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1 Introduction

Establishing the field content during inflation is a fundamental challenge of primordial

cosmology. Minimal inflationary models have two massless fields: the Goldstone boson of

broken time translations,1 π, and the graviton, γij . While at present there is no evidence

1Strictly speaking, π is only massless in the decoupling limit Mpl → ∞. However, for adiabatic fluctu-

ations, π is directly related to the comoving curvature perturbation, ζ = −Hπ +O(π2), which is the true

massless degree of freedom even away from the decoupling limit.
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Figure 1. Diagrams contributing to 〈ζζζ〉 and 〈γζζ〉. The solid, dashed, and wavy lines represent

the curvature perturbation ζ, a massive spin-s field σi1···is , and the graviton γij , respectively.

for additional degrees of freedom [1], the imprints of extra particles can be subtle, so it

remains important to fully characterize their effects and compare them to observations.

Moreover, massive particles are important probes of the ultraviolet completion of inflation.

For example, in string theory, massive particles in the low-energy effective theory encode

physics at the string and Kaluza-Klein scales [2]. If these scales aren’t too far from the in-

flationary Hubble scale, then their influence may be observable (although the experimental

challenge could be enormous).

Since massive particles decay outside of the horizon during inflation, they cannot be

observed directly in late-time correlation functions. Instead, the presence of massive par-

ticles has to be inferred from their indirect effects on the correlation functions of ζ = −Hπ
and γij (see figure 1). Some of these effects can be mimicked by adding a local vertex in

the low-energy effective Lagrangian, which is the result of integrating out the heavy fields.

On the other hand, massive particles may spontaneously be created in an expanding space-

time [3–5], an effect which cannot be represented by adding a local vertex to the effective

Lagrangian [6]. The role of these non-local effects as a means of detecting massive parti-

cles during inflation was recently highlighted by Arkani-Hamed and Maldacena (AHM) [6]:

the spontaneous particle creation allows us to probe massive fields during inflation, even

though we are only observing the late-time expectation values of light fields. The rate of

particle production in de Sitter space is exponentially suppressed as a function of mass,

e−m/TdS , with TdS ≡ H/2π, so their imprints will only be detectable if their masses are not

too far above the Hubble rate H.2 Since the inflationary scale may be as high as 1014GeV,

this nevertheless provides an opportunity to probe massive particles far beyond the reach

of conventional particle colliders.

Nonlinearities in the decay of the massive particles lead to a non-Gaussianity in the

late-time correlation functions of ζ and γij . The form of this non-Gaussianity will depend on

the masses and the spins of the extra particles. The effects of additional scalar fields during

inflation have been explored in many previous works, e.g. in the context of multi-field [8]

and quasi-single-field inflation [9–11]. A characteristic signature of these fields are non-

analytic scalings in the soft momentum limits of the non-Gaussian correlation functions.

These soft limits are particularly clean detection channels, since in single-field inflation their

2If the extra fields have strongly time-dependent masses, whose Fourier transforms have support at a

frequency ω̂, then non-adiabatic particle production occurs at a rate proportional to e−m/ω̂ [7]. The scale

ω̂ may be as large as φ̇1/2 = 58H without spoiling the slow-roll dynamics. In models with these types of

time-dependent couplings, the detectable range of particle masses is somewhat enlarged.
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momentum scalings are fixed by the symmetries of the inflationary background [12, 13].

The most straightforward interpretation of such non-analyticity in the correlation functions

is therefore the presence of extra particles. Scalar fields with masses less than 3
2H give rise

to monotonic scalings in the squeezed limit [9, 10], while those with masses greater than
3
2H lead to oscillatory behavior [6, 11, 14, 15]. The effects of extra massive particles with

spin have not been studied in as much detail. Such particles can naturally arise as massive

Kaluza-Klein modes or as part of the tower of higher-spin states from string theory [16, 17].

As was shown by AHM, the spins of new particles lead to a distinctive angular dependence

of the soft limits of the non-Gaussian correlators. The analysis of AHM was restricted to

the squeezed limit of the bispectrum and interactions that maintained the approximate

conformal invariance of the inflationary background. While this assumption made their

analysis particularly well controlled, it also implied that the amplitude of the signal is

highly suppressed and only observable in the most optimistic and futuristic scenarios.

We will drop some of the restrictions of the analysis of AHM in our analysis. In

particular, we will allow for a large breaking of conformal invariance within the framework of

the effective field theory (EFT) of inflation [18]. We will find that the signal due to massive

spinning particles can be observable within the regime of validity of the EFT. At the same

time, the main spectroscopic features of particles with spin during inflation do not rely on

conformal invariance and therefore still apply. On the other hand, couplings to particles

with odd spins, which are disallowed in the conformally-invariant case, are permitted in

the generic effective theory. We also consider the breaking of special conformal invariance

by giving the Goldstone fluctuations a nontrivial sound speed. In that case, we find a

reduced exponential suppression in the particle production rate, and thus an enhanced

level of non-Gaussianity. Finally, we also study the coupling to an external graviton γij .

We demonstrate that the soft graviton limit of the correlator 〈γζζ〉 provides an interesting

detection channel for extra particles. Like in the case of massive scalar fields, there will be

non-analytic scalings of non-Gaussianities close to the soft momentum limit, but this time

only for particles with spin greater than or equal to two.

Outline. In this paper, we analyze the allowed couplings of massive particles with spin

to the Goldstone boson of broken time translations and the graviton, and discuss their

observational signatures. In section 2, we first collect the equations of motion for massive

fields with spin in de Sitter space, whose solutions are presented in appendix A. In section 3,

we then construct the effective action for the leading interactions between the Goldstone

boson π, the graviton γij , and massive spinning fields σµ1...µs . We analyze under what

conditions the theory is under perturbative control and discuss various constraints on the

sizes of the couplings. In section 4, we compute the correlation functions associated with

the interactions of section 3. We estimate the maximal amount of non-Gaussianity that is

consistent with the constraints on the couplings of the effective theory. Details of the in-in

computation are relegated to appendix B, and analytic results for soft limits are given in

appendix C. Our conclusions are presented in section 5.
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Notation and conventions. We will use natural units, c = ~ = 1, with reduced Planck

mass M2
pl = 1/8πG. Our metric signature is (− + ++). We will use Greek letters for

spacetime indices, µ, ν, . . . = 0, 1, 2, 3, and Latin letters for spatial indices, i, j, . . . = 1, 2, 3.

Three-dimensional vectors are written in boldface, k, and unit vectors are hatted, k̂. A

shorthand for the symmetrization of tensor indices is a(µbν) ≡ 1
2(aµbν + aνbµ). Overdots

and primes will denote derivatives with respect to physical time t and conformal time η,

respectively. The letter π will refer both to 3.141 . . . and the Goldstone boson of broken

time translations. The dimensionless power spectrum of a Fourier mode fk is defined as

∆2
f (k) ≡

k3

2π2
〈fkf−k〉′ , (1.1)

where the prime on the expectation value indicates that the overall momentum-conserving

delta function has been dropped.

2 Spin in de Sitter space

We begin by reviewing a few elementary facts about massive fields with spin in four-

dimensional de Sitter space, dS4.
3

Spin-1. The quadratic action of a massive spin-1 field σµ in de Sitter space is

S1 =

∫

d4x
√−g

[

−1

2
∇µσν∇µσν +

1

2
(∇µσµ)

2 − 1

2
m2

1σ
µσµ

]

, (2.1)

wherem2
1 ≡ m2+3H2, withm being the mass of the field.4 The structure of the action (2.1)

is uniquely fixed by requiring the absence of ghost degrees of freedom.5 Up to integration

by parts, this is equivalent to the Proca action. Variation of the action yields the equation

of motion, �σµ − ∇µ∇νσν −m2
1σµ = 0, where � ≡ ∇µ∇µ denotes the Laplace-Beltrami

operator on dS4. Taking the divergence of this equation gives the constraint ∇µσµ = 0.

The on-shell equation of motion then becomes

(
�−m2

1

)
σµ = 0 . (2.2)

In appendix A, we derive the solutions to this equation for the different helicity components

of the field.

3In this paper, we will only consider spinning fields that are strictly massive. As we will discuss below,

massless higher-spin fields do not carry longitudinal (or helicity-2) degrees of freedom, meaning that, at

tree level, three-point functions that involve the exchange of massless higher-spin fields are forbidden by

kinematics.
4We define the mass parameter in such a way that the action acquires a gauge invariance in the massless

limit, m = 0. This is required in order for massless spinning fields to propagate the right number of degrees

of freedom. The mass defined in this way can also be identified as the mass of the field in the flat space

limit [19].
5The ghost-free structure of the quadratic action will remain valid as long as nonlinear interactions can

be treated perturbatively.
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Spin-2. The unique ghost-free quadratic action of a massive spin-2 field σµν in de Sitter

space is [20]

S2 =

∫

d4x
√−g

[

− 1

2
∇ασµν∇ασµν +∇µσµν∇ασ

αν −∇µσµν∇ν σ̃ +
1

2
∇µσ̃∇µσ̃

− 1

2
m2

2(σ
µνσµν − σ̃2)− 3

2
H2σ̃2

]

, (2.3)

where m2
2 ≡ m2 + 2H2 and σ̃ ≡ σµµ denotes the trace. Varying the action with respect to

σµν , we obtain

�σµν − 2∇(µ∇ασν)α +∇µ∇ν σ̃ + gµν(∇α∇βσαβ −�σ̃)−m2
2σµν + (m2

2 − 3H2)gµν σ̃ = 0 .

(2.4)

Taking the divergence gives ∇µσµν = ∇ν σ̃, and plugging this back into the equation yields

(m2 − 2H2)σ̃ = 0. For m2 6= 2H2, the equation of motion and the constraints satisfied by

the field σµν are6

(
�−m2

2

)
σµν = 0 , ∇µσµν = 0 , σ̃ = 0 . (2.5)

In appendix A, we derive the solutions to the on-shell conditions (2.5).

Spin-s. The Lagrangian for massive fields with arbitrary spin in flat space was con-

structed in [22, 23], and generalized to (A)dS spaces in [24]. For massive fields with spin

greater than 2, the action is rather complex and requires introducing auxiliary fields of

lower spins. An alternative, which we will follow, is to use a group theoretical approach to

find the equations of motion directly [25]. A massive bosonic spin-s field is described by a

totally symmetric rank-s tensor, σµ1···µs , subject to the constraints

∇µ1σµ1···µs = 0 , σµµµ3···µs = 0 . (2.6)

The conditions in (2.6) project out the components of the tensor which transform as fields

with lower spins. The Casimir eigenvalue equation of the de Sitter group then gives the

wave equation satisfied by these fields:

(
�−m2

s

)
σµ1···µs = 0 , (2.7)

where m2
s ≡ m2− (s2−2s−2)H2. The shift in the mass arises from the mismatch between

the Casimir and Laplace-Beltrami operators in de Sitter space and is necessary to describe

the correct representations for massless fields. Equivalently, it is required by imposing

gauge invariance in the massless limit, m = 0. Solutions to equation (2.7) are obtained in

appendix A.

Following Wigner [26], we identify the spectrum of particles by the unitary irreducible

representations of the spacetime isometry group. For the de Sitter group SO(1, 4), these

representations fall into three distinct categories [27, 28]:

6For m2 = 2H2, the system enjoys a (partial) gauge invariance σµν → σµν +∇(µ∇ν)ξ, and the longitu-

dinal (helicity-0) mode becomes non-dynamical [21].
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principal series complementary series discrete series

m2

H2
≥

(

s− 1

2

)2

s(s− 1) <
m2

H2
<

(

s− 1

2

)2 m2

H2
= s(s− 1)− t(t+ 1) ,

for t = 0, 1, 2, . . . , s − 1. Masses that are not associated with one of the above categories

are forbidden and correspond to non-unitary representations. At the specific mass values

corresponding to the discrete series, the system gains an additional gauge invariance and

some of the lowest helicity modes become pure gauge modes; this phenomenon is called

partial masslessness [29]. The spectrum of massive particles is contained in the principal

and complementary series. We see that unitarity demands the existence of a lower bound,

m2 > s(s − 1)H2, on the masses of fields that belong to this spectrum. For s = 2, this is

known as the Higuchi bound [20].

In the late-time limit, the generators of the de Sitter isometries form the 3-dimensional

conformal group. The asymptotic scaling of a spin-s field is

lim
η→0

σi1···is(η,x) = σ+i1···is(x) η
∆+

s −s + σ−i1···is(x) η
∆−

s −s , (2.8)

where the conformal weight of the field is defined as7

∆±
s =

3

2
± iµs , with µs ≡

√

m2

H2
−
(

s− 1

2

)2

. (2.9)

In this paper, we will deal mostly with particles belonging to the principal series which

covers the largest mass range and corresponds to µs ≥ 0. For real µs, the asymptotic

scaling is given by a complex-conjugate pair, resulting in a wavefunction that oscillates

logarithmically in conformal time. The complementary series has imaginary µs and corre-

sponds to the interval −iµs ∈ (0, 1/2). In that case, only the growing mode survives in the

late-time limit.

3 Spin in the effective theory of inflation

In this section, we will construct the leading interactions between the Goldstone boson of

broken time translations π, the graviton γij , and massive spinning fields σµ1...µs . We start,

in section 3.1 and section 3.2, by reviewing the effective actions for the Goldstone boson

and the graviton. In section 3.3, we introduce the couplings to massive particles with spin;

first for the special cases s = 1 and 2, and then for arbitrary spin. We close, in section 3.4,

by discussing how large the mixing interactions can be made while keeping the effective

theory under theoretical control.

3.1 Goldstone action

A time-dependent cosmological background induces a “clock”, i.e. a preferred time slic-

ing t̃(t,x) of the spacetime. In the inflationary context, surfaces of constant t̃ may be

7Notice that for s = 0, the case m = 0 corresponds to a conformally coupled scalar field. For a

minimally-coupled massless scalar, one should instead use m2 → m2 − 2H2 in (2.9).

– 6 –
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associated with the homogeneous energy density of the background. The slicing has a

timelike gradient, and the unit vector perpendicular to the surface of constant t̃ is

nµ ≡ ∂µt̃
√

−gαβ∂αt̃∂β t̃
. (3.1)

The induced spatial metric on the slicing is hµν ≡ gµν+nµnν . The metric hµν also serves to

project spacetime tensors onto the spatial hypersurfaces. Geometric objects living on the

hypersurfaces can be constructed from hµν and nµ. Examples are the intrinsic curvature,
(3)Rµνρσ[h], and the extrinsic curvature, Kµν ≡ h(µ

ρ∇ρnν). Using the Gauss-Codazzi

relation, the intrinsic curvature can be written in terms of (the projection of) the four-

dimensional Riemann tensor Rµνρσ and the extrinsic curvature Kµν . Higher-derivative

objects can be constructed using the covariant derivative ∇µ, defined with respect to hµν .

In unitary gauge, the time coordinate t is chosen to coincide with t̃. Fluctuations in the

clock have been eaten by the metric, and the effective action for adiabatic fluctuations only

contains metric perturbations. The action does not have to respect full diffeomorphism

invariance, but only has to be invariant under time-dependent spatial diffeomorphisms,

xi → xi+ ξi(t,x). Besides terms that are invariant under all diffeomorphisms (such as cur-

vature invariants like R and RµνρσR
µνρσ), the reduced symmetry of the system now allows

many new terms in the action. The normal vector in (3.1) becomes nµ = −δ0µ/(−g00)1/2 in

unitary gauge. By contracting covariant tensors with nµ, we produce objects with uncon-

tracted upper 0 indices, such as g00 and R00. It is easy to check that these are scalars under

spatial diffeomorphisms. Functions of g00, R00, etc. are therefore allowed in the effective

action. In general, products of any four-dimensional covariant tensors with free upper 0

indices are allowed operators. In addition, we can have operators made out of the three-

dimensional quantities describing the geometry of the spatial hypersurfaces (e.g. Kµν). The

most general action constructed from these ingredients is [18]

S =

∫

d4x
√−gL(g00,Kµν , Rµνρσ,∇µ, . . . , t) , (3.2)

where the only free indices entering the functional L are upper 0’s. The spacetime indices

in (3.2) are contracted with the four-dimensional metric gµν . Terms involving explicit

contractions of the induced metric hµν do not lead to new operators.

At leading order in derivatives, the action can be written in terms of g00 alone,

S =

∫

d4x
√−g

[

1

2
M2

plR+M2
plḢg

00 −M2
pl(3H

2 + Ḣ) +
∞∑

n=2

M4
n(t)

n!
(δg00)n + · · ·

]

, (3.3)

where δg00 ≡ g00 + 1. The coefficients of the operators 1 and g00 have been fixed by the

requirement that we are expanding around the correct FRW background with a given ex-

pansion rateH(t). This removes all tadpoles and the action starts quadratic in fluctuations.

Because time diffeomorphisms are broken, all operators are allowed to have time-dependent

coefficients. The limit of slow-roll inflation corresponds to Mn → 0.

To make the dynamics of the theory defined by (3.3) more transparent, we introduce the

Goldstone boson associated with the spontaneous breaking of time-translation invariance.

– 7 –
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Through the Stückelberg trick, the field π also restores the full diffeomorphism invariance

of the theory. Specifically, we perform a spacetime-dependent time reparameterization,

t→ t̃ = t+ π(t,x). The metric transforms in the usual way: e.g.

g00 → g00 + 2∂µπg
0µ + ∂µπ∂νπg

µν . (3.4)

Substituting this into (3.3) gives the action for the Goldstone boson. In general, this

action contains a complicated mixing between the Goldstone mode and metric fluctuations.

However, for most applications of interest, we can take the so-called decoupling limit, and

evaluate the Goldstone action in the unperturbed background [18], gµν → ḡµν . In this case,

the transformation (3.4) reduces to g00 → −1−2π̇+(∂µπ)
2, and the Goldstone Lagrangian

becomes

Lπ =M2
plḢ(∂µπ)

2 + 2M4
2

[

π̇2 − π̇(∂iπ)
2

a2

]

+

(

2M4
2 − 4

3
M4

3

)

π̇3 + · · · . (3.5)

We see that M2 6= 0 induces a nontrivial sound speed for the Goldstone boson,

c2π ≡
M2

plḢ

M2
plḢ − 2M4

2

. (3.6)

A small value of cπ (large value of M2) is correlated with an enhanced cubic interaction

π̇(∂iπ)
2. The Planck constraints on primordial non-Gaussianity imply cπ ≥ 0.024 [30]. For

purely adiabatic fluctuations, the relationship between the comoving curvature perturba-

tion ζ and the Goldstone boson is ζ = −Hπ +O(π2). The dimensionless power spectrum

of ζ is found to be

∆2
ζ ≡

k3

2π2
Pζ(k) =

1

4π2

(
H

fπ

)4

, (3.7)

where f4π ≡ 2M2
pl|Ḣ|cπ is the symmetry breaking scale [31]. The observed amplitude of the

power spectrum is ∆2
ζ = (2.14± 0.05)× 10−9 [32].

