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Non-Gaussian states and processes are useful resources in quantum information with continuous variables.

An experimentally accessible criterion has been proposed to measure the degree of non-Gaussianity of quantum

states based on the conditional entropy of the state with a Gaussian reference. Here we adopt such a criterion

to characterize an important class of nonclassical states: single-photon-added coherent states. Our studies

demonstrate the reliability and sensitivity of this measure and use it to quantify how detrimental is the role

of experimental imperfections in our implementation.

DOI: 10.1103/PhysRevA.82.063833 PACS number(s): 42.50.Ct, 42.50.Dv, 03.65.Wj, 03.67.−a

I. INTRODUCTION AND DEFINITIONS

Quantum information offers a different viewpoint on

fundamental aspects of quantum mechanics: it aims to assess

and exploit the quantum properties of a physical system as a

resource for a different, and hopefully more efficient, treatment

of information. Indeed, within the framework of quantum

information with continuous variables [1], nonclassical states

of the radiation field represent a resource, and much attention

has been devoted to their generation schemes, which usually

involve nonlinear interaction in optically active media.

On the other hand, the reduction postulate provides an

alternative mechanism to achieve effective nonlinear dyna-

mics; if a measurement is performed on a portion of a

composite entangled system, the other component is condi-

tionally reduced according to the outcome of the measurement.

The resulting dynamics may be highly nonlinear, and may

produce quantum states that cannot be generated by currently

achievable nonlinear processes. Conditional measurements

have been exploited to engineer nonclassical states and,

in particular, have been recently employed to obtain non-

Gaussian states.

While Gaussian states, defined as states with a Gaussian

Wigner function, are known to provide useful resources for

tasks such as teleportation [2,3], cloning [4–6], or dense

coding [7–9], there is an ongoing effort to study which

protocols are allowed by non-Gaussian resources. The most

notable example is certainly their use for an optical quantum

computer [10,11], alongside their employment for improving

teleportation [12–14], cloning [15], and storage [16]. Several

implementations of non-Gaussian states have been reported

so far, in particular from squeezed light [17–25], close-to-

threshold parametric oscillators [26,27] in optical cavities [28],

and in superconducting circuits [29]. Non-Gaussian operations

are also interesting for tasks such as entanglement distillation

[30,31] and noiseless amplification [32,33], which are also

obtained in a conditional fashion, accepting only those events

heralded by a measurement result.

In principle, non-Gaussianity is not directly related to

the nonclassical character of a quantum state and, in turn,

a classical non-Gaussian state may be prepared (e.g., by

phase-diffusion of coherent states or photon subtraction on

thermal states [34]). On the other hand, in the applications

mentioned above it is the presence of both non-Gaussianity

and nonclassicality which allows for enhancement of perfor-

mances. Therefore, de-Gaussification protocols of interest for

quantum information are those providing non-Gaussianity in

conjunction with nonclassicality.

In this work we address the conditional dynamics induced

by the so-called photon addition as a protocol to generate

nonclassical non-Gaussian states. We quantify experimentally

the amount of non-Gaussianity obtained by adding a photon

to a coherent state [19,35–37]. Differently from previous

investigations [35,38–41], we can explicitly address the two

aspects of non-Gaussianity and nonclassicality at once. For the

former, we adopt the non-Gaussianity measure δ[̺] proposed

in [42,43], which is defined as the quantum relative entropy

between the quantum state ̺ itself and a reference Gaussian

state τ having the same covariance matrix as ̺. Given this

choice of reference Gaussian state, we have Tr[̺ ln τ ] =
Tr[τ ln τ ], as ln τ is a polynomial of order at most two in

the canonical variables [42,44]. We thus find

δ[̺] = S(̺‖τ ) = Tr [̺(ln ̺ − ln τ )]

= S(τ ) − S(̺); (1)

that is, δ[̺] is simply equal to the difference between the von

Neumann entropy of τ and the von Neumann entropy of ̺. In

Ref. [42] it has been shown that this measure is nonzero only

for non-Gaussian states. It is also additive under tensor product,

invariant under unitary Gaussian operations, and in general it

does not increase under generic completely positive Gaussian

channels. This measure is somehow preferable to that based

on the Hilbert-Schmidt distance [45] in a quantum information

context, since it is based on an information-related quantity. We

note, however, that a mixture (e.g., doubly peaked) of classical

states can also be strongly non-Gaussian. We therefore adopt

an additional “nonclassicality” criterion.

