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Abstract. In the context of the present and future Cosmic Microwave Background (CMB) experiments, going beyond the
information provided by the power spectrum has become necessary in order to tightly constrain the cosmological model. The
non-Gaussian signatures in the CMB represent a very promising tool to probe the early universe and the structure formation
epoch. We present the results of a comparison between two families of non-Gaussian estimators: The first act on the wavelet
space (skewness and excess kurtosis of the wavelet coefficients) and the second group on the Fourier space (bi- and trispectrum).
We compare the relative sensitivities of these estimators by applying them to three different data sets meant to reproduce the
majority of possible non-Gaussian contributions to the CMB. We find that the skewness in the wavelet space is slightly more
sensitive than the bispectrum. For the four point estimators, we find that the excess kurtosis of the wavelet coefficients has very
similar capabilities than the diagonal trispectrum while a near-diagonal trispectrum seems to be less sensitive to non-Gaussian
signatures.
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1. Introduction

Over the last few years, the amount of available data on the
Cosmic Microwave Background (CMB) has increased dra-
matically. Until very recently, measurements of the CMB
power spectrum (BOOMERANG, MAXIMA, DASI, CBI,
ARCHEOPS, VSA, ACBAR...) had started to shed light on the
origin and large scale structure of our universe. In particular,
the determination of the density parameter Ω � 1 had been
obtained from the position of the first acoustic peak. The re-
cent WMAP experiment confirmed these results and helped to
further constraint the cosmological parameters (Bennett et al.
2003). Together with results from other experiments, which
probe e.g. the distribution of galaxies and the distances to type-
Ia supernovae, a coherent image of todays universe has started
to emerge (see e.g. Wang et al. 2002; Bennett et al. 2003).
Testing the detailed statistical nature of the CMB anisotropies
has become not only one of the major goals of CMB cosmol-
ogy but it is now also within our reach. The WMAP satellite
has provided us with an all sky survey of the CMB with good
angular resolution (as will do the future Planck mission). A first
analysis of this data set, based on a bispectrum estimator and on
Minkowski functionals as probes of non-Gaussianity (Komatsu
et al. 2003), has not revealed any deviation from the Gaussian
hypothesis.
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A Gaussian random field is completely determined by
its power spectrum. But many models of the early uni-
verse, like inflation (e.g. Bernardeau & Uzan 2002 and ref-
erences therein), super strings or topological defects, pre-
dict non-Gaussian contributions to the initial fluctuations (Luo
1994b; Jaffe 1994; Gangui et al. 1994). Furthermore, any non-
linearity in their evolution introduces additional non-Gaussian
signatures. An extreme example is gravitational clustering,
which makes it quite difficult to extract any primordial non-
Gaussianity from the galaxy distribution (Durrer et al. 2000).
The CMB on the other hand is to first order free of this com-
plication and is therefore ideally suited to study the early
universe. Nevertheless, secondary effects like the Sunyaev-
Zel’dovich (SZ) effect (Aghanim & Forni 1999; Cooray 2001),
the Ostriker-Vishniac effect (Castro 2003), lensing (Cooray &
Hu 2001; Bernardeau et al. 2003) and others add their own con-
tributions to the total non-Gaussianity. To these cosmological
effects, we have to add foregrounds as well as systematic ef-
fects and instrumental noise. In order to disentangle all those
sources from one another, it is essential to assemble a “tool-
box” of well-understood, fast and robust methods for probing
different aspects of the non-Gaussian signatures.

In this paper, we compare the behaviour of two different
classes of estimators, namely the higher order moments in
wavelet space, and the bi- and trispectrum. Both of these do
not act directly on pixels, but are applied in a dual space. The
purpose of this study is not to present novel ways of detect-
ing non-Gaussian signatures, but to discuss practical aspects
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of these different approaches, and to compare their behaviour
when applied to a selection of synthetic “benchmark” maps
which are designed to mimic typical non-Gaussian contribu-
tions to the CMB.

After the seminal work of Pando et al. (1998) which con-
sisted of applying wavelet techniques to look for non-Gaussian
signatures in the COBE-DMR data, several methods based
on the wavelet analysis have been developed in the context
of the CMB detection of non-Gaussian signatures (Aghanim
& Forni 1999; Forni & Aghanim 1999; Hobson et al. 1999;
Barreiro & Hobson 2001; Cayon et al. 2001; Jewell 2001;
Martinez-gonzalez et al. 2002; Starck et al. 2003). These meth-
ods have proven particularly suitable for statistical studies due
to the combination of two characteristics. First, wavelets are
quite localised both in space and in frequency, which allows
for the features of interest in an image to be present at dif-
ferent scales. Second, the linear transformation properties of
Gaussian variables preserve Gaussianity. Conversely, any non-
Gaussian signal will exhibit a non-Gaussian distribution of its
wavelet coefficients. The two properties combined together al-
low us to associate the statistical signatures with the spatial fea-
tures that have caused them.

The wavelet based estimators have been tested and quali-
fied in terms of their sensitivity to the non-Gaussian signatures
on a variety of simulated data sets such as cosmic strings, the
SZ effect from galaxy clusters, and anisotropies from inhomo-
geneous reionisation (see the above mentioned references). The
galactic contamination from dust emission can induce fore-
ground non-Gaussian signatures. Wavelets have also been used
in such a context by Jewell (2001) to quantify the predicted
level of non-Gaussian features in the IRAS maps. Additionally,
the wavelet based non-Gaussian analysis has also been applied
to the COBE-DMR maps.

Different decomposition schemes and wavelet bases can
be used for the non-Gaussian studies. In the following, we
use a bi-orthogonal wavelet basis and a dyadic decomposi-
tion scheme. This choice has been first motivated in Forni &
Aghanim (1999) and Aghanim & Forni (1999) by the fact that
it is the best scheme in the context of statistical analysis of
CMB signals. It is indeed optimal for statistics since it gives,
at each scale, the maximum number of significant coefficients.
In addition, it naturally allows us to benefit from spatial cor-
relations in the signal at each scale. The better performances
of the bi-orthogonal dyadic wavelet decomposition were con-
firmed by Barreiro & Hobson (2001), and also more recently by
Starck et al. (2003), in a comparison not only with the “à trous”
but also with the ridgelet decompositions.

We now focus on the Fourier based analysis. The inter-
est in using higher order correlation functions to study non-
Gaussianity dates back many years (Luo 1994a; Jaffe 1994;
Heavens 1998). Indeed, the first detection of a non-Gaussian
contribution in the CMB was due to a bispectrum analysis of
the COBE-DMR data by Ferreira et al. (1998), but a later study
by Banday et al. (2000) showed that this was due to a weak
systematic effect.

Numerous works deal with the construction of ideal higher
order statistical estimators both in spherical and flat space as
well as with their application to real data (CMB and large-scale

structure survey data). In the CMB context, research focused on
the two first higher order correlation functions in Fourier space,
namely the bispectrum (see Santos et al. 2003 and Komatsu
et al. 2003, and citations therein), and its 4-point equivalent, the
trispectrum (see Hu 2001; Kunz et al. 2001; Cooray & Kesden
2003). An important advantage of n-point functions over other
non-Gaussian statistics such as wavelets or Minkowski func-
tionals is that they are easier to predict for inflation but also
for secondary sources. This makes them a very powerful test,
explaining their interest for the scientific community.

Indeed, the Boltzmann equation, which describes the time
evolution of the perturbations in the cosmic fluid, does not mix
different Fourier modes. The structure of linear perturbations is
therefore generally simple in Fourier space. Furthermore, the
projection of the CMB photons onto the sky sphere is simple
as well, with the square of the spherical Bessel functions cou-
pling the Fourier mode k and the angular scale, or more di-
rectly the multipole �, on the sphere. The success of studying
the angular power spectrum C � lies in that much of the initial
conditions is preserved throughout the evolution. Higher order
correlation functions can be treated in much the same way and
allow for the use of already existing techniques. It is therefore
feasible to predict theoretically the expected contributions to
non-Gaussian signatures from different sources. This allows us
on the one hand to place limits on sources of non-Gaussian fea-
tures if none is detected, and on the other hand might enable us
to solve the inverse problem, namely identifying the origin of
the non-Gaussianity, if any is found.

In this work, we concentrate on the flat space approach.
We use a normalised bispectrum probing all the possible trian-
gle configurations which exist in a homogeneous and isotropic
universe, and a normalised diagonal as well as nearly-diagonal
trispectrum which depends on the side and the diagonal of the
(nearly) trapezoidal configuration. These are supposed to give
us information on the scale dependence of any non-Gaussian
signal, but contrary to the wavelets, no spatial position infor-
mation is retained.

We will start in the next section by presenting the data sets
used for the comparison. In Sect. 3, we examine the estimators
of the non-Gaussian signatures. The statistical analysis and the
results are presented in Sect. 4. We then end with our main
conclusions.

2. Data sets

We test the statistical methods to detect non-Gaussian sig-
nals on three different data sets chosen so that they are rep-
resentative of many astrophysical situations. It is beyond the
scope of the present study to characterise the astrophysical pro-
cesses represented by the maps. The three sets have rather to
be considered as test cases used in order to insure that the non-
Gaussian detection is neither specific to one peculiar type of
non-Gaussian signatures, nor due to one particular detection
method. Additionally, the combination of the different detec-
tion techniques on the different sets of data allows us to com-
pare the relative sensitivities of the methods on an objective
basis.
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In practise, many of the astrophysical situations can be
roughly classified into the following three different types of
signals: i) spherically shaped structures standing for compact
astrophysical sources or beam-convolved point sources (e.g.
galaxies, galaxy clusters) that we refer to as the point sources,
ii) strongly anisotropic structures that represent filaments and
elongated structures (e.g. interstellar clouds) that we refer to
as the filaments, and iii) non-linear couplings leading to non-
Gaussian signatures, referred to as the χ2 (or χ-squared) map,
as we use the superposition of a Gaussian random field and its
square.

In order to characterise the non-Gaussian signatures exhib-
ited by all these signals, the maps are compared to a set of
99 Gaussian realisations having the same power spectrum, re-
ferred to as the Gaussian reference set. Therefore, the only dif-
ference between Gaussian and non-Gaussian sets is due to the
statistical nature of the two processes. All the maps (Gaussian
and non-Gaussian) are composed of 500 × 500 pixels of
1.5 arcmin aside.

