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This review takes into consideration the main mechanisms involved in cellular remodeling

following an ischemic injury, with special focus on the possible role played by

non-genomic estrogen effects. Sex differences have also been considered. In fact,

cardiac ischemic events induce damage to different cellular components of the heart,

such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The

ability of the cardiovascular system to counteract an ischemic insult is orchestrated

by these cell types and is carried out thanks to a number of complex molecular

pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These

pathways are probably responsible for differences observed between the two sexes.

Literature suggests that male and female hearts, and, more in general, cardiovascular

system cells, show significant differences in many parameters under both physiological

and pathological conditions. In particular, many experimental studies dealing with sex

differences in the cardiovascular system suggest a higher ability of females to respond to

environmental insults in comparison with males. For instance, as cells from females are

more effective in counteracting the ischemia/reperfusion injury if compared with males,

a role for estrogen in this sex disparity has been hypothesized. However, the possible

involvement of estrogen-dependent non-genomic effects on the cardiovascular system

is still under debate. Further experimental studies, including sex-specific studies, are

needed in order to shed further light on this matter.

Keywords: estrogen, non-nuclear estrogen receptors, cardiomyocytes, vascular cells, ischemia/reperfusion,

myocardial infarction, sex, gender

INTRODUCTION

Cardiovascular diseases (CVD), including acute myocardial infarction (MI), represent leading
causes of morbidity and mortality worldwide in both sexes. However, in past years, the risk of CVD
was underestimated in women due to the mistaken belief that women could somehow be protected
(1, 2). Although it was observed that women develop coronary artery disease about 10 years later
than men, they show a higher prevalence of cardiovascular risk factors at the same times of their
lifespan (3). Even currently CVD continue to be perceived as predominantly male pathologies,
leaving women vulnerable to CVD due to an inadequate prevention. However, even if women in
their reproductive age have a lower risk of cardiovascular events, their advantage decreases after
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menopause, so that CVD are the leading cause of death in
women older than 65 years (4). In fact, in Europe, CVD cause
a greater proportion of deaths among women than men (5, 6),
also representing a critical economic burden (7).

The mechanisms leading to MI are due to a blocked blood
flow resulting in various biochemical and metabolic alterations
within the myocardium, i.e., in its main cell components: the
cardiomyocytes (CMs). These cells undergo a series of well-
characterized alterations, including mitochondrial dysfunction
and, if prolonged, the death of cardiomyocytes (CMs). Obviously,
ischemic events also induce damage in vascular cells and
cardiac fibroblasts (CFs). The ability of cardiac tissue to
recover after these events is carried out through a complex
process of remodeling, orchestrated by CFs, inflammatory
cells and cardiomyocytes (8). A number of complex cellular
and molecular pathways, including antioxidant pathways and
hormones, have been demonstrated to be able to counteract the
damage. Imbalance or failure of these pathways leads to adverse
remodeling of the heart and poor prognosis. However, the precise
mechanisms of cardiomyocytes molecular injury after MI are still
to be elucidated in detail (9). Some of these determinants are of
interest of this work and are listed here below.

Following a MI, the left ventricle undergoes a remodeling
that involves the removal of the necrotic tissue that is replaced
by extracellular matrix proteins. The removal of necrotic tissue
is carried out by the immune cells that polarize and release
enzymes, such as matrix metalloproteinases (MMPs) and reactive
oxygen species (ROS) (10). It was observed that infiltrating
leukocytes release cytokines and growth factors such as pro-
inflammatory interleukin IL-1β and reparative transforming
growth factor β (11) that contribute to microenvironment
alteration. This inflammatory state has been shown to be
different in males and females either in animal models or
in humans. In particular, females have a more moderate
response to inflammatory stimuli; for example, in sepsis and
atherosclerosis they have lower pro-inflammatory leukocyte-
mediated inflammation and a faster resolution of inflammation
compared with males (12, 13). Although it is known that XX
cells have a more pronounced antioxidant capability (14–17),
this matter should be better investigated in post-ischemic MI-
associated damage.