3.2 Graviton action

The tensor sector of inflation is harder to modify [33]. The leading correction to the

Einstein-Hilbert action can be written as

S =

∫

d4x
√−g

[
1

2
M2

plR+ M̂2
2

(
δKµνδKµν − δK2

)
]

, (3.8)

where the combination of extrinsic curvature tensors was chosen in a way that doesn’t

induce a scalar sound speed. Inserting the transverse and traceless tensor perturbation of

the metric, gij = a2(δij + γij), we find

Lγ =
M2

pl

8

1

c2γ

[

γ̇2ij − c2γ
(∂kγij)

2

a2

]

+ · · · , (3.9)

where we have defined the tensor sound speed

c2γ ≡
M2

pl

M2
pl + 2M̂2

2

. (3.10)

– 8 –
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As discussed in detail in [33], the tensor sound speed can be set to unity by a disformal

transformation. This transformation makes the tensor sector canonical, and moves all the

corrections to the scalar sector. In this paper, we will make the same choice of frame and

work with cγ = 1 throughout. The dimensionless power spectrum of γij is then given by

∆2
γ ≡ k3

2π2
Pγ(k) =

2

π2
H2

M2
pl

. (3.11)

The current contraint on the tensor-to-scalar ratio, r ≡ ∆2
γ/∆

2
ζ < 0.07 [34], implies that

∆2
γ . 1.5× 10−10.

3.3 Mixing interactions

Next, we construct the effective action for interactions between the Goldstone boson, the

graviton, and massive spinning fields.8 We will also consider self-interactions of the massive

spinning fields, and focus on terms which contribute to the correlation functions 〈ζζζ〉
and 〈γζζ〉 at tree level and at leading order in derivatives. Moreover, we will restrict our

presentation to the subset of interactions which give rise to a distinctive angular dependence

due to the exchange of the spinning fields.

3.3.1 Couplings to the Goldstone

The construction of the effective action proceeds as above. We first write down all operators

consistent with the symmetries. Amongst them will be tadpole terms, which must add up

to zero. In unitary gauge, the basic building blocks involving spinning fields are σ0···0 and

all Lorentz-invariant self-interactions, e.g. σµ1···µsσµ1···µs . The latter are invariant under all

diffeomorphisms, so they don’t lead to a coupling to π after the Stückelberg trick, whereas

the former transform as

σ0···0 → (δ0µ1
+ ∂µ1π) · · · (δ0µs

+ ∂µsπ)σ
µ1···µs . (3.12)

We may also have contractions with the curvature tensors, which appear at higher order

in derivatives.

Spin-1. We first analyze the couplings between a massive spin-1 field σµ and the Gold-

stone boson π. In unitary gauge, the operators of the effective action involve g00 and σ0.

In order not to alter the background solution, these operators have to start at quadratic

order in fluctuations.

• At leading order in derivatives and to linear order in σµ, the mixing Lagrangian is9

L(1)
πσ = ω3

1 δg
00σ0 + ω3

2 (δg
00)2σ0 . (3.13)

8For constructions of the EFT of inflation with extra scalar fields, see [8, 11].
9Note that there are no terms involving δg0µσµ in the effective action. This is because this operator does

not satisfy the symmetries of the EFT, since the background value ḡ0µσµ = −σ0 transforms nontrivially

under spatial diffeomorphisms (and so does the fluctuation).
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Introducing π using (3.4) and (3.12), we get

L(1)
πσ = ω3

1 a
−2

(
2∂iπσi − (∂iπ)

2σ0 − 2π̇∂iπσi
)
+ (3ω3

1 + 4ω3
2) π̇

2σ0 + · · · , (3.14)

where we have taken the decoupling limit so that couplings to metric fluctuations

become irrelevant.10 We also used the constraint ∇µσµ = 0, which we assume to

hold at the background level, to replace π̇σ0 by ∂iπσi. Since only the cubic mixing

π̇∂iπσi will lead to the characteristic angular structure in the resulting correlation

functions (see section 4), we will focus on the bispectrum created created by the

combination of π̇∂iπσi and ∂iπσi. Note that there is a single parameter ω1 controlling

the size of these two interactions. This is a consequence of the nonlinearly-realized

time translation symmetry.

• At quadratic order in σµ, the mixing Lagrangian is

L(1)
πσ2 = ω2

3 δg
00(σ0)2 + ω2

4 δg
00σµσµ (3.15)

→ −2(ω2
3 − ω2

4)π̇σ0σ0 − 2ω2
4a

−2π̇σiσi , (3.16)

where in the second line we have introduced the Goldstone and taken the decoupling

limit. We see that, this time, the size of the cubic interaction π̇σiσi is independent

from the quadratic mixing term.

Combining the above, we can write

L(1)
mix =

1

a2

(

ρ1∂iπcσi +
1

Λ1
π̇c∂iπcσi + λ1 π̇cσiσi

)

, (3.17)

where πc ≡ f2π π is the canonically normalized Goldstone boson, and we defined

ρ1 ≡
2ω3

1

f2π
, Λ1 ≡ −f

2
π

ρ1
, λ1 ≡ −2ω2

4

f2π
. (3.18)

We note that ρ1 and Λ1 are correlated, since they are both determined by the parameter ω1.

Spin-2. Next, we consider the mixing between a massive spin-2 field and the Gold-

stone boson.

• At linear order in σµν , the mixing Lagrangian is

L(2)
πσ = ω̃3

1 δg
00σ00 + ω̃3

2 (δg
00)2σ00 + ω̃2

3 δKµνσ
µν + ω̃2

4 δg
00δKµνσ

µν , (3.19)

where it was necessary to include higher-derivative operators to get the relevant

interactions for the spatial components σij . In the decoupling limit, the mixing with

the Goldstone boson is

L(2)
πσ = ω̃3

1

[
−2π̇σ00 + a−2(∂iπ)

2σ00 + 4a−2π̇∂iπσ0i
]
− (5ω̃3

1 − 4ω̃3
2) π̇

2σ00

− ω̃2
3 a

−4∂i∂jπσij + 2ω̃2
4 a

−4π̇∂i∂jπσij + · · · . (3.20)

10The decoupling limit is not affected by the inclusion of mixing interactions, provided that we are in the

perturbative regime. This can be shown by an ADM analysis of the metric perturbations [11, 35].
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We will focus on the traceless part of σij , which we denote by σ̂ij . Only the cubic

mixing π̇∂i∂jπσ̂ij will lead to the characteristic angular structure in the bispectrum.

Since the quadratic mixing does not affect the angular structure, we will simply

choose ∂i∂jπσij as a representative example. Unlike the spin-1 case, the sizes of the

quadratic and cubic mixing operators are controlled by two independent parameters,

ω̃3 and ω̃4.

• At quadratic order in σµν , the mixing Lagrangian is

L(2)
πσ2 = ω̃2

5 δg
00(σ00)2 + ω̃2

6 δg
00σµνσµν , (3.21)

→ −(2ω̃2
5 + 2ω̃2

6) π̇σ
2
00 − 2ω̃2

6

[
2a−2π̇σ0iσ0i + a−4π̇σijσij

]
+ · · · , (3.22)

where the last term in (3.22) will lead to the angular structure that we are inter-

ested in.

We will study the following mixing Lagrangian

L(2)
mix =

1

a4

(

ρ2∂i∂jπcσ̂ij +
1

Λ2
2

π̇c∂i∂jπcσ̂ij + λ2 π̇cσ̂ij σ̂ij

)

, (3.23)

where we defined

ρ2 ≡ − ω̃
2
3

f2π
, Λ2 ≡

f2π√
2ω̃4

, λ2 ≡ −2ω̃2
6

f2π
. (3.24)

This is similar to the spin-1 mixing Lagrangian (3.17), except that the quadratic and cubic

mixing parameters, ρ2 and Λ2, are now independent.

Spin-s. Performing the same analysis for a field with arbitrary spin s > 2, we find the

following mixing Lagrangian

L(s)
mix =

1

a2s

(

ρs∂i1···isπcσ̂i1···is +
1

Λs
s

π̇c∂i1···isπcσ̂i1···is + λs π̇cσ̂
2
i1···is

)

, (3.25)

where ∂i1···is ≡ ∂i1 · · · ∂is . As in the case of spin-2, these interactions generically arise from

independent operators, i.e. ρs, Λs, and λs are independent parameters.

The mixing in (3.25) can convert hidden non-Gaussianity in the σ-sector into visible

non-Gaussianity in the π-sector. To allow for this possibility, we add cubic self-interactions

to the action for σ, which schematically we can write as

a3sL(s)
σ3 ≡

{

ξs σ̂ · σ̂ · σ̂ s even,

ξs σ̂ · σ̂ · (∂σ̂) s odd,
(3.26)

with suitable symmetric contractions of spatial indices.

3.3.2 Couplings to the graviton

We will also be interested in the couplings between massive spinning fields and the graviton,

γij . For simplicity, we will only consider linear couplings to γij , but the generalization to

higher orders will essentially be straightforward.
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Spin-1. The leading couplings to the graviton arise from

L(1)
γπσ = ω2

5 δg
00gµν∇µσν −

m2
1

2
σµνσµν . (3.27)

Note that, in our perturbative treatment, the on-shell conditions for σµ hold at the back-

ground level, so that ḡµν∇µσν = 0. The first term in (3.27) is therefore proportional to

gµν∇µσν = δgµν∇µσν and starts at cubic order in fluctuations. In terms of π and γij , the

mixing Lagrangian becomes

L(1)
γπσ =

1

a2
1

Mpl

(
τ1 π̇cγ

c
ij∂iσj +m2

1γ
c
ijσiσj

)
, (3.28)

where τ1 ≡ 4ω2
5/f

2
π and γcij ≡ 1

2Mplγij denotes the canonically normalized graviton. The

first term in (3.28) is higher order in derivatives than the operator γij∂iπσj . However,

the latter only arises from the tadpole σ0, and is therefore required to have a vanishing

coefficient. Moreover, a quadratic mixing between the spin-1 field and the graviton is

forbidden by kinematics: any such mixing will involve spatial gradients and hence must

vanish because the graviton is transverse, ∂iγij = 0.

Spin-2. The couplings between a massive spin-2 field and the graviton follow from

L(2)
γπσ = ω̃2

3 δKµνσ
µν + ω̃3

7 δg
00gµνσµν −

m2
2

2
σµνσµν . (3.29)

Note that we have already encountered the operator δKµνσ
µν in (3.19). In our perturbative

treatment, the on-shell traceless condition holds at the background level, ḡµνσµν = 0, which

implies that gµνσµν = δgµνσµν , so that the second term in (3.29) starts at cubic order in

fluctuations. The cubic operator δg00δgµν∇µσν0 will not be considered, since its effects are

indistinguishable from those of the first term in (3.28). Introducing π and γij , the mixing

Lagrangian becomes

L(2)
γπσ =

1

a2
1

Mpl

(

ρ̃2 γ̇
c
ij σ̂ij + τ2 π̇cγ

c
ij σ̂ij +

m2
2

a2
γcij σ̂ikσ̂kj

)

, (3.30)

where ρ̃2 ≡ −ρ2f2π and τ2 ≡ 4ω̃3
7/f

2
π . Note that we have only kept the spatial components

in the coupling to the mass term. Unlike in the spin-1 case, there is now a quadratic

mixing between the spin-2 field and the graviton, whose size is correlated with the π-σ

mixing in (3.23). The other possible form of mixing γijσij comes from the tadpole σ̃ and

is thus absent.

Spin-s. For arbitrary spin s > 2, the leading interactions with the graviton and the

Goldstone take the following form

L(s)
γπσ =

1

a2s−2

1

Mpl

(

ρ̃s∂i3···is γ̇
c
i1i2 σ̂i1···is + τsγ

c
i1i2∂i3···isπcσ̂i1···is +

m2
s

a2
γci1j1 σ̂i1···is σ̂j1···is

)

,

(3.31)

where ρ̃s ≡ −ρsf2π . Again, we have only kept interactions that involve the purely spatial

components of the field. In practice, there are other low-dimensional operators that can

also contribute to the correlator 〈γζζ〉 with the same angular structure, such as γ̇ijσij0···0.
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3.4 Bounds on mixing coefficients

It is important to determine how large the mixing interactions of the previous section can

be made while keeping the effective theory under theoretical control. In this section, we

will discuss bounds arising from i ) the requirement that the mixing interactions can be

treated perturbatively and ii ) the absence of superluminal propagation.11 Finally, we also

consider what range of coefficients yields a technically natural effective field theory, in the

sense of stability under radiative corrections. In section 4, we will consider the implications

of these constraints on the size of non-Gaussianities.

3.4.1 Perturbativity

We wish to treat the mixing interactions as perturbative corrections to the free-field actions

for the Goldstone boson and the massive spinning fields. Since massive particles decay

outside the horizon and oscillate rapidly inside the horizon, the dominant contributions to

correlation functions will occur at horizon crossing of the Goldstone boson, corresponding

to frequencies of order H. Consistency of the perturbative description therefore requires

that the sizes of the mixing interactions at ω ∼ H are smaller than the terms in the free-field

actions. This puts constraints on the couplings in the mixing Lagrangians discussed in the

previous section. For cπ = 1, the criteria for a consistent perturbative treatment require

little more than dimensional analysis. The dimensionful couplings of relevant interactions

have to be less than H, while those of irrelevant interactions have to be greater than

H. The dimensionless couplings of marginal interactions have to be less than unity. For

example, for the couplings appearing in (3.23), we require {ρ2, λ2} < 1 and Λ2 > H.

Similar considerations apply for the couplings in (3.17) and (3.25). For cπ 6= 1, determining

the perturbativity constraints on the mixing parameters requires a more careful analysis.

Spatial gradients of the Goldstone mode are enhanced and the correlation functions can

receive contributions from a second time scale, the time of crossing of the sound horizon.

We will return to this complication in section 4.

3.4.2 Superluminality

The breaking of time diffeomorphism invariance can modify the actions for spinning fields

of section 2 by introducing additional non-Lorentz-invariant interactions. For concreteness,

we will confine our discussion in this subsection to the case of spin one, but we expect similar

results to hold for higher spins. In unitary gauge, the most general quadratic action for a

spin-1 field is

Sσ =

∫

d4x
√−g

[

−1

4
FµνFµν +

a1
2
F 0µF 0

µ − 1

2
m2(σµσµ − a0 σ

0σ0)

]

, (3.32)

where Fµν ≡ ∂µσν −∂νσµ, and the structure of the kinetic part is enforced by gauge invari-

ance in the massless limit. The departure from the Lorentz-invariant action is characterized

11Additional bounds could arise from the analyticity of the S-matrix, which is a requirement for a

weakly-coupled, Lorentz-invariant ultraviolet completion [36] (see e.g. [37] for an application in the context

of inflation).
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by the parameters a0 and a1, which lead to nontrivial sound speeds for the longitudinal

mode, c0 ≡ 1/
√
1 + a0, and for the transverse mode, c1 ≡ 1/

√
1 + a1. To see this, we

consider the on-shell equations of motion in the flat-space limit,

σ̈0 − c20∇2σ0 +m2σ0 = 0 , (3.33)

σ̈ti − c21∇2σti +m2σti = 0 , (3.34)

where σti denotes the transverse mode, ∂iσ
t
i = 0. The components of the spin-1 field

propagate subluminally with no gradient instability as long as {a0, a1} ≥ 0. A tachyonic

instability is avoided for m2 > 0.

Even if the spin-1 field propagates subluminally, the mixing with the Goldstone boson

π can lead to superluminal propagation in the coupled system. Requiring the absence of

superluminality imposes a constraint on the size of the quadratic mixing term in (3.17). To

derive this constraint, we consider the on-shell equations of motion for the coupled system,

σ̈0 − c20∇2σ0 +m2σ0 = −c20ρ1m−2∇2π̇c , (3.35)

σ̈ti − c21∇2σti +m2σti = 0 , (3.36)

π̈c − c2π∇2πc = −c3πρ1 (c−2
0 σ̇0 − ρ1m

−2∇2πc) . (3.37)

We see that the transverse mode does not mix with π, and hence its dispersion relation is

unmodified. After diagonalizing the coupled π-σ system, the dispersion relations obeyed

by the normal modes are

ω2
± =

1

2

[
(
c20 + c2π(1 + 2δ2)

)
k2 +m2 ±

√
[
(c20 − c2π)k

2 +m2
]2

+ 4c4πk
4δ2(1 + δ2)

]

, (3.38)

where δ2 ≡ c3πρ
2
1/m

2. For large k, subluminality implies the following constraint

ρ21
m2

≤ 1− c20
2− c20

1− c2π
c3π

. (3.39)

Note that the mixing is required to vanish if either cπ or c0 are equal to 1. (A similar

result for the mixing with a scalar field was found in [10].) However, even a relatively

small deviation of cπ and c0 from 1 is sufficient to allow ρ1 to be of order H (i.e. of order

the maximal size allowed by perturbativity). For simplicity, we will therefore work with

c0 = c1 ≈ 1, but incorporating nontrivial sound speeds for the spin-1 field could be done

straightforwardly using modifications of the mode functions given in appendix A. More

generally, we will assume that the quadratic actions of all spinning fields preserve the de

Sitter isometries12 and the fields therefore have relativistic dispersion relations. In this

next subsection, we will show that this choice is technically natural for certain range of

parameters.

12When this assumption does not hold, we can no longer use the de Sitter representations for massive

fields. In this case, there no longer exists a unitarity bound on their masses, and individual helicity

components can propagate with different speeds. Nevertheless, we expect that the main spectroscopic

features of massive fields that we study in section 4 will still apply. For example, a non-trivial sound speed

cσ for an extra scalar field can simply be traded for a Goldstone sound speed with cπ = 1/cσ (see e.g. [11]).
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3.4.3 Naturalness

Finally, we will consider constraints arising from the radiative stability of the effective the-

ory, e.g. we require that the masses of spinning fields do not receive large loop corrections.

