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We present a review of vector field models of inflation and, in particular, of the statistical anisotropy and non-Gaussianity
predictions of models with SU(2) vector multiplets. Non-Abelian gauge groups introduce a richer amount of predictions compared
to the Abelian ones, mostly because of the presence of vector fields self-interactions. Primordial vector fields can violate isotropy
leaving their imprint in the comoving curvature fluctuations ζ at late times. We provide the analytic expressions of the correlation
functions of ζ up to fourth order and an analysis of their amplitudes and shapes. The statistical anisotropy signatures expected in
these models are important and, potentially, the anisotropic contributions to the bispectrum and the trispectrum can overcome
the isotropic parts.

1. Introduction

In the standard cosmological model, at very early times the
Universe undergoes a quasi de Sitter exponential expansion
driven by a scalar field, the inflaton, with an almost flat
potential. The quantum fluctuations of this field are thought
to be at the origin of both the Large Scale Structures
and the Cosmic Microwave Background (CMB) fluctuations
that we are able to observe at the present epoch [1].

CMB measurements indicate that the primordial density
fluctuations are of order 10−5 have an almost scale-invariant
power spectrum and are fairly consistent with Gaussianity
and statistical isotropy [2–6]. All of these features find a

convincing explanation within the inflationary paradigm.
Nevertheless, deviations from the basic single-(scalar)field
slow-roll model of inflation are allowed by the experimental
data. On one hand, it is then important to search for
observational signatures that can help discriminate among
all the possible scenarios; on the other hand, it is important
to understand what the theoretical predictions are in this
respect for the different models.

Non-Gaussianity and statistical anisotropy are two pow-
erful signatures. A random field is defined “Gaussian” if it
is entirely described by its two-point function, higher order
connected correlators being equal to zero. Primordial non-
Gaussianity [7, 8] is theoretically predicted by inflation: it
arises from the interactions of the inflaton with gravity and
from self-interactions. However, it is observably too small in
the single-field slow-roll scenario [9–11]. Alternatives to the
latter have been proposed that predict higher levels of non-
Gaussianity such as multifield scenarios [12–18], curvaton
models [19–25], and models with noncanonical Lagrangians
[26–30]. Many efforts have been directed to the study of
higher order (three and four-point) cosmological correlators
in these models [11, 22, 29, 31–47] and towards improving
the prediction for the two-point function, through quantum
loop calculations [10, 48–55]. From WMAP, the bounds on
the bispectrum amplitude are given by −4 < f loc

NL < 80 [56]

and by −125 < f
equil
NL < 435 [57] at 95% CL, respectively

in the local and in the equilateral configurations. For the
trispectrum, WMAP provides −5.6 × 105 < gNL < 6.4 × 105

[58], gNL being the “local” trispectrum amplitude from cubic
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contributions (see also [59]), whereas from Large-Scale-
Structures data −3.5 × 105 < gNL < 8.2 × 105 [60], at 95%
CL. Planck [61] and future experiments are expected to set
further bounds on primordial non-Gaussianity.

Statistical isotropy has always been considered one of
the key features of the CMB fluctuations. The appearance
of some “anomalies” [62–65] in the observations though,
after numerous and careful data analysis, suggests a possible a
breaking of this symmetry that might have occurred at some
point of the Universe history, possibly at very early times.
This encouraged a series of attempts to model this event,
preferably by incorporating it in theories of inflation. Let
us shortly describe the above mentioned “anomalies”. First
of all, the large-scale CMB quadrupole appears to be “too
low” and the octupole “too planar”; in addition to that, there
seems to exist a preferred direction along which quadrupole
and octupole are aligned [3, 62, 66–68]. Also, a “cold spot”,
that is, a region of suppressed power, has been observed
in the southern Galactic sky [63, 69]. Finally, an indication
of asymmetry in the large-scale power spectrum and in
higher-order correlation functions between the northern and
the southern ecliptic hemispheres was found [64, 65, 70–
72]. Possible explanations for these anomalies have been
suggested such as improper foreground subtraction, WMAP
systematics, statistical flukes; the possibilities of topological
or cosmological origins for them have been proposed as
well. Moreover, considering a power spectrum anisotropy
due to the existence of a preferred spatial direction n̂ and
parametrized by a function g(k) as

P
(
�k
)
= P(k)

(
1 + g(k)

(
k̂ · n̂

)2
)

, (1)

the five-year WMAP temperature data have been analyzed
in order to find out what the magnitude and orientation of
such an anisotropy could be. The magnitude has been found
to be g = 0.29 ± 0.031 and the orientation aligned nearly
along the ecliptic poles [73]. Similar results have been found
in [74], where it is pointed out that the origin of such a signal
is compatible with beam asymmetries (uncorrected in the
maps) which should therefore be investigated before we can
find out what the actual limits on the primordial g are.

Several fairly recent works have taken the direction of
analysing the consequences, in terms of dynamics of the
Universe and of cosmological fluctuations, of an anisotropic
preinflationary or inflationary era. A cosmic no-hair conjec-
ture exists according to which the presence of a cosmological
constant at early times is expected to dilute any form of
initial anisotropy [75]. This conjecture has been proven to
be true for many (all Bianchi type cosmologies except for the
Bianchi type-IX, for which some restrictions are needed to
ensure the applicability of the theorem), but not all kinds
of metrics and counterexamples exist in the literature [76–
78]. Moreover, even in the event isotropization should occur,
there is a chance that signatures from anisotropic inflation or
from an anisotropic preinflationary era might still be visible
today [79–82]. In the same context of searching for models
of the early Universe that might produce some anisotropy
signatures at late time, new theories have been proposed
such as spinor models [83–86], higher p-forms [87–92] and

primordial vector field models (see Section 2 for a quick
review).

We are going to focus on statistical anisotropy and non-
Gaussianity predictions of primordial vector field models. As
mentioned above, there are great expectations that Planck
and new experiments will, among other things, shed more
light on the level of non-Gaussianity of the CMB fluctuations
and on the nature of the unexpected anisotropy features
we mentioned (see, e.g., [93]). Models that combine both
types of predictions could be more easily testable and, from
non-Gaussianity measurement, more stringent statistical
anisotropy predictions could be produced or viceversa.

Within vector field models, higher order correlators
had been computed in [94–98] and, more recently, in [99,
100] for U(1) vector fields. We considered SU(2) vector
field models in [101, 102]. Non-Abelian theories offer a
richer amount of predictions compared to the Abelian case.
Indeed, self-interactions provide extra contributions to the
bispectrum and trispectrum of curvature fluctuations that
are naturally absent in the Abelian case. We verified that these
extra contributions can be equally important in a large subset
of the parameter space of the theory and, in some cases, can
even become the dominant ones.

This paper is structured as follows: in Section 2 we review
some vector field models of inflation; in Section 3 we present
the SU(2) model; in Section 4 we provide the results for
the two, three and, four-point functions of the curvature
fluctuations; in Section 5 we present the non-Gaussianity
amplitudes for the bispectrum and for the trispectrum;
in Section 6 we show and discuss their shapes; finally in
Section 7 we draw our conclusions.

2. Inflation and Primordial Vector Fields

The attempt to explain some of the CMB “anomalous”
features as the indication of a break of statistical isotropy
is the main reason behind ours and many of the existing
inflationary models populated by vector fields, but not the
only one. The first one of these models [103] was formulated
with the goal of producing inflation by the action of vector
fields, without having to invoke the existence of a scalar
field. The same motivations inspired the works that followed
[104–106]. Lately, models where primordial vector fields can
leave an imprint on the CMB have been formulated as an
alternative to the basic inflationary scenario, in the search for
interesting non-Gaussianity predictions [94–102]. Finally,
vector fields models of dark energy have been proposed
[107–111]. All this appears to us as a rich bag of motivations
for investigating these scenarios.

Before we quickly sketch some of them and list the results
so far achieved in this direction, it is important to briefly
indicate and explain the main issues and difficulties that
these models have been facing. We will also shortly discuss
the mechanisms of production of the curvature fluctuations
in these models.

