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Cell-to-cell variability of gene expression in clonal populations

of mammalian cells is ubiquitous. However, because molecular

biologists habitually assume uniformity of the cell populations

that serve as starting material for experimental analysis,

attention to such non-genetic heterogeneity has been scant. As

awareness of, and interest in, understanding its biological

significance increases, this Primer attempts to clarify the

confusing terminologies used in an emerging field that often

conflates heterogeneity with noise, and provides a qualitative

introduction to the fundamental dynamic principles that

underlie heterogeneity. It thus aims to present a useful

conceptual framework to organize, analyze and communicate

observations made at the resolution of individual cells that

indicate that heterogeneity of cell populations plays a

biological role, such as in multipotency and cell fate decision.

Introduction
Hardly a phenomenon in metazoan biology is more ubiquitous, yet

as neglected, as the inevitable heterogeneity of cell phenotypes

within a population of cells of the same cell type. Nevertheless, the

implications of such cell population heterogeneity are far reaching,

and semantic questions are inevitable: if an apparently ‘clonal’

population of cells, which are, by definition, genetically identical, is

heterogeneous and exhibits enduring cell-to-cell variations with

distinct cell individuality, why then do we not talk about distinct cell

types, or subtypes, in the population? Stem cell researchers will

easily recognize the ontological (see Glossary, Box 1) problem

(Orkin and Zon, 2002): if a culture of stem cells, even if clonal, is

actually heterogeneous to start with, be it owing to impurities

introduced by unavoidable technical limitations (Enver et al., 2009)

or to intrinsic diversity, as discussed here, what then is the meaning

of plasticity and multipotency, as defined as the ability of cells to

generate a variety of cell types? Perhaps the process of generating

and/or acquiring heterogeneity eo ipso could lie at the core of

multipotency.

The problem of population heterogeneity is not purely academic.

Just consider the experiment illustrated in Fig. 1. A western blot

analysis of stem cell differentiation shows how c-Kit, a stem cell

marker in many tissues, is downregulated upon the induction of

differentiation (Fig. 1A) (H. Chang and S.H., unpublished).

However, flow cytometry analysis for surface expression of c-Kit on

individual cells, displayed as a histogram, reveals a different picture.

As cells downregulate c-Kit, their distribution does not simply shift

to the left of the histogram (to lower intensities of fluorescence

signal) as one might expect. Instead, the initial population

consistently splits into two subpopulations (‘peaks’). The majority

of cells do indeed downregulate c-Kit surface expression, but a small

subpopulation arises that contains cells with even higher c-Kit

surface expression than the original median. The ‘average’ c-Kit

expression (i.e. the normalized total) of the whole cell population,

as measured in lysed cells by western blotting, still decreases. This

splitting of the cell population reflects a heterogeneity of the

population in terms of the response to the differentiating signal and

is most aptly accounted for by what is termed ‘pitchfork bifurcation’.

This is a general phenomenon that arises in some gene-regulatory

circuits with feedback loops and forces cells to make a choice

between two alternative stable states as their current state is

destabilized (Huang et al., 2007).

This example illustrates how we have sidelined the notion of cell

individuality in the quest to determine regulatory pathways by

investigating which transcript or protein levels go up or down in

response to a manipulation. Such investigations rely mostly on

population-averaging lysate-based methods, such as immunoblots,

PCR or microarrays. In using these methods, we tacitly assume cell

populations to be uniform. However, heterogeneity in cell

populations is not a new concept. It has been widely described in

clonal populations of bacteria (Balaban et al., 2004; Novick and

Weiner, 1957; Spudich and Koshland, 1976) and has also been

referred to as ‘non-genetic individuality’. In the theory of

evolutionary dynamics, the role of ‘phenotype variation’ at the

organismal level that does not necessarily imply a genetic variation

is becoming increasingly appreciated (Kaneko, 2007).

Studies of gene expression or protein levels in mammalian

tissues using in situ hybridization or immunohistochemistry often

reveal dramatic cell-to-cell variability within one cell type in the

same tissue. Heterogeneity was more recently shown in single-

cell analysis using fluorescently labeled probes for hybridization

(Levsky et al., 2002) or visual gene-expression reporters (Sigal et

al., 2006; Takasuka et al., 1998), as well as in single-cell PCR

(Hayashi et al., 2008; Warren et al., 2006; Diercks et al., 2009).

Apart from a few exceptions (Aird, 2004; Grundel and Rubin,

1988; Rubin, 1992), the biological significance of non-genetic

cell population heterogeneity in mammals has not been explicitly

articulated until recently, when it has been described in the

context of stem cells and fate decision (Stockholm et al., 2007;

Chambers et al., 2007; Chang et al., 2008; Dietrich and Hiiragi,

2007; Kalmar et al., 2009; Singh et al., 2007; Spencer et al., 2009;

Kobayashi et al., 2009).

To facilitate the discourse on heterogeneity, we need clarity of

terminology and a good grasp of the underlying physics. This Primer

aims to provide an introduction to the phenomenon of heterogeneity

through an exposition at three levels: first, terminology; second, how

heterogeneity is measured experimentally; and third, the dynamics

of heterogeneity (including its source). The goal is to equip

experimental biologists with a solid set of vocabulary and with a

conceptual framework for organizing observations, rather than with

a comprehensive review of the literature. For in-depth discussions

of the biological significance of non-genetic heterogeneity in cell

fate control and for an alternative perspective from the related field
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of ‘gene expression noise’, we refer the reader to several excellent

recent reviews (see Enver et al., 2009; Graf and Stadtfeld, 2008;

Losick and Desplan, 2008; Raj and van Oudenaarden, 2008).

Terminology
Heterogeneity is a property of a cell population, not of individual cells.