This is more of a philosophic criterion rather than a strict consistency condition.

• Let us consider the interaction π̇c∂i1···isπcσi1···is in (3.25), suppressed by the scale Λs.

At one loop, this term generates the following correction to the non-Lorentz-invariant

mass term,

δm2
σi1···is

∼ 1

Λ2s
s

∫

dωd3k
ω2k2s

[c−3
π (ω2 − c2πk

2)]2
∼ c3−2s

π

Λ2s+2

Λ2s
s

. (3.40)

Naturalness of the mass of the spinning field requires δm2
σi1···is

. m2
s ∼ H2. To

estimate the size of (3.40), we take the cutoff of the π-loop to be of order the strong

coupling scale of the Goldstone sector. For cπ = 1, we can, in principle, extend the

π-loop up to the symmetry breaking scale, i.e. Λ ∼ fπ, while, for cπ ≪ 1, the effective

theory of the Goldstone becomes strongly coupled at Λ ∼ fπcπ. We will therefore

use Λ ∼ fπcπ for all values of cπ. The condition for radiative stability then becomes

(
H

Λs

)s

.

(
(2π∆ζ)

s+1

c5π

)1/2

. (3.41)

Typically, this constraint requires Λs to be slightly larger than fπ.

• Next, we consider the interaction λs π̇cσ
2
i1···is

in (3.25). This leads to the following

radiative correction to the non-Lorentz-invariant mass term,

δm2
σi1···is

∼ λ2s

∫

dωd3k
ω2

c−3
π (ω2 − c2πk

2)(ω2 − k2 −m2)
∼ c2πλ

2
sΛ

2 . (3.42)

Cutting off the loop at Λ ∼ fπcπ, we obtain the following constraint for radiative

stability:

λs .
(2π∆ζ)

1/2

c2π
. (3.43)

The interaction λs π̇cσ
2
i1···is

can also give a correction to the kinetic term for the

Goldstone. However, on dimensional grounds, it is easy to see that this interaction

only contributes a negligible correction to the sound speed of π.

• Lastly, the radiative correction generated by the cubic self-interaction of the spinning

fields is

δm2
σi1···is

∼
{

ξ2s s even,

ξ2sΛ
2 s odd,

(3.44)

where the couplings ξs are of dimensions zero and one for odd and even spins, re-

spectively, cf. (3.26). For even spins, we only get a fixed finite correction to the mass
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Figure 2. Tree-level diagram contributing to the two-point function 〈ζζ〉. The solid and dashed

lines represent the curvature perturbation ζ and a massive spin-s field σi1···is , respectively.

term. Since we require ξs < H for perturbative control, the loop contribution from

this interaction is guaranteed to be small. For odd spins, it is natural to take the

cutoff for the σ-loop to be the strong coupling scale Λs. We then get

ξ2s .
H2

Λ2
s

.

(
(2π∆ζ)

s+1

c5π

)1/s

, (3.45)

where we have used the naturalness constraint (3.41) on Λs in the second inequality.

4 Cosmological correlators

We will now compute the effects of massive particles with spin on the correlation functions

of the Goldstone boson and the graviton. Following [6], we will study separately the

contributions from local and non-local processes. Local processes are, by definition, those

whose imprint can be mimicked by adding a local operator in the low-energy effective

theory of the light fields alone. Non-local processes, on the other hand, capture particle

production effects which cannot be mimicked by additional local operators. While the

latter are the distinctive signature of extra particles during inflation, the amplitude of such

effects is exponentially suppressed for masses above the Hubble scale. We will discover

that the sound speed of the Goldstone boson plays a crucial role in controlling the relative

size of the local and non-local processes.

4.1 〈ζζ〉

Before discussing a potentially richer structure in the bispectra, we will gain some useful

insights by first examining the effect of massive particles on the power spectrum 〈ζζ〉 (see
figure 2). We will separate the correlation function into distinct contributions coming from

local and non-local processes. Spin doesn’t play a big role in the correction to the power

spectrum, so for simplicity we will consider a minimally-coupled massive scalar field σ,

whose two-point function in de Sitter space is

〈σk(η)σ−k(η
′)〉′ = π

4
H2(ηη′)3/2e−πµHiµ(−kη)H∗

iµ(−kη′) , (4.1)

where Hiµ ≡ H
(1)
iµ is the Hankel function of the first kind and µ ≡

√

m2/H2 − 9/4. We will

focus on massive particles belonging to the principal series, so that µ ≥ 0. The local part

of the two-point function has support only at coincident points in position space, while the
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non-local part describes correlations over long distances. In Fourier space, the local and

non-local parts of the two-point function are analytic and non-analytic in the momentum k,

respectively. In the late-time limit, we have

lim
η,η′→0

〈σk(η)σ−k(η
′)〉′local =

H2(ηη′)3/2

4π
Γ(−iµ)Γ(iµ)

[

eπµ
( η

η′

)iµ
+ e−πµ

( η

η′

)−iµ
]

, (4.2)

lim
η,η′→0

〈σk(η)σ−k(η
′)〉′non-local =

H2(ηη′)3/2

4π

[

Γ(−iµ)2
(k2ηη′

4

)iµ
+ Γ(iµ)2

(k2ηη′

4

)−iµ
]

. (4.3)

Away from the late-time limit, we use a series expansion of the Hankel function,

Hiµ(x) =
∞∑

n=0

∑

±

c±n (µ, x) , c±n (µ, x) ≡ ±(−1)n

n!

eπµ(1±1)/2

sinhπµ

(x/2)2n±iµ

Γ(n+ 1± iµ)
, (4.4)

to decompose the two-point function (4.1) into its local and non-local pieces. Summing

over the set of local and non-local contributions, the two-point function can be split into13

〈σk(η)σ−k(η
′)〉′local =

π

4

H2(ηη′)3/2

sinh2 πµ

[
eπµJiµ(−kη)J∗

iµ(−kη′) + e−πµJ∗
iµ(−kη)Jiµ(−kη′)

]
,

(4.5)

〈σk(η)σ−k(η
′)〉′non-local =

π

4

H2(ηη′)3/2

sinh2 πµ

[
Jiµ(−kη)Jiµ(−kη′) + J∗

iµ(−kη)J∗
iµ(−kη′)

]
, (4.6)

where Jiµ denotes the Bessel function of the first kind.

To illustrate the distinct roles played by local and non-local parts, let us consider a

coupling between π and σ of the form
∫
d4x a3ρπ̇cσ [38, 39]. At tree level, this produces

the following correction to the power spectrum of ζ:

〈ζkζ−k〉′ = Pζ(k)

[

1 +
c2πρ

2

H2

(
C1 + C2

)
]

, (4.7)

where

C1 ≡
π

4
e−πµ

∣
∣
∣
∣

∫ ∞

0

dx

x

√
xHiµ(x)e

icπx

∣
∣
∣
∣

2

, (4.8)

C2 ≡ −π
2
e−πµRe

[∫ ∞

0

dx√
x
Hiµ(x)e

−icπx

∫ ∞

x

dy√
y
H∗

iµ(y)e
−icπy

]

. (4.9)

These represent the non-time-ordered and time-ordered integrals that arise from performing

the in-in calculation. The integral in (4.8) can be evaluated analytically to give

C1 =
π2

2 cosh2 πµ
2F1

(
1

2
− iµ ,

1

2
+ iµ , 1 ,

1− cπ
2

)2

, (4.10)

where 2F1 is the hypergeometric function. It is instructive to consider the cπ → 1 and

cπ → 0 limits of the result (4.10):

13Away from the late-time limit, we are summing an infinite series of local/non-local elements for the

propagator, in which case the distinction between the local and non-local parts is not as sharp. Nevertheless,

we will see that this decomposition still leads to some useful insights.
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Figure 3. Pictorial representations of the horizon crossing scale of the Goldstone boson (solid)

and the scale associated with the turning point in the dynamics of a massive particle (dashed),

with the left (right) diagram corresponding to cπ = 1 (cπ < µ−1). The Hubble radius is denoted

by rH ≡ H−1. We see that for cπ < µ−1 the horizon crossing of the Goldstone boson occurs before

the turning point of the massive particles, while for cπ = 1 it occurs after.

• For cπ = 1, the hypergeometric function becomes unity, and (4.10) scales as e−2πµ

for large µ, as expected for the pair-production of massive particles.

• In the limit cπ → 0, we instead get

lim
cπ→0

C1 =
π2

2 cosh2 πµ
× π

Γ
(
3
4 + iµ

2

)2
Γ
(
3
4 − iµ

2

)2 , (4.11)

which scales as e−πµ for large µ instead of the usual Boltzmann factor e−2πµ.

To see why the exponential suppression of C1 changes for cπ ≪ 1, we need to consider

the change in the dynamics of σ and π. There are two relevant timescales in the problem:

i ) at the turning point, |kη| ∼ µ, the mode function of the massive particle starts to

decay,

ii ) at the sound horizon crossing, |kη| ∼ c−1
π , the Goldstone boson freezes.

For cπ = 1, event i ) occurs before ii ), while for cπ < µ−1, the order is reversed (see

figure 3). As a consequence, the integral in (4.8) is dominated at the horizon crossing of π

for cπ = 1, while it is dominated by the turning point of σ for cπ < µ−1. This is illustrated

in figure 4, where we show the Wick-rotated integrand of the integral in (4.8) as a function

of x = |kη|. A notable feature is the peak at x ∼ µ, which increases for small cπ. For

cπ = 1, the turning point occurs before horizon crossing and the overlap between π and σ is

suppressed. For cπ < µ−1, on the other hand, the turning point occurs after the freeze-out

of the Goldstone, which enhances the feature at x ∼ µ. This qualitatively explains the

boost in the amplitude of C1 for small cπ.

Let us now consider the time-ordered integral C2 in (4.9). For general cπ, it cannot be

evaluated analytically, but some insights can be obtained by taking the limits cπ → 1 and

cπ → 0:
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Figure 4. Wick-rotated integrand of the integral in (4.8) as a function of x = |kη| and for µ = 5.

The vertical dotted lines indicate the times of sound horizon crossing of π, i.e. x = c−1

π , for each

value of cπ. The solid vertical line marks the turning point of σ, i.e. x = µ.

• For cπ = 1, the above decomposition of the σ-propagator into local and non-local

pieces leads to [38]

C2|local =
eπµ

8 sinhπµ
Re

[

ψ(1)

(
3

4
+
iµ

2

)

− ψ(1)

(
1

4
+
iµ

2

)]

− e−2πµ (iµ↔ −iµ) ,

(4.12)

C2|non-local = 0 , (4.13)

where ψ(1)(z) = ∂2z ln Γ(z) is the polygamma function of order 1.14 For large µ, the

first term in (4.12) scales as µ−2, which has a simple interpretation: a heavy field

contributes to non-renormalizable interactions in the low-energy effective theory of

the light fields with coefficients given by inverse powers of the mass of the heavy field.

The second term is instead suppressed by e−2πµ, describing an effect which cannot

be captured by a local Lagrangian of the light fields alone. Finally, we see that the

non-local part of the σ-propagator does not contribute to the correction to the power

spectrum.

• In the limit cπ → 0, we find

lim
cπ→0

C2|local = 0 , (4.14)

lim
cπ→0

C2|non-local = − π2

2 cosh2 πµ
× π

Γ(34 + iµ
2 )

2 Γ(34 − iµ
2 )

2
. (4.15)

We wish to highlight several features of this result. First, the local contribution to C2
vanishes. This follows from the simple fact that the Goldstone bosons become non-

14There are also logarithmically divergent terms within the separate integrals for the local and non-local

parts. These are the result of an imperfect decomposition between the two terms away from the late-time

limit and the fact that we are integrating over time. However, these terms exactly cancel in the sum over

all contributions, so that the final result remains finite.
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Figure 5. C1 and C2 as functions of cπ for µ = 1 (black) and µ = 3 (red). The solid and dotted

lines denote C1 and C2, respectively.

propagating when cπ = 0; hence, they can only communicate to each other through

non-local effects. Second, the non-local contributions to C1 and C2 precisely cancel

each other, implying that the correction to the two-point function (4.7) vanishes

faster than c2π in the limit cπ → 0. This is the result of the cancellation between the

contributions from the forward and backward branches of the integration contour. A

way to see this is to drop the exponentials in cπ in (4.8) and (4.9), and notice that

C1 + C2 is now proportional to the sum of all Schwinger-Keldysh propagators for the

σ field; these propagators add up to zero. Of course, for small (but finite) cπ, we do

not expect this cancellation to be exact.

To understand how the result for general cπ interpolates between these two limiting be-

haviours, we evaluate C2 numerically. Figure 5 shows the analytical result (4.10) for C1 and

a numerical computation of C2, both as functions of cπ. As cπ is lowered, the exponential

dependence on µ for both of the integrals changes. For C1, this happens relatively quickly

when cπ . µ−1, agreeing with the intuition that reversing the ordering of the turning point

of σ and the horizon exit of π changes the solution qualitatively. On the other hand, the

transition in the exponential behavior for C2 only occurs for very small cπ, typically much

smaller than the lower limit required for perturbative control of the non-renormalizable

interaction π̇(∂iπ)
2 associated with cπ. This implies that, while for C2 the dependence

on µ > 1 will not change much within the allowed range of cπ > 10−2, the exponential

suppression e−2πµ of C1 can be reduced to e−πµ when cπ < µ−1.

4.2 〈ζζζ〉

Next, we consider the imprints of massive spinning particles on the three-point func-

tion 〈ζζζ〉. In single-field inflation, a long-wavelength curvature perturbation locally

corresponds to a rescaling of the background experienced by short-wavelength fluctua-

tions. As a result, the bispectrum 〈ζζζ〉 satisfies a consistency relation for the squeezed
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(a) (b) (c)

Figure 6. Tree-level diagrams contributing to 〈ζζζ〉. The solid and dashed lines represent the

curvature perturbation ζ and a spinning field σi1···is , respectively.

limit [12, 13, 40]. In particular, we can write a Taylor expansion around the squeezed limit,

lim
k1≪k3

〈ζk1ζk2ζk3〉′ = Pζ(k1)Pζ(k3)

∞∑

n=0

bn

(
k1
k3

)n

, (4.16)

where the leading coefficient is determined by the tilt of the scalar power spectrum,

b0 = −(ns − 1). The consistency condition furthermore fixes the coefficient of the linear

term, b1, and partially constrains higher-order coefficients [41–46]. Since the contributions

coming from b0 and b1 cannot be measured by a local observer [47, 48], any physical effect

will only appear at order (k1/k3)
2 [49]. A crucial consequence of the consistency relation is

the existence of the Taylor expansion (4.16) with only integer powers of k1/k3. Interesting

non-analytic deviations from (4.16), however, are known to arise in the presence of addi-

tional fields. For example, fractional powers (k1/k3)
ν can be present in quasi-single-field

inflation [9], with scaling 0 < ν ≤ 3/2 in between the fully constrained (k1/k3)
0 term and

the physical (k1/k3)
2 term. In this section, we will study such deviations for additional

fields that carry spin.

Figure 6 shows all possible tree-level contributions to 〈ζζζ〉. The three diagrams share

many qualitative features, so to avoid repetition we will mostly concentrate on the anal-

ysis of the single-exchange diagram [(a)], and only highlight the differences that arise for

the other two diagrams [(b,c)]. We will split the contributions to the bispectrum into

its local and non-local parts. To avoid confusion with the alternative usage of “local non-

Gaussianity”, we will refer to these contributions as analytic and non-analytic, respectively.

(This terminology highlights the distinctive scaling behavior in the squeezed limit.) Al-

though we will ultimately be interested in the behavior of the latter, the observability of

the signal will depend on the full bispectrum, so we will present the results for both types

of contributions. As before, we will mostly restrict our analysis to particles in the principal

series, with µs ≥ 0.

Single-exchange diagram. We will first compute the bispectrum associated with the

exchange of a single spinning field (figure 6a). The relevant interaction Lagrangian is

[cf. eq. (3.25)]

LI =
1

a2s

(

ρs∂i1···isπcσ̂i1···is +
1

Λs
s

π̇c∂i1···isπcσ̂i1···is

)

. (4.17)
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We obtain the following bispectrum

〈ζk1ζk2ζk3〉′
∆4

ζ

= αs∆
−1
ζ × Ps(k̂1 · k̂3)× I(s)(µs, cπ, k1, k2, k3) + 5 perms. , (4.18)

where an integral representation of the function I(s) is given in appendix B. The dimen-

sionless parameters αs are

αs ≡
1

c
s−3/2
π

ρs
H2−s

(
H

Λs

)s

. (4.19)

where we have included powers of cπ in αs, so that the function I(s) does not scale para-

metrically with cπ. By this we mean that I(s) saturates to a constant value in the limit

of small cπ, similar to the behavior of the integrals (4.8) and (4.9). The requirement of a

perturbative treatment of non-Gaussianity implies that

αs < 1 . (4.20)

Notice that we have a stronger perturbativity condition on the bare parameters ρs and Λs

for subluminal cπ, which takes into account the fact that the dispersion relation, ω = cπk,

is non-relativistic.

Size of NG.—It is customary to quantify the size of non-Gaussianity by the parameter

fNL ≡ 5

18

〈ζk1ζk2ζk3〉′
P 2
ζ (k)

, (4.21)

where the bispectrum is evaluated in the equilateral configuration, k1 = k2 = k3 ≡ k.

The overall size of the non-Gaussianity can only partially be read off from the prefactor

in (4.18), since there is a hidden dependence on µs in the function I(s). An estimate for

the size of non-Gaussian signal is

fNL ∼ f(µs)αs∆
−1
ζ , (4.22)

where f(µs) gives the appropriate mass suppressions for the analytic and non-analytic

parts15,16

f(µs) ≡







µ−2
s analytic,

e−πµs non-analytic, cπ = 1,

e−πµs/2 non-analytic, cπ < µ−1
s .