Building a model where primordial vector fields can drive
inflation and/or produce the observed spectrum of large scale
fluctuations requires a more complex Lagrangian than the
basic gauge invariant Lvector = −(

√−g/4)FµνFµν. In fact, for a
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conformally invariant theory as the one described by Lvector,
vector fields fluctuations are not excited on superhorizon
scales. It is then necessary to modify the Lagrangian. For
some of the existing models, these modifications have been
done to the expense of destabilizing the theory, by “switching
on” unphysical degrees of freedom. This was pointed out
in [112–114], where a large variety of vector field models
was analyzed in which longitudinal polarization modes exist
that are endowed with negative squared masses (the “wrong”
signs of the masses are imposed for the theory to satisfy the
constraints that allow a suitable background evolution). It
turns out that, in a range of interest of the theory, these fields
acquire negative total energy, that is, behave like “ghosts”, the
presence of which is known to be responsible for an unstable
vacuum. A related problem for some of these theories is
represented by the existence of instabilities affecting the
equations of motion of the ghost fields [112–114].

In the remaing part of this section, we are going to
present some of these models together with some recent
attempts to overcome their limits.

In all of the models we will consider, primordial vector
fields fluctuations end up either being entirely responsible for
or only partially contributing to the curvature fluctuations at
late times. This can happen through different mechanisms.
For example, if the vector fields affect the universe expansion
during inflation, its contribution ζA to the total ζ can be
derived from combining the definition of the number of e-
foldings (N =

∫
Hdt) with the Einstein equation (H2 =

(8πG/3)(ρφ + ρA), ρA being the energy density of the vector
field and ρφ the inflaton energy density) and using the δN
expansion of the curvature fluctuation in terms of both the
inflaton and the vector fields fluctuations (see Section 4). To
lowest order we have [96]

ζA =
Ai

2m2
P

δAi, (2)

where a single vector field has been taken into account
for simplicity (mP is the reduced Planck mass, A is the
background value of the field and δA its perturbation). When
calculating the amplitude of non-Gaussianity in Section 5,
we will refer to this case as “vector inflation” for simplicity.

A different fluctuation production process is the cur-
vaton mechanism which was initially formulated for scalar
theories but it is also applicable to vectors [96, 115, 116].
Specifically, inflation is driven by a scalar field, whereas the
curvaton field(s) (now played by the vectors), has a very
small (compared to the Hubble rate) mass during inflation.
Towards the end of the inflationary epoch, the Hubble rate
value starts decreasing until it equates the vector mass; when
this eventually happens, the curvaton begins to oscillate and
it will then dissipate its energy into radiation. The curvaton
becomes responsible for a fraction of the total curvature
fluctuation that is proportional to a parameter (r) related to
the ratio between the curvaton energy density and the total
energy density of the universe at the epoch of the curvaton
decay [96]

ζA =
r

3

δρA
ρA

, (3)

where r ≡ 3ρA/(3ρA + 4ρφ). Anisotropy bounds on the power
spectrum favour small values of r.

From (2) and (3) we can see that, dependending on
which one of these two mechanisms of production of the
curvature fluctuations is considered, different coefficients
will result in the δN expansion (see (22)).

In this section, we will describe both models where
inflation is intended to be vector field driven and those
models in which, instead, the role of the inflaton is played
by a scalar field, whereas the energy of the vector gives a
subdominant contribution to the total energy density of the
universe during the entire inflationary phase.

2.1. Self-Coupled Vector Field Models. A pioneer work on vec-
tor field driven inflation was formulated by Ford [103], who
considered a single self-coupled field Aµ with a Lagrangian

Lvector = −
1

4
FµνF

µν + V
(
ψ
)
, (4)

where Fµν ≡ ∂µBν − ∂νBµ and the potential V is a function of
ψ ≡ BαBα. Different scenarios of expansion are analyzed by
the author for different functions V . The universe expands
anisotropically at the end of the inflationary era and this
anisotropy either survives until late times or is damped out
depending on the shape and the location of the minima of
the potential.

The study of perturbations in a similar model was
proposed by Dimopoulos in [115] where he showed that for
a Lagrangian

Lvector = −
1

4
FµνF

µν +
1

2
m2BµB

µ, (5)

and for m2 ≃ −2H2, the transverse mode of the vector
field is governed by the same equation of motion as a light
scalar field in a de Sitter stage. A suitable superhorizon power
spectrum of fluctuations could therefore arise. In order to
prevent production of large scale anisotropy, in this model
the vector field plays the role of the curvaton while inflation
is driven by a scalar field.

2.2. Vector-Field Coupled to Gravity. The Lagrangian in (5)
may be also intended, at least during inflation, as including
a nonminimal coupling of the vector field to gravity; indeed
the mass term can be rewritten as

Lvector ⊃
1

2

(
m2

0 + ξR
)
BµB

µ, (6)

where, for the whole duration of the inflationary era, the bare
mass m0 is assumed to be much smaller than the Hubble
rate and the Ricci scalar R = −6[ä/a + (ȧ/a)2] can be
approximated as R ≃ −12H2. For the specific value ξ = 1/6,
(5) is retrieved.

For the Lagrangian just presented, Golovnev et al. [104]
proved that the problem of excessive anisotropy production
in the case where inflation is driven by vector fields can be
avoided if either a triplet of mutually orthogonal or a large
number N of randomly oriented vector fields is considered.
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The Lagrangian (6) with ξ = 1/6 was also employed in
[116], where inflation is scalar field-driven and a primordial
vector field affects large-scale curvature fluctuations and,
similarly, in [117], which includes a study of the backreaction
of the vector field on the dynamics of expansion, by
introducing a Bianchi type-I metric.

2.3. Ackerman-Carroll-Wise (ACW) Model. A model was
proposed in [118, 119] where Lagrange multipliers (λ) are
employed to determine a fixed norm primordial vector field
BµBµ = m2

Lvector ⊃ λ
(
BµBµ −m2

)
− ρΛ, (7)

where ρΛ is a vacuum energy. The expansion rate in this
scenario is anisotropic: if we orient the x-axis of the spatial
frame along the direction determined by the vector field, we
find two different Hubble rates: along the x-direction it is
equal to

H2
b =

ρΛ
m2

P

1

P
(
µ
) , (8)

and it is given by Ha = (1 + cµ2)Hb along the orthogonal
directions; µ ≡ m/mP , P is a polynomial function of µ
and c is a parameter appearing in the kinetic part of the
Lagrangian that we omitted in (7) (see [118, 119] for its
complete expression). As expected, an isotropic expansion is
recovered if the vev of the vector field is set to zero.

2.4. Models with Varying Gauge Coupling. Most of the
models mentioned so far successfully solve the problem of
attaining a slow-roll regime for the vector-fields without
imposing too many restrictions on the parameters of the
theory and of avoiding excessive production of anisotropy at
late times. None of them though escapes those instabilities
related to the negative energy of the longitudinal modes
(although a study of the instabilities for fixed-norm field
models was done in [120] where some stable cases with
non-canonical kinetic terms were found). As discussed in
[112–114], in the self-coupled model a ghost appears at
small (compared to the horizon) wavelengths; in the non-
minimally coupled and in the fixed-norm cases instead the
instability concerns the region around horizon crossing.

Models with varying gauge coupling can overcome the
problem of instabilities and have recently attracted quite
some attention. In [94], the authors consider a model
of hybrid inflation [121–124] with the introduction of a
massless vector field

L ⊃ 1

2

(
∂µφ∂

µφ + ∂µχ∂
µχ
)
− 1

4
f 2
(
φ
)
FµνFµν + V

(
φ, χ,Bµ

)
,

(9)

where φ is the inflaton and χ is the so-called “waterfall” field.
The potential V is chosen in such a way as to preserve gauge
invariance; this way the longitudinal mode disappears and
instabilities are avoided.

Similarly, Kanno et al. in [125] (see also [96, 126])
consider a vector field Lagrangian of the type

Lvector = −
1

4
f 2
(
φ
)
FµνFµν, (10)

but in a basic scalar field-driven inflation model. Very
recently, in [127] the linear perturbations in these kind of
models have been investigated.

Finally, in [96, 100] varying mass vector field models have
been introduced

Lvector = −
1

4
f 2
(
φ
)
FµνFµν +

1

2
m2BµB

µ, (11)

where f ⋍ aα and m ⋍ a (a is the scale factor and α is a
numerical coefficient). The special cases α = 1 and α = −2

are of special interest. In fact, introducing the fields Ãµ and

Aµ, related to one another by Ãµ ≡ f Bµ = aAµ (Ãµ and
Aµ are, resp., the comoving and the physical vectors), it is
possible to verify that the physical gauge fields are governed
by the same equations of motion as a light scalar field in a
de Sitter background. Vector fields in this theory can then
generate the observed (almost) scale-invariant primordial
power spectrum.

