher  frequency  components of a 
pulsed beam has the effect of broadening the beam at points 
distal to the focal region [ 131, and the a parameter (or the 
p parameter)  is  sensitive to beam width. For our  samples, 
the attenuation in all three phantoms was the  same.  However, 
attenuation was not reported by  Weng and Reid [ 5 ] .  

When the scatterer  concentration is high,  the  statistical 
properties of the envelope of the echo  signal  approach those of 
a  Rayleigh  distribution, while the statistical  properties of the 
RF signal  approach  those of a  Gaussian  distribution. Thus the 
ratio of the  fourth moment to the square of the second moment 
of the RF signal  goes to three, while the  corresponding  ratio 
for  the  signal  envelope  goes to two. 

Under an assumption of band-limited  ultrasonic  pulses,  a 
simple  relationship  between the non-Gaussian and the non- 
Rayleigh  parameters  was  derived.  Experimental  results  pre- 
sented in this paper confirmed this  relationship.  This  suggests 
that for this type of analysis,  it is possible to get the  same 
useful information  regarding  a  scattering medium from both 
the envelope and  the RF echo  signal.  Conceivably, the enve- 
lope  statistics could be derived from conventional ultrasound 
B-mode  images. 
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