(4.23)

We see that there are two sources of suppression in the signal: the mass suppression as

a function of µs and the mixing efficiency parameterized by αs. At the same time, there

15The displayed µs scalings are the asymptotic behaviors for large µs. There is also a polynomial de-

pendence in µs for the non-analytic part which competes with the exponential suppression for intermediate

values of µs.
16It is more useful to consider this separation of the signal in the squeezed limit, where the distinction

between the analytic and non-analytic parts becomes sharp, as we will show below.
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is a ∆−1
ζ ≈ 105 enhancement in the signal. It is this large factor that can, in principle,

allow for observable non-Gaussianity even in the presence of the above suppressions. The

size of the analytic part is only power-law suppressed and thus dominates for large mass,

whereas the non-analytic part is always accompanied by an exponential Boltzmann sup-

pression. For cπ = 1, the dominant non-analytic term is suppressed by e−πµs . As explained

in [6, 14], this arises from the quantum interference of two wavefunctions: Ψ[2σ] ∝ e−πµs for

pair-produced massive particles and Ψ[0σ] for the wavefunction involving no spontaneously

created massive particles.17 This interference contribution is larger than the probability

of pair-producing massive particles, which is |Ψ[2σ]|2 ∝ e−2πµs . For cπ < µ−1
s ≪ 1, the

exponential suppression of the non-analytic part changes to e−πµs/2. We have already

encountered this phenomenon in section 4.1: for small cπ the horizon crossing of the Gold-

stone boson occurs before the turning point in the mode function of the massive particle.

In this case, we are picking out the contribution of the wavefunction for a pair of massive

particles not in the late-time limit, but at the turning point, which comes with a different

exponential factor.

In section 3.4.3, we derived naturalness constraints on the mixing parameters of the

effective theory. For the parameter αs in (4.19), the radiative stability of the mass (3.41)

implies

αs .

(
2π∆ζ

c2π

)(s+1)/2

. (4.24)

For cπ = 1, this naturalness constraint is rather strong, implying that large non-

Gaussianity, fNL > 1, is only possible if additional physics, such as supersymmetry, sta-

bilizes the mass of the spinning particle, or if the mass term is fine-tuned. For cπ 6= 1,

the current observational constraint cπ ≥ 0.024 [30] still allows for naturally large non-

Gaussianity, although within a rather narrow range in the small cπ regime.

Some comments are in order concerning the observability of particles with odd spins.

In [6], it was shown that the diagram due to the exchange of an odd-spin particle vanish

exactly at leading order in the weak breaking of conformal symmetry. At subleading or-

ders, however, there are non-zero contributions from odd-spin particles.18 When conformal

17Potential tests of the quantum nature of cosmological fluctuations have also been discussed in [50–54].
18When the approximate conformal invariance is valid, we can think of this in terms of correlation

functions of the inflaton Φ(t,x) = φ(t) +ϕ(t,x), where φ̇ 6= 0 characterizes the weak breaking of conformal

symmetry. The leading three-point function for the inflaton perturbation ϕ will be given by the four-point

function of Φ with one external leg set to φ̇:

〈ϕϕϕ〉′ ∝ 〈ϕϕσ〉′〈σϕφ̇〉′ ∝ φ̇〈ϕϕσ〉′〈σϕ〉′inf , (4.25)

where 〈· · · 〉inf denotes an inflationary correlation function which breaks conformal symmetry [55]. However,

in the conformally symmetric case, 〈ϕϕσ〉 vanishes when σ has odd spin [56]. The next-to-leading order

result is given by the six-point function with three insertions of φ̇,

〈ϕϕϕ〉′ ∝ 〈φ̇ϕϕσ〉′〈σϕφ̇2〉′ ∝ φ̇3〈ϕϕσ〉′inf〈σϕ〉
′

inf . (4.26)

This is suppressed by an additional factor of φ̇2, but notice that the correlator 〈ϕϕσ〉inf , not being con-

strained by conformal symmetry, does not have to vanish for odd-spin σ.
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symmetry is strongly broken, these terms become as important as the leading ones, and

odd-spin particles can leave an equally relevant imprint on the correlation function 〈ζζζ〉.
Nevertheless, the amplitude of the bispectrum with an intermediate spin-1 particle is

fNL ∼ f(µ1)
√
cπ

ρ21
H2

. (4.27)

As long as the mixing is perturbative, ρ1 < H, this non-Gaussianity is constrained to

be less than unity. We see that a spin-1 particle cannot lead to large non-Gaussianity

because the size of the cubic vertex in (3.17) is tied to the quadratic mixing coefficient. In

fact, the same reasoning applies to the coupling to scalar fields, which is why the single-

exchange diagram has been neglected in the context of quasi-single-field inflation [9, 10].

This fact, however, is only tied to spins zero and one, and the bispectrum does not have

to be suppressed for higher odd-spin particles. Moreover, we will see that the diagrams

involving more than a single exchange can allow for observable non-Gaussianity, even for

spin one.

Shape of NG. — Before considering the general shape of the bispectrum, we will first

analyze the singular behavior of the bispectrum in the squeezed limit, mainly concentrating

on particles with even spins. We will quote results whose derivations can be found in

appendix C.

• For the analytic part of the bispectrum, we get

lim
k1≪k3

〈ζk1ζk2ζk3〉′ ∝
1

k31k
3
3

(
k1
k3

)2

. (4.28)

We see that the local effects of massive particles lead to the same squeezed limit

behavior as for single-field inflation, cf. (4.16). This is expected, since the massive

particle can be integrated out for large µs, producing an effective cubic vertex of the

form π̇(∂̂i1···isπ)
2. The presence of extra particles therefore cannot be inferred from

this part of the signal. Although the analytic part of the non-Gaussianity is itself

interesting and more information can be gained by analyzing its shape for general

momentum configurations, we have to treat it as an effective noise in the squeezed

limit as far as the detection of extra particles is concerned.

• For the non-analytic part, we find

lim
k1≪k3

〈ζk1ζk2ζk3〉′ ∝
1

k31k
3
3

(
k1
k3

)3/2

Ps(k̂1 · k̂3) cos

[

µs ln

(
k1
k3

)

+ φs

]

, (4.29)

where the phase φs is uniquely fixed in terms of µs and cπ (see appendix C). The

suppression factor (k1/k3)
3/2 represents the dilution of the physical particle number

density due to the volume expansion. This non-analytic scaling in the squeezed limit,

corresponding to an intrinsically non-local process, cannot be mimicked by a local

interaction within the effective theory of a single field. The signal contains oscillations

in ln(k1/k3), with a frequency set by the mass of the spinning particle. This is due
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to the fact that the wavefunctions of massive particles oscillate logarithmically in

time on superhorizon scales. The spin of the extra particle is reflected in the angular

dependence, which is given by a Legendre polynomial of the angle between the short

and long momenta.

The above behavior applies for particles in the principal series, for which µs ≥ 0. For

particles in the complementary series, µs becomes imaginary and the scaling of the

squeezed bispectrum changes to

lim
k1≪k3

〈ζk1ζk2ζk3〉′ ∝
1

k31k
3
3

(
k1
k3

)3/2−νs

Ps(k̂1 · k̂3) , (4.30)

with νs ≡ −iµs real. For s ≥ 2, unitarity implies νs ∈ [0, 1/2), and the singular

behavior in the squeezed limit is suppressed by at least k1/k3 compared to the leading

term in the consistency relation (4.16).

The fact that the polarization tensors corresponding to odd-spin particles are odd

under the exchange of two short momenta, together with momentum conservation,

implies that the signal will gain an extra suppression factor of k1/k3 in the squeezed

limit compared to the case of even spin. This means that the non-analytic part

due to odd-spin particles scales as (k1/k3)
5/2 in the squeezed limit, which is more

suppressed than the analytic part that scales as (k1/k3)
2. The latter, however, have

an analytic dependence on momenta and correspond to local correlations in position

space. Thus, the presence of odd-spin particles could still be inferred from long-

distance correlations, although it might be subdominant compared to other non-

local effects.

It is possible to understand the different behaviors in the squeezed limit intuitively. For con-

creteness, let us consider the exchange of a spin-2 field involving the interactions ∂i∂jπσ̂ij
and π̇∂i∂jπσ̂ij . The bispectrum in the isosceles-triangle configuration, k2 = k3, consists of

three different permutations of the external legs:

〈ζk1ζk2ζk3〉′ ∝

︸ ︷︷ ︸

I1 ≡I(k1,k3,k3)

+

︸ ︷︷ ︸

I2 ≡I(k3,k1,k3)

+

︸ ︷︷ ︸

I3 ≡I(k3,k3,k1)

,

(4.31)

where πn ≡ π(kn), σn ≡ σij(kn) and I(k1, k2, k3) ∝ P2(k̂1 · k̂3) I(2)(µ2, cπ, k1, k2, k3).

The non-analytic squeezed limit (4.29) arises if the massive exchange particle carries the

soft momentum, corresponding to the contribution I1 in (4.31). This describes a non-

local conversion process between the massive particle and the Goldstone boson between

the horizon crossing times of the long and short modes. However, when the mass of

the extra particle becomes large, it can be integrated out and the same effect will be
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captured by a local vertex. In that case, the bispectrum should become indistinguishable

from that produced by a self-interaction of π, namely π̇(∂̂ijπ)
2. Note, in particular, that

this interaction is symmetric under the exchange of the momenta associated with the two

external legs with spatial gradients. This allows us to gauge how well the interaction is

approximated by a local vertex by looking at how similar the terms I1 and I2 are. Both I2
and I3 will lead to analytic scalings in the squeezed limit, where the latter produces (4.28).

To analyze the shape of the bispectrum for general momentum configurations, we

proceed numerically. For this purpose, it is convenient to define a dimensionless shape

function

S(k1, k2, k3) ≡
k21k

2
2k

2
3

(2π)4
〈ζk1ζk2ζk3〉′

∆4
ζ

. (4.32)

Figure 7 shows two-dimensional projections of the shape function for spin 2 with µ2 = 3, 5, 7

and cπ = 1, 0.1 in the isosceles-triangle configuration, k2 = k3. For the reasons explained

in the previous paragraph, in figure 7 we have shown separately the shape functions cor-

responding to the contributions I1 and I2 in (4.31).19 As anticipated, these contributions

exhibit different scalings in the squeezed limit. The plots show (k3/k1)×S, so that the an-

alytic part is expected to approach a constant in the squeezed limit, while the non-analytic

part grows as (k1/k3)
−1/2 for small k1. We see that the shape of the bispectrum is mostly

governed by the non-analytic part for small mass, giving almost pure oscillations. The

amplitude of this effect, however, goes as e−πµ2 for large µ2. The analytic part, being

power-law suppressed, therefore takes over in size as the mass increases, and the shape

approaches the equilateral form in the limit of large mass. For large mass, it is clear that

the non-Gaussianity is dominated by the analytic piece, with small oscillations coming

from the non-analytic piece indicating the presence of a heavy mode. For cπ = 1, the

contributions I1 and I2 lead to the same shape of the bispectrum for µ2 = 7, indicating

that the π-σ conversion process has become local. Indeed, in this case the bispectrum

precisely overlaps with that of the local interaction π̇(∂̂ijπ)
2. For small cπ, we have argued

that the exponential suppression is instead e−πµ2/2. The fact that we see more pronounced

oscillations for cπ = 0.1 is a consequence of this. Moreover, for small cπ, the shapes of the

contributions I1 and I2 are no longer identical. Note that, in order for the massive particle

to be integrated out, the time of its turning point should be much earlier than the time at

which the Goldstone boson crosses its sound horizon, which translates into the condition

cπ > µ−1
2 . For cπ = 0.1, this condition is not satisfied for the list of mass parameters used

in the figure, which is the reason why we do not see the convergence to the local behavior.

We have checked that the convergence does indeed happen for sufficiently large µ2 > c−1
π .

Another characteristic of the signal due to spinning particles is its angular dependence.

Figure 8 shows the shape function of the total signal as a function of the angle between

the long and short momenta, θ ≡ cos−1(k̂1 · k̂3), for a range of momentum configurations

with fixed k1/k3. For visualization purposes, the plot has been rescaled so that it can

be compared more easily to the Legendre polynomial P2(cos θ). As expected, the angular

19We have omitted I3 in the plots, which has the same analytic scaling as in (4.28) and thus shows no

interesting features. Of course, this contribution should be added in order to obtain the full bispectrum.
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Figure 7. Shape functions (in units of α2∆
−1

ζ ) for the spin-2 single-exchange diagram in the

isosceles-triangle configuration, k2 = k3, with µ2 = 3 (top), µ2 = 5 (middle), and µ2 = 7 (bottom)

for cπ = 1 (left) and cπ = 0.1 (right). The solid and dashed lines correspond to the numerical

results for the parts of the signal corresponding to the terms I1 and I2 in (4.31), respectively. Not

shown in the figure is the term I3, which produces an analytic scaling in the squeezed limit and

is needed to obtain the full bispectrum. Convergence of the solid and dashed lines indicates that

the same effect can be captured by a local vertex π̇(∂̂ijπ)
2 in the single-field EFT. The dotted lines

show the analytical predictions for the non-analytic part.

dependence converges to the pure Legendre behavior as the triangle becomes squeezed,

k1/k3 ≪ 1. The non-zero offset is due to the analytic part which doesn’t carry any angular

dependence. We also see that the angular dependence deviates from the pure Legendre

behavior as the triangle approaches the equilateral shape. Still, the peak around the flat
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Figure 8. Shape functions of the spin-2 single-exchange diagram with µ2 = 5 and cπ = 1 as a

function of the base angle θ = cos−1(k̂1 · k̂3) for fixed ratios of k1/k3. For easy comparison, the plot

has been normalized such that the height difference between θ = 90◦ and θ = 180◦ of each curve is

fixed to 3/2.

triangle (θ = 180◦) remains prominent regardless of the momentum configuration. This

suggests that the information about a particle’s spin can still be inferred without necessarily

going to very squeezed momentum configurations, since the width of the peak is still fixed

by the polarization tensor of the spinning particle. This property can serve as an important

tool for detecting odd-spin particles, whose signal in the squeezed limit necessarily gains

an extra suppression in the soft momentum.

Double-exchange diagram. The bispectrum for the double-exchange diagram (fig-

ure 6b) is

〈ζk1ζk2ζk3〉′
∆4

ζ

= α̃s∆
−1
ζ × Ps(k̂2 · k̂3)× J (s)(µs, cπ, k1, k2, k3) + 5 perms. , (4.33)

where the function J (s) is given explicitly in appendix B, and the dimensionless parameters

α̃s are

α̃s ≡ λs

( ρs
H2−s

)2
< 1 , (4.34)

with λs and ρs defined in (3.25).

The size of the non-Gaussianity associated with the double-exchange diagram can be

read off from (4.22) after replacing αs by α̃s, but with an extra suppression of µ−2
s , because

this diagram involves another particle exchange. The condition for radiative stability (3.43)

imposes the following upper limit on the size of the mixing parameter:

α̃s .
(2π∆ζ)

1/2

c2π
. (4.35)

Notice that this is a much weaker constraint than the corresponding constraint for the

single-exchange diagram (4.24). Depending on the values of cπ, this may or may not be
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stronger than the requirement for perturbativity, fNL < ∆−1
ζ . This diagram can thus

naturally produce detectable levels of non-Gaussianity, even for cπ = 1.

Note that this diagram involves two π-σ conversion processes. When one of these

processes becomes local, the double-exchange diagram becomes essentially equivalent to

the single-exchange diagram. This can be seen by replacing one of the σ̂i1···is legs in the

cubic vertex π̇σ̂2i1···is by ∂i1···isπ, after which the interaction becomes the same as the cubic

vertex for the single-exchange diagram. As a result, the squeezed-limit behavior for this

diagram is essentially the same as that of the single-exchange diagram. Hence, the analysis

we have presented for the single-exchange diagram applies also to the double-exchange

diagram.

Triple-exchange diagram. As indicated in (3.25), there is a slight difference between

the form of the cubic self-interaction of spinning fields for even and odd spins. For con-

creteness, we will present the results for the former. The bispectrum for the triple-exchange

diagram (figure 6c) is

〈ζk1ζk2ζk3〉′
∆4

ζ

= α̂s∆
−1
ζ × P (k̂1, k̂2, k̂3)×K(s)(µs, cπ, k1, k2, k3) + 5 perms. , (4.36)

where P (k̂1, k̂2, k̂3) ≡ ε0(k̂1) ·ε0(k̂2) ·ε0(k̂3) is a symmetric contraction of the longitudinal

polarization tensors ε0i1···is (see appendix A for the precise definition of the polarization

tensor) that reduces to Ps(k̂1 · k̂3) in the squeezed limit. The couplings α̂s are

α̂s ≡ ξs

( ρs
H2−s

)2
< 1 , (4.37)

where ξs was introduced in (3.25). The function K(s) can be found in appendix B.

The size of the non-Gaussianity associated with this diagram can, again, be read off

from (4.22), with αs replaced by α̂s, and taking into account an extra suppression of

µ−4
s . Although the qualitative features of the non-analytic signal will be similar to that of

the other diagrams, there are some relevant differences. First, as shown in section 3.4.3,

naturalness does not constrain the size of the coupling ξs, so the triple-exchange diagram

allows for a naturally large non-Gaussianity. This is to be contrasted especially with the

single-exchange diagram, where the naturalness criterion imposed a strong constraint on

the size of the corresponding non-Gaussianity. Second, when the mass of the particle

becomes large, the bispectrum is well-captured by a local vertex, namely (∂̂i1···isπ)
3 with

symmetric contraction of indices. Notice that, due to the number of spatial gradients,

for s > 2 the squeezed-limit bispectrum is suppressed by more than (k1/k3)
2 for small

k1. This makes the non-analytic part, scaling as (k1/k3)
3/2, a rather clean signal in the

squeezed limit.

Summary. All diagrams in figure 6, except for the single-exchange diagram for spin one,

can yield sizable non-Gaussianities within the perturbative regime. In order for this to

be natural, the single-exchange diagram requires new physics or fine-tuning to stabilize

the mass of the spinning particle, whereas both the double- and triple-exchange diagrams

can naturally produce large non-Gaussianities. The non-analytic part of the bispectrum
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is suppressed by e−πµs for cπ = 1, but only by e−πµs/2 for small cπ. Typically, we find

that fNL & O(1) from the non-analytic part is possible if µs . 5 for cπ = 1 and µs . 10

for cπ ≪ 1.