Several measures of nonclassicality have been proposed in

literature [46–49]; for our purposes we consider as a witness a

quantity ν[̺] related to the negativity of the Wigner function.

This is normalized to a reference, which we choose to be
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a single-photon state W1(x,p). The nonclassicality is then

defined as

ν[̺] =
min[W (x,p)]

min[W1(x,p)]
. (2)

This reference has been chosen since it has the lowest value

within the class of states we consider. While this does not

constitute a measure, it acts as a witness for nonclassical states

whenever ν[̺] > 0. The choice of using the single photon as

a reference is dictated by the need of a measure which does

not depend on the convention for the quadratures. Moreover,

it sets to unity the highest value of ν[̺] attainable in the class

of states under investigation.

II. EXPERIMENT

A conceptual scheme of the experiment is shown in Fig. 1.

A coherent input beam |α〉 is injected in an optical parametric

amplifier (OPA). This is a three-wave nonlinear interaction

between a pump beam and the input beam (usually called the

signal s) which results in the generation of a third beam called

the idler (i). When the pump is an intense beam, we can treat

it as a classical field: the output state of the s and i modes

can then be expressed as the application of the squeezing

operator

Ss,i(r)= exp[r(a†
sa

†
i − aias)] (3)

to the input |α〉s |0〉i . Here, r is the squeezing parameter, which

depends on the pump intensity, the crystal length, and its

nonlinear coefficients, and which attained a value r ≃ 0.105

in our experiment. We can then approximate Ss,i(r) by taking

the limit of weak nonlinearity:

Ss,i(r) ≃ I + r(a†
sa

†
i ) − r(aias). (4)

FIG. 1. (Color online) Layout of the experiment. An optical

parametric amplifier (OPA) is injected with a coherent state of

variable amplitude ‖α‖ in the range [0,1.5]. This is realized by a

100-µm-thick slab of potassium niobate, pumped by a frequency-

doubled mode-locked Ti:sapphire laser (λp = 425 nm, pulse duration

230 fs, repetition rate 800 kHz). Our OPA is driven in the frequency-

degenerate and noncollinear regime to generate an idler at the same

wavelength λ = 2λp as the coherent seed; this is then spatially filtered

with a single-mode fiber, spectrally filtered by a diffraction grating

and a slit, indicated as F in the figure. Finally, the idler is detected

by an avalanche photodiode APD. The observation of the output

conditioned by an APD count results in single-photon addition.

The quantum state of the output is reconstructed by homodyne

detection (HD). Mode matching with the local oscillator (LO)

employs polarization: the signal and the LO are first matched on a

polarization beam splitter, and then combined using a half waveplate

and a second polariser so to realize an accurate 50 : 50 intensity

splitting.

We now put an avalanche photodiode (APD) on the idler

beam, and accept only those events when a click is registered.

Since the idler was originally in the vacuum state, the only

term which can give a contribution to Ss,i(r) is the second

one. Therefore, the detection of a single photon to the idler

heralds the addition of a single photon to the coherent state,

transforming it into

1
√

1 + ‖α‖2
a†|α〉, (5)

in the ideal case. In practice, we need a careful analysis of

those processes which spoil the photon addition and the non-

Gaussianity of the resulting state. Here, we follow closely the

model presented in Refs. [20,23,30].

The detection on the idler beam is performed by an APD that

cannot resolve photon number. In the limit of small detection

efficiency, we can approximate the detection process as the

application of the ai annihilation operator to the idler mode.