Heterogeneity of a population implies the presence of cell-to-cell

variability with respect to one (or more than one) measurable trait X,

where X can be the cellular level of a given molecule, such as a

protein, or any quantifiable morphological or functional parameter. A

closer analysis of the term ‘heterogeneity’ reveals many facets and

forms that are rarely explicitly articulated. Thus, an attempt at creating

a taxonomy and at defining terms and naming newly described

phenomena represents a linguistic problem that reaches into the field

of onomasiology (see Glossary, Box 1). We propose the following

scheme (shown in Fig. 2) that operationally organizes heterogeneity

into a hierarchy of dichotomies (see Glossary, Box 1).

Genetic versus non-genetic heterogeneity
Heterogeneity of cell populations is only non-trivial if one considers

heterogeneity within a clonal, that is, genetically identical population

of cells, for all too often in biology, any variation in phenotype is

explained by a genetic variation. Such ‘genetic determinism’, which

has dominated thinking in biology for decades (Strohman, 1997),

leaves little room for non-genetic variations (Jablonka, 1994;

Lewontin, 2000; Morange, 2001; Strohman, 1994). Genetic

variability as a source of heterogeneity in cells is a straightforward,

but nonetheless relevant, concept; in cancer biology, for instance,

heterogeneity among tumor cells is commonly explained by genetic

mutations. This genetic heterogeneity (see Glossary, Box 1), in turn,

is thought to be promoted by genomic instability in cancer cells

(Lengauer et al., 1998; Loeb, 2001; Tomlinson et al., 2002). In other

words, the heterogeneity with respect to trait X is genetic in that the

difference in X between individual cells is due to the presence of

distinct genes that control trait X in these cells.

Conversely, non-genetic heterogeneity (see Glossary, Box 1) in

clonal cell populations defies genetic determinism and raises a

simple question, the answer to which we might take for granted: how

can the same set of genes generate vastly distinct, stable, and often

inherited gene expression profiles and, thereby, distinct phenotypes?

This question is at the core of multipotency, as discussed below.

To avoid ambiguities in further discussion, two key terms need

further clarification. First, the general term ‘non-genetic’ is to be

distinguished from the more specific term ‘epigenetic’, which is

PRIMER Development 136 (23)

Box 1. Glossary
Attractor state. A stationary and stable network state into which a set of particular network states will eventually evolve (‘be attracted to’). This
happens because the interactions between the network elements impose constraints so that the majority of theoretically possible network states
is unstable and will move towards an attractor state.
Clone, or a clonal group of cells. A group of cells that contains only cells that share a common ancestry and hence are assumed to be genetically
identical. According to this definition, however, entire organisms, being derived from a zygote, would be clones. Thus, in the context of phenotypic
variability, ‘clonal’, which is often equated with ‘genetically identical’, must be more narrowly defined (see text).
Dichotomy. The partitioning of a whole entity X (a set, concept, or phenomenon) into two, and only two, subsets A and B, that are mutually
exclusive and together cover all possible elements belonging to X.
Ergodicity. A property of a system or process that satisfies the ergodic hypothesis in statistical physics, according to which the average over time
of a (fluctuating) quantity of the system is the same as the average at a given time over a large sample of replicates of that system ( ensemble).
Extrinsic heterogeneity. Cell-to-cell variability (typically at the level of micro-heterogeneity) in a population caused by non-uniform environmental
factors that differentially affect individual cells.
Genetic heterogeneity. A property of a population (e.g. of cells) in which the genomes of the individual members (cells) are not identical for all
members and which hence contains a mixture of distinct genomes. Frequently considered in tumor biology, where the genome sequence
differences between the tumor cells could explain trait differences due to somatic mutations.
Intrinsic heterogeneity. Cell-to-cell variability (typically at the level of micro-heterogeneity) in the absence of inhomogeneities in the
microenvironment. Most commonly explained by ‘gene expression noise’ (temporal noise), but applies also to population noise (see Fig. 3).
Macro-heterogeneity. Heterogeneity of a cell population due to the presence of a variety of discretely distinct cell types or of cells in obviously
distinct states, such as progenitor versus differentiated cells. Macro-heterogeneity is manifest as a multi-modal distribution of a trait X in a histogram
of the population (see Figs 2, 4).
Micro-heterogeneity. Heterogeneity within an apparently uniform cell population that is thought to consist of identical cells. Micro-heterogeneity
is manifest as the variance (spread) of a single bell-shaped distribution (see Figs 2, 4).
Network state at a given time point. The state of a system (network) of interacting elements (genes) that is jointly defined by all values of
activities of the elements (e.g. gene expression levels) at a given time. The network state of a gene regulatory network is thus reflected in the gene
expression profile.
Non-genetic (or phenotypic) heterogeneity. A property of a population (e.g. of cells) that refers to the phenotypic variability between its
members, which share the same genome. Hence, the trait differences are not due to genetic differences between the cells.
Onomasiology. A branch of semantics that deals with the question of what term to use to describe a (novel) concept or phenomenon, in contrast
to semasiology, which deals with how to define a term that is already in use. If onomasiology is about naming, semasiology is about meaning
(Baldinger, 1980).
Ontology. A domain of philosophy concerned with fundamental questions regarding the nature of being, such as the relationship between the
very existence (‘to be’) of entities and their essence (‘to be such’). In the context of stem cell biology, ontological questions include: do stem cells
exist as independent entities, and if so, what are their defining (essential) properties? Is ‘stemness’ an identity or just a state of a cell, or even a
property of a group of cells? In informatics, ontology refers to the specification of a shared conceptualization, as in ‘gene ontology’.
Population noise. The variability between individuals in a nominally uniform population due to distinct stationary traits that differ between the
individual members (see Fig. 3C).
Quasi-potential landscape. A conceptual construct, inspired by classical mechanics and the idea of potential energy, to help visualize forces that
change the state of a system within the ‘state space’ (i.e. the abstract space of all theoretically possible system states). It uses the intuition that
some form of ‘gravity’ pulls that system towards the lower points in the landscape (see Box 2).
Temporal noise. The change of a measurable quantity over time in a disordered pattern due to random fluctuations (Fig. 3A).
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used by physicists (Aurell and Sneppen, 2002; Walczak et al., 2005),

organismal biologists and systems biologists (Huang, 2009;

Jablonka and Lamb, 2002; Waddington, 1942) in a fashion that is

different from the way molecular biologists use it.

