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Abstract: In this paper we will study R2-like inflation in a non-local modification of

gravity which contains quadratic in Ricci scalar and Weyl tensor terms with analytic infinite

derivative form-factors in the action. It is known that the inflationary solution of the

local R + R2 gravity remains a particular exact solution in this model. It was shown

earlier that the power spectrum of scalar perturbations generated during inflation in the

non-local setup remains the same as in the local R + R2 inflation, whereas the power

spectrum of tensor perturbations gets modified due to the non-local Weyl tensor squared

term. In the present paper we go beyond 2-point correlators and compute the non-Gaussian

parameter fNL related to 3-point correlations generated during inflation, which we found

to be different from those in the original local inflationary model and scenarios alike based

on a local gravity. We evaluate non-local corrections to the scalar bi-spectrum which give

non-zero contributions to squeezed, equilateral and orthogonal configurations. We show

that fNL ∼ O(1) with an arbitrary sign is achievable in this model based on the choice

of form-factors and the scale of non-locality. We present the predictions for the tensor-to-

scalar ratio, r, and the tensor tilt, nt. In contrast to standard inflation in a local gravity,

here the possibility nt > 0 is not excluded. Thus, future CMB data can probe non-local

behaviour of gravity at high space-time curvatures.
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1 Introduction

After the Planck mission, inflationary cosmology took a turn towards the Starobinsky infla-

tionary model based on the modified R+R2 gravity with one-loop corrections from matter

quantum fields [1] (shortly dubbed as the (local) R2 inflation afterwards), or to models

with strongly non-minimally coupled scalar fields like the Higgs inflationary model [2], or

to models emerged within string and supergravity (SUGRA) theories which have similar

(very flat plateau-like) behaviour of their effective potentials in the Einstein frame [3].

These highlighted models comprise a set of most successful ones from the point of view of

the observational data matching but neither of them features a manifestly well established

UV completion setting.

In an attempt to tackle the issue of the UV completion for models of inflation on par

with proposals to explain local higher order curvature terms like R2 or non-minimal cou-

plings of scalars by considering supergravity models [4, 5] there are recent developments on

studying R2 inflation solution within an analytic infinite derivative (AID) gravity frame-

work. This latter approach was shown to be absolutely consistent with existing cosmo-

logical observational data [6–11] while providing a viable track towards completing theory

of quantum gravity [12–22]. We therefore stick to this model in our effort to explore and

analyze non-Gaussian perturbations and the tensor-to-scalar ratio during inflation in the

present paper.
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Analytic infinite derivative gravity essentially generalizes Einstein’s General Relativ-

ity (GR) with quadratic in Ricci scalar, R and Weyl tensor, W terms in the action with an-

alytic at zero functions of the d’Alembertian operator, also named form-factors, inserted in

between like RFR(�)R where � is the covariant d’Alembertian operator, see: [6, 15, 16, 23–

27]. Analyticity of form-factors at zero implies a smooth low-energy limit of the model.

This type of gravity models is also often abbreviated as IDG for infinite derivative gravity.

We however would mainly stick to the AID abbreviation to stress the analytic behav-

ior of the form-factors for low momenta. This is an essential mathematical point and

it distinguishes this type of gravity modifications from those having non-analytic depen-

dence on derivatives, like it is already encountered in one-loop effective quantum gravity

action [28–31], for example, non-analytic forms like logarithms of the d’Alembertian or

inverse of the d’Alembertian appear in the effective action as a result of integrating out

matter fields [32, 33].

Furthermore, it is the most general extension of GR around maximally symmetric

space-times as it captures behavior of linear perturbations around such space-times in any

analytic gravity generalization (see [26] for details). Inspiration for such a modification of

gravity naturally comes from string field theory (SFT) where infinite derivative operators

like e�/M
2
s , with Ms being a string scale Ms . Mp enter the vertex terms of the string

interaction [34–40]. Mp here is the Planck mass as usual. Discussing gravity we name Ms

as the scale of non-locality. Such a gravity is known to be ghost-free (unitary) improving

thereby the proposal by Stelle [41, 42] which suffered from the presence of the spin-2

ghost. Absence of ghosts requires the presence of an infinite tower of derivatives and thus

forces one to consider essentially non-local form-factors [27]. This guaranties the power-

counting renormalizability and raises the hope that Black-Hole and Big Bang singularities

are being resolved in gravity theories of this kind. A number of crucial questions has been

investigated recently regarding the resolution of singularities [23, 43–55] in this approach.

The arguments above explain why such an infinite derivative gravity tends to become a

UV complete gravity theory.

Obviously, the higher derivative form-factors provide the crux of the gravity modifi-

cations which we study in this paper. We have freedom to choose form-factors such that

the excitations spectrum is exactly like in a local R2 gravity modification. Namely, there

is a propagating massive scalar and a massless graviton in the theory. This scalar degree

of freedom is identified with the ‘scalaron’ that drives inflationary expansion and is re-

sponsible for nearly scale invariant fluctuations which in turn seed the large scale structure

formation. Although the structure of form-factors is constrained by the conditions on the

theory to be ghost-free around maximally symmetric backgrounds [27, 56], we lack for the

time being a more fundamental approach of deriving them within the scope of string theory

or SFT. Worth mentioning that recently some progress has been made to fix form-factors

within asymptotic safety approach to quantum gravity [54, 57]. However, still observa-

tional cosmology is the only major way to get a guidance for any gravity modification and

thus inflationary cosmology and CMB observations play a vital role.

It was shown in [11] that an analytic non-local extension of the R2 inflation produces

up to the leading order in the slow-roll expansion exactly the same value of the spectral
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index, ns, of the Fourier power spectrum of primordial scalar perturbations generated

during inflation, but the tensor to scalar power spectra ratio, r, as well as the tensor power

spectrum consistency relation, can get modified. Moreover, the modification of the tensor

power spectrum is solely due to the form-factor in the quadratic in Weyl tensor term in

the action.

In the present paper, we aim to understand and constrain the analytic infinite deriva-

tive form-factors in the considered gravity model using the current constraints on infla-

tionary parameters [58] such as (ns, r) and the non-Gaussianity parameter (fNL) in the

squeezed, equilateral and orthogonal configurations which read as

ns = 0.9649± 0.0042 at 68%CL , r < 0.064 at 95% CL , (1.1)

and

f sq
NL = −0.9± 5.1 f equiv

NL = −26± 47 fortho
NL = −38± 24 , at 68% CL, (1.2)

with respect to Planck, BICEP2/Keck Array and BK15 with TT,TE, EE+lowE+lensing

data [58, 59].

Non-Gaussianity is an important tool to understand primordial Universe and especially

the nature of scalaron or inflaton,1 especially whether it is a canonical field, or a non-

canonical one, or if multiple fields are responsible for the period of inflation, or if the

inflation is driven effectively by a single field in the presence of relatively heavy fields, or if

inflation happens in a higher order scalar tensor theories [60–67]. Every model produces a

distinct signal for fNL for different triangular templates of 3-momenta. In the case of single

canonical field models of inflation non-Gaussianities are very small as it was shown in [60].

Local R2 model can be seen as a single canonical field model upon conformal transformation

of the R +R2 gravity action to the Einstein frame where a minimally coupled scalar field

with a very flat plateau shape potential appears [68]. Any inflationary framework beyond a

canonical scalar field may lead to different observable signatures of fNL [69, 70]. In our case

there is only one canonical propagating scalar, namely the curvature perturbation, which is

approximately time-independent on super-Hubble scales. However, the presence of higher

derivative and even non-local operators can in principle lead to non-trivial signatures in the

bi-spectrum (see for instance earlier observation of large non-Gaussianities in the context

of SFT inspired p-adic inflation [71, 72] where a minimally coupled non-local scalar field

drives inflation).

The paper is organized as follows. In section 2 we present the modified gravity model

to be studied and discuss the generic structure of form-factors for the theory to be ghost

free. We summarize the general conditions on form-factor FR (�) for the theory to admit

the local R2 inflationary solution which satisfies the equation �R = M2R where M is the

scalaron mass. In section 3 we discuss second order inflationary perturbations and present

quantitative results for scalar and tensor power spectra and their tilts for sample form-

factors. In appendix A we provide equations of motion, slow-roll conditions and further

technicalities on second order scalar perturbations. In section 4 we compute the 3rd order

1Which is a scalar degree of freedom coming from addition of hypothetical matter to GR.
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variation of the studied gravity action around the local R2 inflationary solution up to the

leading order in the slow-roll approximation. Using the mode functions computed in sec-

tion 2 we calculate the 3-point correlation functions and the non-linearity parameter fNL as

functions of momenta. Namely, we calculate the non-Gaussianity parameter fNL for local,

equilateral and orthogonal configurations. To do quantitative analysis, we select sample

form-factors and discuss the bounds on the scale of non-locality, Ms, within the current

CMB constraints. This section is supplemented by detailed computations in appendices B

and C. The Conclusion section summarizes the performed analysis.

2 Analytic infinite derivative gravity and inflationary solution

In this section, we will review the equations of motion and inflationary solutions of AID

gravity. The notations commonly used throughout the paper are as follows. The reduced

Planck mass in our notation is
M2
P

2 = 1
16πG where G is the Newtonian constant. The metric

signature we work with is (−,+,+,+). The 4-dimensional indices are labeled by small

Greek letters and 3-dimensional quantities are labeled by i, j = 1, 2, 3. Throughout the

paper a bar over quantities is used to indicate their background values for Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric gµν = (−1, a2, a2, a2), where a = a(t) is the

scale factor and t is the cosmic time, like R̄ for the background value of the Ricci scalar, �̄
for the background value of the d’Alembertian operator, etc. We use notation ′ and a dot to

represent the differentiation with respect to conformal time τ and cosmic time t respectively.
(†) and (‡) denote first and second derivatives with respect to the argument for various

functions. (1,2,3) denotes in most cases the order of the performed variation. R,Rµν , Wµνρσ

denote the Ricci scalar, Ricci tensor and Weyl tensor respectively. Throughout the paper,

the sign “≈ ” denotes the leading order in the slow-roll approximation.