2.1. Filaments

The set of maps for the filamentary structures is a selection of
28 IRAS maps which represent the galactic dust emission at
high latitudes. These maps were chosen from the IRAS whole
sky data base on the basis of two characteristics: firstly their
visual aspect and secondly their power spectrum. The selected
maps exhibit large and bright elongated structures, i.e. fila-
ments (Fig. 1, upper middle panel), and have a low amount
of point sources. We computed the power spectra of these
maps and we chose those showing power spectra with similar
shapes regardless of their amplitudes. We then rescaled the ini-
tial IRAS maps to a common amplitude. This allows us at the
end to actually focus on the higher order statistics of the maps.
Figure 2, lower panel, shows the power spectrum of the fila-
ments. Thanks to this rescaling, we can consider the 28 mod-
ified IRAS maps as statistical realisations of the same highly
non-Gaussian process. This data set has a skewness (third mo-
ment) of 0.89 ± 0.34 (1σ), and an excess kurtosis (fourth mo-
ment) is 2.63 ± 2.42. The Gaussian reference maps (one ex-
ample is given Fig. 1, lower middle panel) have a skewness of
−0.01± 0.17 and an excess kurtosis of −0.11± 0.19. The large
fluctuations of the skewness and excess kurtosis (also present
in the Gaussian maps) arise due to the high power on large
scales associated with the large structures in the IRAS maps.
Hence, even the maps produced using a Gaussian random pro-
cess could be easily mistaken as being non-Gaussian, prov-
ing the necessity of comparing a given test map with a set of
Gaussian reference maps with the same power spectrum, rather
than relying on a theoretical prediction of the Gaussian bounds.
For a discussion of the Gaussian reference maps, see Sect. 2.4.

2.2. Point source maps

The second data set is referred to as the point sources. It is con-
stituted of 50 simulated maps which consist of a distribution of

Fig. 1. Representative maps of the non-Gaussian signals and of one of
their associated Gaussian realisations with the same power spectrum.
Upper and lower left panels represent respectively a point source map
and one of its Gaussian counterparts. The upper and lower middle
panels are for the filaments and an associated Gaussian realisation.
The upper and lower right panels represent the χ2 map and a Gaussian
field with the same power spectrum.

Fig. 2. The power spectra of the studied signals in arbitrary units. The
upper panel shows the power spectrum of both the point sources and
the χ2 maps. The lower panel represents the power spectrum of the
filaments.

Gaussian shaped sources having different sizes and amplitudes.
They are randomly distributed on the map and have positive
and negative signs (see Fig. 1, left upper panel). This signal is
aimed at reproducing the typical situation of a crowded field of
12.5 square degrees containing �107 sources. The field there-
fore exhibits obvious confusion effects. All the simulated maps
have the same bell-shaped power spectrum chosen as an input
(Fig. 2, upper panel), and exhibit a non-Gaussian signal. This
non-Gaussian data set has a skewness of −0.160 ± 0.078 and
an excess kurtosis of 2.19 ± 0.32. A Gaussian reference set of
maps with the same power spectrum is simulated (Sect. 2.4,
Fig. 1, left lower panel). The corresponding Gaussian maps
have a skewness of −0.003 ± 0.022 and an excess kurtosis
of −0.005 ± 0.036. The point source maps are hence clearly
marked as being non-Gaussian by their excess kurtosis.
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2.3. χ-squared maps

The two previously described types of non-Gaussian signals
are ideal to model astrophysical induced non-linearities due
to foregrounds and/or secondary effects. However in a wider
context, we can expect the existence of primordial sources of
non-Gaussian signatures. A way of modelling some of these
signatures is by introducing a non-linear coupling in an origi-
nally Gaussian distributed perturbation field (Coles & Barrow
1987; Komatsu & Spergel 2001; Acquaviva et al. 2002; Bartolo
et al. 2002). The simplest weak non-linear coupling is given by
χ(x) = χL(x) + fNL( χ2

L(x) − < χ2
L(x) >), where χL denotes

the original linear Gaussian field. The non-Gaussian signature
introduced by the coupling is quantified by the so-called non-
linear coupling constant fNL (note that < χ(x) > = 0).

To generate these χ2 maps we use a method similar to
the one followed to create a Gaussian distributed field (see
Sect. 2.4). The non-Gaussian character is introduced by adding
to the white noise field its squared minus its squared aver-
age weighted by fNL. When multiplying the non-linear field in
Fourier space with the desired power spectrum, a normalisation
by 1 + 2 f 2

NL is needed in order to recover the power spectrum
from the final map. In our approach, f NL quantifies the amount
of the χ2 type contribution in the Gaussian map.

We compute two sets of 50 maps for fNL = 0.01 and 0.1
in order to test the sensitivity of the statistical methods to
the amount of non-Gaussian signal introduced in the Gaussian
field. For illustration purposes, we show in Fig. 1 right upper
and lower panels a χ2 map for fNL = 0.01 and one associated
Gaussian realisation. The power spectrum of these maps was
chosen arbitrarily to be the same as for the point source maps.
As mentioned before, these maps are not meant to reproduce
accurately the physical processes – to simulate a “real” CMB
map with a primordial χ2 contribution we would need to inte-
grate over the radiation transfer function. Nevertheless, to re-
late the order of magnitude of our numbers to the ones found in
the literature, we note that they are rescaled by approximately
a factor of Φ ∼ ∆T/T ∼ 10−5 so that a value of fNL = 0.01
here corresponds to about fNL ≈ 1000 elsewhere (in reality a
bit less, since e.g. on large scales ∆T/T ≈ Φ/3). The χ-squared
maps with fNL = 0.01 have a skewness of 0.009 ± 0.019 and
an excess kurtosis of 0.002 ± 0.031, both of which are consis-
tent with zero. The maps with fNL = 0.1 on the other hand
have a skewness of 0.140 ± 0.024 and an excess kurtosis of
0.037±0.036. The Gaussian reference set is the same as for the
point source maps, see Sect. 2.2.

2.4. Gaussian realisations

In the process of investigating the statistical character of non-
Gaussian signals, as we always deal with a finite ensemble of
maps, there can be substantial fluctuations in the results (see for
example the IRAS case, Sect. 2.1). Furthermore, although not
important in our case but rather when analysing experimental
data, often a “Gaussian” map is not created directly from a pure
Gaussian random process, but has super-imposed known sys-
tematic effects (which would result in spurious non-Gaussian
features). In general, the output of an estimator applied to a test-
map is therefore not compared to a theoretical result but to the

corresponding output obtained from a set of Gaussian reference
maps (with any known systematic effects one may need to add).
Any detection of non-Gaussian signatures can then be reliably
quantified either by comparing these two sets (Gaussian and
non-Gaussian) of results if there are numerous non-Gaussian
maps or by computing the probability that the non-Gaussian
result belongs to the Gaussian distribution if there is only one
(or very few) non-Gaussian map to study. We discuss this pro-
cedure in Sect. 4.1 in more detail.

We generate two sets of Gaussian distributed fields with the
power spectrum of the corresponding non-Gaussian set. The
first one is the aforementioned reference set. The second one
(called the Gaussian counterpart set) is strictly speaking redun-
dant, but is used to illustrate the fluctuations arising from finite
ensembles, and the presence of low-probability results which
appear even when comparing Gaussian maps with each other if
many different tests are applied.

The simplest standard method (Peacock 1999) is to create
a spatial array of white noise using a random number gener-
ator with zero mean and unit variance. We can then give this
Gaussian field the desired power spectrum by multiplying it in
Fourier space with the square root of that power spectrum, the
one of the non-Gaussian set in our case. Using this procedure,
we compute one set of 149 Gaussian maps (reference set and
counterparts) with the same power spectrum as the 50 point-
source maps, one set of 127 Gaussian maps (reference set and
counterparts) with the same power spectrum as the 28 IRAS
modified maps. We arbitrarily choose the power spectrum of
the point source maps for the χ2 maps and hence use the same
set of Gaussian realisations. We show in Fig. 1 (lower panels)
one representative Gaussian realisation for each data set with
the same spectrum as the non-Gaussian map. The skewness and
the excess kurtosis of all the Gaussian reference sets and coun-
terparts are expected to be zero. However, in practice they have
a finite scatter. The lower limit for the standard deviation of the
skewness is given for a normal distribution with unit variance
by
√

15/N2, or about 0.0077 in the case of N 2 = 5002 indepen-
dent values per map. The expected standard deviation for the
excess kurtosis, in the same idealised case, is

√
96/N2 or 0.020.

One should note however that the scatter of higher order mo-
ments is much larger in realistic cases and is strongly suscep-
tible to the details of the random process (see Sects. 2.1, 2.2
and 2.3 for the actual numbers for the Gaussian reference sets).

3. Estimators of the non-Gaussian signatures

We examine two large families of estimators for non-Gaussian
signatures. Both are based on dual space analysis. On the one
hand, we focus on methods which are completely defined in
Fourier space (namely the bi- and trispectrum). On the other
hand, we study estimators in the wavelet space (namely third
and fourth moments of the wavelet coefficients) in which sig-
nals are located both in pixel and in frequency space. It is
worth noting that the skewness (third moment) and excess kur-
tosis (fourth moment) of the wavelet coefficients are quite sim-
ilar to the bi- and trispectrum respectively, in Fourier space.
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Additionally, we compute the cumulative probability func-
tion (CPF) of the pixel distribution. This latter is also one of
the Minkowski functionals, often called A, the surface of the
excursion set at a given amplitude. As the CPF is a less pow-
erful non-Gaussian estimator, in the sense that it does not give
information on the scales nor on the physical location of any
detection, we intend to use it only as a baseline for the detec-
tion of non-Gaussian signatures on a given map.

As discussed above, we analyse a certain number NNG of
non-Gaussian as well as Gaussian maps with the same power
spectrum and compare their properties to a reference set of
99 Gaussian realisations, also with the same power spectrum.
This section describes the statistical estimators we use for our
analysis. For a discussion of the tools used to interpret the re-
sults, see Sect. 4.1.