In the former usage, increasingly encountered in systems biology,

‘epigenetic’ (as in ‘epigenetic landscape’) is employed, as originally

coined by Conrad Waddington (Waddington, 1957), to refer to a

multiplicity of stable gene expression states in systems that exhibit

‘multi-stability’, as explained below (see Box 1).

By contrast, molecular biologists use ‘epigenetic’ (as in

‘epigenetic mark’) to refer to DNA methylation and histone

modifications (Goldberg et al., 2007; Kouzarides, 2007), which

serve as a proximate explanation for relatively stable gene

expression states. An ‘epigenetic mark’ is the conceptual cousin of

a ‘genetic mutation’, both of which are used to explain lasting

phenotypic changes by invoking a molecular event. However,

epigenetic marks in the genome do not actually account for the

existence of stable, inherited states, such as cell types, that originally

inspired the term ‘epigenetic’, because covalent modifications are

actually dynamic, reversible and lack locus specificity. Therefore,

they are not, strictly speaking, explanatory, but represent a molecular

mechanism for implementing stable gene expression patterns that

first have to be orchestrated by the transcriptional network. It is this

gene regulatory network that creates the ‘epigenetic landscape’ in

Waddington’s sense, as explained below (Bonifer et al., 2008;

Huang, 2009; Ptashne, 2007; Slack, 2002).

Second, for a discourse on non-genetic heterogeneity in clonal

(isogenic) populations (see Glossary, Box 1), a strict definition of

what is a ‘clone’ is required. The term ‘clonal’ does not only mean

‘genetically identical’; if it were so, every developed multicellular

organism being derived from a zygote would, in a trivial sense, be a

clone. Yet, no one would call a mixture of (isogenic) bone marrow

cells that include stem cells, white and red blood cell precursors and

so forth, ‘clonal’. Thus, a stricter, non-trivial definition of clonality

is that the cells of a clonal population (see Glossary, Box 1) are (1)

recently derived from a single ancestor cell (‘colony’), (2) within the

same uniform and constant micro-environment, and (3) have

achieved, as a population, a certain stationarity.

Macro-heterogeneity versus micro-heterogeneity
In the trivial view of an entire organism as a clone, one could regard

phenotypic differences between nominal cell types (e.g. liver cell

versus neuron) as a sort of non-genetic heterogeneity. As the definition

of what constitutes a cell type versus a subtype or a phenotypic variant

is not at all clear, we propose the term macro-heterogeneity (see

Glossary, Box 1) to describe evident variability between discrete

(sub)populations, which can represent either cell types, subtypes, or

just ‘variants’ with respect to a trait X. By contrast, we refer to the

heterogeneity between cells within a nominally identical cell type in

an apparently uniform population as micro-heterogeneity (see

Glossary, Box 1). Crucially, despite the fuzziness that surrounds the

definition of a ‘cell type’, a clear-cut delineation can be made based

on the statistical distribution of a trait X observed in a population, such

as in flow cytometry. Here, macro-heterogeneity is manifest as the

presence of multiple discrete, but possibly overlapping, ‘peaks’ (i.e. a

multi-modal distribution). By contrast, micro-heterogeneity is

reflected in the spread (breadth) of one peak (see Fig. 2, inset). Multi-

modality indicates multi-stability, i.e. the presence of multiple distinct

attractor states, as discussed below.

Extrinsic versus intrinsic heterogeneity
Phenotype variation among cells of a single clonal population can be

caused by extrinsic factors that do not act uniformly on the population

and thus trigger a cellular response in only a fraction of the population.

This is referred to as extrinsic heterogeneity (see Glossary, Box 1) and

arises, for example, when a clonal population grows in a complex
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Fig. 1. Population-averaging versus individual-cell-based
measurements of protein levels. (A)Examples of information
masked when population-averaging methods, such as western blotting,
are used to measure changes in protein levels. Hematopoietic
progenitor cells were treated with erythropoietin (EPO) to induce
erythroid differentiation, and c-Kit levels were monitored over time.
(a)Western blotting shows a decrease in overall c-Kit levels. (b)Flow
cytometry reveals the temporal progression of the population
distribution of c-Kit surface expression. (c)A bifurcation diagram could
explain the separation of the population into c-Kit-low and c-Kit-high
subpopulations (solid lines), even though the overall levels decrease
(dotted line). (B)Flow cytometry analysis at the individual cell level
distinguishes between (a) a continuous increase in protein in each cell
and (b) the non-synchronous near all-or-none (ON-OFF) switching of
protein expression. Both give rise to the apparently gradual increase in
the band intensity in the western blot shown. The gradual increase in
band intensity in b arises from the statistical, non-synchronous
switching on of expression, reflecting the fraction of cells in the
population that are in the ON-state, as contained in the lysate used for
the western blot. In reality, even a formal all-or-none response has a
finite switch time, but the change in expression levels is still very steep,
and true intermediate levels that are not due to mixing of
asynchronously switching cells would be seen only at the single-cell
level in dense-interval monitoring, observation at the population level
being obscured by asynchrony.
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environment, such as tissue niches, where cells differ in their vicinity

to blood vessels, other cells or structures, or when cells in culture differ

with respect to their distance from neighboring cells and to the dish

border, or with respect to oxygen gradients and so forth. The

heterogeneity of the cell population would then simply mirror the

heterogeneity of the environment. Such heterogeneity due to

differential instruction from outside plays a key role in development.