The action we study contains non-local quadratic in curvature terms which was shown

to be most general action around maximally symmetric space-times [10, 11, 15, 26, 27]

S =

∫
d4x
√
−g

(
M2
p

2
R+

λ

2

[
RFR (�s)R+WµνρσFW (�s)W

µνρσ

])
. (2.1)

Here �s = �/M2
s with Ms being the scale of non-locality and λ is a dimensionless pa-

rameter useful to control the effect of higher curvature contributions as the whole. The

form-factors are analytic at zero and can be Taylor expanded as follows

FR (�s) =
∞∑
n=0

fRn�
n
s , FW (�s) =

∞∑
n=0

fWn�
n
s , (2.2)

where fRn, fWn are dimensionless constants. The vacuum equations of motion for the

above action are given by (A.1) in appendix A. In the sequel we put parameter λ equal 1

for simplicity

The form-factors should not be arbitrary as they are restricted by the ghost-free con-

ditions. For instance, the generic structure of form-factors that leads to an extra scalar

field of mass M and a massless tensor degree of freedom around maximally symmetric

space-times backgrounds was studied in [15, 26, 27].
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In the inflationary context we have to consider the structure of form-factors around

the de Sitter background studied in [26, 27] which we discuss in the next sections. To

study inflation, we start with FLRW metric which is conformally flat and as such the

corresponding Weyl tensor vanishes. Therefore the trace of equations (A.1) for conformally

flat backgrounds becomes

E = (M2
P − 6λ�FR(�s))R− λ(Kµµ + 2K̃) = 0 , (2.3)

where Kµµ, K̃ are infinite derivative square in scalar curvature terms defined in (A.2). It was

shown in [11] that the local R2 inflationary solution which satisfies the following equation

�̄R̄ = M2R̄ , (2.4)

becomes the only (inflationary) solution2 of AID gravity as long as form-factor FR(�s)
obeys the following conditions

F (†)
R

(
M2

M2
s

)
= 0 ,

M2
p

2
= 3λM2F1 , (2.6)

where F (†)
R

(
M2

M2
s

)
= ∂FR

∂�s

∣∣∣
�s=M2

M2
s

and F1 = FR
(
M2

M2
s

)
. Since cosmological observations

indicate the nearly scale invariant power spectrum of scalar fluctuations, we consider the

following hierarchy of scales3 [10, 11]:

M2 �M2
s .M

2
p . (2.7)

During inflation the following slow-roll condition for the background solution (2.5) is sat-

isfied [68, 73]:

ε = − Ḣ

H2
≈ M2

6H2
≈ 1

2N
� 1 =⇒ M2 � H2 , (2.8)

where N ∼ 50− 60 is number of e-foldings before the end of inflation.

Note that the Hubble-slow-roll parameters ε, η used here in the original Jordan frame

differ from the potential slow-roll parameters εV , ηV usually known in the context of scalar

2The local R2 inflationary solution satisfies (2.4) with the scale factor

a ≈ a0(ts − t)−
1
6 e−

M2(ts−t)2

12 , H =
ȧ

a
≈ M2

6
(ts − t) +

1

6(ts − t)
,

R̄ = 12H2 + 6Ḣ ≈ M4(ts − t)2

3
− M2

3
+O

(
(ts − t)−2) , (2.5)

where ts � 1
M

denotes the end of inflation.
3This can be seen heuristically by expanding the quadratic Ricci scalar part of the action (2.1) as

S =

∫
d4x
√
−g
[
M2
p

2
R+

M2
p

12M2
R2 +O

(
R�R
M2M2

s

)]
.

In the above action we see that at high curvature regime R � M2 quadratic curvature terms are nat-

urally dominant. However, it is easy to see that R2 term is scale invariant (i.e., the term is invariant

under local scale transformations gµν → eλgµν) and all the higher derivative terms are not scale invariant.

So it is obvious to see that the hierarchy M2 � M2
s is essential for the model to be compatible with

cosmological data.
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Figure 1. Hierarchy of mass scales in non-local R2-like inflation.

field inflation (in the Einstein frame representation of the R + R2 model) [68]. The sec-

ond Hubble-slow-roll parameter in our case is η = ε + d ln ε
2dN ≈

1
24N2 � ε (note that the

calculation of its actual value requires using the second, next to leading, order of the

slow-roll approximation presented in eq. (2.5)). On the other hand, in the Einstein frame

εV � |ηV |. Since all our study is in Jordan frame, in all the computations we apply the

slow-roll approximation up to the leading order in ε.

From the considerations (2.7) and (2.8) we assume the hierarchy of mass scales in the

theory as shown on the scheme figure 1. Further we refer to the condition (2.8) as the

slow-roll approximation.

3 Second order perturbations and power spectra

Inflationary observables of R2-like inflation in AID gravity related to two point correlations

were studied in detail in [9–11]. In this section, we will briefly review the second order

perturbations of scalar and tensor parts and highlight the points essential for the rest

of the paper without additional referencing. We start with the following perturbed line

element in terms of gauge invariant Bardeen potentials (Φ, Ψ) and transverse and traceless

tensor fluctuation hij

ds2 = a2 (τ)
[
− (1 + 2Φ) dτ2 + ((1− 2Ψ) δij + 2hij) dx

idxj
]
. (3.1)

This is equivalent to fixing the Newtonian gauge. Study of perturbed linear equations of

motion in the slow-roll approximation, i.e. in the quasi-de Sitter regime gives among other

important results[
F1

(
R̄+ 3r1

)
+
(
�̄− 2H2

)
FW

(
�̄+ 6H2

)] Φ + Ψ

a2
= 0 . (3.2)

The solution of the above equation leads to Φ + Ψ ≈ 0 in the quasi-de Sitter limit in full

analogy with the local R2 inflationary model [29]. Proceeding with the construction of an

action for a canonical scalar variable one must restrict the form-factor in order to avoid

ghosts and this leads to the following form of the operator function FR(�s):

FR (�s) = F1

3eγS(�s)
(
�s − M2

M2
s

)
+
(

R̄
M2

s
+ 3M

2

M2
s

)
3�s + R̄

M2
s

, (3.3)

where γS is an entire function of the d’Alembertian operator. Imposing the conditions (2.6)

on the form-factor FR (�s) in (3.3), we can deduce that

γS

(
M2

M2
s

)
= 0 . (3.4)
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We can also see that condition (3.4) being used in (3.3) does not give us any relation

between scalaron mass and the non-locality scale.

The second order action for the canonically normalized scalar has the form

δ(2)S(S) =
1

2

∫
dτd3x

√
−ḡu

(
�̄−M2

)
u , (3.5)

where the subscript (S) stands for the scalar part and u ≈ 2F1R̄Ψ. A solution for Fourier

modes of ũ = au upon the spatial Fourier transform yields in terms of Hankel functions [68]

ũk =

√
π

2
(−τ)1/2

[
c1kH

(1)
νs (−kτ) + c2kH

(2)
νs (−kτ)

]
. (3.6)

Adiabatic vacuum initial conditions for the observable range of Fourier modes of per-

turbations following from their quantization in the deep sub-Hubble limit |kτ | � 1 are

c1k = 1, c2k = 0. The Bunch-Davies initial conditions taken literally would correspond to

imposing these conditions for all Fourier modes k including the limit k → 0. However,

this is not possible for the most realistic inflationary models including the local R2 model.

For our purposes, it is sufficient to impose the adiabatic vacuum initial conditions for all

Fourier modes which are deep inside the Hubble radius at the beginning of the inflationary

stage. In the leading order in slow roll, the sub-Hubble limit of the mode function can be

approximated as

ũk =
H√
2k3

eikτ (1− ikτ) . (3.7)

The curvature perturbation is defined as

R = Ψ +H
δR

˙̄R
= Ψ− 24H3

24HḢ
Ψ ≈ −1

ε
Ψ = − 1

2ε

1√
3F1R̄

H√
2k3

eikτ (1− ikτ) , (3.8)

and is (approximately) time-independent on super-Hubble scales k � aH. The primordial

power spectrum and its tilt can be computed as

PR =
H2

16π2ε2
1

3F1R̄

∣∣∣∣
k=aH

, ns ≡
d lnPR
d ln k

∣∣∣∣
k=aH

≈ 1− 2

N
, (3.9)

where N is the number of e-folds and ε = − Ḣ
H2 ≈ 1

2N . We can notice that the scalar

spectral index remains exactly same as for the local R2 model. From the Planck data [74]

the power spectrum at the pivot scale k∗ = 0.05Mpc−1 is P∗R ∼ 2.2× 10−9. Using this we

get the mass of scalaron, Hubble parameter and Ricci scalar at k∗ = aH as

M ≈ 1.3×10−5× 55

N∗
Mp, H ≈

√
M2

6ε
≈ 5.6×10−5× 55

N∗
Mp, R̄∗ ≈ 220M2× 55

N∗
. (3.10)

Here N∗ is the number of e-foldings before the end of inflation for pivot scale k∗.

The second order action for the canonically normalized tensor perturbations in the de

Sitter approximation (applying R̄�M2) is

δ2S(T ) =
1

2

∫
d4x
√
−ḡh⊥ije

2γT

(
�s− 2R̄

3M2
s

)(
�̄− R̄

6

)
h⊥ij , (3.11)
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where the subscript (T ) stands for tensor part and γT here is an entire function4 which is

related to the form-factor as

FW (�s) =
F1R̄

M2
s

e
γT

(
�s− 2

3
R̄

M2
s

)
− 1

�s − 2R̄
3M2

s

. (3.12)

Following the standard procedure for getting the tensor power spectrum and its tilt

one yields [11]

PT =
1

12π2F1
(1− 3ε) e

−2γT

(
− R̄

2M2
s

)∣∣∣∣∣
k=aH

,

nt ≡
d lnPT
d ln k

∣∣∣∣
k=aH

≈ −d lnPT
dN

(
1 +

1

2N

)∣∣∣∣
k=aH

≈ − 3

2N2
−
(

2

N
+

3

2N2

)
R̄

2M2
s

γ
(†)
T

(
− R̄

2M2
s

)∣∣∣∣
k=aH

,

(3.13)

The crucial difference here in comparison with local R2 model is that the tensor power

spectrum is scaled by an exponential factor of γT evaluated at the pole of the tensor mode

�̄s = R̄
6M2

s
and accordingly tensor tilt also gets modified with a term proportional to the

derivative of γT at �̄s = R̄
6M2

s
.