3.1. Pixel distribution function in real space

One of the easiest and most direct tests of the Gaussian hypoth-
esis just estimates the cumulative probability function (CPF)
from the ensemble of pixels Ntot. To this end, we set

P(< x) = N[pixels with values < x]/Ntot. (1)

The two CPFs (from the Gaussian and non-Gaussian pro-
cesses) can then be compared with statistical methods detailed
in Sect. 4.1.

Power spectra with steep slopes (like the ones used here)
show strong variations of the signal associated with very small
variations in scale. This effect can strongly amplify any kind of
fluctuations, in particular it can amplify the statistical fluctua-
tions in Gaussian maps leading to spurious detections of non-
Gaussian signatures (see e.g. Aghanim & Forni 1999). As a
result, even the comparison of two Gaussian sets through the
CPFs shows a significant departure from Gaussianity. In or-
der to avoid these spurious detections of non-Gaussianity, we
chose to first “whiten” the maps, and then compute the CPFs
and perform the statistical comparison. The withening proce-
dure is done by deconvolving the maps with the power spec-
trum measured directly from, and averaged over, the data. The
process of whitening can potentially weaken the test by making
the non-Gaussian maps more Gaussian. However, this cannot
be avoided since a test which detects spurious non-Gaussian
signals in Gaussian maps is not acceptable.

Due to its simplicity and its inherent non-locality (the CPF
does not test the relative position or configuration of the fluctu-
ations, as the location of the pixels in the map is not taken into
account), and as stated previously, we use the CPF method as
a baseline for the comparison between the non-Gaussian meth-
ods. It should be stressed clearly that this test can only detect
non-Gaussian signatures but does not give any further informa-
tion about their location or scale dependence. It can therefore
only very weakly distinguish between different non-Gaussian
contributions.

3.2. Wavelet space analysis

The principle behind the wavelet transform (Grossman &
Morlet 1984; Daubechies 1988; Mallat 1989) is to hierarchi-
cally decompose an input signal into a series of successively

lower resolution reference signals and associated detail signals.
At each decomposition level, j, the reference signal has a reso-
lution reduced by a factor of 2 j with respect to the original sig-
nal. Together with its respective detail signal, each scale con-
tains the information needed to reconstruct the reference signal
at the next higher resolution level.

The wavelet analysis can be considered as a series of band-
pass filters. It can thus be viewed as the decomposition of
the signal in a set of independent, spatially oriented frequency
channels. Using the orthogonality properties, a function in this
decomposition can be completely characterised by the wavelet
basis and the wavelet coefficients.

The multi-level wavelet transform (analysis stage) decom-
poses the signal into sets of different frequency bands by itera-
tive application of a pair of Quadrature Mirror Filters (QMF).
A scaling function and a wavelet function are associated with
this analysis filter bank. The continuous scaling function φA(x)
satisfies the following two-scale equation:

φA(x) =
√

2
∑

n

h0(n)φA(2x − n), (2)

where h0 is the low-pass QMF. The continuous wavelet ψA(x)
is defined in terms of the scaling function and the high-pass
QMF h1 through:

ψA(x) =
√

2
∑

n

h1(n)φA(2x − n). (3)

The same relations apply for the inverse transform (synthe-
sis stage) but, generally, different scaling and wavelet func-
tions (φS(x) and ψS(x)) are associated with this stage:

φS(x) =
√

2
∑

n

g0(n)φS(2x − n), (4)

ψS(x) =
√

2
∑

n

g1(n)φS(2x − n). (5)

Equations (2) and (4) converge to compactly supported basis
functions when∑

n

h0(n) =
∑

n

g0(n) =
√

2. (6)

The system is said to be bi-orthogonal if the following condi-
tions are satisfied:∫

R
φA(x)φS(x − k)dx = δ(k) (7)

∫
R
φA(x)ψS(x − k)dx = 0 (8)

∫
R
φS(x)ψA(x − k)dx = 0. (9)

Cohen et al. (1990) and Vetterli & Herley (1992) give a com-
plete treatment of the relationship between the filter coefficients
and the scaling functions.

The wavelet functions are quite localised in space, and
simultaneously they are also quite localised in frequency.
Therefore, this approach is an elegant and powerful tool for
image analysis, because the features of interest in an image are
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present at different characteristic scales. Consequently, differ-
ent wavelet transforms have been studied such as the “ à trous”
algorithm (Starck et al. 1998) that decomposes a N×N image I
as a superposition of the form

I(x, y) = cJ(x, y) +
J∑

j=1

w j(x, y), (10)

where cJ is a coarse or smooth version of the original image I
and w j represents the details of I at scale 2− j, and the dyadic
wavelet transform (Mallat 1998) that decomposes the signal s
in a series of the form:

s(l) =
∑

k

cJ,k(φA)J,l(k) +
∑

k

J∑
j=1

(ψA) j,l(k)w j,k (11)

where J is the number of decomposition levels, w j,k the wavelet
(or detail) coefficients at position k and scale j (the indexing
is such that j = 1 corresponds to the finest scale, i.e. highest
frequencies), and cJ is again the coarse or smooth version of
the original signal s.

In the present study and following Forni & Aghanim
(1999), we choose among all the possible bases and decompo-
sition schemes the bi-orthogonal wavelet basis and the dyadic
decomposition. We have chosen to perform a six level (J = 6)
dyadic decomposition of our data. In practice, a dyadic de-
composition refers to a transform in which only the reference
sub-band is decomposed at each level. In this case, the analysis
stage is applied in both directions of the image at each decom-
position level. The total number of sub-bands after J levels of
decomposition is then 3J + 1. This decomposition gives as a
result the details for the studied signal in both directions. At
each level, we therefore end up with 3 sub-bands that we re-
fer to as the horizontal, vertical and diagonal details, plus the
smoothed signal. This kind of decomposition furthermore al-
lows us to benefit from correlations between the two directions
at each level, and also from the maximum number of coeffi-
cients, which is crucial for statistical analysis. The linear trans-
formation properties of Gaussian variables preserve the statis-
tical character making the wavelet coefficients of a Gaussian
process being Gaussian distributed. Conversely, any non-
Gaussian signal will exhibit a non-Gaussian distribution of its
wavelet coefficients at least at some decomposition scales. In
addition, the multi-scale wavelet analysis allows us to asso-
ciate the statistical signatures with the spatial features that have
caused them. However, we do not investigate the latter property
in the present study.

3.3. Fourier space analysis

We now describe in some detail the Fourier space methods
chosen for this comparison. In Fourier space, scalar functions
on the sky sphere, such as the CMB temperature fluctuations,
are usually expressed as the coefficients a�m of an expansion
in spherical harmonics. For small patches, we can instead ap-
proximate the sphere by a flat surface. This makes it possible
to use a fast Fourier transform to compute the coefficients. In
this case, the transformations between pixel space (the original

map T (x)) and Fourier space are given by

a(k) =
∫

d2x T (x)e2πikx →
∑

x

T (x)e2πikx/N2
(∆x)2 (12)

T (x) =
∫

d2k a(k)e−2πikx

→ 1
N2

∑
k

a(k)e−2πikx/N2
(∆k)2. (13)

N2 is the number of pixels per map. The flat space pixel size is
determined from the angular pixel size θ (given in arcmin) via
∆x = 2πθ/(360 × 60). The pixel size in Fourier space is then
∆k = 1/∆x and the angular scale in Fourier space is � = 2πk.

The power spectrum of the temperature distribution is the
two point function,

C(k) =< a(k)a(−k) > ≈
∫

dϕa(k, ϕ) a(k,−ϕ). (14)

The last correspondence is due to the statistical isotropy of the
temperature field on the sky sphere, which allows us to re-
place the ensemble average with an average over directions for
a given mode.

For a Gaussian random field, all information is con-
tained in the power spectrum. All higher order n-point func-
tions can be derived from it. All functions with n odd
vanish, and the even n ones are found via Wick expan-
sion. As an example, the four point function is thus found
to be 〈a(k1)a(k2)a(k3)a(k4)〉 = 〈a(k1)a(k2)〉〈a(k3)a(k4)〉 +
〈a(k1)a(k3)〉〈a(k2)a(k4)〉 + 〈a(k1)a(k4)〉〈a(k2)a(k3)〉, and so on.

The direct computation of higher order functions (n > 2)
for large maps can be very slow. It generically scales as N n−1

pix .
In the spherical case, a faster approach has been developed over
the last years (Spergel & Goldberg 1999; Hu 2001; De Troia
et al. 2003), by creating maps which contain only one scale �
each. We can use the same approach also in flat space, defining
the scale maps as

T�(x) =
1

N2

∑
k

W�(|k|)a(k)e−2πikx/N2
(∆k)2. (15)

The window functions W� serve to select the scale, generally
we will use W�(k) = 1 if k is in the band � and 0 otherwise.
Other choices are clearly possible.

Although the formulation of the scale map method is more
elegant in spherical space, the flat space approach has the ad-
vantage of using only sums, multiplications and fast Fourier
transforms of the map, rendering it very quick and efficient.

With this choice of scale maps, we can compute the power
spectrum via

∑
x

T�(x)2(∆x)2 ∼
∫

dk dϕ k W�(k) a(k, ϕ) a(k,−ϕ) (16)

which contains an additional weight k compared to Eq. (14). In
the spherical case, we find instead a Wigner 3J symbol which
has to be taken care of by the normalisation. This corresponds
in the flat space case to an infinitely narrow bandwidth (i.e.
window functions W� ∝ δ(2πk − �)). While a finite bandwidth
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will introduce a bias in the result, for sufficiently narrow band-
widths k is approximately constant within the band and just
provides an offset which can also be taken care of via an appro-
priate normalisation; in practice we just divide by the number
of pixels per band. Tests show that for a bandwidth of two pix-
els we do not see any differences from Eq. (14) even for rapidly
varying power spectra. Similar normalisations will have to be
performed for the higher order correlation functions.

The bispectrum

The bispectrum is the three point function in Fourier space. In
the flat space approximation, it is given by a triangle configu-
ration,

B�1�2�3 = < a(k1)a(k2)a(k3) > δ(k1 + k2 + k3) (17)

where the δ function arises due to statistical isotropy (and all
other configurations should vanish).