3. SU(2) Vector Model: Equations of Motion for
the Background and for Linear Perturbations

Let us consider some models where inflation is driven by a
scalar field in the presence of an SU(2) vector multiplet [101,
102]. A fairly general Lagrangian can be the following:

S =
∫
d4x
√−g

⎡
⎣m

2
PR

2
− f 2

(
φ
)

4
gµαgνβ

∑
a=1,2,3

Fa
µν
Fa
αβ

−M2

2
gµν

∑
a=1,2,3

Ba
µB

a
ν

+ Lφ

⎤
⎦,

(12)

where Lφ is the Lagrangian of the scalar field and Fa
µν
≡

∂µBa
ν
− ∂νBa

µ + gcεabcBb
µB

c
ν

(gc is the SU(2) gauge coupling).
Both f and the effective mass M can be viewed as generic
functions of time. The fields Ba

µ are comoving and related to
the physical fields by Aa

µ = (Ba
0 ,Ba

i /a). The free field operators
can be Fourier expanded in their creation and annihilation
operators

δAa
i

(
�x,η
)

=
∫

d3q

(2π)3 e
i�q·�x

×
∑

λ=L,R,long

[
eλi
(
q̂
)
aa,λ
�q δAa

λ

(
q,η
)

+e∗λi
(
−q̂
)(
aa,λ
−�q

)†
δA∗aλ

(
q,η
)]

,

(13)

where the polarization index λ runs over left (L), right (R)
and longitudinal (long) modes and

[
aa,λ
�k

,
(
aa

′,λ′

�k′

)†]
= (2π)3δa,a′δλ,λ′δ

(3)
(
�k −�k′

)
. (14)
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Here, η the conformal time (dη = dt/a(t)). Once the
functional forms of f and M have been specified, the
equations of motion for the vector bosons can be written.
For the most part, the calculations are quite general in this
respect. In fact, the expression of all correlation functions,
prior to explicitating the wavefunction for the gauge bosons,
apply to any SU(2) theory with an action as in (12), both
for what we will call the “Abelian” and for the “non-Abelian”
contributions. In particular, the structure of the interaction
Hamiltonian is independent of the functional dependence
of f and M and determines the general form of and the
anisotropy coefficients appearing in the final “non-Abelian”
expressions (see Section 4). When it comes to explicitate the
wavefunctions, a choice that can help keeping the result as
easy to generalize as possible is the following:

δBT = −
√
πx

2
√
k

[J3/2(x) + iJ−3/2(x)], (15)

for the transverse mode and

δB‖ = n(x)δBT , (16)

for the longitudinal mode (n is a unknown function of x ≡
−kη) [101, 102]. Let us see why. As previously stated, for
f ≃ aα and with α = 0, 1,−2, it is possible to verify that the
(physical) transverse mode behaves exactly like a light scalar
field in a de Sitter background. Considering the solution
(15) then takes into account at least these special cases. As
to the longitudinal mode, a parametrization was adopted
as in (16) in order to keep the analysis more general and
given that, because of the instability issues, introducing this
degree of freedom into the theory requires special attention.
We are going to keep the longitudinal mode “alive” in the
calculations we present, by considering a nonzero function
n(x), and focus on the simplest case of f = 1. This case
is known to be affected by quantum instabilities in the
longitudinal mode, anyway we choose f = 1 for the sake
of simplicity in our presentation. The results can be easily
generalized to gauge invariant models (please refer to [102]
for a sample generalization of the calculations to massless
f ≃ a(1,−2) models).

4. Correlation Functions of Curvature
Fluctuations: Analytic Expressions

We are now ready to review the computation of the power
spectrum, bispectrum, and trispectrum for the curvature
fluctuations ζ generated during inflation

〈
ζ�k1

ζ�k2

〉
= (2π)3δ(3)

(
�k1 +�k2

)
Pζ
(
�k
)

, (17)

〈
ζ�k1

ζ�k2
ζ�k3

〉
= (2π)3δ(3)

(
�k1 +�k2 +�k3

)
,

× Bζ

(
�k1,�k2,�k3

)
,

(18)

〈
ζ�k1

ζ�k2
ζ�k3

ζ�k4

〉
= (2π)3δ(3)

(
�k1 +�k2 +�k3 +�k4

)
,

× Tζ

(
�k1,�k2,�k3,�k4

)
.

(19)

Notice that, on the right-hand side of (17) through (19), we
indicated a dependence from the direction of the wavevec-
tors; in models of inflation where isotropy is preserved, the
power spectrum and the bispectrum only depend on the
moduli of the wave vectors. This will not be the case for the
SU(2) model.

The δN formula [31, 128–130] will be employed

ζ
(
�x, t
)
= N

(
�x, t∗, t

)
−N(t∗, t) ≡ δN

(
�x, t
)
, (20)

which holds if times t∗ and t are chosen, respectively, on
a flat and on a uniform density temporal slices (N is the
number of e-foldings of inflation occurring between these
two times). We employ a spatial metric gi j = a2(t)e−2Ψ(eγ)i j ,
and at linear level the curvature perturbation corresponds to
ζ ≡ −Ψ+Hδu, where δu is the fluctuation in the total energy
density and Ψ is a scalar metric fluctuation. In the presence
of a single scalar field φ, (20) is further expandable as

ζ
(
�x, t
)
=
∑
n

N (n)(t∗, t)

n!

(
δφ
(
�x, t∗

))n
, (21)

where N (n) is the partial derivative of the e-folding number
w.r.t. φ on the initial hypersurface t∗.

If we apply (21) to the inflaton + SU(2) vector model, we
have

ζ
(
�x, t
)

= Nφδφ + N
µ
a δAa

µ +
1

2
Nφφ
(
δφ
)2

+
1

2
N

µν

abδA
a
µδA

b
ν

+ N
µ
φaδφδA

a
µ +

1

3!
Nφφφ

(
δφ
)3

+
1

3!
N

µνλ
abc δA

a
µδA

b
ν
δAc

λ

+
1

2
N

µ
φφa

(
δφ
)2
δAa

µ +
1

2
N

µν

φabδφδA
a
µδA

b
ν

+
1

3!
Nφφφφ

(
δφ
)4

+
1

3!
N

µνλη
abcd δA

a
µδA

b
ν
δAc

λδA
d
η + · · · ,

(22)

where now

Nφ ≡
(
∂N

∂φ

)

t∗
, N

µ
a ≡

(
∂N

∂Aa
µ

)

t∗

, N
µ
φa ≡

(
∂2N

∂φ∂Aa
µ

)

t∗

(23)

and so on for higher order derivatives.
On a general ground, given the fact that the temporal

modes can always be expressed in terms of the longitudinal
modes, (22) can be rewritten by retaining only the spatial
part for the vector field fluctuations (see also [96]).

Our plan is to show the derivation the correlation
functions of ζ from the ones of δφ and δAa

i , after a
replacement of the δN expansion (22) in (17) through (19).

The correlation functions can be evaluated using the
Schwinger-Keldysh formula [48–52]

〈Ω|Θ(t)|Ω〉

=
〈

0
∣∣∣
[
T
(
ei
∫ t

0 HI (t′)dt′
)]
ΘI(t)

[
T
(
e−i

∫ t
0 HI (t′)dt′

)]∣∣∣0
〉

,
(24)
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where, on the left-hand side, the operator Θ and the vacuum
Ω are in the interacting theory whereas, on the right-
hand side, all operators are in the so-called “interaction
picture”, that is, they can be treated as free fields (the Fouries
expansion in (13) thus apply), and |0〉 is the free theory
vacuum.

When calculating the spectra of ζ , the perturbative
expansions in (22) and (24) will be carried out to only
include tree-level contributions, neglecting higher order
“loop” terms, either classical, that is, from the δN series, or of
quantum origin, that is, from the Schwinger-Keldysh series.
Assuming that the SU(2) coupling gc is “small” and that we
are dealing with “small” fluctuations in the fields and given
the fact that a slow-roll regime is being assumed, it turns out
that it is indeed safe for the two expansions to be truncated
at tree-level.

The correlation functions of ζ will then result as the sum
of scalar, vector and (scalar and vector) mixed contributions.
As to the vector part, this will be made up of terms that
are merely generated by the δN expansion, that is, they only
include the zeroth order of the in-in formula (we call these
terms “Abelian”, being them retrievable in the U(1) case),
and by (“non-Abelian”) terms arising from the Schwinger-
Keldysh operator expansion beyond zeroth order, that is,
from the gauge fields self-interactions.

Let us now discuss the level of generality of the results we
will present in the next sections, w.r.t. the choice of a specific
Lagrangian.