The ratio of tensor-to-scalar power spectra is given by [11]

r =
12

N2
e
−2γT

(
−R̄

2M2
s

)∣∣∣∣∣
k=aH

. (3.14)

In the local R2 model r = 12
N2 = 3(1 − ns)2 as it follows from the original computation of

scalar and tensor power spectra generated during inflation provided in [73]. We can clearly

notice that if γT

(
−R̄

2M2
s

)
= 0 one exactly recovers the same prediction as in the local R2

model. A deviation from the local R2 model happens if

γT

(
−R̄

2M2
s

) ∣∣∣∣∣
k=aH

∼ O (1) . (3.15)

From (3.14) and (3.13) we can see that the values of (r, nt) explicitly depend on the ratio

of scalar curvature to the square of M2
s and the choice of entire function γT (�s). The

scalar curvature R̄ during inflation can be read from (3.10). The two observables (r, nt)

can be fixed by the parameter space{
− R̄

2M2
s

, γT

(
− R̄

2M2
s

)
, γ

(†)
T

(
− R̄

2M2
s

)}∣∣∣∣∣
k=aH

. (3.16)

From the latest Planck 2018 data [58] we can deduce the following constraint (for N∗ = 55)

r < 0.064 =⇒ γT

(
− R̄

2M2
s

) ∣∣∣∣∣
k=aH

> −1.32 . (3.17)

4Note that in the notation of [11], ω (�s) = γT
(
�s − 2R̄

3M2
s

)
.
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Figure 2. In the above plots, we depict (r, nt) versus the scale of non-locality Ms for the form-

factor (3.19) and N∗ = 55. We have taken α2 = 0.52, 0.28, 0.13, 0.065 (corresponding to brown

full and dashed, black full and dashed lines respectively). In the right panel the lines with nt > 0

correspond to α1 = 2.5 and the lines with nt < 0 correspond to α1 = −2.5. In both the plots, we

can notice that in the limit Ms →Mp we recover the predictions of the local R2 model.

We have no constraint on the tensor tilt however. Imposing a heuristic limit on tensor tilt

−4 . nt . 4 we get a constraint on parameter space (3.16) as

− 2N . − R̄

2M2
s

γ
(†)
T

(
− R̄

2M2
s

) ∣∣∣∣∣
k=aH

. 2N . (3.18)

To illustrate novel configurations which become accessible thanks to the presence of

the AID operators let us consider the following form of the entire function

γT

(
�s −

2R̄

3M2
s

)
≈
(
�s −

2R̄

3M2
s

)[
α1

3

(
�s −

R̄∗
6M2

s

)
+ α2

(
�s −

2R̄

3M2
s

)]
, (3.19)

where the approximation sign means that contributions of higher orders of the

d’Alembertian operator are negligible when one evaluates this entire function and its deriva-

tive at �s = R̄
6M2

s
. From the point of view of the UV completion the entire function here

should provide a suppression of the propagator at large momenta and as such one should

worry about the sign of the coefficient in front of the highest degree of the d’Alembertian

operator [75]. On the other hand this implies that given there are terms O(�s) in (3.19)

one can freely choose signs of parameters α1,2.

In this particular example we see that r depends on α2 and Ms because the co-

efficient of α1 vanishes when evaluated at �s = R̄
6M2

s
. But the tensor tilt nt depends on

(α1, α2,Ms). In figures 2 and 3 we present the predictions for (r, nt) for some values of pa-

rameter space (α1, α2) and we takeMs & H following the hierarchy in the scheme figure 1.

Given we have free parameter space related to the form-factor between the Weyl tensors

in the action, the predictions of the non-local R2-like model for (r, ns, nt) lies within the

future of scope of CMB experiments. Detection of primordial gravitational waves in the

view of future CMB experiments such as BICEP2/Keck, CMB S-4, SO, LiteBIRD and

PICO can fix the form-factor and the scale of non-locality [76–83]. In figure 4 we compare

the predictions of non-local R2-like model with the local R2 model in (ns, r) plane. Even
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Figure 3. In the above plots, we depict (r, nt) versus the scale of non-locality Ms for the form-

factor (3.19) and N∗ = 55. We have taken α2 = −0.06,−0.04,−0.025,−0.01 (corresponding to solid

red, dashed red, solid blue and dashed blue lines respectively). In the right panel the lines with

nt > 0 correspond to α1 = 2.5 and the lines with nt < 0 correspond to α1 = −2.5. In both the

plots, we can notice that in the limit Ms →Mp we recover the predictions of the local R2 model.

Figure 4. In the above plot, we depict the predictions of non-local R2-like inflation in the (ns, r)

plane of the latest CMB S-4 science paper about future forecast of detecting B-modes [79].

though r and nt are not detected so far, the latest Planck data presents a likelihood analysis

for the values of nt which is an important parameter for inflationary setup as shown in

figure 5. In the single field models of inflation we get r = −8nt (which holds for the local R2

model as well) and this is in general proposed to be a crucial test. In multifield models or

non-canonical models of inflation this consistency relation gets violated due to isocurvature

perturbations and/or non-zero sound speed of curvature perturbation [84, 85]. In many of

the inflationary setups (except some special cases [86]) tensor tilt is found to be negative

and it is regarded as a unique test for inflationary framework given that some alternative

frameworks to the inflationary paradigm predict a blue tilt of tensor fluctuations [87].
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Figure 5. In the above plot, we note that the predictions of non-local R2-like inflation can be

anywhere within the likelihood projected (nt, r) plane of latest Planck 2018 [78].

As it becomes obvious in our case of a non-local R2-like inflation we can achieve the

blue tilt. Therefore, we stress that a detection of a blue tensor tilt cannot rule out inflation

in general.

4 Third order perturbations and inflationary bi-spectrum

In this section, we compute the 3rd variation of the action (2.1) around (2.4) within the

slow-roll approximation of the local R2 inflationary solution. Then we compute the infla-

tionary bi-spectrum of AID gravity and we especially quantify non-local corrections to the

local R2 gravity up to the leading order in the slow-roll approximation. Using the standard

methods, the expectation value of 3-point correlations can be computed as [60, 64, 88–90]

〈R (k1)R (k2)R (k3)〉 = −i
∫ τe

−∞
adτ〈0|[R(τe, k1)R(τe, k2)R(τe, k3), Hint]|0〉 , (4.1)

where ki are wave vectors and Hint is the interaction Hamiltonian. It is related to a pertur-

bation of the Lagrangian (2.1) expanded up to the 3rd order in curvature perturbations (L3)

as Hint ≈ −L3 that is a valid approximation during slow-roll inflationary regime [60, 64].

The integral (4.1) describes non-linear evolution of inflationary perturbations produced in

the adiabatic vacuum initial state which we compute in the limit when cosmological scales

exit the Hubble radius. Since during quasi-de Sitter expansion τ ≈ − 1
aH , it is a good

approximation to calculate the integral in the limit τe → 0 [64]. In the Fourier space, the

three-point correlation function of curvature perturbations is defined as

〈R (k1)R (k2)R (k3)〉 = (2π)3 δ3 (k1 + k2 + k3)BR (k1, k2, k3) , (4.2)
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where BR (k1, k2, k3) is called the bi-spectrum and |ki| = ki. Due to the translational

invariance, the total momentum K = k1 + k2 + k3 is conserved. Scale invariance and

rotational invariance imply that the 3-point function BR (k1, k2, k3) has to be homogeneous

function of degree −6 that means

BR (λk1, λk2, λk3) = λ−6BR (k1, k2, k3) , (4.3)

and the number of independent variables of the 3-point function reduces to 2 which are

the ratios k2
k1
, k3
k1

[91].

In the template of CMB observations, non-linear corrections in the curvature pertur-

bation expressed as [92, 93]

R = Rg −
3

5
fNL

(
R2
g − 〈Rg〉2

)
, (4.4)

where Rg is the Gaussian random field and the fNL is the non-linearity parameter.5 Then

BR (k1, k2, k3) = 4π4 1∏
i k

3
i

P2
RAR (k1, k2, k3) , (4.5)

where AR (k1, k2, k3) is called the amplitude of bi-spectrum. In the momentum space, fNL

is a function of three wave numbers and it is related to the amplitude of bi-spectrum as

fNL = −5

6

AR (k1, k2, k3)∑
i k

3
i

. (4.6)

The fNL defined above is often called as the reduced bi-spectrum.

We calculate below the action (2.1) in the cubic order in curvature perturbations

and the corresponding 3-point correlations (4.1) up to the leading order in the slow-roll

approximation using the following procedure.6 We presented details of computations and

results in the appendix C.

• We use the fact that Φ + Ψ ≈ 0 during the inflationary period as it was shown

in [10, 11] and noted in the previous section.

• From the second order action for canonical variable Υ, we can deduce that

�sΨ ≈
M2

M2
s

Ψ =⇒ �nsΨ ≈
(
M

Ms

)2n

Ψ , (4.7)

within the quasi-de Sitter approximation. In other words, we treat Ψ as an eigenmode

of the d’Alembertian in the computation of the 3rd order action up to the leading

5The factor of 3
5

comes from the relation between curvature perturbation R and the Bardeen variable

Φ (Newtonian potential) during matter domination which reads as R = − 5
3
Φ.

6Usually, in scalar field models of inflation, the 3rd order action is computed using the Arnowitte-

Deser-Misner (ADM) formalism where spatial slicing (reparametrizing spatial coordinates) is chosen such

that perturbations of a scalar field always vanish. In this gauge choice the spatial part of the metric

becomes e2Rδijdx
idxj [88]. We however do computations in the Jordan frame and thus do not require

such a gauge choice related to slicing of a 3-dimensional metric. We stick to a more convenient in our case

gauge invariant approach which leads to the gauge invariant metric (3.1). This corresponds to choosing the

Newtonian gauge.
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order slow-roll approximation. To perform this step, first we must eliminate the terms

in the 3rd order action which are proportional to linearized equations of motion via

a suitable field redefinition [60].

• We carefully keep terms up to the leading order in ε and neglect higher order contri-

butions treating ε ≈ const. In this regard, to convert the 3rd order action in Ψ into

curvature perturbation R, we make substitution Ψ ≈ −εR which follows from (3.8).

• Using the following approximations, we can bring the 3rd order action into a conve-

nient form to compute 3-point correlations (4.1)

�̄sR ≈
M2

M2
s

R =⇒ O
(
�̄s
)
R ≈O

(
M2

M2
s

)
R

�̄sR′ ≈
(
�̄s
M2

s

+
R̄

4M2
s

)
R′ =⇒ O

(
�̄s
)
R′ ≈O

(
M2

M2
s

+
R̄

4M2
s

)
R′ ,

(4.8)

where O (�s) can be any analytic non-local operator which can be Taylor expanded

in terms of d’Alembert operators. The second relation above is the result of the

following general commutation relation [94]

∇µ�sφ = �s∇µφ−
Rµν
M2

s

∇νφ , (4.9)

where φ is a scalar. In the slow-roll approximation, R̄µν ≈ R̄
4 gµν , so we can approxi-

mate it as

∇µF (�s)φ ≈F
(
�s −

R

4M2
s

)
∇µφ . (4.10)

• We must be careful when applying the quasi-de Sitter approximation, especially when

infinite derivatives are acting on a quantity. For example, the background Ricci scalar

should not be treated as a constant until all the infinite tower of d’Alembertians are

applied, otherwise we might end up with a zero contribution. As a consequence

we would miss some terms when collecting next order non-zero contributions. For

example, let us consider the following term∫
d4x
√
−ḡδRδF (�s) δR ≈ 4ε2

∫
d4x
√
−ḡR̄R

∞∑
n=0

fn

n−1∑
l=0

�̄lsδ�s�̄
n−l−1
s R̄R

R̄=const
≈ 4ε2

∫
d4x
√
−ḡR̄Rδ�sZ1

(
�̄s
)
R̄R R̄=const

= 0 .