The above mentioned method of scale maps can be directly
extended to higher moments. For the bispectrum, we compute
∑

x

T�1 (x)T�2 (x)T�3 (x)(∆x)2 =
1

N4

∑
k1 k2 k3

a(k1)a(k2)a(k3)

×W�1 (k1)W�2 (k2)W�3 (k3)(∆k)6δ(k1 + k2 + k3). (18)

Here, we normalised the δ symbol so that δ(k = 0) = 1/(∆k) 2.
Again we use the approximation of narrow bands to derive

the normalisation. We assume that the bispectrum does not vary
strongly within a given band. Then the normalisation which
needs to be divided out is given by

N(�1, �2, �3) =
∑
k,q

W�1 (|k|)W�2 (|q|)W�3 (|k + q|), (19)

which we sum up using our choice of scale window functions.
Since this function is geometrical in nature and independent
of the actual map in question, it needs to be computed only
once. This is again just the number of configurations which
contribute to a given (�1, �2, �3) triplet.

The variance of this estimator for a Gaussian random field
is then found to be σ2

B = 6C�1C�2C�3/N(�1, �2, �3) (for our Wi

which verify W2
i (k) = Wi(k)).

We will in general divide out the dependence of the
bispectrum on the power spectrum, and we will do the
same for the trispectrum. This C� normalised estimator,
B�1�2�3/{C�1C�2C�3 }1/2 has comparable properties to the unnor-
malised one, but is more robust with respect to wrong estima-
tions of the power spectrum. Komatsu et al. (2002) even found
it to have a slightly lower variance.

The trispectrum

The trispectrum, the four point function, is slightly more com-
plicated. Statistical isotropy implies again a δ-function over the
four momenta, so that we can visualise it as a quadrilateral with
sides �1, �2, �3 and �4, and we can additionally specify (within
limits) the length of one of the diagonals, a. This additional de-
gree of freedom has to be taken into account when construct-
ing an estimator. To this end, we fix a diagonal a with length

|a| = a. We then decompose the full trispectrum into two trian-
gles, averaged over all directions of a:

T a
�1,�2,�3,�4

=
∑

a

(
τ�1,�2∗

a

)
τ�3,�4

a Wa(|a|)(∆k)2 + permut. (20)

The sub-estimators τ
�i ,� j
a need to be constructed so that one side

is given by a and that the other sides have the lengths indicated,
e.g. �i and � j. This defines the triangle completely. A possibility
for τ�1 ,�2

a is to use the Fourier transform of T �1 · T�2 ,

τ�1,�2
a =

∑
x

T�1(x)T�2(x)e2πiax/N2
(∆x)2. (21)

Then, the integral in the definition of the T � (see Eq. (15)) over
the exponentials leads to δ(k1+k2−a)δ(k3+k4+a) and ensures
the correct geometric structure.

In this study, we are not going to compute all possible
trispectra. Instead, we are going to concentrate on two simpler
cases. The first one is the case �1 = �2 = �3 = �4,

T (0)
�,a ≡ T a

�,�,�,�. (22)

This is quite a natural choice, and due to its symmetry
well suited to investigate elongated structures like filaments.
Furthermore, one needs only one scale at a given time and does
therefore not need to keep all scale maps in memory, greatly
decreasing the amount of memory needed by the algorithm.
But this “diagonal” estimator does not vanish in the case of
a Gaussian random field. It is in general proportional to the
square of the power spectrum. Specifically,
〈
T (0)
�,a

〉
G
∝ C2

�

(
N(�)2δa,0 + 2N(�, a)

)
. (23)

Where the normalisation function for our choice of geometry
is given by

N(�, a) =
∑
k,a

Wa(|a|)W�(|k|)W�(|a + k|), (24)

and again needs to be calculated only once. For a = 0 it is
N(�, a = 0) = N(�) =

∑
k W�(|k|), the number of non-zero

points in the scale map � (for our choice of scale window func-
tions W). This could hide a real non-Gaussian contribution be-
hind the Gaussian “noise”.

It is also noteworthy that in this simple case the diagonal is
bounded by 0 ≤ a ≤ 2�. As the length of the other diagonal b
is related to a via b =

√
(4�2 − a2), the cases with a >

√
2� are

redundant. But since the binning in a and b is different, there
is no easy way of actually removing these cases. The canonical
scale decomposition in spherical space allows the orthonormal-
isation procedure described below to remove the superfluous
values in that case.

We also use the near-diagonal case

T (+)
�,a ≡ T a

�,�+1,�+2,�+3 (25)

which vanishes (for a � 0) for a Gaussian random field.
As discussed in Kunz et al. (2001), the trispectrum T a

� is
not unbiased. This does not concern us overly much, since we
only want to detect non-Gaussianity in a first step, not esti-
mate its precise amplitude. Nonetheless, as discussed in that
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paper, the estimator given here has many superfluous degrees
of freedom which can influence the degree of detection, de-
pending on where precisely a signal is located in (�, a) space.
We can decrease the number of estimators (and so the super-
fluous degrees of freedom) as follows: We define for each �
the matrix Mab = < T a

�
T b
�
>G, where <>G is the expectation

value over a Gaussian ensemble, and diagonalise it, Mab =∑
i λ

ivi
av

i
b. Since many of the eigenvalues λ i vanish, we define

a smaller ensemble of estimators by the linear combinations
T̄ i
�
=
∑

a(vi
a/
√
λi)T a

�
if λi � 0.

4. Results

4.1. Statistical analysis

In the last section, we have described in great detail the esti-
mators which we apply to our synthetic data. Before we can
discuss the results, it is necessary to explain in which way we
quantify statistically the level of any non-Gaussian detection.
To this end, let us study each “test” separately. A “test” is each
bi- or trispectrum configuration (as defined by the triplet or
quadruplet of � values), and the skewness or excess kurtosis
for the coefficients of each combination of scale and orienta-
tion in the wavelet case. Hence, each of our four estimators is
made up of many of these tests.

The detection of non-Gaussian signatures can proceed in
two rather distinct ways, depending on the kind of observations
available. If there are only few data maps available or even one,
e.g. in the case of full-sky observations, we apply each test in-
dependently to each of the maps of the Gaussian reference set
and obtain its distribution. We then apply each test to the non-
Gaussian observed map and check if the obtained value falls
within a certain desired confidence level (e.g. 99.9%) of the
Gaussian distribution.

The second case arises if the data are available as a collec-
tion of maps (non-contiguous observations of the sky), e.g. our
selected subset of IRAS maps, where each one depicts only a
small fraction of the sky. In this case, for each test, using many
maps we can also obtain a distribution of values. It is therefore
possible to directly compare the two distributions (the Gaussian
and the non-Gaussian). In this way the choice of an arbitrary
confidence level is avoided. As we use synthetic benchmark
maps and can create as many of them as we want, we prefer
to use the second approach to test the power of the different
methods.

We apply each test independently to the non-Gaussian
maps, their Gaussian counterparts as well as to the Gaussian
reference set. We therefore end up with three ensembles of val-
ues for each test that we compare with one another as explained
above.

We illustrate this by plotting in Fig. 3 (upper panel) two dis-
tributions of near-diagonal trispectrum values T (+)

�,a with (�, a) =
(1957, 0) for both the filament maps and the corresponding
Gaussian reference maps. The lower panel shows the two distri-
butions for (�, a) = (110, 400). Clearly in the first case the two
distributions are very different. It is this difference that needs
to be quantified.

Fig. 3. Two distributions of near diagonal trispectrum values for the
filaments: the upper panel is for (�, a) = (1957, 0), a highly non-
Gaussian case (dashed line), and its corresponding values issued
from the Gaussian set of maps (solid line). The lower panel is for
(�, a) = (110, 400), a nearly Gaussian case for which the two distribu-
tions (same line-style as upper panel) are very close to each other.

A standard method to statistically compare two distribu-
tions is to perform a Kolmogorov-Smirnov (KS) test. The
KS test returns the distance d which is defined as the maximum
value of the absolute difference between the two cumulative
distribution functions. One can derive the probability P KS that
the two data sets are drawn from the same distribution (i.e. the
two distributions are statistically the same) using the following
equation (Press et al. 1992):

PKS = QKS

([ √
Ne + 0.12 + 0.11/

√
Ne

]
d
)
, (26)

with

QKS(x) = 2
∞∑
j=1

(−1) j−1 exp
(
−2 j2x2

)
(27)

where Ne =
N1N2

N1+N2
is the effective number of data points, given

N1 and N2 the number elements of the two distributions. In our
study, we compare the distribution of values for a non-Gaussian
data set to a distribution obtained from the Gaussian reference
set. Therefore, the values of the KS probabilities PKS represent
a measurement of the confidence level, given by 1−P KS, for the
detection of the non-Gaussian signatures. For example, if for a
certain test PKS = 10−3 then this test exhibits non-Gaussian
features at a confidence level of 99.9%. The probabilities P G

found by comparing the ensemble of Gaussian counterparts
with the Gaussian reference ensemble are uniformly distributed
between 0 and 1. This, after all, is the definition of the proba-
bility PKS.

If we now move back from a single test to the estimators as
a whole, we are confronted with a new problem which is most
noticeable in the case of the bispectrum, for example. There,
we perform of the order of n t � 105 tests. Hence, we expect to
find some tests (although very few) where even the comparison
of two Gaussian ensembles results in a very low probability of
order 1/nt. This is illustrated e.g. by Fig. 6 where the uniform
distribution of the Gaussian probabilities is also clearly visible.
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Only a deviation from this behaviour signals a violation of the
Gaussian hypothesis. As a corollary, if a single test (a single
scale) has a probability PKS � 1/nt, that test alone ensures with
near-certainty that the process which created the map is not
Gaussian. To avoid any confusion with these small Gaussian
probabilities, we state in general both the results of the KS test
of non-Gaussian versus Gaussian reference maps as well as the
Gaussian counterparts versus Gaussian reference results.