Notably, the very first diversifications of cell lineages in the early

embryo, such as the lineage split into the trophectoderm and inner cell

mass, appear to benefit from the physical asymmetries of the embryo

(inside versus outside cells, polarity) (Zernicka-Goetz et al., 2009).

Similarly, positional information, such as that provided by morphogen

gradients, further drives (extrinsic) heterogeneity in later cell fate

waves of diversification (Oates et al., 2009).

Intrinsic heterogeneity (see Glossary, Box 1), by contrast, cannot

be explained in an obvious, straightforward way by an external

cause. Instead, it denotes the spontaneous diversification of a clonal

population into continuous or discretely distinct variants. Intrinsic

diversification has a profound meaning in complex systems

sciences, for it is essential for the spontaneous generation of

complex patterns – the paradigm of an emergent property that is

characteristic of a living system (Goodwin, 1993; Kauffman, 1993).

Intrinsic diversification of an initially unbiased, symmetric state

requires two processes: first, a symmetry-breaking event (as

exemplified by the bifurcation in Fig. 1A) that creates discrete,

alternative options; and second, a stochastic process (such as gene

expression noise, as discussed below) that drives the choice of these

options. In complexity theory, such intrinsic diversification has been

linked to instabilities and irreversibility in non-equilibrium systems

(Nicolis and Prigogine, 1989; Prigogine, 1997).

Measuring heterogeneity
The introductory example (Fig. 1A) alerts us to the fact that

population-averaging techniques that involve lysing entire

populations of cells of a culture or tissue specimen mask substantial

information on population distribution. However, even among

single-cell analysis techniques, there is a broad spectrum of methods

that differ fundamentally in the information they provide on the

nature of heterogeneity. Rather than giving an overview of methods,

we discuss three approaches that illustrate key distinctive principles

and span a range of techniques.

Flow cytometry
Flow cytometry is, strictly speaking, not a single-cell analysis

technique, but measures the property X of a cell, typically the

cellular abundance of a specific protein, in an entire population at

the resolution of individual cells. It offers the most lucid illustration

of population heterogeneity. The histogram displays a roughly bell-

shaped frequency distribution [most typically, a log-normal

distribution for the frequency of X in the population, so that a

Gaussian-like curve appears in the log-scale presentation (Kaneko,

2006; Mantzaris, 2006)]. The spread of cellular levels of a single

protein in a clonal cell population typically covers a range of 10- to

1000-fold, substantially more than measurement error, which, as

determined using standardized fluorescence beads, accounts for a

less than 10-fold range of variability (Chang et al., 2008). Unlike

single-cell analysis techniques, flow cytometry provides the

statistical distribution of a trait X in a population – a layer of

information that is crucial for studying gene expression noise and

population dynamics, but is often ignored by biologists. Specifically,

analyzing the distribution of X helps to detect the presence of

multiple quasi-discrete subpopulations, as opposed to a continuous

(smooth) distribution (Figs 1, 2) (Chang et al., 2006; Huang et al.,

2009; Krutzik et al., 2004), and thus helps to distinguish between

macro- and micro-heterogeneity (Fig. 2).

Single-cell real-time digital imaging
Flow cytometry provides population snapshots and cannot monitor

temporal changes of a trait X within individual cells. At the other end

of the spectrum of methods, single-cell monitoring of property X in

real time using live video-microscopy tracks individual cells over

time (Fig. 3). This permits the longitudinal monitoring of X; for

example, the time course of the change in the cellular levels of a

fluorescent protein. Such measurements deliver kinetic information

on the temporal structure of the fluctuations of gene expression that

evades flow cytometry (Austin et al., 2006). They also help to

distinguish between ‘population noise’ and ‘temporal noise’, as

discussed below. However, single-cell imaging captures only a

handful to hundreds of cells at a time and hence barely produces

sufficient data on the population as a statistical ensemble. Of

biological interest is that single-cell monitoring allows the tracking

of cell fate history and the construction of entire cell-lineage

pedigrees (Kaufmann et al., 2007; Ravin et al., 2008; Schroeder,

2008).

FACS and the dynamics of population distribution
The sorting of cell populations using FACS (fluorescence-activated

cell sorting) allows for the physical isolation of any segment of the

total cell population with respect to the distribution of property X.

This can provide insight into the dynamics that underlie

heterogeneity at the population level and thus complements single-

cell monitoring. Two scenarios can be distinguished (Fig. 4A,B): the

sorting and reculturing of either a distinct subpopulation (Fig. 4A)

or of a population fraction (Fig. 4B). In both cases, flow cytometry

can be used subsequently to monitor how the sorted cells behave

over time, i.e. whether and at what rate they restore the original

distribution of X. This is most readily achieved when X is the
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Fig. 2. Cell population heterogeneity. A schematic representation of
terminologies and concepts used in the study of cell population
heterogeneity, organized into a hierarchy of dichotomies: genetic versus
non-genetic heterogeneity; extrinsic versus intrinsic non-genetic
heterogeneity; macro- versus micro-heterogeneity within intrinsic non-
genetic heterogeneity; and population versus temporal noise within
micro-heterogeneity (for details, see text and Box 1, Glossary). The inset
represents a flow cytometry histogram that reveals a bimodal
distribution, which reflects two distinct subpopulations.
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expression of a gene of interest and is reported by a fluorescent

protein (Kalmar et al., 2009; Kashiwagi et al., 2006), but it can also

be achieved through the direct immunolabeling of cells, provided

that the antibody is removed before the sorted cells are recultured

(Chang et al., 2008).