This is actually the case in our experiment, where the overall

detection efficiency is less than 10% due to spatial filtering

(�75%), spectral filtering (�30%), and the limited efficiency

of the photodiode (55%).

III. RESULTS AND DISCUSSIONS

In Fig. 2 we plot δ[̺] and ν[̺] as a function of the coherent

amplitude α for different values of r . We observe that the

two trends resemble each other closely, suggesting that the

non-Gaussianity induced by photon addition is essentially
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FIG. 2. (Color online) Non-Gaussianity δ[̺] (upper panel) and

nonclassicality ν[̺] (lower panel) as a function of the amplitude

|α| of the input coherent state for different values of the squeezing

parameter r (dashed lines); from top to bottom r = {0.15,0.30,0.45}.
The black solid line corresponds to the non-Gaussianity of the ideal

photon-added coherent state; that is, to the limit r → 0.
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FIG. 3. (Color online) Experimental Wigner functions for increasing values of α. The output states are reconstructed by a maximal likelihood

algorithm [50] which interpolates 800 000 data points sorted according to their phase into 12 histograms. The effectiveness of the sorting

algorithm sets a lower bound |α| ∼ 0.5, so that the oscillations due to interference are much larger than low-frequency noise fluctuations.

Notice that, for ‖α‖ = 0, this noise can be compensated by using a moving-average technique.

nonclassical and thus useful for quantum information pro-

cessing. It can be also observed how both non-Gaussianity

and nonclassicality decrease by increasing the squeezing

parameter; this can be explained by observing that, as shown

in Eq. (4), for low values of r , the squeezing operator adds

only one photon to each arm, while by increasing r we also

have to consider the possible addition of many photons. Due

to the lack of photon number resolution, the detection will

be affected by the presence of higher-number emission from

the squeezing process [Eq. (3)]. In this case, conditioned on

a click from the idler beam, the signal will be in a highly

mixed and thus less non-Gaussian and also nonclassical state.

In the ideal limit of r → 0, the non-Gaussianity of the state is

exactly equal to that of the ideal photon-added coherent state

in Eq. (5). However, this occurs at the expense of the success

rate, and a compromise between non-Gaussianity and count

rate has to be found.

Beside the role played by squeezing, we have to take

into account the other imperfections that are present in our

experimental setup. In the OPA there might occur a certain

modal mismatch between the pump and the input: this results

in a parasitic amplification that introduces excess noise on

the signal and idler modes. The process is modelled as a

nondegenerate OPA driven at a weaker strength γ r , where 0 �
γ � 1 and γ ∼ 0.425 in our experiment. The amplification

couples the modes s and i with two other modes s ′ and i ′,
initially in the vacuum state. The complete description takes

the form

Ss,i(r)Ss,i ′(γ r)Ss ′,i(γ r)|α〉s |0〉i |0〉s ′ |0〉i ′ . (6)

The parasite modes s ′ and i ′ are not observed in the experiment;

therefore, we have to trace over them to obtain the output

density matrix.

Accurate spatial and spectral filtering is performed so that

the mode detected by the APD is matched with the input mode,

which we detect by balanced homodyne; nevertheless, this task

can be accomplished with only a limited efficiency ξ which,

in our setup, takes the value ξ ∼ 0.96. In formulas, we will

have an output state ̺s,
√ on the signal mode when the trigger

count comes from the correct mode and a different state ̺s,x

heralded by a faulty trigger event. The overall state is

ξ̺s,
√ + (1 − ξ )̺s,x. (7)

Notice that dark count rates from the APD play a negligible

role (∼10 counts/s with an overall rate ∼1–4 × 103 counts/s),

as we used a gated detection triggered by the cavity-dumping

electronics of our laser. Homodyne detection has a limited

efficiency as well, coming from optical loss, non-unit detector

yield, and mode matching between the local oscillator and the

signal. The overall efficiency is, in our case, of the order of

η ∼ 0.71; this is modelled as transmission through a beam

splitter with transmissivity t2 = η. Examples of the measured

Wigner quasi-distributions are illustrated in Fig. 3.