4.3 〈γζζ〉

Lastly, we consider the tensor-scalar-scalar correlation function 〈γζζ〉. In single-field in-

flation, a long-wavelength tensor fluctuation is locally equivalent to a spatially anisotropic

coordinate transformation. Again, we can Taylor expand the expectation value around the

squeezed limit, thus obtaining

lim
k1≪k3

〈γλ
k1
ζ
k2
ζ
k3
〉′ = Pγ(k1)Pζ(k3)

∞∑

n=0

dn

(
k1
k3

)n

, (4.38)

where γλ, with λ = ±2, denotes the positive or negative helicity components of the graviton.

As in the case of the scalar bispectrum, the leading coefficients are determined by the single-

field consistency relation [12] (see also [41, 43]). In particular, d0 in (4.38) is given by

d0 =
1

16
Eλ
2 (k̂1 · k̂3)

[
3− (ns − 1)

]
, (4.39)

where Eλ
2 (k̂1 · k̂3) ≡ k̂i3 k̂

j
3ε

λ
ij(k̂1), with ελijε

λ∗
ij = 4. When the consistency relation holds,

it also completely fixes the linear term d1 in (4.38), and physical effects appear at order

(k1/k3)
2. The presence of new particles during inflation invalidates the Taylor expansion

and leads to non-analytic scalings in (4.38). Our goal in this section is to study these

characteristic signatures of massive spinning particles.

All tree-level diagrams contributing to 〈γζζ〉 are shown in figure 9. Not all of these

diagrams can lead to a nontrivial deviation from the consistency relation. For the diagrams

[(a–c)] the same symmetry that generates the tensor consistency relation enforces correc-

tions to the power spectrum, so that the relation in (4.38) and (4.39) is preserved [57].

Only the diagrams [(d–f)], which involve a quadratic mixing between the graviton and the

intermediate particle, can lead to such a deviation. These diagrams have the same struc-

ture as those in figure 6, except that one of the legs in the quadratic mixing is replaced

by an external graviton, so that the exchanging particle must carry the same helicity as

the graviton. In the following, we will present results for the diagrams [(d–f)], mostly fo-

cusing on the single-exchange diagram [(d)] to avoid repetition. The quadratic γ-σ mixing

vanishes for spins 0 and 1, so only particles with s ≥ 2 will contribute.

Single-exchange diagram. We first consider the single-exchange diagram (figure 9d).

The relevant interaction Lagrangian is [cf. eqs. (3.25) and (3.31)]

LI =
1

a2s

(

− f2π
Mpl

ρsa
2∂i3···is γ̇

c
i1i2 σ̂i1···is +

1

Λs
s

π̇c∂i1···isπcσ̂i1···is

)

. (4.40)

Using (3.7) and (3.11), we can write the coefficient of the quadratic mixing term as

−ρs
√

r/8H. The perturbativity condition on the π-σ mixing, ρs < 1, implies that the
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Figure 9. Tree-level diagrams contributing to 〈γζζ〉. The solid, dashed, and wavy lines represent

the curvature perturbation ζ, a spinning field σi1···is , and the graviton γij , respectively.

γ-σ mixing carries an extra suppression factor of
√

r/8. The bispectrum corresponding to

the single-exchange diagram is

〈γλ
k1
ζ
k2
ζ
k3
〉′

∆γ∆3
ζ

= α2

√
r∆−1

ζ × Eλ
2 (k̂1 · k̂3)P̂

λ
s (k̂1 · k̂3)× B(s)(µs, cπ, k1, k2, k3) + (k2 ↔ k3) ,

(4.41)

where P̂ λ
s ≡ (1 − x2)−λ/2P λ

s , with P
λ
s the associated Legendre polynomial. The function

B(s) is given explicitly in appendix B.

Size of NG. — We quantify the size of the tensor-scalar-scalar bispectrum by

fγζζNL ≡ 6

17

∑

λ=±2

〈γλ
k1
ζ
k2
ζ
k3
〉′

P
1/2
γ (k)P

3/2
ζ (k)

, (4.42)

where the bispectrum is evaluated in the equilateral configuration, k1 = k2 = k3 ≡ k, with

vectors maximally aligned with the polarization tensor. This choice of normalization agrees

with that adopted in [58] and implies fγζζNL =
√
r/16 for single-field slow-roll inflation [12].

An estimate of the size of the non-Gaussianity from the single-exchange diagram is

fγζζNL ∼ g(µs)αs

√
r∆−1

ζ , (4.43)

where g(µs) denotes the appropriate mass suppressions for the analytic and non-analytic

parts, which in the large µs limit scale as20

g(µs) ≡
{

µ−2
s analytic,

e−πµs non-analytic.
(4.44)

20The exponential suppression of the non-analytic part of the signal applies to particles in the principal

series. Unlike the scalar case, this exponential suppression cannot be reduced to e−πµs/2, since the graviton

propagates with cγ = 1. For particles belonging to the complementary series, the non-analytic part of the

signal would not be exponentially suppressed.
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The enhancement of fγζζNL by the large factor ∆−1
ζ means that, in principle, the signal

could be significantly larger than the one predicted from single-field slow-roll inflation,

fγζζNL ≫ √
r/16, even in the perturbative regime. As in the scalar case, the condition for

radiative stability gives a rather strong constraint on the naturally allowed size of the

bispectrum associated with the single-exchange diagram [cf. (4.24)]. While the size of the

single-exchange diagram is strongly constrained by naturalness, both the diagrams [(e,f)]

can lead to naturally large non-Gaussianity, as in the case of the scalar bispectrum. Future

constraints on fγζζNL from observations of the 〈BTT 〉 correlator of CMB anisotropies were

discussed in [58]. The proposed CMB Stage IV experiments [59] will have the sensitivity

to reach σ(
√
rfγζζNL ) ∼ 0.1, which suggests that the tensor non-Gaussianity due to massive

spinning particles might be detectable for r & 10−6 [g(µs)αs]
−1.21

Shape of NG. — In the squeezed limit, 〈γζζ〉 behaves in the following ways:

• The analytic part scales as

lim
k1≪k3

〈γλ
k1
ζ
k2
ζ
k3
〉′ ∝ 1

k31k
3
3

(
k1
k3

)s

Eλ
2 (k̂1 · k̂3)P̂

λ
s (k̂1 · k̂3) . (4.45)

Notice that the suppression of the analytic part in the squeezed limit increases with

spin. This can be understood by looking at the form of the local vertex after inte-

grating out the massive particle, which becomes π̇∂i1···isπ∂i3···is γ̇i1i2 . As we will see

below, this means that the analytic part of the signal will be subdominant compared

to its non-analytic counterpart in the soft graviton limit.

• For µs ≥ 0, the squeezed limit of the non-analytic part of the bispectrum scales as

lim
k1≪k3

〈γλ
k1
ζ
k2
ζ
k3
〉′ ∝ 1

k31k
3
3

(
k1
k3

)3/2

Eλ
2 (k̂1 · k̂3)P̂

λ
s (k̂1 · k̂3) cos

[

µs ln

(
k1
k3

)

+ φ̃s

]

,

(4.46)

where the phase φ̃s is a function of µs and cπ (see appendix C). Coupling to a particle

with spin greater than two induces an extra angular structure. For imaginary µs, we

instead have

lim
k1≪k3

〈γλ
k1
ζ
k2
ζ
k3
〉′ ∝ 1

k31k
3
3

(
k1
k3

)3/2−νs

Eλ
2 (k̂1 · k̂3)P̂

λ
s (k̂1 · k̂3) , (4.47)

with νs ≡ −iµs ∈ [0, 1/2). This gives a non-analytic (k1/k3)
3/2−νs correction to the

leading term of the consistency relation (4.38). Since unitarity implies νs < 1/2, the

21Producing a large tensor contribution while keeping the scalar contribution small may require some fine-

tuned cancellation between interactions in the scalar sector. This is because the interaction vertices in (4.40)

and (4.17) arise from the same operators in unitary gauge. Suppressing the effects of the interactions

in (4.17) would require balancing them against additional interactions such as π̇σ0···0.
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squeezed-limit bispectrum due to massive spinning particles will be suppressed by at

least k1/k3 compared to the leading term in the tensor consistency relation.22

Other diagrams. The extensions to the diagrams [(e,f)] are completely analogous to the

scalar case. Similar to the scalar three-point function, these diagrams have the advantage

that they are less constrained by naturalness considerations.

5 Conclusions

In this paper, we have studied the imprints of massive particles with spin on cosmological

correlators using the framework of the effective field theory of inflation [18]. This generalizes

the work of Arkani-Hamed and Maldacena (AHM) [6] to cases where conformal symmetry

is strongly broken. Let us summarize our results and contrast them with the conclusions

of AHM:

• In AHM’s more conservative analysis, the overall size of non-Gaussianity was too

small to be observable even in the most optimistic experimental scenarios. Our

results are cautiously more optimistic. Within the regime of validity of the effective

field theory, we can accommodate observable non-Gaussianity as long as the masses

of the new particles aren’t too far above the Hubble scale during inflation.

• The key spectroscopic features of massive particles with spin do not rely on conformal

invariance and therefore continue to hold in our analysis. As explained in [6], the

masses and spins of extra particles during inflation can be extracted by measuring

the momentum dependence in the squeezed limit.

• Our systematic effective field theory treatment of massive spinning particles during

inflation allows for a complete characterization of their effects on non-Gaussian cos-

mological correlators, including their imprints beyond the squeezed limit. We showed

that the characteristic angular dependence resulting from the presence of particles

with spin persists even for more general momentum configurations. Having access to

the complete correlation functions will be valuable for future data analysis.

• We also studied the effects of an explicit breaking of special conformal symmetry

by introducing a sound speed cπ for the Goldstone fluctuations. We found that,

for cπ < µ−1
s , the exponential suppression in the production of the massive particles,

e−πµs , is changed to e−πµs/2. For a given mass, the size of non-Gaussianity is therefore

enhanced (or less suppressed) for small cπ.

• Finally, we showed that particles with spin greater than or equal to two lead to a

signature in the squeezed limit of 〈γζζ〉. This signal may be observable in the 〈BTT 〉
correlator of CMB anisotropies [58].

22A deviation from the leading term of the consistency relation due to spinning particles can arise in a

number of ways: first, the unitarity bound can be evaded if the de Sitter isometries are not fully respected

in the quadratic action of the spinning field [60, 61]. Another possibility involves partially massless fields

with spin greater than two, since the late-time behavior of these fields does not obey the same restrictions

as for the massive case. It would be interesting to explore these possibilities further.
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Figure 10. Schematic illustration of current and future constraints on (scale-invariant) primordial

non-Gaussianity. The “gravitational floor” denotes the minimal level of non-Gaussianity created

by purely gravitational interactions during inflation [12].

Figure 10 is a schematic illustration of current and future constraints on (scale-

invariant) primordial non-Gaussianities. We see that the perturbatively interesting regime

spans about seven orders of magnitude in fNL. Of this regime, three orders of magni-

tude have been ruled out by current CMB observations, leaving a window of opportunity

of about four orders of magnitude. Accessing these low levels of non-Gaussianity will be

challenging. Even optimistic projections for future CMB observations won’t reduce the

constraints by more than an order of magnitude. Digging deeper will require new cosmo-

logical probes, such as observations of the large-scale structure (LSS) of the universe [62]

and the tomography of the 21 cm transition of neutral hydrogen gas [63]. Our results,

together with [6, 7, 9–11], will help to find optimal observational strategies for extracting

the subtle imprints of extra particles during the inflationary era.
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A More on spin in de Sitter space

In this appendix, we will derive various mathematical results that have been used in this

work. In section A.1, we obtain the mode functions for massive spinning fields in de Sitter

space by solving their equations of motion. We then derive the formula for the two-point

function in section A.2.

Preliminaries. We will work with the components of the spinning field σµ1···µs projected

onto spatial slices, i.e. σi1···inη···η. We will find it convenient to write these as

σi1···inη···η =
∑

λ

σλn,sε
λ
i1···in , (A.1)
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where ελi1···in is a suitably normalized polarization tensor (see insert below). The

sub/superscripts on the mode functions σλn,s label three “quantum numbers”: s is the

spin (or the rank) of the spacetime tensor field, n is its “spatial” spin, and λ is the helicity

component of the spatial spin.

Polarization tensors. — In this insert, we will derive explicit expressions for the polar-

ization tensors of arbitrary spin and helicity. The longitudinal polarization tensors are

functions of k̂, while the transverse polarization tensors in addition depend on two polar-

ization directions ε̂±, with k̂ · ε̂± = 0. Since ε̂+ and ε̂− are related to each other by the

reality condition ε̂+ = (ε̂−)∗, let us denote one of them by ε̂. The polarization tensors of

helicity λ satisfy the following conditions:

i ) symmetric: ελi1···is = ελ(i1···is).

ii ) traceless: ελiii3···is = 0.

iii ) transverse: k̂i1 · · · k̂inελi1···is = 0, when n > s− λ.

The last condition implies that the polarization tensor is of the form

ελi1···is(k̂, ε̂) = ελ(i1···iλ(ε̂) fiλ+1···is)(k̂) , (A.2)

where k̂i1ε
λ
i1···iλ

(ε̂) = 0 and fi1···is−λ
is some tensor. Let us contract with vectors q and

define

F λ
s (x, y, z) ≡ qi1 · · · qisελi1···is(k̂, ε̂) , (A.3)

where we have defined x ≡ q2, y ≡ q · k̂, and z ≡ qi1 · · · qiλελi1···iλ . The function F λ
s is a

homogeneous polynomial in q, so that

2xF λ
s,x + yF λ

s,y + λzF λ
s,z = sF λ

s . (A.4)

The transverse and traceless conditions translate into

zF λ
s,z = F λ

s , (A.5)

4xF λ
s,xx + 4yF λ

s,xy + 4λzF λ
s,xz + 2dF λ

s,x + F λ
s,yy = 0 , (A.6)

where d is the number of spatial dimensions. Taking derivatives of (A.4) and (A.5), and

substituting into (A.6), we get

(x− y2)F λ
s,yy − (2λ+ d− 1)yF λ

s,y + (s− λ)(s+ λ+ d− 2)F λ
s = 0 . (A.7)

Without loss of generality, we now set x = q2 ≡ 1. The solution to (A.5) and (A.7) is

F λ
s (y, z) ∝ zP̂ βλ

βs
(y) , (A.8)
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where P̂ βλ
βs

is part of the associated Legendre polynomial P βλ
βs

of degree βs ≡ 1
2(2s+ d− 3)

and order βλ ≡ 1
2(2λ+d−3), defined by P βλ

βs
(y) = (1−y2)βλ/2P̂ βλ

βs
. We will set P βλ

s ≡ P
|βλ|
s

and distinguish the opposite helicities only by the phase. For d = 3, this reduces to

F λ
s (y, z) ∝ zP̂ λ

s (y) . (A.9)

This result includes longitudinal polarization tensors for λ = 0 and z = 1. It is straight-

forward to obtain explicit expressions for the polarization tensors by stripping off the

contractions with q in (A.9) and symmetrizing the indices:

ελi1···is(k̂, ε̂) =
1

(2λ− 1)!!

s−λ∑

n=0

Bn ε
λ
(i1···iλ

(ε̂) k̂iλ+1
· · · k̂iλ+n

δiλ+n+1···is) , (A.10)

where

Bn ≡ 2s

n!(s− n− λ)!

Γ
[
1
2(n+ λ+ 1 + s)

]

Γ
[
1
2(n+ λ+ 1− s)

] , δi1···in ≡
{

δi1i2 · · · δin−1in n even

0 n odd
. (A.11)

The self-contraction of the polarization tensors can be written as

ελi1···isε
λ∗
i1···is =

(2s− 1)!!(s+ λ)!

2λ[(2λ− 1)!!]2s!(s− λ)!
ελi1···iλε

λ∗
i1···iλ

. (A.12)

When choosing the orthogonal direction to be in, say, the z-direction, there will be in total

of 2s non-zero components for the polarized tensor εsi1···is , which are ±1 or ±i up to a

phase. This means that εsi1···isε
s∗
i1···is

= 2s with some overall normalization which we set to

unity for convenience.

A.1 Mode functions

In this section, we will derive the de Sitter mode functions for fields with spin. We will

explicitly derive the mode functions for fields with spins 1 and 2, and present the results

for arbitrary spin at the end.

Spin-1. The equation of motion of a massive spin-1 field σµ is

(�−m2
1)σµ = 0 , (A.13)

with ∇µσµ = 0 and m2
1 = m2 + 3H2. The components ση and σi then satisfy

σ′′η −
(

∂2j −
m2/H2 − 2

η2

)

ση =
2

η
∂iσi , (A.14)

σ′′i −
(

∂2j −
m2/H2

η2

)

σi =
2

η
∂iση , (A.15)

where a prime denotes a derivative with respect to conformal time, and

σ′η −
2

η
ση = ∂iσi . (A.16)
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To decouple equations (A.14) and (A.15), we expand the field σµ into its different helicity

components,

σµ =
1∑

λ=−1

σ(λ)µ , (A.17)

where

σ(0)η = σ00,1 , σ(±1)
η = 0 , (A.18)

σ
(0)
i = σ01,1ε

0
i , σ

(±1)
i = σ±1

1,1ε
±1
i . (A.19)

We demand that the polarization vectors ελi (k̂) satisfy

k̂iε
0
i = 1 , k̂iε

±1
i = 0 , ε±1

i = ε∓1∗
i , ε±1

i ε±1∗
i = 2 . (A.20)

The choice of the normalization (A.20) uniquely fixes the longitudinal polarization vector

to be ε0i (k̂) = k̂i, and the transverse polarization vectors are fixed up to a phase. For

momentum along the z-direction, they can be chosen to be ε±1
i (ẑ) = (1,±i, 0).

In terms of the mode functions defined in (A.18) and (A.19), eqs. (A.14) and (A.15)

decouple

σ00,1
′′ − 2

η
σ00,1

′
+

(

k2 +
m2/H2 + 2

η2

)

σ00,1 = 0 , (A.21)

σ01,1
′′ − k2η2

k2η2 +m2/H2

2

η
σ01,1

′
+

(

k2 +
m2/H2

η2

)

σ01,1 = 0 , (A.22)

σ±1
1,1

′′
+

(

k2 +
m2/H2

η2

)

σ±1
1,1 = 0 , (A.23)

and the transverse condition (A.16) becomes

σ01,1 = − i

k

(

σ00,1
′ − 2

η
σ00,1

)

. (A.24)

The solutions to these equations with the Bunch-Davies initial condition are

σ00,1 = A1N1(−kη)3/2Hiµ1 , (A.25)

σ01,1 =
i

2
A1N1(−kη)1/2

[

kη
(
Hiµ1+1 −Hiµ1−1

)
−Hiµ1

]

, (A.26)

σ±1
1,1 = A1Z

±1
1 (−kη)1/2Hiµ1 , (A.27)

where A1 ≡ eiπ/4e−πµ1/2 and Z±1
1 denotes the normalization constant for the helicity-

±1 mode of the spin-1 field. We have also suppressed the argument −kη of the Hankel

functions Hiµ1 ≡ H
(1)
iµ1

for brevity.