The expression for the Abelian contributions provided
in Sections 4.1 and 4.2.1 apply to any SU(2) model of
gauge interactions with no direct coupling between scalar
and vector fields (extra terms would be otherwise needed in
(33) and (34)). The next stage in the Abelian contributions
computation would be to explicitate the derivatives of the
e-foldings number and the wavefunctions of the fields: they
both depend on the equations of motion of the system, there-
fore the fixing of a specific model is required at this point.
As to the non-Abelian contributions, the results in (42) and
(43) are completely general except for assuming, again, that
no direct vector-scalar field coupling exists. The structure of
(52) and (55) is instead due to the choice of a non-Abelian
gauge group. The expressions of the anisotropy coefficients
In and Ln in (52) and (55) depend on the specific non-
Abelian gauge group (for SU(2) one of the In is given in (54)).
Finally, the specific expressions of the isotropic functions Fn
(a sample of which is shown in (53)) and Gn were derived
considering the Lagrangian (12) with f = 1 and the eigen-
functions for the vector bosons provided in (15) and (16).

4.1. The Power Spectrum. The power spectrum of ζ can
be straightforwardly derived at tree-level, using the δN
expansion (22), from the inflaton and the vector fields power
spectra

Pζ
(
�k
)

= Piso(k)
[

1 + gab
(
k̂ · N̂a

)(
k̂ · N̂b

)
+ isabk̂ ·

(
N̂a × N̂b

)]
,

(25)

which generalizes the results of [96] for the U(1) case.

The isotropic part of the previous expression has been
factorized in

Piso(k) ≡ N2
φPφ(k) +

(
�Nc · �Nd

)
Pcd

+ , (26)

where we have defined the following combinations

Pab
± ≡

(
1

2

)(
Pab
R ± Pab

L

)
, (27)

from the power spectra for the right, left and longitudinal
polarization modes

Pab
R ≡ δabδA

a
R(k, t∗)δAb∗

R (k, t∗),

Pab
L ≡ δabδA

a
L(k, t∗)δAb∗

L (k, t∗),

Pab
long ≡ δabδA

a
long(k, t∗)δAb∗

long(k, t∗).

(28)

The anisotropic parts are weighted by the coefficients

gab ≡
NaNb

(
Pab

long − Pab
+

)

N2
φPφ +

(
�Nc · �Nd

)
Pcd

+

,

sab ≡ NaNbPab
−

N2
φPφ +

(
�Nc · �Nd

)
Pcd

+

,

(29)

(where a sum is intended over indices c and d but not over a
and b). Equation (26) can also be written as

Piso(k) = N2
φPφ

[
1 + βcd

Pcd
+

Pφ

]
, (30)

after introducing the parameter

βcd ≡
�Nc · �Nd

N2
φ

. (31)

Notice that what when we say “isotropic”, as far as the
expression for the power spectrum is concerned, we simply
mean “independent” of the direction of the wave vector.
In this case instead, the vector bosons introduce three
preferred spatial directions: the r.h.s. of (25) depends on
their orientation w.r.t. the wave vector.

As expected, the coefficients gab and sab that weight the
anisotropic part of the power spectrum are related to βcd, that
is, to the parameters that quantify how much the expansion
of the universe is affected by the vector bosons compared to
the scalar field.

Assuming no parity violation in the model, we have sab =
0; the parameters gab and βab are instead unconstrained. In
theU(1) case and for parity conserving theories, (25) reduces
to [96]

Pζ
(
�k
)
= Piso

ζ (k)
[

1 + g
(
k̂ · n̂

)]
, (32)

where n̂ indicates the preferred spatial direction; also one can
check that in this simple case, if P+ ⋍ Pφ and Plong = kP+

(k /≡ 1), the relation g = (k − 1)β/(1 + β) holds, where



Advances in Astronomy 7

β ≡ (NA/Nφ)2 (the anisotropy coefficient g is not to be
confused with the SU(2) coupling constant gc). If it is safe to
assume |g| ≪ 1 (see discussion following (1) and references
[73, 74]), a similar upper bound can also be placed on β.

In the case where more than one special directions
exists, as in the SU(2) model, no such analysis on the
anisotropy data has been so far carried out, the ga parameters
cannot then be constrained, unless assuming that the three
directions converge into a single one; in that case a constraint
could be placed on the sum |g| ≡ |

∑
a g

a|, where a = 1, 2, 3

and Pζ(�k) = Piso
ζ (k)[1 + ga(k̂ · n̂a)].

4.2. Higher-Order Correlators. We will present the results for
the tree-level contributions to the bispectrum and to the
trispectrum of ζ .

These can be classified in two categories, that we indicate
as “Abelian” and “non-Abelian”. The former are intended as
terms that merely arise from the δN expansion and are thus
retrievable in the Abelian case; the latter are derived from
the linear and quadratic expansions (in terms of the gauge
bosons interaction Hamiltonian) of the Schwinger-Keldysh
formula and are therefore peculiar to the non-Abelian case.

We are going to provide both types of contributions, in
preparation for discussing and comparing their magnitudes
later on in Section 5.

4.2.1. Abelian Contributions. By plugging the δN expansion
(22) in (18) and (19), we have

Bζ

(
�k1,�k2,�k3

)

⊃ 1

2
N2

φNφφ

[
Pφ(k1)Pφ(k2) + perms.

]

+
1

2
N i

aN
j
bN

kl
cd

[
Π

ac
ik

(
�k1

)
Π

bd
jl

(
�k2

)
+ perms.

]

+
1

2
NφN

i
aN

j
φb

[
Pφ(k1)Πab

i j

(
�k2

)
+ perms.

]

+ NφN
2
φBφ(k1, k2, k3),

(33)

for the bispectrum (see also [96]) and

Tζ

(
�k1,�k2,�k3,�k4

)

⊃ N4
φTφ

(
�k1,�k2,�k3,�k4

)

+ N3
φNφφ

[
Pφ(k1)Bφ

(∣∣∣�k1 +�k2

∣∣∣, k3, k4

)
+ perms.

]

+ N2
φN

i
aN

j
φb

[
Pab
i j

(
�k3

)
Bφ

(
k1, k2,

∣∣∣�k3 +�k4

∣∣∣
)

+ perms.
]

+ N2
φN

2
φφ

[
Pφ(k1)Pφ(k2)Pφ

(∣∣∣�k1 +�k3

∣∣∣
)

+ perms.
]

+ N3
φNφφφ

[
Pφ(k1)Pφ(k2)Pφ(k3) + perms.

]

+ N2
φN

i
φaN

j
φb

[
Pab
i j

(
�k1 +�k3

)
Pφ(k1)Pφ(k2) + perms.

]

+ N i
aN

j
bN

k
φcN

l
φd

×
[
Pac
ik

(
�k1

)
Pbd
jl

(
�k2

)
Pφ
(∣∣∣�k1 +�k3

∣∣∣
)

+ perms.
]

+ N2
φN

i
aN

j
φφb

[
Pφ(k1)Pφ(k2)Pab

i j

(
�k3

)
+ perms.

]

+ NφN
i
aN

j
bN

kl
φcd

[
Pac
ik

(
�k1

)
Pbd
jl

(
�k2

)
Pφ(k3) + perms.

]

+ NφφNφN
i
φaN

j
b

×
[
Pφ(k2)Pφ

(∣∣∣�k1 +�k2

∣∣∣
)
Pab
i j

(
�k4

)
+ perms.

]

+ N
i j
abN

k
c N

l
φdNφ

[
Pik
ac

(
�k2

)
P
jl
bd

(
�k1 +�k2

)
Pφ(k4) + perms.

]

+ N i
aN

j
bN

kl
cdN

mn
e f

×
[
Pac
ik

(
�k1

)
Pbe
jm

(
�k2

)
P
df
ln

(
�k1 +�k3

)
+ perms.

]

+ N i
aN

j
bN

k
c N

lmn
de f

[
Pad
il

(
�k1

)
Pbe
jm

(
�k2

)
P
c f
kn

(
�k3

)
+ perms.

]
,

(34)

for the trispectrum (see also [97]).
Let us now provide some definition for the quantities

introduced in the previous equations

Π
ab
i j

(
�k
)
≡ Teven

i j

(
�k
)
Pab

+ + iTodd
i j

(
�k
)
Pab
− + T

long
i j

(
�k
)
Pab

long,

(35)

where

Teven
i j

(
�k
)
≡ eLi

(
k̂
)
e∗Lj
(
k̂
)

+ eRi
(
k̂
)
e∗Rj
(
k̂
)

,

Todd
i j

(
�k
)
≡ i
[
eLi
(
k̂
)
e∗Lj
(
k̂
)
− eRi

(
k̂
)

e∗Rj
(
k̂
)]

,

T
long
i j

(
�k
)
≡ eli

(
k̂
)
e∗lj
(
k̂
)
.