(4.11)

Looking carefully at the above derivation, we can see that passing from the first line to

the second one, our assumption of approximating R̄ ≈ const can be perfectly justified

for every action of the d’Alembert operator, but using the same approximation in the

next step would give us a null result due to the fact that Z1

(
�̄s
)
R = F (†)

R

(
M2

M2
s

)
R =

0 that follows from (2.6). Thus, we do not treat R̄ = const in the second line, rather

we apply the background solution �̄R̄ = M2R̄ and ˙̄R ≈ −2R̄Hε, and then we

capture next order terms in the slow-roll approximation that provides us with new
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interactions of curvature perturbations and leads to a non-zero contribution to the

3-point function (cf. (C.13)). The crucial lesson here is if any result of a computation

gives zero, we must go to next to leading order in slow-roll, as far as we want to find

a non-zero answer.

• In our approach, perturbed modes which began in the adiabatic vacuum state when

being deep inside the Hubble radius during inflation are evaluated when they left

this region (rigorously speaking, after some amount of e-folds, large but still much

less than H2/|Ḣ|, when they had reached their constant value in the super-Hubble

regime). Given the fact the leading mode of curvature perturbations remains constant

after that as far as k � aH, the three point correlations of R do not evolve there,

too. This means that they keep information of primordial interactions of scalar

modes during the period −∞ < τ < τe where τe ∼ − 1
K is a (conformal) time after

few e-foldings of the Hubble radius exit [95].

Using the above steps, we write below the result of a long and tedious computation pre-

sented in the appendix C. Our obtained cubic order action in R of AID gravity in the

leading order slow-roll approximation is

δ(3)S(S) = 4εM2
p

∫
dτd3x

{
T1R∇R · ∇R+ T2RR′2 + T3H2R3 (4.12)

+ T4HRRR′ + T5H−1∇R · ∇RR′ + T6H−1R′3 + T7H−2R′∇R · ∇R′
}
,

where Ti’s are dimensionless constants which can be read from (C.46). Here we present the

final result for the amplitude of bi-spectrum after numerous simplifications and neglecting

terms that are higher order in slow-roll:

AR (k1, k2, k3) = −
(

2ε+
3ε2

4

)
A1 +

(
2ε+

3ε2

4

)
A2 −

ε2

2
A3

+
R̄

M2
p

ε3TNL

[
16

3
εA2 − 32A4 + 2A5 − 2A6 +

16

3
εA7

]

+
4R̄2

M2
pM2

s

ε4F (†)
R

(
R̄

4M2
s

)(
A2 +

1

3
A7

)
,

(4.13)

where the terms Ai indicate the contributions from 8 types of interactions of curvature

perturbations which can be read from (C.37) to (C.44)

A1 = 2k1 · k2

[
K − k1k2 + k2k3 + k3k1

K
− k1k2k3

K2

]
+ perms ,

A2 =
2k2

1k
2
2

K
+

2k2
1k

2
2k3

K2
+ perms ,

A3 = −K
3

3
+ 2Kk1k2 +

k1k2k3

3
+ perms
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A4 = k2
3

[
−4K

3
− 2k1k2

K
− 2k1 + 2k2

3

]
+ perms ,

A5 = 2 (k1 · k2) k2
3

[
2

K
+

2k1 + 2k2

K2
+

4k1k2

K3

]
+ perms ,

A6 =
12k2

1k
2
2k

2
3

K3
,

A7 = (k2 · k3) k2
1k

2
3

[
− 2

K3
− 6k2

K4

]
+ perms , (4.14)

where K = k1 + k2 + k3 and

TNL =

[
FR
(
M2

M2
s

+
R̄

4M2
s

)
−F1

]∣∣∣∣∣
K=aH

≈

[
FR
(

R̄

4M2
s

)
−F1 + ε

R̄

8M2
s

F (†)
R

(
R̄

4M2
s

)]∣∣∣∣∣
K=aH

.

(4.15)

The non-Gaussianity parameter fNL can be obtained by substituting (4.13) in (4.6).

In the AID gravity, we can qualitatively see that we depart from the local theory due

to the additional non-local interactions of the curvature perturbation listed from (C.40)

to (C.45). This can for example imply that the long wavelength mode that is exited

the Hubble radius can strongly interact with the short wavelength mode that is crossing

the Hubble radius. Although this effect is present in the case of standard single field infla-

tion [60, 96], it is significantly suppressed by slow-roll. Enhanced non-Gaussianities beyond

the standard single field only known to occur in the context of non-canonical and/or mul-

tifield models of inflation [96, 97]. Our case significantly differs from this so far well known

physics of inflation. We have obtained enhanced non-Gaussianities due to non-localities

present in AID gravity leading to non-local interactions of the only propagating scalar

mode of the theory.7 A trivial observation we can make is that the contributions (C.40)

to (C.45) do not appear in local theory. From the observational point of view, three con-

figurations of reduced bi-spectrum fNL for squeezed (k1 → 0, k2 = k3 = k
2 ), equilateral

(k1 = k2 = k3 = k) and orthogonal (k1 = k2 = k/4, k3 = k/2) are the most relevant.

We can easily verify that our computation of bi-spectrum reduces to the result of the

local R2 model in the limit TNL → 0 and F (†)
R

(
R̄

4M2
s

)
→ 0. Especially, we can verify here

the result of squeezed shape (k1 � k2 ∼ k3)

fNL ≈
5

12
(1− ns) +O

(
ε2
)
, (4.16)

which is exactly the Maldacena consistency relation found in the single canonical scalar

field inflation [60]. Note here that the Maldacena consistency relation was alternatively

derived on kinematic grounds and was proven to be valid in general for single clock slow-roll

models of inflation [61, 63]. The proof is based on the fact that in the standard slow-roll

inflation the long wavelength mode that is far outside of the horizon effectively implies

7Note that the sound speed of curvature perturbation in our case is unity, so our result is fundamentally

very different from single field non-canonical models [96].
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a renormalization of the background field and the corresponding rescaling of the short

wavelength mode [61, 88]. However, it is known that even in the case of a single field slow-

roll inflation, the consistency relation can be violated if the second, time dependent, mode

of curvature perturbations R (often dubbed as the decaying mode) becomes important

temporarily, so that the total R can not be considered as a constant during this period [98–

100]. In this connection, there is a very instructive calculation of the bi-spectrum for

the single field inflationary model [101] that has ns = 1 exactly, i.e. outside the slow-

roll approximation. In this case, contrary to the zero non-Gaussianity parameter value

predicted by the Maldacena consistency relation, fNL is non-zero and strongly (∝ k2
1) scale-

dependent [98]. This example shows also that the violation of the consistency condition

for the bi-spectrum does not necessarily lead to the appearance of any new features in the

spectrum itself.

In our case, the framework differs from standard single clock models. Even though still

we have the slow-roll regime, the non-local nature of gravity leads to considerable effects at

non-linear level where we have new scale-dependent interactions between different modes

depending on the background scalar curvature and the form factor FR (�). In the case of

local R2 theory interactions between different modes is slow-roll suppressed and leads to the

consistency relation [60] but in the case of non-local R2-like inflation, the non-linear evolu-

tion of the curvature perturbation gets a significant scale dependence due to non-locality,

especially around the scales of Hubble radius exit k ∼ aH when R̄ &M2
s, leading to viola-

tion of consistency relation. This means that we get enhanced scale dependent interactions

between the intermediate modes R with k ∼ aH and long wavelength modes with k � aH.

Being more precise, at the second order action level (3.5) we can perform a field redefini-

tion and do canonical normalization that gives the nearly scale invariant power spectrum

that matches with the local theory exactly. At the level of the third order action (4.12)

we invoke the effects of strong scale dependent non-local interactions (especially those in-

teractions with time derivatives of different curvature modes8) between different modes in

the next to leading order approximation in slow-roll as discussed around (4.7)–(4.11) and

in appendices B and C. It is crucial to emphasize that the key role in the modification of

the consistency relation comes from these scale-dependent interaction terms whose effects

are negligible in the regime when R̄ � M2
s but relevant in the regimes of R̄ &M2

s. We

can see that the presence of non-local interactions of the different modes in our case gives

a result for non-Gaussianity somewhat similar to one in a quasi-single field inflation [70]

where heavy fields with masses of the order of Hubble parameter interact during inflation

with curvature perturbation. These novel non-local interactions result in various scale de-

pendent shapes (C.40)–(C.45) which do not resembles ones known in the literature [91].

Indeed, these non-standard interactions yield the violation of the consistency relation.

Below we discuss standard shapes of the reduced bi-spectrum which are squeezed,

equilateral and orthogonal configurations. As explained above the shapes in question can

be discriminated in the non-local R2-like inflation in comparison to the original local R2

8Interactions without any time derivatives of curvature perturbation are slow-roll suppressed, therefore,

we have dropped them in our computation since we are interested in only leading order contributions.
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model as well as other general scalar field(s) inflationary scenarios [66, 88, 91] due to non-

local nature of gravity. Considering the general structure of the form-factor in (3.3), we

obtain three shapes of reduced bi-spectrum fNL in the leading order approximation as

f sq
NL≈

{
5

12
(1−ns)−23ε2

[
e
γS

(
R̄

4M2
s

)
−1

]
− 4R̄

M2
s

ε3e
γS

(
R̄

4M2
s

)
γ

(†)
S

(
R̄

4M2
s

)}∣∣∣∣∣
k=aH

f eq
NL≈

{
5

12
(1−ns)−49ε2

[
e
γS

(
R̄

4M2
S

)
−1

]
− 9R̄

M2
s

ε3e
γS

(
R̄

4M2
s

)
γ

(†)
S

(
R̄

4M2
s

)}∣∣∣∣∣
k=aH

fortho
NL ≈

{
5

12
(1−ns)−43ε2

[
e
γS

(
R̄

4M2
s

)
−1

]
− 22R̄

3M2
s

ε3e
γS

(
R̄

4M2
s

)
γ

(†)
S

(
R̄

4M2
s

)}∣∣∣∣∣
k=aH

.