A few comments are in order. First, note that for m = 0 equation (A.23) for the

transverse mode becomes the flat space wave equation, whose solutions are simply plane

waves. This is because the action of a massless spin-1 field is conformally invariant, so the

mode in de Sitter space behaves as if it were in flat space. On the other hand, we do not
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see this behavior for the longitudinal mode. In particular, the longitudinal mode blows up

relative to the transverse mode as we go to the infinite past η → −∞. We can understand

this as follows. The mass term m2/H2η2 in the action (2.1) is time dependent, so the

spin-1 field is effectively massless in the infinite past, in which case the longitudinal mode

turns into a pure gauge mode.

We still need to determine the normalization constants N1 and Z±1
1 . This is done by

imposing orthonormality of mode functions under the inner product
〈

σ(λ)µ (k, η)eik·x, σ(λ
′)

ν (k′, η)eik
′·x
〉

= δλλ′δ(k− k′) . (A.28)

This orthonormality condition guarantees that we get the standard equal-time commuta-

tion relation upon canonical quantization. We have
〈

σ(0)µ (k, η)eik·x, σ(0)ν (k′, η)eik
′·x
〉

= −iηµν
∫

d3x
[

σ(0)µ σ(0)∗ν

′ − σ(0)µ

′
σ(0)∗ν

]

ei(k−k
′)·x

= −i
[
−W(σ00,1, σ

0∗
0,1) +W(σ01,1, σ

0∗
1,1)

]
δ(k− k′) , (A.29)

where W denotes the Wronskian. Substituting (A.25) and (A.27), we obtain

W(σ00,1, σ
0∗
0,1) =

4ik3η2

π
×N2

1 , (A.30)

W(σ01,1, σ
0∗
1,1) =

4ik(k2η2 + 1/4 + µ21)

π
×N2

1 . (A.31)

Note that the time dependences in (A.30) and (A.31) cancel in (A.29). Imposing (A.28),

we then get

N1 =

√
π

2

1√
2k

1

(1/4 + µ21)
1/2

=

√
π

2

1√
2k

H

m
. (A.32)

The normalization for the transverse mode can be determined in a similar way. We get

Z±1
1 =

√
π

2

1√
2k

. (A.33)

Notice that the normalization for the longitudinal mode blows up when m = 0, which,

again, does not signal any pathologies, since the longitudinal mode becomes a pure gauge

mode in this limit.

Spin-2. The equations of motion and the constraints satisfied by a massive spin-2 field

σµν are

(�−m2 − 2H2)σµν = 0 , ∇µσµν = 0 , σ̃ ≡ σµµ = 0 . (A.34)

In terms of components, these are

σ′′ηη +
2

η
σ′ηη −

(

∂2k −
m2/H2 − 6

η2

)

σηη =
4

η
∂iσiη +

2

η2
σii , (A.35)

σ′′iη +
2

η
σ′iη −

(

∂2k −
m2/H2 − 6

η2

)

σiη =
2

η
∂iσηη +

2

η
∂jσij , (A.36)

σ′′ij +
2

η
σ′ij −

(

∂2k −
m2/H2 − 2

η2

)

σij =
4

η
∂(iσj)η +

2

η2
σηηδij , (A.37)
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and

σ′ηη − ∂iσiη −
1

η
σηη −

1

η
σii = 0 , (A.38)

σ′iη − ∂jσij −
2

η
σiη = 0 , (A.39)

σηη − σii = 0 . (A.40)

As before, we expand the Fourier modes into helicity eigenstates

σµν =
2∑

λ=−2

σ(λ)µν . (A.41)

Let us denote the traceless part of the spatial tensor by σ̂ij , so that σij = σ̂ij +
1
3σηηδij ,

and decompose the mode functions into different helicities:

σ(0)ηη = σ00,2 , σ(±1)
ηη = 0 , σ(±2)

ηη = 0 , (A.42)

σ
(0)
iη = σ01,2ε

0
i , σ

(±1)
iη = σ±1

1,2 ε
±1
i , σ

(±2)
iη = 0 , (A.43)

σ̂
(0)
ij = σ02,2ε

0
ij , σ̂

(±1)
ij = σ±1

2,2 ε
±1
ij , σ̂

(±2)
ij = σ±2

2,2 ε
±2
ij . (A.44)

Demanding that the polarization tensors satisfy

k̂iε
0
ij = ε0j , k̂iε

±1
ij =

3

2
ε±1
j , kiε

±2
ij = 0 , ε±2

ij = ε∓2∗
ij , ε±2

ij ε
±2∗
ij = 4 , (A.45)

leads to

ε0ij =
3

2

(

k̂ik̂j −
1

3
δij

)

, ε±1
ij =

3

2

(

k̂iε
±1
j + k̂jε

±1
i

)

, (A.46)

and fixes ε±2
ij up to a phase. For k̂ along the z-direction, this can be chosen to be

ε±2
ij (ẑ) =






1 ±i 0
±i −1 0

0 0 0




 . (A.47)

The equations satisfied by the different helicity modes are

σ00,2
′′ − 2

η
σ00,2

′
+

(

k2 +
m2/H2

η2

)

σ00,2 = 0 , (A.48)

σ±1
1,2

′′
+

(

k2 +
m2/H2 − 2

η2

)

σ±1
1,2 = 0 , (A.49)

σ±2
2,2

′′
+

2

η
σ±2
2,2

′
+

(

k2 +
m2/H2 − 2

η2

)

σ±2
2,2 = 0 , (A.50)

subject to the transverse conditions

σ01,2 = − i

k

(

σ00,2
′ − 2

η
σ00,2

)

, σ02,2 = − i

k

(

σ01,2
′ − 2

η
σ01,2

)

− 1

3
σ00,2 , (A.51)

σ±1
2,2 = − i

k

(

σ±1
1,2

′ − 2

η
σ±1
1,2

)

. (A.52)
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The solutions with Bunch-Davies initial conditions are

σ00,2 = A2N2(−kη)3/2Hiµ2 , (A.53)

σ01,2 =
i

2
A2N2(−kη)1/2

[

kη
(
Hiµ2+1 −Hiµ2−1

)
−Hiµ2

]

, (A.54)

σ02,2 =
1

12
A2N2(−kη)−1/2

[

6kη
(
(2 + iµ2)Hiµ2+1 − (2− iµ)Hiµ2−1

)
− (9− 8k2η2)Hiµ2

]

,

(A.55)

for the longitudinal modes, and

σ±1
1,2 = A2Z

±1
2 (−kη)1/2Hiµ2 , (A.56)

σ±1
2,2 =

i

2
A2Z

±1
2 (−kη)−1/2

[

kη
(
Hiµ2+1 −Hiµ2−1

)
− 3Hiµ2

]

, (A.57)

σ±2
2,2 = A2Z

±2
2 (−kη)−1/2Hiµ2 , (A.58)

for the higher-helicity modes.

To fix the normalization, we again impose orthonormality of the mode functions
〈

σ(λ)µα (k, η)e
ik·x, σ

(λ′)
νβ (k′, η)eik

′·x
〉

= δλλ′δ(k− k′) . (A.59)

We have
〈

σ(0)µα(k, η)e
ik·x, σ

(0)
νβ (k

′, η)eik
′·x
〉

= − i

a2
ηµνηαβ

∫

d3x
[

σ(0)µασ
(0)∗′
νβ − σ(0)′µα σ

(0)∗
νβ

]

ei(k−k
′)·x

= − i

a2

[
4

3
W(σ00,2, σ

0∗
0,2)− 2W(σ01,2, σ

0∗
1,2) +

3

2
W(σ02,2, σ

0∗
2,2)

]

δ(k− k′) , (A.60)

where

W(σ00,2, σ
0∗
0,2) =

4ik3η2

π
×N2

2 , (A.61)

W(σ01,2, σ
0∗
1,2) =

4ik(k2η2 + 1/4 + µ22)

π
×N2

2 , (A.62)

W(σ02,2, σ
0∗
2,2) =

i[32k4η4 + 96k2η2(1/4 + µ22) + 72(1/4 + µ22)(9/4 + µ22)]

18πkη2
×N2

2 . (A.63)

The condition (A.60) then sets the normalization constant to be

N2 =

√
π

3

1√
2k

k

H

1
[
(1/4 + µ22)(9/4 + µ22)

]1/2
. (A.64)

We see that this diverges at m2 = 0 and m2 = 2H2. This is again to be expected.

For m = 0, the action gains gauge invariance, in which case only the helicity-±2 modes

are physical. For m2 = 2H2, the field becomes partially massless, and the number of

propagating degrees of freedom becomes four. In both cases, the longitudinal mode becomes

a pure gauge mode. Finally, determining the normalizations of the transverse modes in an

analogous way, we get

Z±1
2 =

√
π

3

1√
2k

k

H

1

(9/4 + µ22)
1/2

, Z±2
2 =

√
π

2

1√
2k

k

H
. (A.65)

In the massless limit, Z±1
2 diverges and only Z±2

2 remains finite.

– 40 –



J
H
E
P
1
2
(
2
0
1
6
)
0
4
0

Spin-s. For spins higher than two, we need to solve the on-shell equations (2.7). In

order to decouple these equations, we expand the field σµ1···µs into its different helicity

components

σµ1···µs =

s∑

λ=−s

σ
(λ)
µ1···µs . (A.66)

A mode of helicity λ and n polarization directions can be written as

σ
(λ)
i1···inη···η

= σλn,sε
λ
i1···in , (A.67)

where σλn,s = 0 for n < |λ|. The helicity-λ mode function with n = |λ| number of polariza-

tion directions satisfies

σλ|λ|,s
′′ − 2(1− λ)

η
σλ|λ|,s

′
+

(

k2 +
m2/H2 − (s+ λ− 2)(s− λ+ 1)

η2

)

σλ|λ|,s = 0 , (A.68)

whose solution is given by

σλ|λ|,s = AsZ
λ
s (−kη)3/2−λHiµs . (A.69)

The other mode functions can then be obtained iteratively using the following recursion

relation:

σλn+1,s = − i

k

(

σλn,s
′ − 2

η
σλn,s

)

−
n∑

m=|λ|

Bm,n+1σ
λ
m,s , (A.70)

where

Bm,n ≡ 2nn!

m!(n−m)!(2n− 1)!!

Γ
[
1
2(1 +m+ n)

]

Γ
[
1
2(1 +m− n)

] . (A.71)

Having obtained the formula that enables us to compute the mode functions of arbitrary

spin and helicity, let us now fix their normalization constants. In order to do so, we first

define an inner product between two mode functions. Note that if fµ1···µs and hν1···µs are

two solutions to (2.7), then the current

Jµ ≡ fν1···νs∇µh
∗
ν1···νs − h∗ν1···νs∇µf

ν1···νs , (A.72)

is conserved, ∇µJµ = 0. This means that we can define an inner product of two solutions

〈fµ1···µs , hν1···νs〉 ≡ −igµ1ν1 · · · gµsνs

∫

dΣnλ
√

ĝ
[
fµ1···µs∇λh

∗
ν1···νs − h∗ν1···νs∇λfµ1···µs

]
,

(A.73)

where Σ denotes a spacelike hypersurface, ĝ is the determinant of the spatial metric, and

nµ is the timelike unit vector orthogonal to Σ. The conservation of the current (A.72)

implies that the inner product is time independent. For the FRW metric, the above inner

product reduces to

〈fµ1···µs , hν1···νs〉 = − i

a2(s−1)
ηµ1ν1 · · · ηµsνs

∫

d3x
[
fµ1···µsh

∗′
ν1···νs − f ′µ1···µs

h∗ν1···νs
]
. (A.74)
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The normalization in (A.69) is then determined by imposing orthonormality under the

inner product (A.74):
〈

σ
(λ)
µ1···µs(k, η)e

ik·x, σ
(λ′)
ν1···νs(k

′, η)eik
′·x
〉

= δλλ′δ(k− k′) . (A.75)

Since the inner product is time independent, it does not matter which time slice we choose

to evaluate the integral on. We will therefore evaluate the integral on the future boundary

by taking the limit η → 0. From (A.70), we note that σλn1,s is subleading compared to

σλn2,s in the limit η → 0 for all n1 < n2, so we simply need to compute the Wronskian

of the mode with the highest number of polarization directions, σλs,s. If we had kept all

the Wronskians, then the subleading time-dependent terms would cancel. Note also that

the trace terms in (A.70) become subleading in the limit η → 0, so we will drop these

terms. Since (A.74) is a constant, the leading term in the Wronskian must scale as η2(1−s)

to cancel off the factor a2(1−s). In the insert below, we will show that the orthonormality

condition fixes the normalization constant to be

(Zλ
s )

2 =
1

k

(
k

H

)2s−2

(Zλ
s )

2 , (A.76)

(Zλ
s )

2 ≡ π

4

[(2λ− 1)!!]2s!(s− λ)!

(2s− 1)!!(s+ λ)!

Γ
(
1
2 + λ+ iµs

)
Γ
(
1
2 + λ− iµs

)

Γ
(
1
2 + s+ iµs

)
Γ
(
1
2 + s− iµs

) . (A.77)

Note that the normalization constant has poles at µ2s = {−(n+ 1
2)

2}sn=λ, at which the spin-

ning field becomes (partially) massless and some of the helicity modes become unphysical.

For convenience, we will denote the normalization of the longitudinal mode by Ns ≡ Z0
s

(Ns ≡ Z0
s ).

Derivation of (A.76). — First, note that the n-th mode function can be cast in the form

σλn,s = AsZ
λ
s (−kη)3/2−n

[

(xn + iyn)Hiµs + (wn + izn)kηHiµs+1

]

, (A.78)

by use of the recursion relation Hiµs+1(x)+Hiµs−1(x) = (2iµs/x)Hiµs(x). The coefficients

xn, yn, wn, and zn can in general depend on time, but are constant in the limit η → 0.

The Wronskian is

W
[
σλn,s, σ

λ∗
n,s

]
=

4ik(Zλ
s )

2

π(kη)2(n−1)

[

Xn − 2µsYn(cothπµs − 1)
]

, (A.79)

where

Xn ≡ x2n + y2n , Yn ≡ xnzn − ynwn + (w2
n + z2n)µs . (A.80)

Let us show that in fact Yn = 0 for any n-th order mode function. We do this by induction.

First, it is trivial to check that this is satisfied by the mode (A.69). Now, assume that

Yn = 0 is satisfied at some n-th order. Using the recursion relation (A.70), and taking the

limit η → 0, we get

σλn+1,s = A(µs)Z
λ
s (−kη)1/2−n

[

(xn+1 + iyn+1)Hiµs + (wn+1 + izn+1)kηHiµs+1

]

, (A.81)
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where

2xn+1 = −2µsxn + (2n+ 1)yn , 2yn+1 = −(2n+ 1)xn − 2µsyn ,

2wn+1 = −2yn + 2µswn + (2n+ 1)zn , 2zn+1 = 2xn − (2n+ 1)wn + 2µszn . (A.82)

These coefficients then give

Xn+1 =
[(
n+ 1

2

)2
+ µ2s

]

Xn , Yn+1 =
[(
n+ 1

2

)2
+ µ2s

]

Yn . (A.83)

Hence, Yn+1 = 0. Since n was arbitrary, we conclude that Yn = 0 for all n. Next, we show

that the Wronskian of the n-th longitudinal mode function has the form

W
[
σλn,s, σ

λ∗
n,s

]
=

4ik(Zλ
s )

2

π(kη)2(n−1)

Γ
(
1
2 + n+ iµs

)
Γ
(
1
2 + n− iµs

)

Γ
(
1
2 + λ+ iµs

)
Γ
(
1
2 + λ− iµs

) . (A.84)

The Wronskian of the mode function (A.69) is

W
[
σλλ,s, σ

λ∗
λ,s

]
=

4ik(Zλ
s )

2

π(kη)2(λ−1)
, (A.85)

and hence satisfies (A.84). Assuming that (A.84) is true at n-th order and using (A.83),

we get

W
[
σλn+1,s, σ

λ∗
n+1,s

]
=

4ik(Zλ
s )

2

π(kη)2n
Xn+1 =

[(
n+ 1

2

)2
+ µ2s

]

(kη)2
4ik(Zλ

s )
2

π(kη)2(n−1)
Xn

=

[(
n+ 1

2

)2
+ µ2s

]

(kη)2
W

[
σλn,s, σ

λ∗
n,s

]

=
4ik(Zλ

s )
2

π(kη)2n
Γ
(
3
2 + n+ iµs

)
Γ
(
3
2 + n− iµs

)

Γ
(
1
2 + λ+ iµs

)
Γ
(
1
2 + λ− iµs

) , (A.86)

where in the last line we have use the fact that

Γ
(
3
2 + n+ iµs

)
Γ
(
3
2 + n− iµs

)

Γ
(
1
2 + n+ iµs

)
Γ
(
1
2 + n− iµs

) =
(
n+ 1

2

)2
+ µ2s . (A.87)

Thus, we have proven (A.84). Finally, the inner product (A.74) is given by
〈

σ
(λ)
µ1···µs(k, η)e

ik·x, σ
(λ)
ν1···νs(k

′, η)eik
′·x
〉

= − i

a2(s−1)
ηµ1ν1 · · · ηµsνs

∫

d3x
[

σ
(λ)
µ1···µsσ

(λ)∗′
ν1···νs − σ

(λ)′
µ1···µsσ

(λ)∗
ν1···νs

]

ei(k−k
′)·x

= −i(−Hη)2(s−1)W
[
σλs,s, σ

λ∗
s,s

]
ελi1···isε

λ∗
i1···isδ(k− k′)

=
4k(Zλ

s )
2

π

(
H

k

)2(s−1) Γ
(
1
2 + s+ iµs

)
Γ
(
1
2 + s− iµs

)

Γ
(
1
2 + λ+ iµs

)
Γ
(
1
2 + λ− iµs

)ελi1···isε
λ∗
i1···isδ(k− k′) . (A.88)

Note that our final normalization depends on the normalization of the polarization ten-

sors. This does not affect correlation functions, however, as we show in the next section.