Sorting for a discrete subpopulation (Fig. 4A) and monitoring

whether it repopulates the other subpopulations readily establishes

whether a subpopulation is a separate, stable and irreversible cell

(sub)type – the default assumption in cell biology – or is in a

dynamic, reversible state (Fig. 5, see next section) (Chang et al.,

2006; Kalmar et al., 2009). In the latter case, the bimodal macro-

heterogeneity most likely represents a dynamic equilibrium, with

cells transitioning back and forth between the two subpopulations.

By contrast, the utility of sorting out a fraction from a single-

peaked distribution (Fig. 4B) is particularly counterintuitive because

the dispersion is usually considered ‘noise’. However, recent studies

demonstrate that the tail fractions exhibit distinct transcriptome-

wide gene expression patterns of biological significance (Chang et

al., 2008; Kobayashi et al., 2009).

A limitation of the physical sorting of populations that should be

kept in mind is errors in sorting that can create ‘false-positive

heterogeneity’, which needs to be separated from intrinsic

population heterogeneity (Enver et al., 2009). Mis-sorted cells that

have an inappropriate property X can contaminate a subpopulation

and affect subsequent population behavior. This is particularly

relevant if the sorted property X correlates with the rate of cell

proliferation, such that a contaminating cell might proliferate much

faster and ‘take over’ the sorted subpopulation with its progeny

[discussed by Chang et al. (Chang et al., 2008)].

Source and dynamics of heterogeneity
Among the various facets and forms of heterogeneity, non-

genetic, intrinsic micro-heterogeneity emerges as the most

intriguing in biological terms because there is no straightforward

explanation of its source and because its biological implications

are only beginning to be explicitly studied. This form of

heterogeneity is the focus of the next sections.

Temporal versus population noise
Given the recent explosion in the study of ‘gene expression noise’

(Kaern et al., 2005; Raj and van Oudenaarden, 2008) we need, for a

more rigorous discussion of the source of heterogeneity, to introduce

another apparent dichotomy: temporal versus population noise (Fig.

3).

Temporal noise (see Glossary, Box 1) refers to fluctuations in a

property X (e.g. the cellular content of a particular protein) in an

individual cell over time. This is what is commonly referred to by

the term ‘gene expression noise’ (Kaern et al., 2005; Raj and van

Oudenaarden, 2008). Because cellular fluctuations of X are

generally not synchronized between cells, they collectively give rise

to a heterogeneous population at any time point.
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Fig. 3. Trait heterogeneity in cell populations and at the
individual cell level. (A-C)Two approaches can in principle be applied
to the analysis at the individual cell level of a cell population
heterogeneous with respect to a trait X (e.g. the cellular abundance of
a particular protein, as represented by shades of yellow): population
distribution versus single-cell real-time tracking. Note that the ensemble
snapshot provided by flow cytometry does not distinguish between the
possible scenarios in individual cells. (A)Fast stochastic fluctuations
attributable to gene expression noise. (B)Asynchronous, possibly
deterministic, oscillations. (C)Fixed cell individuality. The two extremes
of this spectrum represent (A) temporal noise and (B) population noise.
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Fig. 4. Analyzing the dynamics underpinning non-genetic
heterogeneity. (A,B)Schematic representation of fluorescence-
activated cell sorting (FACS), based on simulations. The sorting and
reculturing of a subpopulation in the case of (A) macro-heterogeneity,
or of a tail fraction (‘outliers’) in the case of (B) micro-heterogeneity, can
provide information on the nature of the processes that generate
heterogeneity among clonal cells. (A)The presence of multiple separate
peaks (representing subpopulations) with respect to a single trait X
does not imply the presence of inconvertible, irreversibly committed cell
types. Often, transitions occur. (B)Typically, outliers in mammalian cell
populations slowly (within time frames of up to several days)
repopulate the naïve distribution, which indicates the presence of an
attractor state in a rugged epigenetic landscape (see Fig. 5). The rate at
which a subpopulation repopulates the entire distribution (including
subpopulations) provides information about the transition rate between
distinct subpopulations.
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The study of gene expression noise has been facilitated by the

availability of fluorescent protein reporters that enable the monitoring

of gene expression in individual living cells. Briefly, the temporal

‘noisy’ fluctuations in gene expression (Fig. 3A) are thought to stem

from the random (i.e. stochastic), synthesis and breakdown of

individual molecules, such as mRNA and proteins. They are

ultimately a manifestation of the thermal nature of chemical reactions,

which constitute probabilistic molecular events. As these

biomolecules are present at relatively small copy numbers in the cell,

their stochastic fluctuations are, unlike in classical test-tube chemistry,

not averaged out. This is known as the ‘finite number effect’ (Kaern

et al., 2005). Temporal noise is accentuated when the assembly and

dissociation of transcriptional complexes follow slow kinetics and

when the subsequent uneven transcript production is amplified by a

high translation rate (Kaern et al., 2005; Kaufmann and van

Oudenaarden, 2007). Most studies of gene expression rely on bacteria

and yeast as model systems, and on the use of flow cytometry to

measure the population distribution of the abundance of a trait X

(generally, a fluorescent protein) in individual cells as a snapshot. The

(normalized) standard deviation of the observed, typically bell-shaped

histogram of X is then taken as a measure of temporal noise.

However, as mentioned above, a population of cells can, in

principle, also exhibit a broad distribution of a trait X even if X does

not fluctuate in time (Fig. 3A), i.e. if X is a time-invariant, stable trait

of an individual cell (Fig. 3C). Such cell-to-cell variation is referred

to here as population noise (see Glossary, Box 1) and is due to stable

differences between individual members of a population, much in

the same way as the measurement of shoe size in the adult human

population will give rise to a bell-shaped histogram. In the context

of the heterogeneity discussed here, however, the absence of genetic

differences must be kept in mind.