(4.17)

From the above result for fNL we can deduce that the reduced bispectrum in the non-local

R2-like inflation depends not only on the slow-roll parameter ε but also on the background

quasi-de Sitter curvature R̄ and the non-local interactions that arise due to the perturba-

tive expansion of form factor FR
(
�̄
)

as discussed above in this section. We can also notice

that our results for the reduced bispectrum in (4.17) indicate a possible running of reduced

bispectrum fNL. For the time being we postpone the corresponding study for future inves-

tigations. In (4.17), we have presented only the leading order terms in ε from both the

local and non-local contributions (cf., (4.13)). The parameter space that determines the

different shapes of reduced bipsectrum (4.17) is{
R̄

4M2
s

, γS

(
R̄

4M2
s

)
, γ

(†)
S

(
R̄

4M2
s

)}∣∣∣∣∣
k=aH

(4.18)

From (4.17) we notice that if γS

(
R̄

4M2
s

) ∣∣∣
k=aH

= γ
(†)
S

(
R̄

4M2
s

) ∣∣∣∣∣
k=aH

= 0, we recover the

result of local R2 theory in the leading order [88].

To see quantitatively the measure of non-Gaussianities, let us consider the following

couple of choices of entire function γS which are compatible with (3.4). Moreover we would

require an entire function to be compatible with (A.13) which reflects an assumption that

the higher derivative form-factors do not break the slow-roll approximation scheme (see

appendix A.2 for a more detailed explanation).

Our first simplest choice of entire function is as below

γS (�s) ≈ β1�s

(
�s −

M2

M2
s

)
. (4.19)

The second choice we consider below is higher order in d’Alembertian with a property of

γS

(
R̄

4M2
s

)
= 0. This implies the second terms in (4.17) vanish but the 3rd terms can be

present and dominate the local contribution depending on the scale of non-locality

γS (�s) ≈ β2

(
�s −

M2

M2
s

)(
�s −

R̄∗
4M2

s

)(
�s +

R̄

4M2
s

)6

. (4.20)
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Figure 6. In the above plots, fNL versus the scale of non-localityMs (in the units of Mp) is depicted

for squeezed k3 � k1 = k2 (blue), equilateral k1 = k2 = k3 (red), and orthogonal k1 = 2k2 = 2k3
(green) configurations for the entire functions (4.19) and (4.20) represented by solid and dashed

lines respectively. Here N∗ = 55 and β1 = 1, β2 = −2. It can be seen that in the limit Ms →Mp,

the predictions of the local R2 model are recovered.

As in the previous section the approximation sign means that there are higher degree terms

in the d’Alembertian operator which would guarantee the supression of the propagator at

large momenta but on the other hand provide a freedom choosing signs of arameters β1,2.

For the above form-factors (4.19) and (4.20) we plot below in figure 6 fNL as a function

ofMs for squeezed, equilateral and orthogonal configurations. Plots are made for N∗ = 55

and β1 = 1, β2 = −2. We can read that for Ms & 5.6 × 10−5Mp, we are well within the

bounds of (1.2). If the scale is 5.6× 10−5Mp <Ms < 6.5× 10−5Mp, we get fNL ∼ ±O(1).

We can also notice that all fNL values for different configurations are negative for the case

of (4.19) and positive in the case of (4.20). The crucial and significant result here is that

the R2-like inflation in AID gravity can give fNL ∼ O(1). Moreover, the non-Gaussianity

parameter can be of either sign on contrary to the local R2 model which yields only positive

values. The large-scale structure observations provide a test-bed for large values of non-

gaussianities [102, 103]. Detecting non-Gaussianities will fix up to some extent the scale

of non-locality and the form-factor. More importantly, we obtain f sq
NL ∼ O(1) in our case

which has been only known to occur in multifield models of inflation where isocurvature

perturbations appear. In our case, although we have only a curvature perturbation here

which gets frozen on super-Hubble scales, corrections due to the presence of non-locality

can result in f sq
NL ∼ O(1). Similarly, detectable levels of f eq

NL, f
ortho
NL have been so far known

to be possible in non-canonical models of inflation where the sound speed of curvature

perturbations is much less unity. In our case, even though the sound speed of curvature

perturbations is unity during inflation, non-local interactions give us f eq
NL, f

ortho
NL ∼ O(1).

This makes the R2-like inflation in AID gravity an interesting target with respect to future

CMB data.
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5 Conclusions

In this paper we have studied an embedding of the local R2 inflationary solution in the

framework of a quadratic in curvatures non-local gravity with analytic infinite derivative

form-factors. The essence of the present paper is the computation of the scalar non-

Gaussinaities (3-point scalar correlations) and the subsequent attempt to constrain the

higher-derivative form-factors based on the existing observational data.

A strong point of R2-like inflation in the presented non-local gravity setting is that

the scalar spectral index ns remains the same as in the local R2 gravity and thus best

fits the current CMB data [58]. However, the tensor-to-scalar ratio and the tensor tilt

get modified from the standard consistency relation due to the addition of the Weyl tensor

squared term with an analytic non-local form-factor in the action [11]. The analysis reveals

that the tensor-to-scalar ratio can acquire any value from the present upper bound all the

way down to 10−11. Furthermore, the tensor tilt is not sign constrained in this model

a priori and can take any value in the range −O(1) < nt < O(1). In particular this

disregards possible claims that a sign of the tensor tilt may prove or disprove the inflation

as such and moreover a possible blue tensor tilt would highly favor the model outlined in

the present paper. In general the performed analysis makes the presented scenario to be a

very interesting candidate to be tested within the scope of several future experiments such

as BICEP2/Keck, CMB S-4, SO, LiteBIRD and PICO [76–83].

As the main advance in this paper we have computed following the standard meth-

ods [60, 90] in full scalar non-Gaussianities by means of deriving the 3rd order variation of

the action around the R2-like inflationary solution up to the leading order in the slow-roll

approximation. We demonstrate that the scalar bi-spectrum contribution comes only from

the quadratic in Ricci scalar term. Assuming suitable form-factors which are compatible

with ghost-free conditions of the theory, we have shown that this model is consistent with

the current CMB data and leads to predictions that can be tested with future CMB exper-

iments. Namely, our results show that it is possible to obtain f sq
NL ∼ O (1) and moreover a

sign of the non-Gaussianity parameter is not fixed. Usually any detection of such a large

and positive non-Gaussianity is attributed to the presence of multiple scalar fields or to an

effect of heavy fields giving rise to non-trivial evolution of curvature perturbations [70, 97],

or to non-slow-roll inflationary scenarios [65]. Our findings present a counterexample to this

common point of view since we obtain just a single adiabatic mode of scalar perturbations

which can lead to detectable values of non-Gaussianity in the squeezed (local) limit due

to the presence of non-local interactions already at the tree level. Furthermore, building a

chance to gain large non-Gaussianity parameter of either sign seems to be a unique feature

of the present model.

Moreover, R2-like inflation in our setup would also lead to detectable non-Gaussianities

in equilateral and orthogonal shapes which is again due to non-local interactions of cur-

vature perturbations when its Fourier modes exit the Hubble radius during inflation. In

turn, this presents an alternative to the occurrence of similar large non-Gaussianities in

non-canonical models of inflation [62] in which the sound speed of curvature perturbations

is much less than unity. We emphasize that the sound speed of curvature perturbations in
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our case is unity during inflation, and different non-Gaussian shapes are solely due to the

effect of non-local interactions.

Therefore, any detection of fNL ∼ O (1) or any departure from a standard single

field consistency relation can be easily attributed to higher derivative effects in the early

Universe. A possible negative values of would be detected non-gaussianity parameters will

raise even more the chance for our analytic infinite derivative gravity modification setup

to become the favorite one. In particular such effects can be put to test in the large-scale

structure observations [102–104]. Also our results suggest that the shape of the form-factor

FR (�s) can be probed by observations.

In all the instances detectable deviations from so called standard expectations for

parameters are subject to the ratio of Ms/Mp which is engaged in the hierarchy with the

scalaron mass as expressed in (2.7) and (2.8)

M2 �M2
s .M

2
p and M2 � H2 . (5.1)

ForMs approaching the Planck scale, our results reduce to the ones known from the local

R2 model providing no novel detectable signatures of the model. However, the smaller is

the scale of the higher derivative gravity modification, the greater is a possible departure

towards large non-Gaussianities in particular. To get a more detailed picture, one needs

to constrain the shapes of form-factors which is a well more complicated task requiring

more theoretical thinking rather than comparison with observational data. Nevertheless,

computing other types of 3-point correlations with the aim to get even more constraints

from existing datasets is a very interesting question for forthcoming publications.
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A Equations of motion, slow-roll approximation and perturbations

The equations of motion for the action (2.1) are [16]

Eµν ≡−
[
M2
p + 2λFR (�s)R

]
Gµν −

λ

2
RFR (�s)Rδ

µ
ν + 2λ (∇µ∂ν − δµν�)FR (�s)R

+ λKµν −
λ

2
δµν

(
Kσσ + K̃

)
+ 2λ(Rαβ +∇α∇β)FW (�s)W

αβµ
ν

+
λ

2
δµνW

αβλσFW (�s)Wαβλσ − 2λWµ
αβσFW (�s)W

αβσ
ν

+ λΩµ
Wν −

λ

2
δµν (Ω σ

Wσ + Ω̃W ) + 4λ∆µ
Wν = 0 .

(A.1)
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where

Kµν =
1

M2
s

∞∑
n=1

fRn

n−1∑
l=0

∂µ�lsR∂ν�
n−l−1
s R, K̃=

∞∑
n=1

fRn

n−1∑
l=0

�lsR�
n−l
s R

Ωµ
Wν =

1

M2
s

∞∑
n=1

fWn

n−1∑
l=0

�lsW
α
βλσ;ν�

n−l−1
s W βλσ;µ

α , Ω̃W =
∞∑
n=1

fWn

n−1∑
l=0

�lsW
α
βλσ�

n−l
s W βλσ

α

∆µ
Wν=

1

M2
s

∞∑
n=1

fWn

n−1∑
l=0

[�lsW
λβ
σα�

n−l−1
s W µσα

λ;ν −�
l
sW

λβ
σα;ν�

n−l−1
s W µσα

λ ];β . (A.2)

In the above expressions ∇ and ; denote covariant derivatives.