Given the large ensemble of PKS values for the bi- and
trispectrum, and knowing their distribution in the Gaussian
case (either taking the theoretical uniform distribution or,
which is more appropriate, directly the measured values), it
is tempting to go one step further and to apply the KS test a
second time. This meta-statistics then returns one global meta-
probability for the detection of a non-Gaussian signature by
a given method, but neglects many aspects such as correlations
between the tests which make up that method. In the case of the
bi- and trispectrum, the meta-statistics discards the informa-
tion on the frequency location of the tests and thus weakens the
power of the Fourier analysis. In addition, the meta-statistics
might also degrade our ability to detect the non-Gaussian sig-
natures due to the known limitations of the KS test. Even if,
as an example, a few locations have very small probabilities
PKS � 1/nt, the global meta-probability may be acceptable if
those points are not numerous enough. Of course these highly
significant values alone would suffice to reject the Gaussian
hypothesis. For the wavelet based estimators, we could also
perform meta-statistics. We would in this case have to create
a distribution of KS probabilities for each decomposition scale
by comparing several sets (Gaussian versus Gaussian and non-
Gaussian versus Gaussian), and then apply the KS test a sec-
ond time. But we refrain from applying this method here as
there are not as many test values as there are in the case of the
Fourier-based estimators.

It is worth noting that the choice of the number of test (non-
Gaussian) and reference maps for the first KS test has an im-
portant impact on the meta-statistics. If the number of maps in
the two sets have not enough different prime factors (e.g. 50
and 100), then heavy aliasing can occur since the KS test is
only sensitive to the difference in the values of the cumulative
distribution functions (see Fig. 4). In this case, only very few
distinct differences (and hence KS probabilities) exist, leading
to a stepped (or quantised) distribution of the KS probabili-
ties (Fig. 4, solid line). As a consequence, the second KS test
gives a spuriously low global meta-probability indicating that
the signals are statistically quite different, even when com-
paring Gaussian versus Gaussian maps. To avoid this, we use
50 test maps and 99 reference maps, which largely eliminates
the problem (Fig. 4, dashed line).

The KS test performs a global comparison of the distribu-
tions. It tends to be more sensitive around the median value of
the cumulative distribution function and less sensitive to differ-
ences at the extreme ends of the distribution. It is therefore a
good test to measure shifts but not so good in finding spreads
which might affect the tails of the distribution. As a conse-
quence, if a given distribution in the non-Gaussian case is very
different from that of the Gaussian case, but still the majority of
its values falls within a given confidence region of the Gaussian

Fig. 4. This figure compares the distribution of KS probabilities of one
of the bispectrum coefficients for the case of 50 vs. 100 maps (solid
line) and for the case of 50 vs. 99 maps (dashed line). The aliasing
problem in the first case is clearly visible; it leads to a heavily stepped
and quantised distribution.

distribution (e.g. 99.9%) then the KS test is not optimally effi-
cient to detect the difference between the two distributions and
therefore to measure the non-Gaussian signatures. A way of ac-
counting for these differences in the tails of the distribution is
to replace the KS distance d by a stabilised or weighted statis-
tics, for example the Andersen-Darling (AD) test or the Kuiper
test. In the former test, we derive a distance and no probabil-
ity is computed. This property makes it vital for the estimation
of the non-Gaussian detection level that we actually compare
on the one hand Gaussian counterparts and the Gaussian ref-
erence set, to on the other hand the non-Gaussian data set and
the reference set. We have checked that both the AD and the
Kuiper tests give results that are in good agreement with the
KS test. In the following, we concentrate onto the KS test, and
we present the results for each statistical estimator in terms of
the probability that two distributions are identical.

4.2. Results from the cumulative probability function

As mentioned before, our baseline is given by a simple com-
parison between the CPFs of the non-Gaussian data sets and
the corresponding reference set. We use the KS test for this
comparison, since it provides us directly with an estimate of the
probability. We use the pixels of one map at a time and compare
the obtained CPF with the one derived from the Gaussian real-
isations. We therefore find a distribution of PKS values. Table 1
gives the averaged results obtained in this way, compared to
the results from the comparison of the Gaussian counterpart
set versus the Gaussian reference set. The maps used for this
purpose were deconvolved with the average power spectrum
extracted from the comparison set.
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Table 1. Test for non-Gaussianity using the CPF for all (whitened)
maps. The first line is the average KS probability for the non-Gaussian
maps and the second line is the average probability for the Gaussian
counterpart set. The χ2 type maps have a non-linear coupling factor
fNL = 0.01.

Filaments Point sources χ2 maps

PKS 0 0 4.7 × 10−4

PG 0.73 0.72 0.72

In all cases, the non-Gaussian signature is clearly detected
(with the fNL = 0.01 χ2 type maps being the least non-Gaussian
by far), while the Gaussian counterpart maps are consistent
with the Gaussian hypothesis. As the point source maps and
the χ2 maps use the same Gaussian reference and counterpart
maps, they also share the same Gaussian probability PG. That
value might be slightly higher than expected due to the decon-
volution which has to use an estimated power spectrum from
the data (the true theoretical one being unknown in practice).
But in the worst case, we expect this measure to lead to a
weaker detection of non-Gaussianity. If we do not deconvolve
the maps, we find, PG = 10−3 for the point sources Gaussian
reference set versus the Gaussian counterpart set, and the fila-
ment case is much worse.

Additionally, we can quantify the sensitivity of this test to
the non-Gaussian signatures present in the χ2 maps. To this
end, we form a likelihood estimator L[ fNL], and find the best-
fit parameter fNL by minimising L. The variation of the recov-
ered fNL for a set of Gaussian maps gives an indication of the
sensitivity of the approach. A priori, we could use directly the
KS probability as given above for the likelihood function. But,
as demonstrated in Santos et al. (2003), it is simpler to use a
χ2 fitting procedure to a signal which can be analytically pre-
dicted and in which fNL enters linearly. In this case, we can
calculate the best-fit value in a very straightforward way.

The probably simplest signals which can be extracted from
the CPF are its moments. As the average vanishes, and as all
even moments show only a leading order non-Gaussianity pro-
portional to f 2

NL � 1, it is best to use the skewness. To first
order in fNL, we find < T 3 > = 6 fNLσ

4, where the standard
deviation σ is the one of the original Gaussian map. The one
recovered from a non-Gaussian χ2 type map differs by a term
of order f 2

NL which can be neglected. The likelihood is then
given by

χ2[ fNL] =
∑

x

(
T (x)3 − fNL6σ4

)2
15σ6

· (28)

Since it is again important to use a whitened map we will as-
sume that σ = 1. We set ∂χ2/∂ fNL = 0 and find

fNL =
1

6N2

∑
x

T (x)3. (29)

Figure 5 shows the recovered fNL from 1000 maps with
Gaussian white noise. Their variance is σ = 8. 10−4 and we find
for the 50 maps with fNL = 0.01 that fNL = 0.0098 ± 0.0007.

There is a caveat: In order to extract that value, we needed
to know the exact kind of non-Gaussian signal we are dealing
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Fig. 5. The values of fNL recovered from the skewness of 1000 maps
which contain Gaussian white noise. The variance is ∆ fNL = 8× 10−4.

with. However, it is valid to use the present procedure to set
limits on the parameter in question if no non-Gaussian signal
is detected.

4.3. Results from the wavelet decomposition

In order to find the non-Gaussian signatures present in the stud-
ied signals, we compute the skewness and excess kurtosis of
the wavelet coefficients at each decomposition scale and in
each sub-band, i.e. for the three types of details (horizontal,
vertical and diagonal). We compute these quantities for both
the Gaussian and the non-Gaussian maps and we compare the
obtained distributions of skewness and excess kurtosis for the
Gaussian and the non-Gaussian processes using the KS test.
This comparison allows us to get, for each scale and orien-
tation, the probability that the non-Gaussian process and the
Gaussian realisations with the same power spectra have the
same distribution.

All the obtained probabilities for the skewness and excess
kurtosis are given in the Tables 2, 3 and 4. In these tables and
for each type of details, the first set of 2 lines represents PKS

for the skewness. The first line is for the non-Gaussian ver-
sus the reference set comparison, and the second line is for the
Gaussian counterpart versus reference set (G vs. G). The sec-
ond set of 2 lines represents the PKS for the excess kurtosis.
Again, the first line is for the non-Gaussian versus the refer-
ence set comparison, and the second for the Gaussian counter-
part versus reference set.

The probabilities of the order of, or lower than, 10 −3 indi-
cating a non-Gaussian detection at a level >99.9% are all in
shaded boxes. The probabilities obtained from the comparison
between the Gaussian counterparts and the reference Gaussian
realisations (G vs. G) allow us to estimate any possible non-
significant detection of non-Gaussian signature, or statistical
fluctuation in the Gaussian sets.
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Table 2. For the χ2 maps with fNL = 0.01: the KS probability (for two signals to have identical distributions) for each of the details at all
decomposition scales. For each detail, the first two lines are for the skewness of the wavelet coefficients, and the second two lines represent the
excess kurtosis. For each pair, the first line stands for the comparison between the 50 non-Gaussian and the 99 reference Gaussian maps, and
the second line for the comparison between the 50 Gaussian counterparts and the 99 reference Gaussian maps (G vs. G). All probabilities lower
than 10−3 are in shaded boxes. Scales 1 to 6 represent respectively the angular scales 3, 6, 12, 24, 48, 96 arcmin.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Vertical 2.08 × 10−18 0.226 0.488 0.828 0.158 0.368
G vs. G 0.411 0.450 0.160 0.160 0.791 0.036

0.488 0.426 0.367 0.426 0.426 0.189
G vs. G 0.332 0.791 0.068 0.940 0.411 0.332

Horizontal 1.97 × 10−17 0.002 0.828 0.555 0.695 0.625
G vs. G 0.876 0.207 0.940 0.876 0.940 0.332

0.315 0.0450 0.625 0.764 0.426 0.226
G vs. G 0.264 0.596 0.411 0.940 0.596 0.791

Diagonal 0.001 0.157 0.828 0.368 0.315 0.315
G vs. G 0.791 0.596 0.940 0.695 0.049 0.791

0.828 0.695 0.930 0.828 0.764 0.963
G vs. G 0.265 0.265 0.876 0.791 0.499 0.596

4.3.1. Third moment of the wavelet coefficients:
Skewness

Confirming the CPF results for which there was a clear de-
tection of non-Gaussian signatures in the set of χ2 maps with
a coupling factor fNL = 0.1, the non-Gaussian signatures are
very easily detected in the wavelet space. We therefore focus on
the χ2 maps with a coupling factor fNL = 0.01. We summarise
the KS probabilities derived from the comparison of the dis-
tribution of skewnesses in Table 2, first two lines of each type
of details. For these χ2 maps, the departure from the Gaussian
hypothesis is only detected at the first wavelet decomposition
scale (i.e. 3 arcmin). Both the vertical and horizontal details
appear very sensitive to the non-Gaussian features present in
the maps. The non-Gaussian signatures are also detected in the
diagonal details, at the first scale, but with a much lower confi-
dence level. From the KS probabilities obtained from the com-
parison Gaussian counterparts versus Gaussian reference maps
(second line of the first set in each detail), it is obvious that the
detection of the non-Gaussian signatures is highly significant.
It is however worth noting that we detect some non-Gaussian
signatures, at 93 to 96% confidence level, due to statistical fluc-
tuations when we compare the Gaussian maps with the refer-
ence Gaussian set.