In Fig. 4 we plot δ[̺] at fixed values of the coherent state

amplitude α = 0.5 and of the squeezing parameter r = 0.15

as a function, respectively, of the noise parameters γ , ξ , and

η chosen in ranges relevant for our experimental setup. We

observe as expected that δ[̺] decreases monotonically with γ ,

while it increases monotonically with ξ and η. For the values

that characterize our experiment, the homodyne efficiency η is

the source of imperfection that affects in the most detrimental

way the non-Gaussianity of our states.

Finally, we evaluated δ[̺] from the experimentally recon-

structed output states for different coherent state amplitudes

γ

η

ξ

0.2 0.4 0.6 0.8

0.3

0.6

0.9

γ, ξ, η

δ

FIG. 4. (Color online) Non-Gaussianity δ[̺] as a function of the

noise parameters of the experimental setup for fixed amplitude |α| =
0.5 and squeezing parameter r = 0.15. In details: the blue dot-dashed

line corresponds to δ[̺] as a function of γ , the green dotted line as

a function of ξ , and the red dashed line as a function of η. The solid

lines refer to the non-Gaussianity of the ideal photon-added coherent

state with |α| = 0.5 (upper black line) and to the non-Gaussianity

of the state obtained by considering |α| = 0.5, squeezing parameter

r = 0.15, and no imperfections (lower grey line).
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FIG. 5. (Color online) (Top) Non-Gaussianity δ[̺] as a function

of the amplitude |α| of the input coherent state. (Bottom) Nonclas-

sicality ν[̺]—related to the minimum value of the Wigner function

of ̺—as a function of α. The red points are the experimental values

from the reconstructed matrices. The black dashed line is obtained

from our model including the main experimental imperfections of

our implementation. The parameters are chosen in such a way as to

fit the data of the non-Gaussianity: r = 0.105, γ = 0.425, ξ = 0.96,

and η = 0.71.

|α|; the results are shown in the upper panel of Fig. 5. The

dashed line shows the description provided by our model when

taking into account all the noise processes described above.

The values of parameters used for the curve are obtained from

a fit of the experimental data: r = 0.105, γ = 0.425, ξ = 0.96,

and η = 0.71. The average fidelity between the reconstructed

and modelled state is 0.989 ± 0.006 [51]. Concerning the

non-Gaussianity, the agreement between the experimental data

and the model is satisfactory, and we can observe, as expected,

a decrease as the input intensity |α| increases. As shown,

the effect of the single-photon addition is more relevant for

quantum states with a small number of photons and becomes

only a small perturbation for a higher average photon number.

In the lower panel of Fig. 5 we observe the behavior of

ν[̺] as a function of the amplitude α. The experimental

results confirm that the two quantities, non-Gaussianity and

nonclassicality, have a similar behavior and that the non-

Gaussianity induced by this photon-addition operation is

essentially nonclassical. As a general remark, we notice that

the logarithmic term in the expression (1) amplifies the effect of

small discrepancies with the model we present. This qualifies

our measure as a very sensitive one in those contexts where

a good estimation of information resources is needed. In any

case, our model is able to capture the essential features of the

process, and provides us a tool to quantify how detrimental

the imperfections are for the generation of these non-Gaussian

resources.

IV. CONCLUSION

In summary, these experiments on single-photon-added

coherent states demonstrate the relevance of this proposed

measure of the non-Gaussianity. This measure appears as

a reliable and sensitive way to quantify experimental im-

perfections of de-Gaussification experiments. It furthermore

allows a link between non-Gaussianity and nonclassicality to

be exhibited in such experiments. More generally, it would be

useful to have a quantity available able to capture both features,

non-Gaussianity together with nonclassicality, for any generic

quantum states. Work along these lines is in progress and

results will be developed elsewhere.
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