(36)

The polarization vectors are eL(k̂) ≡ (1/
√

2)(cos θ cosφ −
i sinφ, cos θ sinφ + i cosφ,− sin θ), eR(k̂) = e∗L(k̂) and

el(k̂) = k̂ = (sin θ cosφ, sin θ sinφ, cos θ), from which we
have

Teven
i j

(
�k
)
= δi j − k̂ik̂ j ,

Todd
i j

(
�k
)
= ǫi jkk̂k,

T
long
i j

(
�k
)
= k̂ik̂ j .

(37)

The purely scalar terms in (33)-(34) are already known from
the literature: in single-field slow-roll inflation Pφ = H2

∗/2k
3,

where H∗ is the Hubble rate evaluated at horizon exit; the
bispectrum and the trispectrum of the scalar field (Bφ and
Tφ) can be found in [9–11, 38, 131] (they were also reported
in [102, (11) and (12)]). As to the mixed (scalar-vector)
terms, they can be ignored if one considers a Lagrangian
where there is no direct coupling between the inflaton
and the gauge bosons and where slow-roll assumptions are
introduced for the fields (see [102, Section 4] for a complete
discussion on this). Let us then look at the (purely) vector
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part. Its anisotropy features can be stressed by rewriting them
as follows (see also [96, 97])

Bζ

(
�k1,�k2,�k3

)

⊃ 1

2
N i

aN
j
bN

kl
cdΠ

ac
ik

(
�k1

)
Π

bd
jl

(
�k2

)
=Mc

kN
kl
cdM

d
l

(38)

Tζ

(
�k1,�k2,�k3,�k4

)

⊃ N i
aN

j
bN

kl
cdN

mn
e f P

ac
ik

(
�k1

)
Pbe
jm

(
�k2

)

× P
df
lη

(
�k1 +�k3

)
+ N i

aN
j
bN

k
c N

lmn
de f

× Pad
il

(
�k1

)
Pbe
jm

(
�k2

)
P
c f
kη

(
�k3

)

=Mc
i L

i j
ceMe

j + M
f
i M

e
jM

d
kN

i jk
f ed,

(39)

where

Mc
k

(
�k
)

≡ N i
aP

ac
ik

(
�k
)

= Pac
+ (k)

[
δikN

i
a + pac(k)k̂k

(
k̂ · �Na

)
+ iqac(k)

(
k̂ × �Na

)
k

]
,

L
jl
ce

(
�k
)

≡ N
ji
cdP

df
ik

(
�k
)
Nkl

f e

= P
df
+

(
�k
)[
�N

j
cd · �N l

e f + pdf (k)
(
k̂ · �N j

cd

)(
k̂ · �N l

e f

)

+iqdf (k)k̂ · �N j
cd × �N l

e f

]
.

(40)

In the previous equations, we defined

pac(k) ≡
Pac

long − Pac
+

Pac
+

,

qac(k) ≡ Pac
−

Pac
+

,

(41)

with �Na ≡ (N1
a ,N2

a ,N3
a ) and �N

j
cd ≡ (N

j1
cd ,N

j2
cd ,N

j3
cd ).

Notice that, as for the power spectrum (25), also in (38)-
(39) the anisotropic parts of the expressions are weighted
by coefficients that are proportional either to P− or to
(Plong − P+). When these two quantities are equal to zero,
the (Abelian) bispectrum and trispectrum are therefore
isotropized. P− = 0 in parity conserving theories, like the
ones we have been describing. According to the parametriza-
tion (16) of the longitudinal mode, we have Plong − P+ =
(|n(x)|2 − 1) P+.

4.2.2. Non-Abelian Contributions. We list the non-Abelian
terms for the bispectrum

Bζ

(
�k1,�k2,�k3

)
⊃ N i

aN
j
bN

k
c B

abc
i jk

(
�k1,�k2,�k3

)
, (42)

and for the trispectrum

Tζ

(
�k1,�k2,�k3,�k4

)

⊃ N i
aN

j
bN

k
c N

l
dT

abcd
i jkl

(
�k1,�k2,�k3,�k4

)

+ N i
aN

j
bNφN

k
φc

[
Pφ(k3)Babc

i jk

(
�k1,�k2,�k3 +�k4

)
+ perms.

]

+ N i
aN

j
bN

k
c N

lm
de

×
[
Pad
il

(
�k1

)
Bbce
jkm

(
�k1 +�k2,�k3,�k4

)
+ perms.

]
.

(43)

The computation of the vector bosons spectra

〈
δAa

i δA
b
jδA

c
k

〉
= δ(3)

(
�k1 +�k2 +�k3

)
Babc
i jk ,

〈
δAa

i δA
b
jδA

c
kδA

d
l

〉
= δ(3)

(
�k1 +�k2 +�k3 +�k4

)
Tabcd
i jkl ,

(44)

will be reviewed in this section. This requires the expansion
of the in-in formula up to second order in the interaction
Hamiltonian

〈
Θ
(
η∗
)〉

⊃ i

〈
T

[
Θ

∫ η∗

−∞
dη′
(
H+

int

(
η′
)
−H−

int

(
η′
))]〉

+
(−i)2

2

〈
T

[
Θ

∫ η∗

−∞
dη′
(
H+

int

(
η′
)
−H−

int

(
η′
))

×
∫ η∗

−∞
dη′′

(
H+

int

(
η′′
)
−H−

int

(
η′′
))]〉

.

(45)

The interaction Hamiltonian needs to be expanded up to

fourth order in the fields fluctuations, that is, Hint = H(3)
int +

H(4)
int , where

H(3)
int = gcε

abcg ikg jl
(
∂iδB

a
j

)
δBb

kδB
c
l

+ g2
c ε

eabεecdg ikg jlBa
i δB

b
j δB

c
kδB

d
l ,

H(4)
int = g2

c ε
eabεecdg i jgklδBa

i δB
b
kδB

c
jδB

d
l .

(46)

To tree-level, the relevant diagrams are pictured in Figures
1 and 2. By looking at (46), we can see that there is a
bispectrum diagram that is lower in terms of power of the
SU(2) coupling (∼gc) compared to the trispectrum (∼g2

c ); as
a matter of fact, for symmetry reasons that we are going to
discuss later in this section, g2

c interaction terms are needed
to provide a nonzero contributions to the bispectrum.
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(a)
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c
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Figure 1: Diagrammatic representations of the tree-level contribu-
tions to the vector fields bispectrum.

The propagators for “plus” and “minus” fields are

̂
δBa,+

i (η′)δBb,+
j (η′′) = Π̃

ab
i j

(
η′,η′′

)
Θ
(
η′ − η′′

)

+ Π
ab
i j

(
η′,η′′

)
Θ
(
η′′ − η′

)
,

̂
δBa,+

i (η′)δBb,−
j (η′′) = Π

ab
i j

(
η′,η′′

)
,

̂
δBa,−

i (η′)δBb,+
j (η′′) = Π̃

ab
i j

(
η′,η′′

)
,

̂
δBa,−

i (η′)δBb,−
j (η′′) = Π

ab
i j

(
η′,η′′

)
Θ
(
η′ − η′′

)

+ Π̃
ab
i j

(
η′,η′′

)
Θ
(
η′′ − η′

)
,

(47)

or

Π̃
ab
i j

(
�k
)
≡ Teven

i j

(
k̂
)
P̃ab

+ + iTodd
i j

(
k̂
)
P̃ab
i j + T

long
i j

(
k̂
)
P̃ab
i j ,

Π
ab
ij

(
�k
)
≡ Teven

i j

(
k̂
)
P
ab
+ + iTodd

i j

(
k̂
)
P
ab
i j + T

long
i j

(
k̂
)
P
ab
i j ,

(48)

in Fourier space. In the previous equations we set P̃ab
± ≡

(1/2)(P̃ab
R ± P̃ab

L ), P̃ab
R = δabδB

ab
R (k,η∗)δB∗abR (k,η) and P

ab
± =

(P̃ab
± )

∗
(similar definitions apply for P̃ab

L and P̃ab
long).