A.1 Slow-roll approximation

During the quasi-de Sitter expansion, R̄ is nearly constant that means

H ≈ const , a ≈ a0e
Ht , (A.3)

Rσµνρ ≈
R

12
(δσν gµρ − δσρ gµν) , Rµν ≈

R

4
δµν , R ≈ const. (A.4)

In terms of the conformal time, the de Sitter space-time is defined by

a ≈ − 1

Hτ
, H ≈ −1

τ
and H′ ≈ H2 ≈ 1

τ2
. (A.5)

Quasi-de Sitter space is a slight departure from the exact de Sitter which can be defined

by the slow-roll parameter

ε = − Ḣ

H2
≈ M2

6H2
=

1

2N
� 1 , (A.6)

where H = ȧ
a is the Hubble parameter, M is the scalaron mass and N = ln af − ln a is the

number of e-folds during inflation counted from its end (a = af ) backwards in time. The

slow-roll parameter above is for the local R2 inflation (2.5). The following relations are

useful in many of our computations

ε = − Ḣ

H2
= 1− H

′

H2
, ε′ = 2H (1− ε)2 − H

′′

H2
, (A.7)

where H = ȧ
a , H = a′

a are the Hubble parameter in the cosmic and conformal time respec-

tively

R̄ =
6H2

a2

(
H′ +H2

)
∼ 12H2

a2
,

R̄′ =
6H2

a2

(
H′′

H2
− 2H

)
=

6H2

a2

(
−4Hε− ε′

)
≈ −8R̄Hε ≈ −4M2H .

(A.8)

We note that slow-roll would also mean M2 = 6H2

a2 ε = 1
2R̄ε→ 0 which can be easily deduced

using (A.8) and (2.4) in the limit ε� 1. Since R̄′ ∼ O (ε), it implies R̄′′ ∼ O
(
ε2
)
≈ 0.
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A.2 On Φ + Ψ ≈ 0 during quasi-de Sitter expansion

One of the prime result of [11] is that second order action of scalar perturbations in AID

gravity remains the same as the one in the local R2 gravity, around the inflationary solu-

tion (2.5) that satisfies (2.4), up to the leading order in slow-roll approximation. Here we

discuss this point briefly and heuristically show that non-local corrections at the second

order level are indeed negligible. The exact from of second order action of AID gravity

around FLRW space times that satisfy the background equation (2.4) reads as [11]

δ2S =

∫
d4x
√
−g
[
δlocal +

1

2
ζZ2(�̄s)ζ +

1

2
δWµνρσFW (�̄s)δW

µνρσ

]
, (A.9)

where δlocal is the second order variation of an action

Slocal =

∫
d4x
√
−g
(
M2
P

2
R+

1

2
F1R

2

)
, (A.10)

and

ζ =
1

M2
s

[(
�̄−M2

)
δR+ δ�R̄

]
. (A.11)

Moreover it was shown by solving perturbed trace equation of AID gravity that ζ = 0 in the

leading order in the slow-roll approximation, and this is exactly equivalent to Φ + Ψ ≈ 0.

Since the first order variations of the Weyl tensor are proportional to Φ + Ψ ≈ 0, there will

be no scalar contributions from the Weyl tensor term. As a result, we get the scalar power

spectra like in the local R2 model up to the leading order corrections as we discussed in

section 3 and we can also easily get it from (A.9).

Now, we can heuristically translate this result into a condition on the form-factor

FR
(
�̄s
)

by computing the contributions of the second term in (A.9) in the next to leading

order in the slow-roll approximation and showing them to be negligible compared to the

contribution of the local term (A.10). To show this, we consider Φ+Ψ ≈ 0 and �̄Ψ ≈M2Ψ.

Now calculating slow-roll corrections to the second term in (A.9), we obtain∫
d4x
√
−gζZ2

(
�̄s
)
ζ ≈ M4

M4
s

∫
d4x
√
−gδRZ2

(
�̄s
)
δR

≈ M4

M4
s

∫
d4x
√
−gδRF (‡)

R

(
M2

M2
s

)
δR ,

(A.12)

where we applied the approximation R̄ ≈ const, and F (‡)
R

(
M2

M2
s

)
is the second derivative

of the form-factor evaluated at the value of scalaron mass square. To declare that the

contribution (A.12) is negligible compared to the local term from the quadratic part in the

local action (A.10), we require

F1 =
M2
p

6M2
� M4

M4
s

F (‡)
R

(
M2

M2
s

)
. (A.13)

Considering the hierarchy of scales as (2.7), we can easily satisfy the above condition if the

second derivative of the form-factor evaluated at M2 satisfy F (‡)
R

(
M2

M2
s

)
� M2

pM4
s

6M6 .
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B Useful relations for the computation of bi-spectrum

In this section, we provide computations of perturbed curvature quantities and action of

infinite derivatives on them within the slow-roll approximations. Many of the following

simplifications were used in computing the 3-point correlations in the previous section.

Perturbation functions are not space-homogeneous. It is convenient to perform a spa-

tial Fourier transform which for some function ϕ(τ, ~x) in the flat FLRW metric reads

ϕ(τ, ~x) =

∫
ϕ(τ,~k)ei

~k~xd~k . (B.1)

Using the above Fourier representation, we can write

�̄ϕ(τ, ~x) = −
∫

1

a2
(∂2
τ + 2H∂τ + k2)ϕ(τ,~k)d~k . (B.2)

The first and second variations of the d’Alembertian operator are

δ� = 2Ψ�̄+ 2Ψ̇∂t −
2

a2
∇Ψ · ∇

δ2� = 4Ψ2�̄− 8

a2
Ψ∇Ψ.∇+ 8ΨΨ̇∂t .

(B.3)

Below we provide the useful list of perturbations of scalar curvature up to the 3rd order

δR = 2
(
R̄+ 3�̄k

)
Ψ

δ(2)R =
6

a2

[
∇Ψ · ∇Ψ−Ψ′

2
+ 4a2Ψ�Ψ +

2

3
a2Ψ2R̄

]

δ(3)R =
12Ψ

a2

[
3∇Ψ · ∇Ψ− 3Ψ′2 + 6a2Ψ�Ψ +

2

3
a2Ψ2R̄

]

δ
(√
−gR

)
= a4

[
δR− 4ΨR̄

]

δ(2)
(√
−gR

)
= 6a2

[
∇Ψ · ∇Ψ−Ψ′2

]

δ(3)
(√
−gR

)
= 12a2Ψ

[
∇Ψ · ∇Ψ−Ψ′2

]
.

(B.4)

Below we derive some recurrent relations when d’Alembertian operators act on perturbed

quantities

�sδ�sR̄ ≈ �̄s
(

2M2

M2
s

R̄Ψ− 2R̄

M2
s

HεΨ̇

)
≈
(

2M2

M2
s

)2

R̄Ψ− 2R̄

M2
s

Hε

(
M2

M2
s

+
R̄

4M2
s

)
Ψ̇

=⇒ �̄ns δ�sR̄ ≈
(

2M2

M2
s

)(n+1)

R̄Ψ− 2R̄

M2
s

Hε

(
M2

M2
s

+
R̄

4M2
s

)n
Ψ̇

=⇒ O (�s) δ�sR̄ ≈
2M2

M2
s

O
(

2M2

M2
s

)
R̄Ψ− 2R̄Hε

M2
s

O
(
M2

M2
s

+
R̄

4M2
s

)
Ψ̇ .

(B.5)
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In the same way we can compute

�̄sδR≈ 2�̄s
(
R̄Ψ
)

≈ 2
2M2

M2
s

R̄Ψ+2
2R̄

M2
s

HεΨ̇

=⇒ �̄ns δR≈ 2

(
2M2

M2
s

)n
R̄Ψ+

2R̄

M2
Hε

(
2M2

M2
s

)n
Ψ̇+

4R̄Hε

M2
s

(
M2

M2
s
+ R̄

4M2
s

) (M2

M2
s

+
R̄

4M2
s

)n
Ψ̇ .

(B.6)

Using (B.6) we can deduce the following

O
(
�̄s
)
δR ≈ O

(
2M2

M2
s

)
2R̄Ψ +

2R̄

M2
Hε

[
O
(

2M2

M2
s

)
−O(0)

]
Ψ̇

+ 16Hε

[
O
(
M2

M2
s

+
R̄

4M2
s

)
−O(0)

]
Ψ̇ .

(B.7)

Based on generic formula derived in [11]∫
d4x
√
−ḡR̄δ�sX =

∫
d4x
√
−ḡ
[
δ�sR̄−

1

2M2
s

R̄h
(
�̄−M2

)]
X . (B.8)

for any X, we derive the following generic result which we often used in our computation

of the 3rd order action. Computing explicitly the first term we get∫
d4x
√
−ḡδ�sR̄X =

1

M2
s

∫
d4x
√
−ḡ
[
2M2ΨR̄+ 2Ψ̇ ˙̄R

]
X

≈ 1

M2
s

∫
d4x
√
−ḡ
[
M2δR+ 2 ˙̄RΨ̇

]
X .

(B.9)

Substituting the trace of h = ḡµνhµν = 2Φ− 6Ψ ≈ −8Ψ in (B.8), we arrive at∫
d4x
√
−ḡR̄δ�sX ≈

∫
d4x
√
−ḡ 1

M2
s

[
M2δR+2 ˙̄RΨ̇+2

(
�̄−M2

)
δR
]
X

≈−6

∫
d4x
√
−ḡ 1

M2
s

[
˙̄RΨ̇−M2R̄Ψ

]
X ≈ 6

M2
s

∫
d4x
√
−ḡ
[
2R̄HεΨ̇+M2R̄Ψ

]
X .

(B.10)

where we have used �̄δR = 2M2δR− 4 ˙̄RΨ̇.

C Computation of 3-point correlations

In this section, we present detailed computations of the 3-point correlation (4.1). For this,

we first need to expand the action (2.1) up to the cubic order in curvature perturbation

(R) which would be given by

S = δ(2)S(S) + δ(3)S(S) ,
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where

δ(3)S(S) =
M2
p

2

∫
d4xδ(3)

(√
−gR

)
+

1

2

∫
d4x

[
δ3
(√
−gR

)
F1R̄+

√
−ḡF1R̄δ

(3)R

+F1δ
(2)
(√
−gR

)
δR+F1δ

(√
−gR

)
δ(2)R

+δ(2)
(√
−gR

)(
FR (�s)−F1

)
δR+δ

(√
−gR

)(
FR (�s)−F1

)
δ(2)R

+δ(2)
(√
−gR

)
δFR (�s)R̄+

√
−ḡR̄δFR (�s)δ

(2)R+δ
(√
−gR

)
δFR (�s)δR

+δ
(√
−gR

)
δ(2)FR (�s)R̄+

√
−ḡR̄δ(2)FR (�s)δR+

√
−ḡR̄δ(3)FR (�s)R̄

+
√
−ḡδ(2)WµναβFW (�s)δW

µναβ

+
√
−ḡδWµναβFW (�s)δ

(2)Wµναβ+
√
−ḡδWµναβδFW (�s)δW

µναβ

]
. (C.1)

Here we performed integration by parts and used the background solution (2.4). The

contribution from the Einstein-Hilbert term is negligible because the R2 term dominates

during inflation.