Temporal and population noise are scenarios at opposing ends

of a spectrum and are introduced here as general principles to

allow one to place the real case somewhere within the spectrum

that is flanked by these two extremes (Fig. 3). Importantly, this

general framework does not exclude heterogeneity due to

fluctuations at intermediate time scales. These can stem from a

variety of complicated, possibly deterministic (i.e. not noise-

generated), but regulated changes in the abundance of a molecule.

An example of this would be gene circuit-generated oscillations

of X in individual cells (Hirata et al., 2002; Lahav et al., 2004;

Kobayashi et al., 2009) that, if randomly out of phase between the

cells, would produce the cell-to-cell variability seen in snapshot

population measurements (Fig. 3B). Clearly, in reality, the ‘net’

fluctuation will result from the combination of several sources of

fluctuations that occur at various time scales, as at least the

stochastic component is inevitable.

Relationship between temporal and population noise
It is not possible to tell from a single population distribution snapshot

(histogram) whether heterogeneity is mainly due to temporal or to

population noise. However, the broad distribution is often taken by

default as reflecting solely temporal fluctuations in individual cells.

This inference makes the implicit assumption of ergodicity (see

Glossary, Box 1) (Patrascioiu, 1987). The ergodic hypothesis states

that one can determine the time average of the fluctuating X (Fig. 3A)

of an individual cell by simply measuring N independent elements (i.e.

cells) of an ensemble (i.e. cell population) just once (a snapshot

histogram), instead of taking a number N repeated measurements of

the same cell, provided that the fluctuations of an individual cell are

so fast that the individual measurements at some typical time interval

of the same cell give uncorrelated results (lack of autocorrelation) –

the condition of ergodicity.

In brief, ergodicity implies that the time average equals the

ensemble average. Ergodicity breaks down if the fluctuations are so

slow that the length of time intervals needed to make the repeated

measurements (avoiding autocorrelation) for determining a

representative time average becomes impracticably long

(approximating the case depicted in Fig. 3C).

Temporal noise, but not population noise, can satisfy the ergodic

condition. Many of the early experimental studies on gene

expression noise have implicitly assumed ergodicity and did not

consider the time scale of fluctuations, which would entail the

careful analysis of fluctuations of individual cells in real time.
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Fig. 5. The epigenetic landscape and practical implications for
network dynamics. (A)A projected epigenetic landscape with two
attractors [low X (LX), high X (HX)] and their sub-attractors, which
contribute to heterogeneity (see Box 2). Each circle represents a
network state (i.e. a cellular phenotype) determined by the level of X as
indicated by the position on the horizontal axis (i.e. one state space
dimension, trait X, of the high-dimensional state space). The vertical
axis displays the ‘potential’ V (X), as explained in Boxes 1 and 2. The
height of the accumulation of circles reflects the density distribution as
a function of X. (B)Associated flow cytometry histograms of cell
population distributions with respect to X. Subpopulation sorting (see
Fig. 4) can reveal the reversibility and the transition rates between the
subpopulations.
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However, at least in mammalian cell populations, slow fluctuations

of X (see below) that can span up to several cell division cycles

appear to contribute substantially to population heterogeneity. This

component of fluctuations is too slow for considering the

distribution of flow cytometry histograms as a pure manifestation of

noisy (thermal) fluctuations.

Although this Primer is not about gene expression noise, it is worth

mentioning that in studies of gene expression noise the distinction

between intrinsic and extrinsic noise has been prevalent (Elowitz et

al., 2002; Volfson et al., 2006). Originally, these terms were defined

operationally in conjunction with the experimental set-up used to

distinguish between: (1) gene-intrinsic noise attributable to the

probabilistic nature of the reactions mentioned above; and (2) cell

environment-derived contributions (such as fluctuating upstream

influences common to two genes) to the noisy expression of a

particular protein. However, the semantics of the term ‘extrinsic noise’

have not been uniform and must be dealt with carefully, given that the

definition of the system considered (a chemical reaction, a cellular

process, a compartment or the entire cell) determines what is to be

regarded as ‘intrinsic’ or ‘extrinsic’. Furthermore, the time scale of

fluctuations, as discussed above, must also be considered. Thus,

extrinsic noise has also been interpreted as being due to stochastic

fluctuations that occur over a longer time scale than intrinsic noise and

has been modeled as fluctuations in the ‘control parameters’ of gene

circuit models (Lei, 2009). In this view, extrinsic noise might

correspond to slowly changing cell-individual traits (e.g. nucleus size,

ribosome content) and approaches population noise.

Finally, the drastic (but necessary) simplification used in

mathematical models of noise that shrink the processes of gene

expression from hundreds of chemical reactions that participate

in transcription, splicing and protein synthesis and maturation, to

the two-step ‘central dogma’ (transcription and translation),

further blurs the formal interpretation of noise measurements. As

such, consistency has thus far been achieved only for the basic

principles of gene expression noise, not for the details

(Kaufmann and van Oudenaarden, 2007; Paulsson, 2004). Real-

time measurements of trait fluctuations in multiple individual

cells in a population, as discussed above (see ‘Measuring

heterogeneity’), will be crucial to address these problems and to

determine the relative contributions of temporal versus

population noise.

Slow fluctuations in mammalian cells
Recent kinetic studies of mammalian cells suggest that the wide

dispersion of the expression level X of a given protein is due to

fluctuations of X that have a significant component that occurs over

several days, in addition to the fast temporal component caused by

gene expression noise. Thus, heterogeneity is perhaps more aptly

viewed as largely due to population noise when considering

functional studies of mammalian developmental processes that

typically extend over days to weeks. Nevertheless, brief bursts of

protein expression due to temporal (gene expression) noise may also

affect cell fate choice (Enver et al., 2009; Losick and Desplan, 2008;

Raj and van Oudenaarden, 2008).