We are now ready to show the computation of the
following contributions to the bispectrum and trispectrum
of ζ

〈
ζ�k1

ζ�k2
ζ�k3

〉

⊃ N i
aN

j
bN

k
c 〈δAa

i

(
�k1

)
δAb

j

(
�k2

)
δAc

k

(
�k3

)
〉,

(49)

〈
ζ�k1

ζ�k2
ζ�k3

ζ�k4

〉

⊃ N i
aN

j
bN

k
c N

l
d

×
〈
δAa

i

(
�k1

)
δAb

j

(
�k2

)
δAc

k

(
�k3

)
δAd

l

(
�k4

)〉
.

(50)

Equation (49) becomes

〈
ζ�k1

ζ�k2
ζ�k3

〉
⊃ N i

aN
j
bN

k
c

δ(3)
(
�k1 +�k2 +�k3

)

a3
(
η∗
)

×
[∫

dηa4
(
η
)
Π̃im

(
�k1

)
Π̃

l
j

(
�k2

)
Π̃

m
k

(
�k3

)

×
(
gcε

abck1l + g2
c ε

edaεebcBd
l

)]

+ perms. + c.c.

(51)

Even before performing the time integration, one realizes
that, because of the antisymmetric properties of the Levi-
Civita tensor, the ∼gc contribution on the r.h.s. of (51) is
equal to zero once the sum over all the possible permutations
has been performed. The vector bosons bispectrum is
therefore proportional to g2

c . The final result from (51) has
the following form

〈
ζ�k1

ζ�k2
ζ�k3

〉
⊃ (2π)3δ(3)

(
�k1 +�k2 +�k3

)
g2
cH

2
∗

×
∑
n

Fn
(
ki,η

∗)In
(
k̂i · k̂ j , �Ai · �A j , k̂i · �A j

)
,

(52)

where the Fn’s are isotropic functions of time and of the
moduli of the wave vectors (i = 1, 2, 3) and the In’s are
anisotropic coefficients. The sum in the previous equation
is taken over all possible combinations of products of three
polarization indices, that is, n ∈ (EEE,EEl,ElE, . . . , lll),
where E stands for “even”, l for “longitudinal”. The complete
expressions for the terms appearing in the sum are quite
lengthy (see [101, Section 4.2]). As an example, we report
one of these terms

Flll = −n6(x∗)
1

24k6k2
1k

2
2k

2
3x∗2

× [AEEE + (BEEE cos x∗ + CEEE sin x∗)Eix
∗],

(53)

Illl = εaa
′b′εac

′e

×
[((

k̂1 · �Na′
)(

k̂3 · �Nb′
)(

k̂2 · �N c′
)(

k̂1 · k̂2

)

×
(
k̂3 · Âe

)
−
(
k̂3 · �Na′

)(
k̂2 · �Nb′

)

×
(
k̂1 · �N c′

)(
k̂1 · k̂2

)(
k̂3 · Âe

))

+(1 ←→ 3) + (2 ←→ 3)
]

,

(54)

where AEEE, BEEE and CEEE are functions of x∗ and of the

momenta ki ≡ |�ki| (they are all reported in [101, Appendix
C]), Ei is the exponential-integral function and i ↔ j means

“exchange k̂i with k̂ j”. As we will discuss in more details
in Section 6, one of the more interesting features of these
models is that the bispectrum and the trispectrum turn out
to have an amplitude that is modulated by the preferred
directions that break statistical isotropy.
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Figure 2: Diagrammatic representations of the tree-level contributions to the vector fields trispectrum: vector-exchange (a) and contact-
interaction (b) diagrams.

Let us now move to the trispectrum. Again, we count
two different kinds of contributions, the first from ∼gc and

the second from ∼g2
c interaction terms, respectively in H(3)

int

and H(4)
int . The former produce vector-exchange diagrams, the

latter are represented by contact-interaction diagrams (see
Figure 2). Their analytic expressions are different, but they
both have a structure similar to (52)

〈
ζ�k1

ζ�k2
ζ�k3

ζ�k4

〉

⊃ (2π)3δ(3)
(
�k1 +�k2 +�k3 +�k4

)
g2
cH

2
∗

×
∑
n

Gn
(
ki, k1̂2, k1̂4,η∗

)
Ln
(
k̂i · k̂ j , �Ai · �A j , k̂i · �A j

)
,

(55)

where we define k1̂2 ≡ |�k1 +�k2| and k1̂4 ≡ |�k1 +�k4| (see [102,
Sections 5.2.1 and 5.2.2] for the explicit expressions of the
functions Gn and Ln).

5. Amplitude of non-Gaussianity: fNL and τNL

In this paper, we use the following definitions for the non-
Gaussianity amplitudes

6

5
fNL =

Bζ

(
�k1,�k2,�k3

)

Piso(k1)Piso(k2) + perms.
,

τNL =
2Tζ

(
�k1,�k2,�k3,�k4

)

Piso(k1)Piso(k2)Piso
(
k1̂4

)
+ 23 perms.

.

(56)

The choice of normalizing the bispectrum and the trispec-
trum by the isotropic part of the power spectrum, instead of
using its complete expression Pζ , is motivated by the fact that
the latter would only introduce a correction to the previous
equations proportional to the anisotropy parameter g, which
is a small quantity.

The parameters fNL and τNL receive contributions both
from scalar (“s”) and from vector (“v”) fields

fNL = f (s)
NL + f (v)

NL , (57)

τNL = τ(s)
NL + τ(v)

NL. (58)

The latter can again be distinguished into Abelian (A) and
non-Abelian (NA)

f (v)
NL = f (A)

NL + f (NA)
NL , (59)

τ(v)
NL = τ(A1)

NL + τ(A2)
NL + τ(NA1)

NL + τ(NA2)
NL . (60)

The contribution f (A)
NL comes from (38), f (NA)

NL from (52),

τ(A1)
NL and τ(A2)

NL from (39), finally τ(NA1)
NL from (55) and τ(NA2)

NL

from the last line of (43).
In order to keep the vector contributions manageable

and simple in their structure, all gauge and vector indices
will be purposely neglected at this point and so the angular
functions appearing in the anisotropy coefficients will be
left out of the final amplitude results. This is acceptable
considering that these functions will in general introduce
numerical corrections of order one. Nevertheless, it is
important to keep in mind that the amplitudes also depend
on the angular parameters of the theory.

We will now focus on the dependence of fNL and τNL

from the nonangular parameters of the theory and quickly
draw a comparison among the different contributions listed
in (57) through (60).

The expression of the number of e-foldings depends on
the specific model and, in particular, on the mechanism of
production of the fluctuations. Two possibilities have been
described in Section 2. For vector inflation we have

N i
a =

Aa
i

2m2
P

, N
i j
ab =

δabδij

2m2
P

, (61)

(see [101, Appendix B] for their derivation). In the vector
curvaton model the same quantities become [96, 101]

N i
a =

2

3
r

Aa
i∑

b

∣∣∣�Ab
∣∣∣2 , N

i j
ab =

1

3
r

δabδi j

∑
c

∣∣∣�Ac
∣∣∣2 . (62)

Neglecting tensor and gauge indices, the expressions above
can be simplified as NA ⋍ A/m2

P and NAA ⋍ 1/m2
P in

vector inflation, NA ⋍ r/A and NAA ⋍ r/A2 in the vector
curvaton model. Also we have NAAA = 0 in vector inflation
and NAAA ⋍ r/A3 in vector curvaton.

We are now ready to provide the final expressions for the
amplitudes: in Table 1 we list all the contributions to fNL,
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Table 1: Order of magnitude of fNL in different scenarios.

f sNL f ANL f NA
NL

general case
1

(1 + β)2

Nφφ

N2
φ

β

(1 + β)2

NAA

N2
φ

β2

(1 + β)2 g
2
c

(
m

H

)2

v.inflation
ǫφ

(1 + ((A/mP)
√
ǫφ)2)

2

ǫ
2
φ

(1 + ((A/mP)
√
ǫφ)2)

2

(
A

mP

)2 ǫ
2
φg

2
c

(1 + ((A/mP)
√
ǫφ)2)

2

(
A2

mPH

)2

v.curvaton
ǫφ

(1 + (AmP/A
2
tot)

2
ǫφr2)

2

ǫ
2
φr

3

(1 + (AmP/A
2
tot)

2
ǫφr2)

2

(
Am2

P

A3
tot

)2
ǫ

2
φr

3g2
c

(1 + (AmP/A
2
tot)

2
ǫφr2)

2

(
A2m2

P

A3
totH

)2

Table 2: Order of magnitude of the vector contributions to τNL in different scenarios.