Since Φ + Ψ ≈ 0 during inflation, we compute (C.1) up to the cubic order in Ψ ≈ εR
in the leading order slow-roll approximation. From [10], we know that the first variation

of Weyl term only contributes to tensor perturbations and does not lead to scalar pertur-

bations because Φ + Ψ ≈ 0 during inflation. Notice that all the terms in (C.1) contains

at least one first order variation of the Weyl tensor. Therefore, these contributions can be

approximated by zero for the scalar 3-point correlation. As a result, the cubic order scalar

contributions can only arise from the quadratic Ricci scalar term in the action.

Moreover, for the computation of 3-point correlations (4.1) we use the mode functions

evaluated from the second order action of curvature perturbations evaluated is the de

Sitter approximation (3.5) which we recall here again expressing in terms of curvature

perturbation R as

δ(2)S(S) =
M2
p

2
ε

∫
dτd3ka4R

(
�̄−M2

)
R . (C.2)

The above action in the quasi-de Sitter approximation gives two-point correlations pos-

sessing a nearly scale invariant power spectrum which is Gaussian. Non-Gaussianities arise

from 3-point correlations which are computed from the 3rd order action in the next to

leading order in the slow-roll approximation. In the computation of the 3-order action it

is important to eliminate terms proportional to the equation of motion for R (it can be

obtained by varying the action (C.2)) via a suitable field redefinition of R. This is step is

crucial to extract the leading non-linear contributions to curvature perturbations [60, 88].

In the local R2 gravity, it is known that non-Gaussianities are small [60]. However, in the

non-local gravity we have non-local contributions to the bi-spectrum which can be read

from (C.1). Note that in the calculation of bi-spectrum, we can perform the computation

using the leading order in the slow-roll approximation.
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In (C.1) there are several terms involving variations of the form-factor which can be

expanded as

δFR (�s) =
∞∑
n=1

fn
∑

a+b=n−1

�asδ�s�
b
s ,

δ(2)FR (�s) =
∞∑
n=1

fn
∑

a+b=n−1

�asδ
(2)�s�

b
s +

∞∑
n=2

fn
∑

a+b+c=n−2

�asδ�s�
b
sδ�s�

c
s ,

δ(3)FR(�s) =
∞∑
n=1

fn
∑

a+b=n−1

�asδ
(3)�s�

b
s +

∞∑
n=2

fn
∑

a+b+c=n−2

�asδ
(2)�s�

b
sδ�s�

c
s

+

∞∑
n=2

fn
∑

a+b+c=n−2

�asδ�s�
b
sδ

(2)�s�
c
s

+

∞∑
n=3

fn
∑

a+b+c+d=n−3

�asδ�s�
b
sδ�s�

c
sδ�s�

d
s .

(C.3)

Below, we perform the term by term computation of the 3rd order action (C.1) in terms of

the curvature perturbation R and the evaluation of 3-point correlation functions

〈R (k1)R (k2)R (k3)〉 in each case. Note that in all the following calculations, we only

write the interaction terms which are leading order in slow-roll. Also in the calculations

we encounter terms proportional to the quantity

FR
(

2M2

M2
s

)
−F1 ≈ 0 , (C.4)

which is found to be negligible (for the form-factors of the form (3.3)) compared to remain-

ing terms which contribute significantly to the bi-spectrum. Therefore, we drop all these

terms for economic reasons. Also we do not write the interaction terms which only lead to

imaginary values of 3-point correlations, as by definition the 3-point correlation function

is a real quantity (4.1).

First we compute the local contribution of the 3rd order action (C.1) which is the 3rd

variation of the local action below

Slocal =

∫
d4x
√
−g
(
M2
pR+ F1R

2
)
. (C.5)

δ(3)Slocal =

∫
d4x

{[
δ(3)

(√
−gR

)
+
√
−ḡδ(3)R

]
F1R̄

+

[
δ(2)

(√
−gR

)
δR+ δ

(√
−gR

)
δ(2)R

]
F1

}

≈ −2M2
p

(
ε2 +

3

4
ε3
)∫

dτd3xa2

[
8R∇R · ∇R− 8RR′2

]

− 4M2
p ε

3

∫
dτd3xa4R̄R3 − 8ε

∫
dτd3xa4R2∂L2

∂R
+O

(
ε3
)
,

(C.6)
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where ∂L2
∂R is the term proportional to the equation of motion of R following from (C.2).

This term can be eliminated by a field redefinition of R → R + 4εR2 which leads to a

modification of the Gaussian term as

δ(2)S → δ(2)S + 4ε

∫
dτd3xa4R2∂L2

∂R
. (C.7)

This term leads to local contributions to the bi-spectrum which are (C.37) to (C.39)

T1 ⊇ −2ε− 3ε2

4
, T2 ⊇ 2ε+

3ε2

4
, T3 ⊇ −

ε2

2
. (C.8)

Now we calculate 3-point correlations from the following non-local term which does

not involve variation of the form-factor∫
d4x

{
δ(2)

(√
−gR

)[
FR (�s)−F1

]
δR+ δ

(√
−gR

) [
FR (�s)−F1

]
δ(2)R

}

≈ 64ε4TNL

∫
dτd3xa2R̄HR′R2

(C.9)

where

TNL =

[
FR
(
M2

M2
s

+
R̄

4M2
s

)
−F1

]
.

This term contributes to (C.40)

T4 ⊇
8R̄

M2
p

ε3TNL . (C.10)

Let us consider the following term of (C.1) which involve first variation of the form-

factor FR (�s)∫
d4x

[
δ(2)

(√
−gR

)
δFR (�s) R̄+

√
−ḡR̄δFR (�s) δ

(2)R

]

=

∫
d4x

[
δ(2)

(√
−gR

)
Z1 (�s) δ�sR̄+

√
−ḡR̄δ�sZ1 (�s) δ

(2)R

]

=− 24ε4TNL

∫
d4x8HR′

[
∇R · ∇R−R′2 + a2R̄R2

]
.

(C.11)

Passing from the first line to the second one, we have carried integration by parts and used

the background solution �̄R̄ = M2R̄. Passing from the second line to the third one, we

have substituted expressions from (B.4) and the result derived in (B.10). This term gives

the following contribution to the bi-spectrum (C.40)–(C.42)

T4 ⊇ −
24R̄

M2
p

ε3TNL , T5 ⊆ −
2R̄

M2
p

ε3TNL , T6 ⊇
2R̄

M2
p

ε3TNL . (C.12)

Let us now consider the following non-local contribution of (C.1)∫
d4xδ

(√
−gR

)
δFR

(
�̄s
)
δR ≈ −

∫
d4x
√
−ḡδRδ�sZ1

(
�̄s
)
δR

≈ 128ε4TNL

∫
dτd3xa2RH

[
R̄

2
RR′ + 2

a2
R′R′′ − 2

a2
∇R · ∇R′

]
.

(C.13)
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The contributions form this term are (C.40), (C.44) and (C.45)

T4 ⊇
8R̄

M2
p

ε3TNL, T8 ⊇
8R̄

3M2
p

ε3TNL , T9 = − 8R̄

3M2
p

ε3TNL . (C.14)

Let us now consider the following two non-local terms which require second variation of

the form-factor FR (�s). They can be written as two kinds of variations in the following way∫
d4x
√
−ḡR̄δ(2)FR

(
�̄s
)
δR =

∫
d4x
√
−ḡR̄

[
δ(2)FR

(
�̄s
) ∣∣∣∣∣
δ(2)�s

]
δR

+

∫
d4x
√
−ḡR̄

[
δ(2)FR

(
�̄s
) ∣∣∣∣∣
δ�sδ�s

]
δR .

(C.15)

Calculating the first part in (C.15), we obtain∫
d4x
√
−ḡR̄

[
δ(2)FR

(
�̄s
) ∣∣∣∣∣
δ(2)�s

]
δR

=

∫
d4x
√
−ḡR̄

∞∑
n=1

fn

n−1∑
l=0

�̄lsδ
(2)�s�̄

n−l−1
s δR =

∫
d4x
√
−ḡR̄δ(2)�sZ1

(
�̄s
)
δR

≈− 64ε4TNL

∫
dτd3xa2H

[
R̄R2R′ + 8

a2
RR′R′′ − 8

a2
R∇R · ∇R′

]
.

(C.16)

The contributions from this term are (C.40), (C.44) and (C.45)

T4 ⊇ −
8R̄

M2
p

ε3TNL, T8 ⊇ −
16R̄

3M2
p

ε3TNL , T9 =
16R̄

3M2
p

ε3TNL . (C.17)

Let us compute the second term∫
d4x
√
−ḡR̄

[
δ(2)FR

(
�̄s
) ∣∣∣∣∣
δ�sδ�s

]
δR

=

∫
d4x
√
−ḡR̄

∞∑
n=2

fn

n−2∑
l=0

n−2−1∑
k=0

�̄lsδ�s�̄
k
sδs��̄

n−l−k−2
s δR

=

∫
d4x
√
−ḡR̄δ�s

∞∑
n=2

fn

n−2∑
l=0

n−2−l∑
k=0

�̄n−2
s δ�sδR

=

∫
d4x
√
−ḡR̄δ�s

Z2(�̄s) +
F (†)
R

(
M2

M2
s

)
(�− r1)

 δ�sδR
≈ ε2

∫
dτd3xa412

R̄

M2
s

H
a2
Z2

(
M2

M2
s

+
R̄

4M2
s

)
R′δ�sδR

≈− 192M2
sε

4TNL

∫
dτd3xa2HR′

[
2M2

M2
s

R2 +
2

a2M2
s

R′2 − 2

a2M2
s

∇R · ∇R

]
.

(C.18)
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where

Z2 (�s) =
FR (�s)−F1(
�s − M2

M2
s

)2 . (C.19)

The leading contributions from this term are (C.41) and (C.42)

T5 ⊇
4R̄

M2
p

ε3TNL , T6 ⊇ −
4R̄

M2
p

ε3TNL . (C.20)

Similarly, the following non-local contribution can be written as two parts

∫
d4xδ

(√
−gR

)
δ(2)FR

(
�̄s
)
R̄ ≈

∫
d4x
√
−ḡδR

[
δ(2)FR

(
�̄s
) ∣∣∣∣∣
δ(2)�s

]
R̄

+

∫
d4x
√
−ḡδR

[
δ(2)FR

(
�̄s
) ∣∣∣∣∣
δ�sδ�s

]
R̄ .