Slow fluctuations have been demonstrated by the real-time

monitoring of protein expression in individual mammalian cells,

using genomically integrated fluorescent protein reporters (Sigal et

al., 2006), or by flow cytometry analysis of the time needed for

FACS-sorted ‘outlier’ cells with ‘extreme’ levels of X to relax back

and re-establish the native distribution of X (Fig. 4B) (Chang et al.,

2008). The finding that heterogeneity is associated with the lasting,

cell-specific expression of fate-determining proteins only in some,

but not all, cells in early embryos (‘salt-and-pepper’ appearance) and

the correlation of a cell’s gene expression profile with its prospective

fate (Graf and Stadtfeld, 2008; Hayashi et al., 2008; Kalmar et al.,

2009; Silva and Smith, 2008; Zernicka-Goetz et al., 2009) support

the view that heterogeneity is predominantly caused by slow

changes that are substantially influenced by deterministic (non-

stochastic) extrinsic factors. Thus, heterogeneity appears to have a

developmental role, rather than simply reflecting epiphenomenal

statistical blips due to temporal noise.

The epigenetic landscape
The source of these slow fluctuations is currently poorly understood

(see Table 1 for specific explanations that have been proposed). Here,

we summarize in qualitative terms a general conceptual framework

from the field of non-equilibrium systems dynamics (Nicolis, 1986;

Nicolis and Prigogine, 1989) that provides a different perspective for

understanding non-genetic heterogeneity (see Box 2).

The expression level of a protein X is determined by a vastly

complicated gene regulatory network (GRN) that encompasses

virtually the entire genome. Thus, heterogeneity is actually

multidimensional, not just with respect to a gene X as discussed

so far. The integrated high-dimensional dynamics of a network

can be formalized as a quasi-potential landscape (see Glossary,

Box 1) (Bar-Yam et al., 2009; Huang and Kauffman, 2009; Wang

et al., 2008), in which each point represents a network state (see

Glossary, Box 1). This is, by definition, a gene expression pattern

and approximately represents a cell phenotype (see Box 2 for an

introduction to network dynamics). Thus, a movement in this

landscape represents a change of the gene expression profile and,

hence, of the cell phenotype. Cellular development, then, is

represented by a flowing movement on the landscape, wherein the

cell’s state seeks the lower regions. This quasi-potential landscape

Table 1. Possible mechanisms for slow fluctuations in a trait X as a cause of intrinsic non-genetic heterogeneity

Mechanism Example reference(s)

Gene expression noise in trait X bounded by an attractor (Ornstein-Uhlenbeck process), but with
very weak mean-resetting force, further complicated by a rugged potential landscape and
high dimensionality of the system

Chang et al., 2008

Action-potential-like excitability, causing noise-induced wide excursions of X Kalmar et al., 2009

Deterministic oscillations in X with long periods, possibly due to ‘state cycles’ in genome-wide
dynamics (this causes heterogeneity when not synchronized between cells)

Hirata et al., 2002; Kauffman, 1969a;
Klevecz et al., 2004; Lahav et al.,
2004

Deterministic and stochastic oscillations of X due to non-cell-autonomous effects (cell-cell
communication), such as array-enhanced coherence resonance

Skupin et al., 2008

1002 ,okenaK dna awasuruF)rotcartta egnarts( scimanyd citoahc citsinimreteD

Random, unequal partitioning of transcript or protein X 7002 ,siraztnaMnoisivid llec gnirud 

Varying chromatin state at locus X between individual cells (not an independent cause in itself,
but might be part of any of the above mechanisms)

Hayashi et al., 2008; Zernicka-Goetz
et al., 2009
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is the formal equivalent of Waddington’s metaphoric ‘epigenetic

landscape’ (Waddington, 1957) and captures in an intuitive

manner the global behavior of complex GRNs. It is in this sense

that the term ‘epigenetic’ was proposed by Waddington

(Waddington, 1942) and is still used by physicists, as discussed

above. Importantly, the specific landscape topography carries key

information on the potential behaviors of a cell, as it is a direct

visualization of how the GRN dictates the manner in which a gene

expression pattern as a whole can change under the regulatory

constraints (Box 2).

In the epigenetic landscape, the lowest point in a ‘valley’ (i.e. a

‘potential well’ in terms of a generalized quasi-potential) represents

an attractor state (see Glossary, Box 1) of the network. An attractor

is a stationary self-stabilizing network state, the associated gene

expression pattern of which is interpreted as defining a cell type

(Huang et al., 2005; Kauffman, 1993). Cells (or, more precisely,

GRNs) tend towards the attractor states and stay there, resisting

minor perturbations. However, external regulatory signals and large

perturbations (e.g. strong gene expression noise) that alter the

expression of typically multiple genes can induce transitions of

network states across the ‘hills’ that separate the attractor states.

Such quasi-discontinuous state transitions appear as the all-or-none

cell-type switching in individual cells (Fig. 1B) (Huang and

Kauffman, 2009).

Distribution on the epigenetic landscape as a source of
heterogeneity
The precise topography of the landscape, which is mathematically

determined by the gene network architecture [for a more formal,

accessible discussion, see Huang and Kauffman (Huang and

Kauffman, 2009)], is not known in detail. Nevertheless, the general

concept of an epigenetic landscape could explain non-genetic

macro- and micro-heterogeneity, as well as temporal and population

noise, within one formal framework. Because of cell-cell variation,

a population of cells is represented not by a point, but by a ‘cloud’,

i.e. by an ensemble of points distributed across a certain region in

the landscape. With the incorporation of heterogeneous cell

populations and of instabilities (‘hills’) that repel and partition the

clouds, multicellular development can be thought of as the

movement of a cloud in the landscape along the valleys, seeking

their lowest points, akin to water flowing down the mountains and

collecting into lakes. Thus, multicellular development could be

formalized as the time-irreversible change of a complicated

distribution (Petrosky and Prigogine, 1993; Prigogine, 1997).