τNA1
NL τNA2

NL τA1
NL τA2

NL

general case 103
β2ǫg2

c

(1 + β)3

(
mP

H

)2

10−5
β3/2ǫ3/2g2

c

(1 + β)3

(
A

H

)(
mP

H

)
m2

PNAA
βǫ2

(1 + β)3 m
4
PN

2
AA

β3/2ǫ3/2

(1 + β)3 m
3
PNAAA

v.inflation same as above 10−5
β3/2ǫ3/2g2

c

(1 + β)3

(
A

H

)(
mP

H

)
βǫ2

(1 + β)3 0

v.curvaton same as above 10−5
rβ3/2ǫ3/2g2

c

(1 + β)3

(
A

H

)(
mP

H

)(
mP

A

)2 r2βǫ2

(1 + β)3

(
mP

A

)4 rβ3/2ǫ3/2

(1 + β)3

(
mP

A

)3

Table 3: Order of magnitude of the ratios f vNL/ f
s
NL in different

scenarios.

f ANL/ f
s
NL f NA

NL / f
s
NL

general case β
NAA

Nφφ
β2g2

c

(
m

H

)2 N2
φ

Nφφ

v.inflation β
β2g2

c

ǫφ

(
mP

H

)2

v.curvaton βr
(
mP

A

)2 β2g2
c

ǫφr

(
A

H

)2

Table 2 includes the vector contributions to τNL, the scalar
contributions being given by

τ(s)
NL =

ǫφ(
1 + β

)3 +
ǫ

2
φ(

1 + β
)3 . (63)

In the expressions appearing in the tables, numerical coef-
ficients of order one have not been reported. Also, m is by
definition equal to mP in vector inflation and to A/

√
r in the

vector curvaton model; Nφ ⋍ (mP
√
ǫφ)−1 and Nφφ ⋍ m−2

P ,

with ǫφ ≡ (φ̇2)/(2m2
PH

2).

The quantities involved in the amplitude expressions are
g, β, r, ǫφ, gc, mP/H , A/mP and A/H . We already know that
g and β are to be considered smaller than one (see discussion
after (32)). Similarly, as mentioned after (3), r has to remain
small at least until inflation ends so as to attain an “almost
isotropic” expansion. The slow-roll parameter ǫφ and the
SU(2) coupling gc are small, respectively, to allow the inflaton
to slowly roll down its potential and for perturbation theory
to be valid. The ratio mP/H is of order 105 (assuming ǫφ ∼
10−1). Finally, A/mP and A/H have no stringent bounds. A
reasonable choice could be to assume that the expectation
value of the gauge fields is no larger than the Planck mass,
that is, A/mP ≤ 1. As to the A/H ratio, different possibilities
are allowed, including the one where it is of order one (see
[99, Section 6 and Appendix A] for a discussion on this).

Let us now compare the different amplitude contribu-
tions. The ratios between scalar and vector contributions
are shown in Table 3 for the bispectrum and Table 4 for
the trispectrum. We can observe that the dominance of a
given contribution w.r.t. another one very much depends
on the selected region of parameter space. It turns out that
it is allowed for the vector contributions to be larger than
the scalar ones and also for the non-Abelian contributions
to be larger than the Abelian ones. This is discussed more
in details in [99, Section 6]. An interesting point is, for
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Table 4: Order of magnitude of the ratios τvNL/τ
s
NL in different scenarios.

τNA1
NL /τsNL τNA2

NL /τsNL τA1
NL/τ

s
NL τA2

NL/τ
s
NL

general case 103β2g2
c

(
mP

H

)2

10−5β3/2ǫ1/2g2
c

(
A

H

)(
mP

H

)
m2

PNAA βǫm4
PN

2
AA β3/2ǫ1/2m3

PNAAA

v.inflation same as above 10−5β3/2ǫ1/2g2
c

(
A

H

)(
mP

H

)
βǫ 0

v.curvaton same as above 10−5rβ3/2ǫ1/2g2
c

(
A

H

)(
mP

H

)(
mP

A

)2

r2βǫ
(
mP

A

)4

rβ3/2ǫ1/2

(
mP

A

)3

Table 5: Order of magnitude of the ratios τvNL/( f
NA
NL )

2
in different scenarios.

τNA1
NL /( f NA

NL )
2

τNA2
NL /( f NA

NL )
2

τA1
NL/( f

NA
NL )

2
τA2
NL/( f

NA
NL )

2

v.i. 109
ǫ(1 + β)

g2
c β2

(
H

mP

)2

10
ǫ3/2(1 + β)

β5/2g2
c

(
A

H

)(
H

mP

)3

106
ǫ2(1 + β)

β3g4
c

(
H

mP

)4

0

v.c. 109
r2ǫ(1 + β)

g2
c β2

m2
P

A2

H2

A2
10

r5ǫ3/2(1 + β)

β5/2g2
c

H3

A3

mP

H

m2
P

A2
106

r6ǫ2(1 + β)

β3g4
c

(
mP

A

)4(H
A

)4

106
r3ǫ3/2(1 + β)

g2
c β5/2

m3
P

A3

H4

A4

instance, the following: ignoring tensor and gauge indices,
the ratio gcA/H , that appears in many of the Tables entries,
is a quantity smaller than one; if we consider the different
configurations identified by gauge and vector indices, we
realize that this is not always true, in fact the value of this
ratio can be≫1 in some configurations.

Finally, it is interesting to compare bispectrum and
trispectrum amplitudes (see Table 5). Again, it is allowed for
the ratios appearing in Table 5 to be either large or small,
depending on the specific location within the parameter
space of the theory. For instance, the combination of a
small bispectrum with a large trispectrum is permitted. The
latter is an interesting possibility: if the bispectrum was
observably small, we could still hope the information about
non-Gaussianity to be accessible thanks to the trispectrum.

Another interesting feature of this model is that the
bispectrum and the trispectrum depend on the same set of
quantities. If these correlation functions were independently
known, that information could then be used to test the
theory and place some bounds on its parameters.

6. Shape of Non-Gaussianity and Statistical
Anisotropy Features

Studying the shape of non-Gaussianity means understanding
the features of momentum dependence of the bispectrum
and higher order correlators. If they also depend on variables
other than momenta, it is important to determine how these
other variables affect the profiles for any given momentum
set-up. This is the case as far as the bispectrum and the
trispectrum of the gauge fields are concerned, given the fact

that they are functions, besides of momenta, also of a large
set of angular variables (see (52) and (55)).

6.1. Momentum Dependence of the Bispectrum and Trispec-
trum Profiles. We show the study of the momentum depen-
dence of the Fn and Gn functions in (52) and (55) first and
then analyze the angular variables dependence of the spectra,
once the momenta have been fixed in a given configuration.
A natural choice would be to consider the configuration
where the correlators are maximized.

The maxima can be easily determined for the bispectrum
by plotting the isotropic functions Fn and Gn in terms of
two of their momenta. These plots are provided in Figure 3,
where the variables are x2 ≡ k2/k1 and x3 ≡ k3/k1. Each
one of the plots corresponds to a single isotropic functions
of the sum in (52). It is apparent that the maxima are mostly
located in the so-called local region, that is, for k1 ∼ k2 ≫ k3;
three out of the eight graphs do not have their peaks in this
configuration but, at the same time, they show negligible
amplitudes compared to the “local” peaked graphs.

The situation is much more complex for the trispectrum,
being the number of momentum variables larger than three
(k1, k2, k3, k4, k1̂2 and k1̂4). The momentum dependence of
the isotropic functions can be studied by selecting different
configurations for the tetrahedron made up by the four
momentum vectors, in such a way as to narrow the number
of independent momentum variables down to two. A list of
possible configurations was presented in [43]. We consider
two of them, the “equilateral” and the “specialized planar”.