(C.21)

The first term in (C.21) can be simplified as

∫
d4x
√
−ḡδR

[
δ(2)FR

(
�̄s
) ∣∣∣∣∣
δ(2)�s

]
R̄ =

∫
d4x
√
−ḡδRZ1 (�s) δ

(2)�sR̄

≈
∫
d4x
√
−ḡδRZ1 (�s) δ

(2)�sR̄

≈ − 64ε4TNL

∫
dτd3xa2HR′

[
4M2R2 −Hε16

a2
RR′

]
,

(C.22)

The bi-spectrum contribution from this term is (C.38)

T2 ⊇ −
32R̄

3M2
p

ε4TNL . (C.23)

Now the second term in (C.21) can be worked out as

∫
d4x
√
−ḡδR

[
δ(2)FR

(
�̄s
) ∣∣∣∣∣
δ�sδ�s

]
R̄ =

∫
dτd3xa4δRδ�sZ2(�̄s)δ�sR̄

≈ 4εTNL

∫
dτd3xa2 (−2εR) δ�sHR′ ,

≈ 128ε4TNLM2
s

∫
dτd3xa4R

[
1

a2
H

(
R̄

4M2
s

RR′ + 2

M2
sa

2
R′R′′ − 2

M2
sa

2
∇R · ∇R′

)]
.

(C.24)

The leading contributions from this term (C.40), (C.44) and (C.45)

T4 ⊇ −
8R̄

M2
p

ε3TNL , T8 ⊇ −
8R̄

3M2
p

ε3TNL , T9 ⊇
8R̄

3M2
p

ε3TNL . (C.25)

– 29 –



J
H
E
P
0
6
(
2
0
2
0
)
1
5
2

The terms involving 3rd variation of the form-factor can be split into 4 different type

of terms as below∫
d4x
√
−ḡR̄δ(3)FR (�s) R̄

=

∫
d4x
√
−ḡR̄

[
δ(3)FR (�s)

∣∣∣∣∣
δ(3)�s

]
R̄+

∫
d4x
√
−ḡR̄

[
δ(3)FR (�s)

∣∣∣∣∣
δ(2)�sδ�s

]
R̄

+

∫
d4x
√
−ḡR̄

[
δ(3)FR (�s)

∣∣∣∣∣
δ�sδ(2)�s

]
R̄+

∫
d4x
√
−ḡR̄

[
δ(3)FR (�s)

∣∣∣∣∣
δ�sδ�sδ�s

]
R̄

(C.26)

Calculating the first term we obtain

∫
d4x
√
−ḡR̄

∞∑
n=0

∑
�̄lsδ

(3)�s�̄
(n−l−1)
s R̄ =

∫
d4x
√
−gR̄Z1

(
�̄s
)
δ(3)�sR̄ = 0 , (C.27)

which follows from (2.6). Now calculating the second term in (C.26) we get

∫
d4x
√
−ḡR̄

[
δ(2)FR

(
�̄s
) ∣∣∣∣∣
δ(2)�sδ�s

]
R̄ =

∫
d4x
√
−gR̄δ(2)�sZ2(�s)δ�sR̄

≈ 64ε4M2
sTNL

∫
dτd3xa4

[
1

a2
H

(
4M2

M2
s

R2R′ − 8

a2M2
s

R∇R · ∇R′ + 8

a2M2
s

RR′R′′
)]

.

(C.28)

The leading contributions from (C.28) are (C.44) and (C.45)

T8 ⊇
16R̄

3M2
p

ε3TNL , T9 ⊇ −
16R̄

3M2
p

ε3TNL . (C.29)

We neglect the first interaction term RRR′ in (C.28) in comparison with the first term

in (C.24) within the slow-roll approximation.

Let us now consider the third term in (C.26) and evaluate it as

∫
d4x
√
−gR

∞∑
n=0

fn
∑

a+b+c=n−2

�aδ��bδ(2)��cR

= ε3
∫
d4x
√
−gR̄δ�sZ2(�̄s)δ

(2)�sR̄ ≈ 192TNLε
5

∫
dτd3x16H2RR′2 .

(C.30)

The leading contribution from this term is (C.38)

T2 ⊇
32R̄

M2
p

ε4TNL . (C.31)
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Now expanding the last term in (C.26) we obtain

∫
d4x
√
−ḡR̄

∞∑
n=3

fn

n−3∑
l=0

n−l−3∑
k=0

n−k−l−3∑
m=0

�lsδ�s�
k
sδ�s�

m
s δ�s�

n−l−k−m−3
s R̄ =

∫
d4x
√
−ḡR̄

∞∑
n=3

fn

n−3∑
l=0

n−l−3∑
k=0

n−k−l−3∑
m=0

(
M2

M2
s

)n−k−m−3

δ�s�
k
sδ�s�

m
s δ�sR̄ ≈

− 48T̃NL
64M2

s

R̄
ε5
∫
d3xdτH2R′

(
R̄

2M2
s

RR′ − 2

a2M2
s

∇R · ∇R′
)
,

(C.32)

where

T̃NL =

[
R̄

4M2
s

F (†)
R

(
R̄

4M2
s

)
+ TNL

]
(C.33)

The contributions from this term are (C.38) and (C.43)

T2 ⊇ −
16R̄

M2
p

ε4T̃NL , T7 ⊇
16R̄

3M2
p

ε4T̃NL . (C.34)

In the above derivation we have used the following result

n−3∑
l=0

−l+n−3∑
k=0

−k−l+n−3∑
m=0

xn−k−m−3yk+m =
(n− 2)(xn − yn)− nyxn−1 + nxyn−1

(x− y)3
. (C.35)

Now we collect all the terms above and calculate the bi-spectrum contribution from

each type of interaction substituting the curvature perturbation evaluated in the adiabatic

vacuum initial state (3.8) in (4.1). To illustrate, in the rest of the computations here,

we calculate the 3-point correlation contribution from the interaction R∇R · ∇R of (C.6)

using (3.8) and (4.1)

−i25π7δ3 (k1 + k2 + k3)
1∏

i

(
2k3

i

) H6

28π4ε4

×64ε (k1 · k2)

∫ τe

−∞
dτ

1

τ2
(1− ik1τ) (1− ik2τ) (1− ik3τ) eiKτ

(C.36)

1. Calculating the bi-spectrum contribution due to the interaction R∇R · ∇R, we get

25π7δ3 (k1 + k2 + k3)
1∏
i k

3
i

P2
RT12 (k1 · k2)

[
−K +

∑
i>j kikj

K
+
k1k2k3

K2

]
+ perms9 .

(C.37)

2. Calculating the bi-spectrum contribution due to the interaction RR′2, we get

25π7δ3 (k1 + k2 + k3)
1∏
i k

3
i

P2
RT2

[
2k2

1k
2
2

K
+

2k2
1k

2
2k3

K2

]
+ perms . (C.38)

9where the additional terms are obtained by cycling permutations of momenta.
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3. Calculating the bi-spectrum contribution due to interaction R3, we obtain

25π7δ3 (k1 + k2 + k3)
1∏
i k

3
i

P2
RT3

[
−K

3

3
+ 2Kk1k2 +

k1k2k3

3

]
+ perms . (C.39)

4. Calculating the bi-spectrum contribution due to the interaction RRR′, we obtain

25π7δ3 (k1 + k2 + k3)
1∏
i k

3
i

P2
RT4k

2
3

[
−4K

3
− 2k1k2

K
− 2k1 + 2k2

3

]
+ perms . (C.40)

5. Calculation of the bi-spectrum contribution due to the interaction ∇R ·∇RR′ gives

25π7δ3 (k1 + k2 + k3)
1∏
i k

3
i

P2
RT52 (k1 · k2) k2

3

[
2

K
+

2k1 + 2k2

K2
+

4k1k2

K3

]
+ perms .

(C.41)

6. Calculating the bi-spectrum contribution due to the interaction R′3, we obtain

25π7δ3 (k1 + k2 + k3)
1∏
i k

3
i

P2
RT6

4k2
1k

2
2k

2
3

K3
+ perms . (C.42)

7. Calculating the bi-spectrum contribution due to the interaction R′∇R ·∇R′, we get

25π7δ3 (k1 + k2 + k3)
1∏
i k

3
i

P2
RT7 (k2 · k3) k2

1k
2
3

[
− 2

K3
− 6k2

K4

]
+ perms . (C.43)

8. Calculating the bi-spectrum contribution due to the interaction RR′R′′, we get

25π7δ3 (k1 + k2 + k3)
1∏
i k

3
i

P2
RT8k

2
2k

2
3

[
1

K
+
k1 − k3

K2
− 2k1k3

K3

]
+ perms . (C.44)

9. Calculating the bi-spectrum contribution due to the interaction R∇R · ∇R′, we get

25π7δ3 (k1 + k2 + k3)
1∏
i k

3
i

P2
RT9 (k1 · k2) k2

2

[
1

K
+
k2 + k3

K2
+

2k2k3

K3

]
+ perms .

(C.45)
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where

T1 = −2ε− 3ε2

4
,

T2 =

[
2ε+

3ε2

4
+

16R̄

3M2
p

ε4TNL +
4R̄2

M2
pM2

s

ε4F (†)
R

(
R̄

4M2
s

)] ∣∣∣∣∣
K=aH

,

T3 = −ε
2

2
,

T4 = −TNL
32R̄

M2
p

ε3

∣∣∣∣∣
K=aH

,

T5 = TNL
2R̄

M2
p

ε3

∣∣∣∣∣
K=aH

,

T6 = −TNL
2R̄

M2
p

ε3

∣∣∣∣∣
K=aH

,

T7 =

[
16R̄

3M2
p

ε4TNL +
4R̄2

3M2
pM2

s

ε4F (†)
R

(
R̄

4M2
s

)] ∣∣∣∣∣
K=aH

,

T8 = 0,

T9 = 0 .

(C.46)

We have used the following integrals in the calculation of 3-point functions

Re

[
−i
∫ τe

−∞
eiKτ

]
=

1

K
,

Re

[
−i
∫ τe

−∞
τneiKτ

]
=

∂n

∂Kn

1

K
,

I1 =

∫ τe

−∞
dτ

1

τ
eiKτ = iπ + Ei(iKτe),

In =

∫ τe

−∞
dτ

1

τn
eiKτ ,

In+1 = − 1

n

(
1

τe

)n
eiKτe +

iK

n
In .

(C.47)

Here Ei(z) is the integral exponential function. The integral has to be evaluated in the

limit τe → 0 while convergence at large τ is made possible by the oscillatory behaviour at

τ → −∞. Some of the integrals do diverge in the limit τe → 0 where we must follow the

guidance well explained in [95] which prescribes us to evaluate integrals up to the conformal

times corresponding to the Hubble radius crossing scale, such that K ∼ aH ∼ −O(1)
τe

. For

the purposes of practical computations one fixes Kτe = −1.
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