The landscape of a complex network [at least, near the order-

chaos regime boundary (Kauffman, 1993)] is generally ‘rugged’,

that is, contains multiple, possibly nested valleys (attractors with

‘sub-attractors’) rather than a single dominating valley surrounded

by smooth slopes. Thus, much as with real valleys, one can find a

PRIMER Development 136 (23)

Box 2. Basic concepts in network dynamics

We consider a two-gene circuit as a minimal gene regulatory network consisting of the mutually inhibiting genes A and B, as indicated by the
network architecture depicted below. The term ‘network dynamics’ denotes the concerted change in the expression of A and B, the expression
levels of which collectively define a network state SS(A, B), measurable as a gene expression pattern. The network state S is a point in the state
space, the two axes of which represent the expression levels of A and B, so that each point in the state space is a combinatorially possible network
state S(A, B). However, not all states S(A, B) are equally likely to exist because the network interactions constrain the way in which A and B change.
In this example, as gene A suppresses gene B (and vice versa), a network state S with high expression levels of both A and B would be unstable
and hence unlikely to exist. The network will settle down in a stable (likely) state instead, e.g. with A high and B low or vice versa. Such a stable
equilibrium state that complies with the network interactions is called an attractor. In the network depicted, there are two attractors. The
coexistence of multiple attractors in one network is referred to as ‘multi-stability’ [for a more formal description, see Huang et al. (Huang et al.,
2007) and Huang and Kauffman (Huang and Kauffman, 2009)].
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hierarchy of main valleys, sub-valleys and so forth, which would

explain the distinct scales of heterogeneity encoded by the network.

Macro-heterogeneity is then due to the simultaneous occupation by

the cloud of multiple major valleys (attractors), each of which

roughly corresponds to a distinct cell type (Huang et al., 2005;

Kauffman, 1969b). They are separated by major ‘hills’ that are high

enough to permit only rare noise-induced attractor transitions.

Conversely, micro-heterogeneity is due to the dispersion of cells

within a cell-type-specifying attractor into multiple sub-attractors

that are separated by low energy barriers. The slow kinetics of the

heterogeneity-producing fluctuations would be a manifestation of

noise-induced transitions between these sub-attractors, which occur

on a much slower time scale than thermal fluctuations between

continuous expression levels (Fig. 5). Recent kinetic measurements

of the non-exponential relaxation of outlier cells to the center of a

main attractor indicate the presence of distinct intermediate states

between the outlier and the ‘median’ states, which suggests the

presence of sub-attractors (Chang et al., 2008).

Interestingly, this picture is reminiscent of an established concept

employed to understand the folding of proteins, in which the

coexistence of multiple energetic substates allows for many

intermediate subconformations in addition to the main conformation

of a protein. The dynamics of transitions between these (higher-

energy) subconformations can be represented by a multi-well

‘washboard potential’ (akin to Fig. 5A) that traps rare outlier

subconformations away from the central equilibrium state, so that

molecules in the higher substates only slowly (possibly non-

exponentially) relax back to the native state (Frauenfelder et al.,

1991). The transient, but continual occupation of the substates

corresponds to the presence of outlier cells at equilibrium and

contributes to the spreading of the population histogram.

The general complex systems dynamics framework set out above

can accommodate modifications to include alternative sources of

slow dynamics and heterogeneity (see Table 1), such as strange

attractors due to chaotic dynamics (Furusawa and Kaneko, 2001) or

noise-induced action-potential-like excursions around an attractor

state (Kalmar et al., 2009).

Conclusions
The epigenetic landscape offers a new vista on the dynamics of non-

genetic heterogeneity and their biological consequences. In the case

of micro-heterogeneity, the extreme expression values of protein X

in outliers at the tail of a distribution could have biological

consequences if X is a fate-determining protein, as the relatively long

persistence of an outlier state is in the time scale (days) of gene

regulation. In other words, non-ergodicity means that outliers, not

just the mean, matter. Noise is more than just statistics that need to

be averaged out. In the case of macro-heterogeneity, it should be

kept in mind that two subpopulations (separate ‘peaks’ in the

histogram) are not necessarily inconvertible cell types, but might

transition into each other, depending on the relative height of the

potential barrier (hill) that separates them. This is contrary to many

biologists’ deeply rooted intuition that discretely distinct

subpopulations represent irreversibly committed cell types, and

instead provides a conceptual framework for cell type plasticity

(Graf, 2002; Joshi and Enver, 2002).

Evidence for the biological relevance of non-genetic diversity and

slow dynamics is accumulating. The associated spontaneous and

lasting phenotypic individuality of cells appears to play a central role

in driving the diversification of cell types in metazoans, and hence

could be a crucial phenomenon in multipotency.

However, the biological significance of non-genetic heterogeneity

extends beyond multipotency and development. It also might be

important for cell population survival by producing the phenotypic

diversity for non-genetic selection (‘mutationless evolution’),

notably in tumors responding to chemotherapy (Brock et al., 2009;

Cohen et al., 2008; Spencer et al., 2009). Almost no drug designed

to alter a cell phenotype (e.g. by inducing apoptosis or

differentiation) does so (at reasonable doses) in all of the cells of a

population, perhaps because of the vast intrinsic non-genetic

heterogeneity with regard to the responsiveness of the cells. This

drastically limits the efficacy of even modern target-selective drugs

or of reprogramming efforts (Brock et al., 2009; Huang, 2009).

Much as biologists have learned to appreciate random, inheritable

genetic variability as a source of species diversification in evolution,

they might need to embrace random non-genetic heterogeneity of

inheritable traits in cell populations as a source of cell type

diversification, instead of regarding it as a nuisance, in order to

understand the essence of multicellular life.
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