In the case of the filaments (Table 3, first two lines of each
type of details), the KS test for the skewness distribution of the
non-Gaussian against the Gaussian reference set shows that the
non-Gaussian features are detected at all scales (with less con-
fidence at scale 6, i.e. 96 arcmin). The detection takes place
for the three types of details. We note that the probability for
the non-Gaussian signal to be compatible with a Gaussian pro-
cess increases for the highest decomposition levels, i.e. the
largest angular scales, as it is expected from our studied sig-
nal in which the filamentary structures have not increasingly
large sizes.

As for the point sources (Table 4, first two lines of each
type of details), the non-Gaussian signatures do not show up
very significantly (whatever decomposition scale and details).

The obtained probabilities remain always larger than �0.002
suggesting a non-Gaussian detection at a �99.8% confidence
level at best.

For the filamentary structures as well as for the point
sources, the comparison between Gaussian counterparts and
Gaussian reference (G vs. G) set shows that we are very much
compatible with identity test (processes having the same distri-
bution). The obtained KS probabilities show the high level of
significance of the non-Gaussian detection.

4.3.2. Fourth moment of the wavelet coefficients:
Excess kurtosis

We now turn to the fourth moment in the wavelet space, i.e. the
excess kurtosis of the wavelet coefficients. The results are given
by the second sets of two lines in Tables 2, 3 and 4. Again the
first line is for the KS probability obtained from the compari-
son of the non-Gaussian maps with the Gaussian reference set,
and the second line stands for the comparison of the Gaussian
counterparts versus the reference set (G vs. G).

In the case of the χ2 maps with fNL = 0.01, the fourth
moment do not, as expected, exhibit any departure from the
Gaussian hypothesis. This is demonstrated by the large values
of the KS probabilities (Table 2, second sets of lines).

The point sources (Table 4, first line of the second set of
lines for each detail), exhibit very highly non-Gaussian signa-
tures as shown by the small KS probabilities (always smaller
than �10−5). Furthermore, the non-Gaussian signatures are
present at all decomposition scales and for all the details. We
compare the obtained probabilities with those derived from the
comparison of the Gaussian counterparts with the Gaussian
reference set. We note the high level of significance of the
non-Gaussian detections.

The same kind of results (detection of non-Gaussian fea-
tures at all scales with all details) are obtained for the fila-
ments (Table 3, second sets of lines) for which the probabili-
ties that the non-Gaussian maps are statistically equivalent to
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Table 3. For the filaments: the KS probability (for two signals to have identical distributions) for each of the details at all decomposition scales.
For each detail, the first two lines are for the skewness of the wavelet coefficients, and the second two lines represent the excess kurtosis. For
each pair, the first line stands for the comparison between the 28 non-Gaussian and the 99 reference Gaussian maps, and the second line for
the comparison between the 28 Gaussian counterparts and the 99 reference Gaussian maps (G vs. G). All probabilities lower than 10−3 are in
shaded boxes. Scales 1 to 6 represent respectively the angular scales 3, 6, 12, 24, 48, 96 arcmin.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Vertical 1.27 × 10−7 6.54 × 10−15 1.77 × 10−11 1.65 × 10−8 5.25 × 10−8 0.047
G vs. G 0.743 0.911 0.486 0.879 0.320 0.239

3.3 × 10−20 3.3 × 10−20 3.3 × 10−20 3.3 × 10−20 1.01 × 10−16 1.09 × 10−6

G vs. G 0.379 0.574 0.471 0.996 0.682 0.879

Horizontal 1.77 × 10−11 1.43 × 10−12 1.9 × 10−9 1.77 × 10−11 9.23 × 10−8 0.001
G vs. G 0.651 0.788 0.976 0.391 0.515 0.998

3.3 × 10−20 3.3 × 10−20 3.3 × 10−20 3.3 × 10−20 1.22 × 10−18 7.68 × 10−9

G vs. G 0.773 0.066 0.829 0.258 0.088 0.559

Diagonal 5.13 × 10−7 2.85 × 10−5 1.65 × 10−8 0.0004 0.010 0.008
G vs. G 0.682 0.142 0.040 0.651 0.842 0.682

3.3 × 10−20 3.3 × 10−20 3.3 × 10−20 3.3 × 10−20 3.7 × 10−16 5.69 × 10−8

G vs. G 0.636 0.529 0.758 0.816 0.379 0.040

Table 4. For the point sources: the KS probability (for two signals to have identical distributions) for each of the details at all decomposition
scales. For each detail, the first two lines are for the skewness of the wavelet coefficients, and the second two lines represent the excess kurtosis.
For each pair, the first line stands for the comparison between the 50 non-Gaussian and the 99 reference Gaussian maps, and the second line
for the comparison between the 50 Gaussian counterparts and the 99 reference Gaussian maps (G vs. G). All probabilities lower than 10−3 are
in shaded boxes. Scales 1 to 6 represent respectively the angular scales 3, 6, 12, 24, 48, 96 arcmin.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6
Vertical 0.012 0.791 0.002 0.008 0.411 0.791
G vs. G 0.791 0.265 0.122 0.332 0.791 0.160

3.47 × 10−30 3.47 × 10−30 3.47 × 10−30 6.12 × 10−24 0.001 0.411
G vs. G 0.265 0.876 0.207 0.999 0.499 0.160

Horizontal 0.122 0.695 0.265 0.006 0.265 0.791
G vs. G 0.596 0.411 0.876 0.411 0.499 0.596

3.47 × 10−30 3.47 × 10−30 3.47 × 10−30 2.3 × 10−22 1.42 × 10−6 0.068
G vs. G 0.411 0.499 0.122 0.791 0.695 0.596

Diagonal 0.012 0.160 0.596 0.596 0.876 0.332
G vs. G 0.695 0.996 0.940 0.876 0.207 0.160

3.47 × 10−30 3.47 × 10−30 1.09 × 10−26 9.87 × 10−16 1.02 × 10−7 0.0004
G vs. G 0.092 0.160 0.876 0.791 0.596 0.499

the Gaussian reference maps are always smaller than 10−6. We
have again computed the KS probabilities for the excess kurto-
sis of the wavelet coefficients from the comparison of Gaussian
maps. This comparison shows that the two sets of maps are sta-
tistically the same which conversely reinforces the level of sig-
nificance of the non-Gaussian detection in the filament maps.

4.4. Results from the bispectrum

Similarly to the wavelet coefficients, we compare for each
triplet (�1, �2, �3) the distributions of the (normalised) bispec-
trum values, as described in Sect. 3.3, for the non-Gaussian
realisations and for the Gaussian reference set. Hence, we
associate to each triplet (�1, �2, �3) two ensembles of bispec-
trum coefficients – on the one hand 50 or 28 values for the
non-Gaussian maps, and on the other hand 99 values for the

Gaussian reference set. Using the KS test, we therefore end up
for each triplet with a probability that the signals are drawn
from the same process, i.e. that the non-Gaussian maps are
compatible with the Gaussian reference set.

For the full bispectrum, we limit ourselves to a bandwidth
of four pixels, but probe additionally the diagonal elements
with a bandwidth of two pixels. We have tested that using the
higher resolution (two pixels bandwidth) for the full bispec-
trum does not lead to a better detection of the non-Gaussian
signal for the χ2 type maps, and does not improve the variance
of the recovered value of fNL (see the following subsection).

For the sake of a clearer visual representation of the results,
we choose to show the KS probabilities as a function of the
surface and the smallest angle defined by the triplet, rather than
as a function of the triplet itself. Note that we are speaking of
surfaces and angles in Fourier space.
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Fig. 6. For the χ2 maps with non-linear coupling factor fNL = 0.01:
distribution of the KS probabilities obtained by i) comparing the full
normalised bispectrum estimator of the non-Gaussian maps to the
Gaussian reference set (dashed line), and ii) comparing the same quan-
tity for the Gaussian counterparts to the Gaussian reference set (solid
line). In the second case, the probabilities are distributed uniformly.
The slope is due to the log-log representation we have chosen.

4.4.1. χ2 maps

We first focus on the case of the non-Gaussian χ2 maps with
a coupling factor of fNL = 0.01. We find, for the full bispec-
trum, that the probabilities for the non-Gaussian signal to be
compatible with its Gaussian reference set are as low as a few
times 10−6. However as mentioned in Sect. 4.1 (see also Fig. 6),
the comparison of the 50 Gaussian counterpart realisations to
the reference set of 99 Gaussian maps gives KS probabilities of
the same order, and it is hard to say whether there is a detection
of non-Gaussianity or not. If we apply the KS test a second
time, now to the two resulting distributions of probabilities,
the global meta-probability obtained is 4.1 × 10−4. The bis-
pectrum therefore does indeed detect this type of non-Gaussian
signatures.