Plugging (A.12) into (A.88) and imposing (A.75), we obtain (A.76).
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A.2 Two-point function

In this section, we will compute the two-point functions of spinning fields. For this purpose,

it will be convenient to contract free indices of the spinning fields with auxiliary vectors.

In other words, we will compute

〈
(n · σ)2

〉′

s
≡

〈
(ni1 · · ·nisσi1···is(η))

(
ñj1 · · · ñjsσj1···js(η′)

)〉′
, (A.89)

where n ≡ (cosα, sinα, i) and ñ ≡ (cosβ, sinβ,−i) are null vectors. For generic η and η′,

the two-point function is

〈
(n · σ)2

〉′

s
=

s∑

λ=−s

eiλχ
[

(2s− 1)!!

(2λ− 1)!!(s− λ)!

]2

σλs,s(−kη)σλ∗s,s(−kη′) , (A.90)

where χ ≡ α − β. In the late-time limit (or the long-wavelength limit), the two-point

function simplifies considerably. We get

lim
η,η′→0

〈
(n · σ)2

〉′

s
=

(H2ηη′)3/2−s

4πH

s∑

λ=−s

eiλχ

[

C(µs, λ, s) Γ(−iµs)2
(
k2ηη′

4

)iµs

+ c.c.

]

,

(A.91)

where

C(µs, λ, s) ≡
(2s− 1)!!s!

(s− λ)!(s+ λ)!

Γ
(
1
2 + s− iµs

)
Γ
(
1
2 + λ+ iµs

)

Γ
(
1
2 + s+ iµs

)
Γ
(
1
2 + λ− iµs

) . (A.92)

This late-time expectation value matches the two-point function of a spin-s field of a

conformal field theory living on the future boundary, which have been computed in [6].

Derivation of (A.91). — The two-point function (A.89) can be written as

〈(n · σ)2〉′s =
s∑

λ=−s

(ni1 · · ·nisελi1···is)(ñj1 · · · ñjsελ∗j1···js)σλs,sσλ∗s,s . (A.93)

Let us compute σλs,sσ
λ∗
s,s in the late-time limit. First, recall that we can cast the mode

function in the form

σλn,s = AsZ
λ
s (−kη)3/2−n

[

(xn + iyn)Hiµs + (wn + izn)kηHiµs+1

]

. (A.94)

Taking the asymptotic limits of the Hankel functions, we get

σλn,sσ
λ∗
n,s

∣
∣
∣
η,η′→0

= (Zλ
s )

2 (k
2ηη′)3/2−n

π2

[

Wn Γ(−iµs)2
(
k2ηη′

4

)iµs

+ c.c.

]

+ local terms ,

(A.95)

where

Wn ≡ x2n + y2n + 2µs(xn + iyn)(iwn + zn) . (A.96)
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Using (A.82), we obtain the recursion relation

Wn+1 =
(
n+ 1

2 − iµs
)2
Wn . (A.97)

Following similar arguments as in the previous section, it can then be shown that

Wn =
Γ
(
1
2 + s− iµs

)2

Γ
(
1
2 + λ− iµs

)2 . (A.98)

Substituting (A.76), (A.95), and (A.98) into (A.93), we obtain

〈(n · σ)2〉′s =
(H2ηη′)3/2−s

4πH

s∑

λ=−s

Iλs (n, ñ)

[

D(s, λ, µs)Γ(−iµs)2
(
k2ηη′

4

)iµs

+ c.c.

]

, (A.99)

where we have dropped the local terms and defined

Iλs (n, ñ) ≡
(ni1 · · ·nisελi1···is)(ñi1 · · · ñisελ∗i1···is)

ελi1···isε
λ∗
i1···is

, (A.100)

D(s, λ, µs) ≡
Γ
(
1
2 + s− iµs

)
Γ
(
1
2 + λ+ iµs

)

Γ
(
1
2 + s+ iµs

)
Γ
(
1
2 + λ− iµs

) . (A.101)

To obtain an expression for Iλs , let us first recall that the structure of the polarization

tensors are given by the (associated) Legendre polynomials. Contracting with null vectors,

only the term with the leading power in k survives (with no Kronecker delta’s), whose

coefficient is (2s− 1)!!/[(2λ− 1)!!(s− λ)!]. This means that

(ni1 · · ·nisελi1···is)(ñi1 · · · ñisελ∗i1···is) =
[

(2s− 1)!!

(2λ− 1)!!(s− λ)!

]2

eisχ , (A.102)

where we used the fact that we get one factor of eiα for each contraction with a null vector,

i.e. ni1 · · ·nisεsi1···is = eisα. Combining (A.102) and (A.12), we get

Iλs (n, ñ) =
(2s− 1)!!s!

(s− λ)!(s+ λ)!
eiλχ . (A.103)

Substituting this into (A.99), we obtain (A.91).

B In-in results

In this appendix, we present details of the in-in computations of section 4. In particular,

we will give explicit expressions for the shape functions introduced in (4.18), (4.33), (4.36)

and (4.41).
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Preliminaries. The expectation value of an operator Q is computed by

〈Q(η)〉 = 〈0|
[

T̄ei
∫ η
−∞

dη′ĤI(η
′)
]

Q(η)
[

Te−i
∫ η
−∞

dη′ĤI(η
′)
]

|0〉 , (B.1)

where |0〉 is the vacuum state of the free theory, T and T̄ denote time-ordering and

anti-time-ordering, respectively, and ĤI is the interaction Hamiltonian. To compute the

quantum expectation values, we promote the fields π, γ, σ to operators and expand in

Fourier space

π(k, η) = πk(η)a(k) + h.c. , γij(k, η) =
∑

λ=±2

ελij(k)γ
λ
k (η)b(k, λ) + h.c. , (B.2)

σ̂i1···is(k, η) =
s∑

λ=−s

ελi1···is(k)σ
λ
s,s(k, η)bs(k, λ) + h.c. , (B.3)

where the creation and annihilation operators obey the usual canonical commutation

relations

[a(k), a†(k′)] = (2π)3δ(k− k′) , (B.4)

[b(k, λ), b†(k′, λ′)] = [bs(k, λ), b
†
s(k

′, λ′)] = (2π)3δ(k− k′)δλλ′ . (B.5)

The mode functions for the Goldstone and the graviton are

πk(η) =
H

f2π

i√
2k3

(1 + icπkη)e
−icπkη , γλk (η) =

H

Mpl

i√
2k3

(1 + ikη)e−ikη . (B.6)

The mode functions σλs,s(k, η) were derived in appendix A. It will be convenient to write

the longitudinal and helicity-±2 mode functions as

σ0s,s(−kη) = Ns(−kη)3/2−sG
(s)
iµs

(−kη) , σ±2
s,s (−kη) = Z±2

s (−kη)3/2−s G̃
(s)
iµs

(−kη) , (B.7)

where the functions G
(s)
iµs

≡ G
(s,λ=0,n=s)
iµs

and G̃
(s)
iµs

≡ G
(s,λ=±2,n=s)
iµs

can be obtained recur-

sively using (A.70), or

G
(s,λ,n+1)
iµs

(x) =
i

2

[

2x∂xG
(s,λ,n)
iµs

(x) + (1− 2n)G
(s,λ,n)
iµs

(x)
]

−
s∑

m=λ

Bm,n+1G
(s,λ,m)
iµs

(x) , (B.8)

given G
(s,λ,λ)
iµs

(x) = AsHiµs(x). For s = 1 and 2, we get

G
(1)
iµ1

(x) ≡ i

2
A1

[

x
(
Hiµ1−1(x)−Hiµ1+1(x)

)
−Hiµ1(x)

]

, (B.9)

G
(2)
iµ2

(x) ≡ 1

12
A2

[

6x
[
(2− iµ2)Hiµ2−1(x)− (2 + iµ2)Hiµ2+1(x)

]
− (9− 8x2)Hiµ2(x)

]

.

(B.10)

Results. In section 4, the results for the bispectra were defined in terms of a number of

momentum-dependent functions. In the following, we give explicit integral expressions for

these functions:
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• For s ≥ 2, the functions I(s) in (4.18) are given by

I(s) ≡
3∑

j=1

2π3N 2
s

k
3/2
1 k

7/2
2 k3

Re[I(s)
j ] , (B.11)

I(s)
1 ≡ −

∫ ∞

0
dx T̃ (s)∗

iµs
(cπ, k1, k2, k3, x)

∫ ∞

0
dy F̃ (s)

iµs
(cπ, y) , (B.12)

I(s)
2 ≡

∫ ∞

0
dx T (s)

iµs
(cπ, k1, k2, k3, x)

∫ ∞

κ12x/cπ

dy F̃ (s)
iµs

(cπ, y) , (B.13)

I(s)
3 ≡

∫ ∞

0
dx F (s)

iµs
(cπ, x)

∫ ∞

cπκ21x
dy T̃ (s)

iµs
(cπ, k1, k2, k3, y) , (B.14)

where κij ≡ ki/kj and Ns ≡ Z0
s is the normalization constant defined in (A.77). The

integrands are represented by the functions

F (s)
iµs

(cπ, x) ≡ xs−5/2(1 + icπx)G
(s)
iµs

(y)e−icπx , (B.15)

F̃ (s)
iµs

(cπ, x) ≡ xs−5/2(1 + icπx)G
(s)∗
iµs

(y)e−icπx , (B.16)

T (s)
iµs

(cπ, k1, k2, k3, x) ≡ xs−1/2 (1 + ix)G
(s)
iµs

(xk1/cπk2)e
−ix(1+k3/k2) , (B.17)

T̃ (s)
iµs

(cπ, k1, k2, k3, x) ≡ xs−1/2 (1 + ix)G
(s)∗
iµs

(xk1/cπk2)e
−ix(1+k3/k2) , (B.18)

where G
(s)
iµs

was defined in (B.7). The integral
∫∞
0 dxF (1)

iµ1
is in fact IR divergent.

To avoid this issue, we integrate by parts and work with F (1)
iµ1

→ x1/2Hiµ1(x)e
ix and

F̃ (1)
iµ1

→ x1/2Hiµ1(x)e
−ix.

• The functions J (s) in (4.33) are given by

J (s) =

6∑

j=1

2π3N 4
s

k31k
3/2
2 k

3/2
3

Im[J (s)
j ] , (B.19)

J (s)
1 ≡ −

∫ ∞

0
dx Ĝ(s)∗

iµs
(cπ, k1, k2, k3, x)

∫ ∞

0
dy F̃ (s)

iµs
(cπ, y)

∫ ∞

κ32y
dz F̃ (s)

iµs
(cπ, z) , (B.20)

J (s)
2 ≡ −

∫ ∞

0
dx F̃ (s)∗

iµs
(cπ, x)

∫ ∞

0
dy G̃(s)

iµs
(cπ, k1, k2, k3, y)

∫ ∞

κ31y/cπ

dz F̃ (s)
iµs

(cπ, z) , (B.21)

J (s)
3 ≡ −

∫ ∞

0
dx F̃ (s)∗

iµs
(cπ, x)

∫ ∞

0
dy F̃ (s)

iµs
(cπ, y)

∫ ∞

cπκ12y
dz Ĝ(s)

iµs
(cπ, k1, k2, k3, z) , (B.22)

J (s)
4 ≡

∫ ∞

0
dxG(s)

iµs
(cπ, k1, k2, k3, x)

∫ ∞

κ12x/cπ

dy F̃ (s)
iµs

(cπ, y)

∫ ∞

κ31y
dz F̃ (s)

iµs
(cπ, z) , (B.23)

J (s)
5 ≡

∫ ∞

0
dxF (s)

iµs
(cπ, x)

∫ ∞

cπκ32x
dy G̃(s)

iµs
(cπ, k1, k2, k3, y)

∫ ∞

κ12y/cπ

dz F̃ (s)
iµs

(cπ, z) , (B.24)

J (s)
6 ≡

∫ ∞

0
dxF (s)

iµs
(cπ, x)

∫ ∞

κ21x
dyF (s)

iµs
(cπ, y)

∫ ∞

cπκ32y
dz Ĝ(s)

iµs
(cπ, k1, k2, k3, z) , (B.25)
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where

G(s)
iµs

(cπ, k1, k2, k3, x) ≡ xG
(s)
iµs

(xk2/cπk1)G
(s)
iµs

(xk3/cπk1)e
−ix , (B.26)

G̃(s)
iµs

(cπ, k1, k2, k3, x) ≡ xG
(s)∗
iµs

(xk2/cπk1)G
(s)
iµs

(xk3/cπk1)e
−ix , (B.27)

Ĝ(s)
iµs

(cπ, k1, k2, k3, x) ≡ xG
(s)∗
iµs

(xk2/cπk1)G
(s)∗
iµs

(xk3/cπk1)e
−ix . (B.28)

• The functions K(s) in (4.36) are given by

K(s) =

10∑

j=1

2π3N 6
s

k31k
3/2
2 k

3/2
3

Re[K(s)
j ] , (B.29)

K(s)
1 ≡ −

∫ ∞

0
dwH(s)

iµs
(k1, k2, k3, w)

∫ ∞

w
dxF (s)∗

iµs

∫ ∞

0
dyF (s)∗

iµs

∫ ∞

κ32y
dzF (s)∗

iµs
, (B.30)

K(s)
2 ≡ −

∫ ∞

0
dw F̃ (s)∗

iµs

∫ ∞

w
dx H̃(s)

iµs
(k1, k2, k3, x)

∫ ∞

0
dyF (s)∗

iµs

∫ ∞

κ32y
dzF (s)∗

iµs
, (B.31)

K(s)
3 ≡

∫ ∞

0
dwH(s)

iµs
(k1, k2, k3, w)

∫ ∞

0
dx F̃ (s)

iµs

∫ ∞

κ21x
dy F̃ (s)

iµs

∫ ∞

κ32y
dz F̃ (s)

iµs
, (B.32)

K(s)
4 ≡

∫ ∞

0
dw F̃ (s)∗

iµs

∫ ∞

0
dx H̃(s)

iµs
(k1, k2, k3, x)

∫ ∞

κ21x
dy F̃ (s)

iµs

∫ ∞

κ32y
dz F̃ (s)

iµs
, (B.33)

K(s)
5 ≡

∫ ∞

0
dw F̃ (s)∗

iµs

∫ ∞

0
dxF (s)

iµs

∫ ∞

κ12x
dy Ĥ(s)

iµs
(k1, k2, k3, y)

∫ ∞

κ31y
dz F̃ (s)

iµs
, (B.34)

K(s)
6 ≡

∫ ∞

0
dw F̃ (s)∗

iµs

∫ ∞

0
dxF (s)

iµs

∫ ∞

κ32x
dyF (s)

iµs

∫ ∞

κ13y
dz H̄(s)

iµs
(k1, k2, k3, w) , (B.35)

K(s)
7 ≡ −

∫ ∞

0
dwH(s)

iµs
(k1, k2, k3, w)

∫ ∞

w
dx F̃ (s)

iµs

∫ ∞

κ21x
dy F̃ (s)

iµs

∫ ∞

κ32y
dz F̃ (s)

iµs
, (B.36)

K(s)
8 ≡ −

∫ ∞

0
dwF (s)

iµs

∫ ∞

w
dx H̃(s)

iµs
(k1, k2, k3, x)

∫ ∞

κ21x
dy F̃ (s)

iµs

∫ ∞

κ32y
dz F̃ (s)

iµs
, (B.37)

K(s)
9 ≡ −

∫ ∞

0
dwF (s)

iµs

∫ ∞

κ21w
dxF (s)

iµs

∫ ∞

κ12x
dy Ĥ(s)

iµs
(k1, k2, k3, y)

∫ ∞

κ31y
dz F̃ (s)

iµs
, (B.38)

K(s)
10 ≡ −

∫ ∞

0
dwF (s)

iµs

∫ ∞

κ21w
dxF (s)

iµs

∫ ∞

κ32x
dyF (s)

iµs

∫ ∞

κ13y
dz H̄(s)

iµs
(k1, k2, k3, w) , (B.39)

where we have suppressed some arguments and defined

H(s)
iµs

(k1, k2, k3, x) ≡ x1/2G
(s)
iµs

(x)G
(s)
iµs

(k2x/k1)G
(s)
iµs

(k3x/k1) , (B.40)

H̃(s)
iµs

(k1, k2, k3, x) ≡ x1/2G
(s)∗
iµs

(x)G
(s)
iµs

(k2x/k1)G
(s)
iµs

(k3x/k1) , (B.41)

Ĥ(s)
iµs

(k1, k2, k3, x) ≡ x1/2G
(s)∗
iµs

(x)G
(s)∗
iµs

(k2x/k1)G
(s)
iµs

(k3x/k1) , (B.42)

H̄(s)
iµs

(k1, k2, k3, x) ≡ x1/2G
(s)∗
iµs

(x)G
(s)∗
iµs

(k2x/k1)G
(s)∗
iµs

(k3x/k1) . (B.43)
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• The functions B(s) in (4.41) are given by

B(s) ≡
3∑

i=1

π3Ñ 2
s

4k
3/2
1 k

7/2
2 k3

Re[B(s)
i ] , (B.44)

B(s)
1 = −

∫ ∞

0
dx R̃(s)∗

iµs
(cπ, k1, k2, k3, x)

∫ ∞

0
dy ys−5/2G̃

(s)∗
iµ2

(y)e−iy , (B.45)

B(s)
2 =

∫ ∞

0
dxR(s)

iµs
(cπ, k1, k2, k3, x)

∫ ∞

κ13x/cπ

dy ys−5/2G̃
(s)∗
iµ2

(y)e−iy , (B.46)

B(s)
3 =

∫ ∞

0
dxxs−5/2G̃

(s)
iµ2

(x)e−ix

∫ ∞

cπκ31x
dy R̃(s)

iµs
(cπ, k1, k2, k3, x) . (B.47)

where Ñs ≡ Z±2
s is the normalization constant defined in (A.77) and

R(s)
iµs

(cπ, k1, k2, k3, x) ≡ xs−1/2 (1 + ix)G̃
(s)
iµs

(xk1/cπk2)e
−ix(1+k3/k2) , (B.48)

R̃(s)
iµs

(cπ, k1, k2, k3, x) ≡ xs−1/2 (1 + ix)G̃
(s)∗
iµs

(xk1/cπk2)e
−ix(1+k3/k2) . (B.49)

C Soft limits

In this appendix, we will derive analytic formulas for the soft limits of the non-analytic

parts of all correlation functions that we considered in this work.