In the equilateral configuration the four sides of the
tetrahedron have the same length (k1 = k2 = k3 = k4),
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Figure 3: Plot of rn ≡ Θ(x2 − x3)Θ(x3 − 1 + x2)x2
2x

2
3Rn(x2, x3), where we define Rn = k6

1Fn. The Heaviside step functions Θ help restricting

the plot domain to the region (x2, x3) that is allowed for the triangle �k1 +�k2 +�k3 = 0 (in particular, we set x3 < x2). We also set x∗ = 1.

therefore x ≡ k1̂2/k1 and y ≡ k1̂4/k1 can be chosen as
variables for the plots. The plots of the isotropic functions
of contact interaction and vector exchange contributions are
provided in Figure 4. The former (c.i.) shows a constant
behaviour in this configuration, being independent of k1̂2

and k1̂4. The latter (v.e.(I), v.e.(II) and v.e.(III)) diverge as
k−3

1̂i
(i = 1, 2, and 3, resp., for the three plots) in the limit of

a flat tetrahedron, that is, (k1̂i/k1) → 0.
In the specialized planar configuration, the tetrahedron is

flattened and, in addition to that, three of the six momentum
variables are set equal to one another (k1 = k3 = k1̂4); this

leaves two independent variables, which can be x ≡ k2/k1 and
y ≡ k3/k1. There is a double degeneracy in this configuration,
due to the fact that the quadrangle can have internal angles
larger than or smaller/equal to π, as we can see from the plus
and minus signs in the expressions for k1̂2 and k1̂3 [43]

k1̂2

k1
=
√

1 +
x2y2

2
± xy

2

√
(4− x2)

(
4− y2

)
,

k1̂3

k1
=
√
x2 + y2 − x2y2

2
∓ xy

2

√
(4− x2)

(
4− y2

)
.

(64)
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Figure 4: Plots of the isotropic functions appearing in the vector fields trispectrum (from (55)): c.i. is the contribution from contact-
interaction diagrams, v.e.(I), v.e.(II), and v.e.(III) are the contributions from the vector-exchange diagrams. The equilateral configuration
has been considered in this figure.

The two cases are plotted in Figures 5 and 6. Notice that
divergences generally occur as x, y → 0, as x → y and
(x, y) → (2, 2).

6.2. Features and Level of Anisotropy. Statistical homogeneity
and isotropy are considered characterizing features of the
CMB fluctuations distribution, if one ignores the issues
raised by the “anomalous” detections we presented in the
introduction.

Homogeneity of the correlation functions equates trans-
lational invariance and hence total momentum conservation,
as enforced by the delta functions appearing on the left-hand
sides of (17) through (19). This invariance property can then
be pictured as the three momentum vectors forming a closed
triangle for the bispectrum and the four momenta arranged
in a tetrahedron for the trispectrum (see Figure 7).

Statistical isotropy corresponds to invariance w.r.t. rota-
tions in space of the momentum (for the power spectrum)
and of the triangle or tetrahedron made up by the momenta,

respectively for the bispectrum and the trispectrum. This
symmetry can be broken, as it for example happens in
the SU(2) case, by assuming the existence of preferred
spatial directions in the early universe that might be
revealed in the CMB observations. When this happens, the
correlation functions are expected to be sensitive to the
spatial orientation of the wave number or of the momenta
triangles and tetrahedrons w.r.t. these special directions.
Analitically, the bispectrum and the trispectrum will depend
on the angles among the vector bosons and the wave vectors
(besides the angles among the gauge bosons themselves), as
shown in the coefficients appearing in (52) and (55). This
implies that both the amplitude and the shape of bispectrum
and trispectrum will be affected by these mutual spatial
orientations. The modulation of the shapes by the directions
that break statistical anisotropy was discussed with some
examples both for the bispectrum and the trispectrum in our
previous papers [101, 102]. These examples are here reported
in Figures 8 and 9. In Figure 8 we show the plot of the vector



Advances in Astronomy 15

c.i.

0

0.5

1

1.5

2

x
0

0.5

1

1.5

2

y

0

−0.1

−0.2

(a)

v.e.(I)

10

5

0

−5

0

0.5

1

1.5

2 0

0.5

1

1.5

2

×108

x

y

(b)

v.e.(II)

2

0

−2

−4

−6

×1010

0

0.5

1

1.5

2 0

0.5

1

1.5
2

x
y

(c)

2
0
−2
−4

v.e.(III)

×108

0

0.5

1

1.5

2

0
0.5

1

1.5

2
x

y

(d)

Figure 5: Plots of the contact interaction and of the vector-exchange contributions in the specialized planar configuration (plus sign).

contribution to the bispectrum of ζ , properly normalized in
the configuration

�N3 = NA(0, 0, 1),

�N1 = �N2 = NA
(
sin θ cosφ, sin θ sinφ, cos θ

)
,

(65)

where, the (x, y, z) coordinate frame is chosen to be k̂3 = x̂

and k̂1 = k̂2 = ẑ and δ is the angle between �N1,2 and k̂3.
In Figure 9 we provide a similar plot for the trispectrum,

but in a different configuration

N̂2 · k̂i = 0 (i = 1, . . . , 4)

N̂1 · k̂1 = cos δ, N̂1 · k̂2 = 0,

N̂3 · k̂2 = cos θ, N̂3 · k̂1 = 0.

(66)

In both examples, it is assumed for simplicity that the �Na

have the same magnitude NA for all a = 1, 2, 3.
Another comment should be added concerning statistical

anisotropy in the model. Notice that both the bispectrum
and the trispectrum can be written as the sum of a purely

isotropic and an anisotropic parts. The orders of magnitude
of these two parts can, for instance, be read from Table 2 for

the trispectrum: each one among τNA2

NL , τA1

NL and τA2

NL provide
the order of magnitude of the level of both their isotropic and
anisotropic contributions, which are therefore comparable;

τNA1

NL instead quantifies a purely anisotropic contribution
which, as discussed in Section 5, can be comparable to
the other three parts, if not the dominant one. A similar
discussion applies to the bispectrum (see f ANL and f NA

NL in
Table 1). We can then conclude that for the three and for the
four point function, there is room in the parameter space of
the theory for the anisotropic contributions to be as large as,
or even larger than, the isotropic ones.

7. Conclusions

Motivated by the interest in models that combine non-
Gaussianity and statistical anisotropy predictions for the
CMB fluctuations, we have considered models of inflation
where primordial vector fields effectively participate in the
production of the curvature perturbations ζ . More specifi-
cally, we have reviewed the computation of the correlation
functions up to fourth order, considering an SU(2) vector
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Figure 6: Plots of the contact interaction and of the vector-exchange contributions in the specialized planar configuration (minus sign).
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Figure 7: Representation of momentum conservation for the bispectrum (the three momenta form a closed triangle) and for the trispectrum
(the momenta form a tetrahedron).

multiplet. The δN formalism was employed to express ζ in
terms of the quantum fluctuations of all the primordial fields.
The Schwinger-Keldysh formula was also used in evaluating
the correlators.

The correlation functions result as the sum of scalar and
vector contributions. The latter are of two kinds, “Abelian”

(i.e., arising from the zeroth order terms in the Schwinger-
Keldysh expansion) and “non-Abelian” (i.e., originating
from the self-interactions of the vector fields). The bispec-
trum and the trispectrum final results are presented as a sum
of products of isotropic functions of the momenta, Fn and
Gn in (52) and (55), multiplied by anisotropy coefficients, In
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contribution due to vector-exchange diagrams in a sample angular
configuration. See [100, Section 8] for its analytic expression.

and Ln in (52) and (55), which depend on the angles between
the (gauge and wave) vectors.

The amplitude of non-Gaussianity has been presented
through the parameters fNL and τNL; in particular we have
show the dependence of these functions from the nonangular
parameters of the theory. We have provided the comparisons
among the different (scalar versus vector, Abelian versus non-
Abelian) contributions to fNL and τNL, noticing that any one
of them can be the dominant contribution depending on the
selected region of parameter space. In particular, we have
stressed how the anisotropic contributions to the bispectrum
and the trispectrum can overcome the isotropic parts. An
interesting feature of these models is that the bispectrum and
the trispectrum depend on the same set of parameters and
their amplitudes are therefore strictly related to one another.

We have presented the shapes of both the bispectrum and
the trispectrum. The isotropic functions appearing in their
final expressions had been analyzed separately from their

anisotropy coefficients. The bispectrum isotropic functions
had been found to preferably show a local shape. The
trispectrum ones had been plotted selecting equilateral and
specialized planar configurations. The full expressions (i.e.,
complete of their anisotropy coefficients) of bispectrum
and trispectrum have been presented in specific momenta
configuration, in order to provide a hint of the modulation
of shapes and amplitudes operated by anisotropy.

We have reviewed old and recent vector field models,
indicating both their limits and achievements. We would like
to stress that, in our view, the most promising features of
these models consists in the possibility of providing both
non-Gaussianity and statistical anisotropy predictions that
are related to one another because of the fact that they share
the same underlying theory. This might, at some point in
the future, become a great advantage: measurements of non-
Gaussianity could be used to constrain statistical anisotropy
or vice versa.
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