As the bispectrum shares many properties with the skew-
ness, we would expect it to be rather good at detecting χ 2 type
non-Gaussianity. Given the way in which we construct our test
maps, the theoretical signal is

B(th)
�1�2�3

= 6 fNL

√
C�1C�2C�3 . (30)

We can eliminate any dependence on the power spectrum by
using the C�- normalised estimator. The χ2 likelihood function
is then (denoting a triplet (�1, �2, �3) by α) very similar to the
one for the CPF, Eq. (28),

χ2[ fNL] =
∑
α

(
B(obs)
α − 6 fNL

)2
σ2
α

(31)

and since the dependence of ∂χ2/∂ fNL = 0 on fNL is linear we
can again solve for it analytically. By using this method, we
recover fNL = 0.010 ± 0.002 and find that the 1000 Gaussian
white noise maps have a variance of 0.0023 (see Fig. 7). As
mentioned earlier, using a bandwidth of two instead of four
does not improve the sensitivity. One should not forget, though,
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Fig. 7. The values of fNL recovered from the bispectrum of 1000 maps
which contain Gaussian white noise. The variance is ∆ fNL = 2× 10−3.

that the Fourier space methods are better adapted to spherical
spaces, where the scale decomposition is automatic and does
not need to be imposed by placing rings on a rectangular grid.
Furthermore, the skewness is always just a number, while a re-
alistic model of primary non-Gaussian signatures (taking into
account the radiation transfer function) introduces a non-trivial
shape and even sign changes into Eq. (30), see e.g. Santos
et al. (2003). In the presence of several different kinds of non-
Gaussian signatures, the bispectrum should be better at dis-
criminating between them in that case, and also using a lower
bandwidth may become useful.

4.4.2. Point sources

In the case of the non-Gaussian maps made of a distribution
of point sources, the KS test gives again probabilities down
to 10−6 for the full bispectrum, apart from a single point with
much lower probability (PKS � 10−9). We concentrate onto
the full bispectrum tests. We need to compare the obtained
KS probabilities with the ones derived from the comparison of
50 Gaussian counterparts versus the reference set. Figure 8 dis-
plays the distribution of KS probabilities. We note in particular
that the non-Gaussian signal exhibits an excess of low KS prob-
abilities as compared with the probabilities from Gaussian vs.
reference set. This difference between the two distributions is
confirmed by the meta-statistics which gives a probability of
8.6 × 10−4.

Let us now concentrate onto the KS probabilities that are
lower than 10−3. We display in the surface-angle plane the re-
sults of the non-Gaussian vs. reference set comparison (Fig. 9,
diamonds) and Gaussian counterparts vs. reference set (Fig. 9,
asterisks). We notice that for small surfaces (in � space, i.e.
Fourier space) the majority of points are associated with the
non-Gaussian maps. There are no detections associated with
the Gaussian vs. reference set comparison. This is even more
obvious when we plot the distribution of surfaces for KS
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Fig. 8. For the point sources: distribution of the KS probabilities for
the full bispectrum. The dashed line represents the results from the
comparison of the non-Gaussian maps to the Gaussian reference set.
The solid line is for the comparison Gaussian counterparts versus ref-
erence set.

probabilities <10−3 (Fig. 9 lower panel, histogram of surfaces).
The first bin is indeed dominated by the detections from the
non-Gaussian versus reference set comparison. The small sur-
faces in Fourier space are associated with large surfaces in
real space (x ∝ 1/�). The result we obtain indicates that we
are actually detecting the non-Gaussian signatures associated
with the higher amplitude spots in the maps (Fig. 1, upper
left panel) that are also spatially more extended and lying on
a crowded background of smaller sources. The histogram of
angles (Fig. 9, middle panel) in turn does not show any highly
significant difference between the non-Gaussian versus refer-
ence and Gaussian counterpart versus reference.

4.4.3. Filaments

Our last non-Gaussian data set is constituted of the 28 modi-
fied IRAS maps representing the filamentary structures. This
process is by far the most non-Gaussian. The KS test be-
tween the distribution of the bispectrum values for the 28 non-
Gaussian maps and the 99 Gaussian reference maps goes down
to 10−20. Similarly to the other processes, we also compare
the 28 Gaussian realisations to the reference set in order to
estimate the significance of the detections. In the case of the
filaments, there is no doubt that the non-Gaussian signatures
are detected. This is exhibited (Fig. 10) by the difference in
the distribution of KS probabilities obtained when comparing
the non-Gaussian maps to the Gaussian reference set (dashed
line), and the probabilities resulting from the comparison of
the 28 Gaussian realisations versus the Gaussian reference set
(solid line). Unsurprisingly, the meta-statistics returns a prob-
ability of 0 confirming the very high significance of the non-
Gaussian detection.

In Fig. 11, we display both the Gaussian vs. Gaussian
(gray triangles), and the non-Gaussian vs. Gaussian (black di-
amonds) points. We note that most of the probabilities in the
Gaussian vs. Gaussian case lie above the 10−3 limit (horizon-
tal solid line). The non-Gaussian character is very strongly

Fig. 9. For the point sources: the KS probabilities lower than 10−3.
In the surface-angle plane (upper panel) defined by the triplets in
Fourier space, the asterisks are for the comparison Gaussian coun-
terparts versus reference set, and the diamonds are for the compari-
son non-Gaussian maps versus reference set. The middle panel shows
the distribution of angles for the above selected KS probabilities. The
lower panel shows the distribution of surfaces for the same selection.
The dashed line is for non-Gaussian versus reference set, and the solid
line for Gaussian versus reference set.
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Fig. 10. For the filaments: distribution of the KS probabilities for the
full bispectrum. The dashed line represents the results by comparing
the non-Gaussian maps to the Gaussian reference set. The solid line is
for the comparison Gaussian counterparts versus reference set.

localised in the triplets with small surfaces. The distribution
as a function of angle is much more uniform.

If we study the KS probabilities as a function of both angle
and surface (see Fig. 12), we find that the non-Gaussian signa-
tures are mainly localised in two distinct “plumes”. The first
contains triplets with angles basically no larger than 0.4 ra-
dian and surfaces that are as large as 107, while the second,
larger plume, covers all angles but only triplets with a slightly
smaller surface. The two histograms, in Fig. 12, show the num-
ber of triplets within a range of KS probabilities as a function
of either surface or smallest angle. They show that the very
lowest probabilities (solid line) are associated with the second,
larger plume. They are distributed over a wide range of angles,
but have all a small surface. The intermediate probabilities are
concentrated in triplets with small angles but a wider range of
surfaces. These figures show that the bispectrum allows very
detailed analysis of the non-Gaussianity present in a data set, if
it is detected at a sufficiently high level.

4.5. Results from the trispectrum

Following the same approach as for the bispectrum and as ex-
plained in detail in Sect. 4.1, we compare for each pair (�, a) the
distribution of the trispectrum values (defined as in Sect. 3.3)
for the non-Gaussian set and for its Gaussian reference set.

We present results for the diagonal and the near-diagonal
trispectra (respectively T (0) and T (+)) for the point sources and
the filaments but compare their sensitivities in terms of the non-
Gaussian detection on the point source maps only since the
non-Gaussian signal is less extreme than in the filaments. For
the χ2 maps we only applied the near-diagonal trispectrum as
no detection is expected from the previous results.

As a significance discriminator, we use the equivalent re-
sults from the comparison between the set of Gaussian coun-
terpart maps and the Gaussian reference set. We checked that
the normalisation of the trispectrum to the power spectrum does
not affect the resulting KS probabilities significantly.

Fig. 11. The filament maps: KS probabilities from the comparison of
the full bispectrum as a function of the surface defined by the triplet in
Fourier space. Black diamonds represent the results obtained from the
comparison non-Gaussian maps versus Gaussian reference set. Gray
triangles represent the results obtained from the comparison Gaussian
counterparts versus reference set. The solid horizontal line indicates
the limit for PKS = 10−3.

4.5.1. χ2 maps

For the fNL = 0.01 χ2 maps and the Gaussian maps, the small-
est KS probabilities are a few times 10−5, see Fig. 13. The meta-
statistics confirms that we do not see any significant deviation
from the Gaussian hypothesis: The orthonormalised T (+) esti-
mator leads to a meta–PKS = 0.13 for a non-linear coupling
constant of 0.01.

It is not surprising that the trispectrum does not detect any
non-Gaussian signature. Just as for the excess kurtosis of the
pixel distribution in real space (see Sect. 4.2), the lowest or-
der contribution to the trispectrum is proportional to f 2

NL. This
makes it naturally much less suited to find this kind of non-
Gaussian signals. This fact can however be used as a counter-
check, since if we believe to have detected a χ2 type signal in
the bispectrum, we should not find it when applying the trispec-
trum to perfectly clean data.

4.5.2. Point sources

The histogram of probability values in Fig. 14 (upper panel)
does not show any extreme differences for T (+) between the
Gaussian vs. Gaussian and the non-Gaussian vs. Gaussian com-
parisons, with only one value at (�, a) � (300, 0) having a par-
ticularly low probability of 10−8. The global probability for be-
ing Gaussian is 8.8 × 10−4. This changes dramatically if we
look at T (0) (Fig. 14, lower panel). The diagonal estimator de-
tects a very clear non-Gaussian signal, and the meta-statistics
returns a probability of 0. It is quite surprising that the two es-
timators show such a huge difference, although they are indeed
completely independent, since T (+) does not have any Gaussian
contribution, as opposed to T (0).

Looking at the distribution of the low-probability points in
(�, a) space (Fig. 15 upper and lower panels), we find that T (0)

is localised around � ≈ 7000 and seems to prefer either very
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Fig. 12. For the full bispectrum of the filaments: distribution of
KS probabilities in the surface-angle plane defined by the triplets in
Fourier space (upper panel). Diamonds are for the comparison non-
Gaussian maps versus Gaussian reference set. Black diamonds are for
the KS probabilities comprised between 10−5 and 10−3, gray diamonds
represent 10−10 < PKS < 10−5, and light gray diamonds stand for
PKS < 10−10. The asterisks are for the comparison Gaussian counter-
parts versus reference set. The middle panel shows the distribution of
angles for the above selected KS probabilities. The lower panel shows
the distribution of surfaces for the same selection. Dashed lines are for
10−5 < PKS < 10−3, dotted lines represent 10−10 < PKS < 10−5, and
solid lines stand for PKS < 10−10.