C.1 〈ζζζ〉

We will focus on the squeezed limit of the scalar three-point function for the single-exchange

diagram (cf. figure 6a), and consider even spins first. This leads to a non-analytic behavior

if the quadratic mixing leg is taken to be soft. In the squeezed limit, k1 ≪ k2 ≈ k3, this

contribution is given by

lim
k1≪k3

〈ζk1ζk2ζk3〉′
∆4

ζ

= αs∆
−1
ζ × Ps(k̂1 · k̂3)× I(s)(µs, cπ, k1, k3, k3) + (k2 ↔ k3) , (C.1)

where the functions I(s) are given by

I(s) ≡ −(2π)3c
s−3/2
π H5−2s

8

∑

±±

(±iks−3
1 )(±ic2πks−4

3 ) I(s)
±± , (C.2)

I(s)
±± ≡

∫ 0

−∞

dη

a2s−3
η (1∓ icπk3η)e

±2icπk3η

∫ 0

−∞

dη̃

a2s−4
(1∓ icπk1η̃)e

±icπqη̃ G±±(k1, η, η̃) .

(C.3)

In (C.3) we introduced the time-ordered Green’s functions on the Schwinger-Keldysh

contours

G++(k, η, η̃) = G>(k, η, η̃)Θ(η − η̃) +G<(k, η, η̃)Θ(η̃ − η) , (C.4)

G+−(k, η, η̃) = G<(k, η, η̃) , (C.5)

G−+(k, η, η̃) = G>(k, η, η̃) , (C.6)

G−−(k, η, η̃) = G<(k, η, η̃)Θ(η − η̃) +G>(k, η, η̃)Θ(η̃ − η) , (C.7)
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where

G>(k, η, η̃) = σ0s,s(−kη)σ0∗s,s(−kη̃) , G<(k, η, η̃) = σ0∗s,s(−kη)σ0s,s(−kη̃) , (C.8)

denote the Wightman functions of the longitudinal mode of a spin-s field, and ± indicates

the (anti-)time-ordering along the integration contour. The non-local part of the Green’s

function is independent of the sign of the time difference, in which case the time-ordered

Green’s can be replaced with the non-time-ordered ones, G+± = G−±. The integrals thus

factorize, and substituting for the σ mode functions, the integral (C.2) becomes

I(s) = N (s)
∑

±

(±ks−3
1 ks−4

3 )P(s)
± (k1, cπk3)Q(s)∗(cπ, k1) + c.c. , (C.9)

where we used the fact that I(s)
+± = I(s)∗

−∓ and defined

N (s) ≡ − s!π5c
s+1/2
π

4(2s− 1)!!

sechπµs

Γ
(
1
2 + s− iµs

)
Γ
(
1
2 + s+ iµs

) , (C.10)

P(s)
± (k1, cπk3) ≡ e−πµs/2

∫ ∞

0
dxxs−1/2(1∓ icπk3x)G

(s)
iµs

(k1x)e
±2icπk3x , (C.11)

Q(s)∗(cπ, k1) ≡ e−πµs/2

∫ ∞

0
dxxs−5/2(1 + icπk1x)G

(s)∗
iµs

(k1x)e
−icπk1x , (C.12)

with G
(s)
iµs

introduced in (B.7). The integrals in (C.11) and (C.12) can be computed ana-

lytically for arbitrary cπ. To derive the results below, we will use the formula

e−πµs/2

∫ ∞

0
dxxnHiµs(bx)e

iax =
(i/2)n√
πbn+1

F21(n+ 3/2, µs, (b− a)/2b) , (C.13)

where

F21(a, µs, z) ≡
Γ
(
a− 1

2 − iµs
)
Γ
(
a− 1

2 + iµs
)

Γ(a)
2F1

(

a− 1

2
− iµs, a−

1

2
+ iµs, a, z

)

. (C.14)

In the squeezed limit, k1 ≪ cπk3, the result for (C.11) is

lim
k1≪cπk3

P(s)
± (k1, cπk3) =

(−i)1/2e(1∓1)πµs/2Γ
(
1
2 + s+ iµs

)
Γ
(
1
2 + s− iµs

)

4π(±2cπk3)1/2+s
(C.15)

×
(

k1
4cπk3

)iµs

(5 + 2s+ 2iµs)
Γ(−iµs)

Γ
(
1
2 − iµs

) ∓ ie−(1∓1)πµs × c.c. .

Since we cannot take a soft limit of the integral (C.12), its general expression is rather

complicated. For simplicity, let us display the results for the two limiting cases, cπ = 1 and

cπ ≪ 1, for which (C.12) reduces to

Q(s)∗(cπ = 1, k1) = f (s)(1)× i(2ik1)
3/2−s

√
πΓ(s)

Γ(12 + s− iµs)Γ(
1
2 + s+ iµs)

(s− 3
2)

2 + µ2s
, (C.16)

Q(s)∗(cπ ≪ 1, k1) = f (s)(0)× 2i(ik1/2)
3/2−s

π

Γ[12(
1
2 + s+ iµs)]Γ[

1
2(

1
2 + s− iµs)]

(s− 3
2)

2 + µ2s
. (C.17)

– 50 –



J
H
E
P
1
2
(
2
0
1
6
)
0
4
0

Notice that the mixing integral becomes independent of cπ in the small cπ limit. The

function f (s)(cπ) is precisely the difference between evaluating the integral (C.12) with the

mode function G
(s)
iµs

and a simple Hankel function Hiµs . Since the mode function is a linear

combination of Hankel functions, f (s) is a simple polynomial. The result for s = 2 is

f (2)(1) = −985− 664µ22 + 16µ42
576

, (C.18)

f (2)(0) = −23− 4µ22
12

. (C.19)

Summing (C.16) and (C.11) and focusing on terms which are non-analytic in momentum,

we find

lim
k1≪cπk3

I(s)(µs, cπ, k1, k3, k3) =
As

k31k
3
3

(
k1
k3

)3/2

cos

[

µs ln

(
k1
k3

)

+ φs

]

, (C.20)

where the amplitude and the phase are given by

As = |Ãs|×







f (s)(1)×
√
π

22s−2Γ(s)

Γ
(
1
2+s−iµs

)
Γ
(
1
2+s+iµs

)

(
s− 3

2

)2
+ µ2s

∝ e−πµs cπ = 1

f (s)(0)× Γ
[
1
2

(
1
2 + s+ iµs

) ]
Γ
[
1
2

(
1
2 + s− iµs

) ]

(
s− 3

2

)2
+ µ2s

∝ e−πµs/2 cπ ≪ 1

, (C.21)

φs ≡ arg Ãs − µs ln 4cπ , (C.22)

with

Ãs ≡
isπ3s!

8(2s− 1)!!

(5 + 2s+ 2iµs)(1 + isinhπµs)

coshπµs

Γ(−iµs)
Γ
(
1
2 − iµs

) , (C.23)

for even spins, whereas the result for odd spins is given by replacing 1 + isinhπµs →
i coshπµs. The final answer is then obtained by summing the permutations (k2 ↔ k3)

in (C.1). Momentum conservation implies

k̂1 · k̂2 = −k̂1 · k̂3 −
k1
k3

[
1− (k̂1 · k̂3)

2
]
+O(k21/k

2
3) . (C.24)

Writing the spin as s = 2ℓ+ 1 for odd spins, with ℓ an integer, we get

P2ℓ+1(k̂1 · k̂3) + (k2 ↔ k3) =

= −(2ℓ+ 1)
k1
k3

[
P2ℓ(k̂1 · k̂3)− (k̂1 · k̂3)P2ℓ+1(k̂1 · k̂3)

]
+O(k21/k

2
3) . (C.25)

For odd spins, the leading terms cancel in the sum over the two permutations, and the

squeezed limit scales as (k1/k3)
5/2. Note that the right-hand side of (C.25) is an even-degree

polynomial of the angle. For even spin s = 2ℓ, we have instead (see also [64])

P2ℓ(k̂1 · k̂3) + (k2 ↔ k3) =

= 2P2ℓ(k̂1 · k̂3)− 2ℓ
k1
k3

[
P2ℓ−1(k̂1 · k̂3)− (k̂1 · k̂3)P2ℓ(k̂1 · k̂3)

]
+O(k21/k

2
3) , (C.26)

where the leading terms add up and thus scale as (k1/k3)
3/2. The next-to-leading term at

order (k1/k3)
5/2 is an odd-degree polynomial of the angle.
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C.2 〈γζζ〉

We also studied the tensor-scalar-scalar bispectrum 〈γζζ〉. Its squeezed limit can be writ-

ten as

lim
k1≪k3

〈γλ
k1
ζ
k2
ζ
k3
〉′

∆γ∆3
ζ

= αs

√
r∆−1

ζ Eλ
2 (k̂1 · k̂3)P̂

λ
s (k̂1 · k̂3)

× B(s)(µs, cπ, k1, k3, k3) + (k2 ↔ k3) , (C.27)

where

B(s) ≡ −π
3c

s−3/2
π

8

∑

±±

(±iks−3
1 )(±ic2πks−4

3 )B±± , (C.28)

B(s)
±± ≡

∫ 0

−∞

dη

η2−2s
(1∓ icπk3η)e

±2icπk3η

∫ 0

−∞
dη̃ e±ik1η̃ G̃±±(k1, η, η̃) , (C.29)

with G̃±± the Green’s functions for the helicity-±2 mode, σ±2
s,s . Following the same steps

as in the scalar case, we obtain the following factorized form of the integrals

B(s) = Ñ (s)
∑

±

(±ks−3
1 ks−4

3 )P̃±(k1, cπk3)Q̃∗(k1) + c.c. , (C.30)

where

Ñ (s) ≡ −9π4c
s+1/2
π

32

(s− 2)!s!

(s+ 2)!(2s− 1)!!

Γ
(
5
2 − iµs

)
Γ
(
5
2 + iµs

)

Γ
(
1
2 + s− iµs

)
Γ
(
1
2 + s+ iµs

) , (C.31)

P̃±(k1, cπk3) ≡ e−πµs/2

∫ ∞

0
dxxs−1/2(1∓ icπk3x)G̃

(s)
iµs

(k1x)e
±2icπk3x , (C.32)

Q̃∗(k1) ≡ e−πµs/2

∫ ∞

0
dxxs−5/2G̃

(s)∗
iµs

(k1x)e
−ik1x , (C.33)

with G̃
(s)
iµs

defined in (B.7). In the squeezed limit, k1 ≪ cπk3, the integral (C.32) becomes

lim
k1≪cπk3

P̃(s)
± (k1, cπk3) =

i3/2e(1∓1)πµs/2Γ
(
1
2 + s+ iµs

)
Γ
(
1
2 + s− iµs

)

4π(±2cπk3)1/2+s
(C.34)

×
(

k1
4cπk3

)iµs

(5 + 2s+ 2iµs)
Γ(−iµs)

Γ
(
5
2 − iµs

) ∓ ie−(1∓1)πµs × c.c. .

The integral (C.33) is given by

Q̃(s)∗(k1) = f̃ (s) × 2i(2ik1)
3/2−s

√
πΓ(s− 1)

Γ
(
1
2 + s− iµ2

)
Γ
(
1
2 + s− iµ2

)

(
(s− 3

2)
2 + µ2s

)(
(s− 1

2)
2 + µ2s

) , (C.35)

where f̃ (s) a polynomial of µs that encodes the difference between evaluating the integral

with G̃
(s)
iµs

and Hiµs . For spin-2, this is simply f̃ (2) = 1. The bispectrum is then given by

B(s)(µs, cπ, k1, k3, k3) =
|Bs|
k31k

3
3

(
k1
k3

)3/2

cos

[

µs ln

(
k1
k3

)

+ φ̃s

]

, (C.36)
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where

Bs ≡ −f̃ (s) × 9isπ7/2

22s+4

(5 + 2s+ 2iµs)(1 + i sinhπµs)

(s+ 1)(s+ 2)(2s− 1)!! coshπµs

Γ(−3
2 + s− iµs)Γ(−3

2 + s+ iµs)

Γ(−iµs)−1Γ(−3
2 − iµs)

,

(C.37)

φ̃s ≡ argBs − µs ln 4cπ , (C.38)

for even spins. The result for odd spins requires the replacement 1+ isinhπµs → coshπµs.

The final bispectrum is then obtained by summing over the permutations (k2 ↔ k3).
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[41] P. Creminelli, J. Noreña and M. Simonović, Conformal consistency relations for single-field

inflation, JCAP 07 (2012) 052 [arXiv:1203.4595] [INSPIRE].

[42] V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation

Functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].

[43] K. Hinterbichler, L. Hui and J. Khoury, An Infinite Set of Ward Identities for Adiabatic

Modes in Cosmology, JCAP 01 (2014) 039 [arXiv:1304.5527] [INSPIRE].

[44] G.L. Pimentel, Inflationary Consistency Conditions from a Wavefunctional Perspective,

JHEP 02 (2014) 124 [arXiv:1309.1793] [INSPIRE].

[45] L. Berezhiani and J. Khoury, Slavnov-Taylor Identities for Primordial Perturbations, JCAP

02 (2014) 003 [arXiv:1309.4461] [INSPIRE].

[46] D. Binosi and A. Quadri, The Cosmological Slavnov-Taylor Identity from BRST Symmetry

in Single-Field Inflation, JCAP 03 (2016) 045 [arXiv:1511.09309] [INSPIRE].

[47] T. Tanaka and Y. Urakawa, Dominance of gauge artifact in the consistency relation for the

primordial bispectrum, JCAP 05 (2011) 014 [arXiv:1103.1251] [INSPIRE].

[48] E. Pajer, F. Schmidt and M. Zaldarriaga, The Observed Squeezed Limit of Cosmological

Three-Point Functions, Phys. Rev. D 88 (2013) 083502 [arXiv:1305.0824] [INSPIRE].

[49] P. Creminelli, G. D’Amico, M. Musso and J. Norena, The (not so) squeezed limit of the

primordial 3-point function, JCAP 11 (2011) 038 [arXiv:1106.1462] [INSPIRE].

[50] E.A. Lim, Quantum information of cosmological correlations, Phys. Rev. D 91 (2015) 083522

[arXiv:1410.5508] [INSPIRE].

[51] J. Martin and V. Vennin, Quantum Discord of Cosmic Inflation: Can we Show that CMB

Anisotropies are of Quantum-Mechanical Origin?, Phys. Rev. D 93 (2016) 023505

[arXiv:1510.04038] [INSPIRE].

[52] J. Maldacena, A model with cosmological Bell inequalities, Fortsch. Phys. 64 (2016) 10

[arXiv:1508.01082] [INSPIRE].

– 55 –

http://dx.doi.org/10.1103/PhysRevLett.116.031302
https://arxiv.org/abs/1510.09217
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.09217
https://arxiv.org/abs/1512.04100
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04100
http://dx.doi.org/10.1088/1126-6708/2006/10/014
https://arxiv.org/abs/hep-th/0602178
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602178
http://dx.doi.org/10.1103/PhysRevD.93.023523
https://arxiv.org/abs/1502.07304
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07304
http://dx.doi.org/10.1088/1475-7516/2012/09/021
https://arxiv.org/abs/1205.0160
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0160
http://dx.doi.org/10.1088/1475-7516/2012/10/051
https://arxiv.org/abs/1205.0161
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0161
http://dx.doi.org/10.1088/1475-7516/2008/02/021
https://arxiv.org/abs/0709.0295
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.0295
http://dx.doi.org/10.1088/1475-7516/2012/07/052
https://arxiv.org/abs/1203.4595
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4595
http://dx.doi.org/10.1088/1475-7516/2012/11/047
https://arxiv.org/abs/1204.4207
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4207
http://dx.doi.org/10.1088/1475-7516/2014/01/039
https://arxiv.org/abs/1304.5527
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.5527
http://dx.doi.org/10.1007/JHEP02(2014)124
https://arxiv.org/abs/1309.1793
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.1793
http://dx.doi.org/10.1088/1475-7516/2014/02/003
http://dx.doi.org/10.1088/1475-7516/2014/02/003
https://arxiv.org/abs/1309.4461
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4461
http://dx.doi.org/10.1088/1475-7516/2016/03/045
https://arxiv.org/abs/1511.09309
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.09309
http://dx.doi.org/10.1088/1475-7516/2011/05/014
https://arxiv.org/abs/1103.1251
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.1251
http://dx.doi.org/10.1103/PhysRevD.88.083502
https://arxiv.org/abs/1305.0824
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0824
http://dx.doi.org/10.1088/1475-7516/2011/11/038
https://arxiv.org/abs/1106.1462
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.1462
http://dx.doi.org/10.1103/PhysRevD.91.083522
https://arxiv.org/abs/1410.5508
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.5508
http://dx.doi.org/10.1103/PhysRevD.93.023505
https://arxiv.org/abs/1510.04038
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.04038
http://dx.doi.org/10.1002/prop.201500097
https://arxiv.org/abs/1508.01082
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.01082


J
H
E
P
1
2
(
2
0
1
6
)
0
4
0

[53] S. Choudhury, S. Panda and R. Singh, Bell violation in the Sky, arXiv:1607.00237

[INSPIRE].

[54] J. Liu, C.-M. Sou and Y. Wang, Cosmic Decoherence: Massive Fields, JHEP 10 (2016) 072

[arXiv:1608.07909] [INSPIRE].

[55] N. Kundu, A. Shukla and S.P. Trivedi, Constraints from Conformal Symmetry on the Three

Point Scalar Correlator in Inflation, JHEP 04 (2015) 061 [arXiv:1410.2606] [INSPIRE].

[56] S. Giombi, S. Prakash and X. Yin, A Note on CFT Correlators in Three Dimensions, JHEP

07 (2013) 105 [arXiv:1104.4317] [INSPIRE].

[57] E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of Massive Primordial

Fields on Large-Scale Structure, JCAP 02 (2016) 017 [arXiv:1504.05993] [INSPIRE].

[58] P.D. Meerburg, J. Meyers, A. van Engelen and Y. Ali-Häımoud, CMB B-mode
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