Fig. 13. For the χ2 maps with a non-linear coupling factor fNL = 0.01:
distribution of the KS probabilities obtained by i) comparing the
trispectrum estimators of the non-Gaussian maps to those of the
Gaussian reference set (dashed line), and ii) comparing the trispec-
trum estimators of the Gaussian counterparts to those of the Gaussian
reference set (solid line).

small or very large values of a, corresponding to oblong con-
figurations. The weak signal of T (+) seems to be mainly due to
points with low � and very small a (diamonds in Fig. 15 upper
panel).

4.5.3. Filaments

For the case of the non-Gaussian filament maps, the KS test
gives probabilities that the non-Gaussian signal is issued from
the same process as the Gaussian reference set as low as a
few 10−20. Figure 16 shows the difference in the distributions
of the KS probabilities for diagonal and near-diagonal trispec-
tra. Furthermore, the meta-probability obtained by applying the
KS test on these probability distributions returns 0. In this case
and similarly to the bispectrum, the non-Gaussian signatures
are consequently undoubtedly detected. However, again the di-
agonal estimator seems more sensitive than the near-diagonal
trispectrum. As shown in Fig. 16, there are many more (twice
as many) low probabilities (high confidence detection) in the
diagonal case than in the near-diagonal.

We try to visualise the morphological information con-
tained in the trispectrum coefficients by displaying in
(�, a) space the KS probabilities (Figs. 17 and 18, upper pan-
els). Those associated with the detection of the non-Gaussian
signatures are in diamonds, and those associated with statis-
tical fluctuations in the Gaussian realisations are in asterisks.
We plot in Figs. 17 and 18 the distribution of a and � in bins
of KS probabilities for the trispectrum (T (+)) and (T (0)) respec-
tively. Both trispectra prefer small values of a (or the diago-
nal a ∼ 2� which correspond to similar configurations), which
are associated with strongly elongated structures. The diago-
nal trispectrum exhibits several other low- probability “blobs”
at intermediate a values, but the corresponding histogram (the
middle panel of Fig. 18) shows that these are somewhat less
important. On the � axis, T (0) seems non-Gaussian mainly for
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Fig. 14. For the point sources: distribution of the KS probabilities ob-
tained by i) comparing the trispectrum estimators of the non-Gaussian
maps to those of the Gaussian reference set (dashed line), and ii) com-
paring the trispectrum estimators of the Gaussian counterparts to those
of the Gaussian reference set (solid line). The upper panel is for the
near-diagonal trispectrum (T (+)) and the lower panel for the diagonal
trispectrum estimator (T (0)).

values between 4000 and 6000, while T (+) rather detects a sig-
nal around � = 2000−4000. All in all, the two trispectra to-
gether show a rich structure with clear concentrations of non-
Gaussian signatures, not just random scatter.

5. Conclusions

In the present study, we investigate two of the major families
of non-Gaussian estimators, namely Fourier-space based meth-
ods (the bi- and trispectrum) and wavelet-space based methods
(the skewness and excess kurtosis of the wavelet coefficients).
They are applied to three quite different data sets chosen to rep-
resent a rather complete sample of possible non-Gaussian sig-
natures (namely: point sources, filaments, non-linearly coupled
signals). Additionally, the methods were applied to two sets of
Gaussian realisations (called reference set and counterpart set)
with the same power spectra as the non-Gaussian maps. We
then use the Kolmogorov-Smirnov test to quantify the level of
detection of the non-Gaussian signatures by comparing the dis-
tributions of the estimator values for the non-Gaussian maps

Fig. 15. For the trispectrum of the point sources: distribution, in
(�,a) space, of the KS probabilities lower than 10−3. Asterisks are for
the comparison between Gaussian counterparts and Gaussian refer-
ence set. Diamonds stand for the non-Gaussian versus Gaussian refer-
ence set comparison. The upper panel is for the near-diagonal trispec-
trum. Most diamonds are found at very small a in this case. The lower
panel is for the diagonal trispectrum estimator.

versus the Gaussian reference set, and for the Gaussian coun-
terpart set versus the reference set. The first comparison re-
turns directly an estimate of the non-Gaussianity detected by a
method, while the second case serves to illustrate the statistical
fluctuations within the Gaussian signal itself. Furthermore, we
have checked that other statistical tests such as the Kuiper and
Anderson-Darling tests give the same results.

We find that the filaments represent a highly non-Gaussian
signal. This statistical character is undoubtedly detected by
both the Fourier and wavelet based methods in the three and
four point estimators. For the point source maps, the non-
Gaussian signatures are very significantly detected with the
excess kurtosis of the wavelet coefficients and the diagonal
estimator of the trispectrum, but less significantly with the
bispectrum and very marginally with the skewness of the
wavelet coefficients. This is consistent with the moments of
the maps, where the non-Gaussianity shows up in the excess
kurtosis as well. It is also expected from the physical nature of
the signal: The maps contain the same number of negative and
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Fig. 16. For the trispectrum of the filaments: distribution of KS proba-
bilities. The solid line is for the comparison of Gaussian counterparts
vs. Gaussian reference set for the near-diagonal estimator (T (+)). The
dashed line is for the comparison of the non-Gaussian maps to the ref-
erence set, for the near-diagonal trispectrum. The dotted line is for the
comparison of Gaussian counterparts vs. reference set, for the diag-
onal trispectrum (T (0)). The dot-dashed line is for the non-Gaussian
maps vs. reference set, for the diagonal estimator.

positive sources, on average, which suppresses the skewness.
The χ2 type maps show just the inverse behaviour, in that they
are now the three point tests (skewness of the pixel distribu-
tion and of the wavelet coefficients as well as the bispectrum)
which detect the non-Gaussian character best. As mentioned
earlier this is related to the signal itself which is constructed by
adding a positive contribution.

When assessing the relative level of detection, we notice
that the wavelet analysis finds the non-Gaussian signatures in
the χ2 maps with a non-linear coupling coefficient of 1% at a
very high confidence but only at the first decomposition scale
(3 arcmin scale), while the bispectrum detection is somewhere
between 3 and 4σ. Wavelets are therefore better at placing con-
straints on fNL, a result which confirms the conclusion of a re-
cent analysis of the COBE-DMR maps with wavelets by Cayon
et al. (2003). The point source maps are clearly recognised as
non-Gaussian by all methods. Finally we note that the diagonal
trispectrum estimator is surprisingly much more sensitive than
the nearly diagonal estimator, even though the latter does not
contain a Gaussian contribution. This shows that care must be
taken if not all components of a given estimator are computed,
as the signal may be extremely localised. A forthcoming study
will address this question in more detail.

Comparing the methods on a more fundamental level, we
find as an additional advantage of the wavelet-based approach
that it allows us to associate the non-Gaussian signatures with
the features that have caused them in the map, at all the scales
where they exist. Wavelet decomposition thus permits to take
benefit of any scale-scale correlations that might exist in the
non-Gaussian signal. This can be done directly in the wavelet
space or by selecting the coefficients and reconstructing the sig-
nal with the inverse wavelet transform. These aspects have not
been investigated in the present study.

Fig. 17. For the near-diagonal trispectrum estimator of the filaments:
the KS probabilities lower than 10−3 in the (�, a) space (upper panel).
The asterisks are for the comparison Gaussian counterparts versus
reference set, and the diamonds for the comparison non-Gaussian
maps versus reference set. The middle panel shows the distribution
of a for the above selected KS probabilities. The lower panel shows
the distribution of � for the same selection. Dashed lines are for
10−5 < PKS < 10−3, dotted lines represent 10−10 < PKS < 10−5, and
solid lines stand for PKS < 10−10.
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Fig. 18. For the diagonal trispectrum estimator of the filaments: the
KS probabilities lower than 10−3 in the (�, a) space (upper panel).
The asterisks are for the comparison Gaussian counterparts versus
reference set, and the diamonds for the comparison non-Gaussian
maps versus reference set. The middle panel shows the distribution
of a for the above selected KS probabilities. The lower panel shows
the distribution of � for the same selection. Dashed lines are for
10−5 < PKS < 10−3, dotted lines represent 10−10 < PKS < 10−5, and
solid lines stand for PKS < 10−10.

However, the wavelet based estimators are lacking one im-
portant property of the Fourier approach. The bi- and trispec-
trum can be analytically predicted without resorting to Monte
Carlo based methods. They can thus be directly related to phys-
ical phenomena, which explains their interest for cosmology.
Additionally, the bi- and trispectrum allow us to probe a very
large number of geometrical configurations for the triplets and
the quadruplets as compared to the limited number of decom-
position scales investigated by the wavelets.

The present comparison can be used to delineate a general
strategy useful for analysing large CMB data sets. If we try to
condense it into a few recommendations, we end up with the
following steps:

1. Look at the higher order moments in pixel space and the
CPF first. The cumulative probability function is very easy
and fast to calculate. Nonetheless, it seems to have a similar
power as the bi- and trispectrum where just the detection of
non-Gaussian signatures is concerned. It therefore provides
a quick check if one can expect to find a strong signal with
the more sophisticated analysis techniques. We recommend
that the maps are deconvolved with their power spectrum
before testing the CPF.

2. Apply wavelet based methods second. Wavelets have the
highest detection power of the methods presented here, and
are only moderately more expensive to apply than the CPF
test. If indeed a signal is detected, they can reconstruct its
origin in pixel space.

3. Use Fourier methods for a detailed analysis. Together, the
bi- and trispectrum furnish a large number of coefficients
associated with different geometrical configurations. As the
number of theoretical predictions for the bi- and trispec-
trum from various sources of non-Gaussian signatures is in-
creasing, this allows a precise characterisation of any strong
and detected non-Gaussianity in a map, and the use of ac-
curate matched filters to determine its possible origin.

Clearly, combining both wavelet and Fourier based analyses
seems the best strategy for studying the non-Gaussian signals.
Together, they allow for very significant detections of the non-
Gaussian signatures and a large amount of spatial information.
In addition, they offer a theoretical basis to relate the physical
processes to the measured quantities. Therefore, these meth-
ods offer currently the best chances of success when trying to
identify the origin of the various sources of non-Gaussian sig-
natures that are expected to contribute to the CMB signal.
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