It has been observed that early restoration of coronary
blood flow after MI plays an important role in minimizing
myocardial tissue injury through various types of therapy, such
as thrombolytic therapy, coronary artery bypass grafting or

Abbreviations: Ang II, angiotensin II; CF, cardiac fibroblasts; CMs,

cardiomyocytes; CVD, cardiovascular diseases; CSE, Cystathionine-γ-lyase;

DRP1, dynamin-related protein 1; EC, endothelial cells; eNOS, endothelial

nitric oxide synthase; ET-1, endothelin-1; E1, estrogen; E2, 17β-estradiol;

E3, estriol; ER, estrogen receptor; GPER, G protein-coupling estrogen

receptor; FIS1, fission protein 1; HF, heart failure; IL, interleukin; I/R,

ischemia/reperfusion; KO, knockout; LV, left ventricle; MI, myocardial infarction;

MMPs, matrix metalloproteinases; MISS, membrane-initiated steroid signal;

MPTP, mitochondria permeability transition pore; MFN, mitofusins; CSC,

multipotent cardiac stem cells; NF-κB, nuclear factor kappa B; NO, Nitric oxide;

OPA1, optic atrophy protein 1; PGC-1α, peroxisome proliferator-activated

receptor-γ co-activator 1-α; ROS, reactive oxygen species; VSMC, vascular smooth

muscle cells.

primary percutaneous intervention (18). However, reperfusion
may further contribute to newer myocardial damage defined as
myocardial ischemia/reperfusion (I/R) injury, in which oxidative
stress plays a critical role igniting ROS generation eventually
leading to necrotic, apoptotic or autophagic cell death (19).
Accordingly, current anti-apoptotic agents have generally been
reported to safeguard the heart from I/R injury (20–22).
However, increasing evidence also indicates that modulation of
autophagy, that can be considered as a cytoprotective mechanism
that leads to cell death only once all the energy supply derived by
intracellular materials are exhausted, is now considered as a novel
therapeutic strategy in myocardial I/R injury (23).

Although sex steroid hormones, particularly estrogens, appear
to be involved through genomic and non-genomic effects in
cell remodeling, molecular mechanisms remain still unknown
(24, 25). Females undergo more efficient cardiac remodeling after
ischemia/reperfusion injury most likely due to the cytoprotective
effects of estrogen via an unknown mechanism. The regulatory
effects of estrogen in cardiac sensitivity to I/R injury could
have in fact many potential therapeutic implications, e.g.,
influencing strategies in acute coronary syndrome management.
Tamargo and co-workers shed some light on this matter
discussing in detail the efficacy and safety of several drugs
of common use in cardiovascular diseases taking into account
both sexes (6).

ESTROGEN AND ESTROGEN RECEPTORS

Several estrogens, including estrone (E1), 17β-estradiol (E2), and
estriol (E3) are present in the adult bloodstream, where E2 is the
most represented and exerts many effects in both physiological
and pathological conditions including cancer (26). In addition
to its production in the ovaries of fertile women, E2 can be
produced in other tissues as a product of enzymatic conversion
of testosterone by aromatase (27). This enzyme is expressed in
different extragonadic tissues, such as fat, bone and brain (28).
Furthermore, increasing lines of evidence also demonstrate the
local production of aromatase by heart and blood vessels of both
sexes (29, 30).

E2 biological activities pass through its interaction with
the estrogen receptors ERα and ERβ. Moreover, several
polymorphisms that could be of relevance in CVD have
been reported for these receptors (31–33). Initially identified
into cytosol and nucleus, ERα and ERβ have more recently
been described also at the level of the different intracellular
compartments like endoplasmic reticulum, Golgi and
mitochondria, other than plasma membrane (34, 35). Indeed, the
different intracellular localization of these receptors impacts their
specific signaling cascades and their ability to control cell growth,
differentiation, survival or death (36–38). Besides ERα and β, an
additional E2 binding responsive receptor, named G-protein-
coupled estrogen receptor (GPER) has been identified (39).
GPER is a member of the family of 7-transmembrane G protein-
coupled receptors (GPCRs) and, besides plasma membrane, it
has been localized in various intracellular organelles where it
mediates several E2 effects (40).
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Signaling Pathways of Estrogen Receptors
in Brief
Estrogen receptors transmit hormonal signals through three
different pathways. The first one, known as “classic” or genomic,
regulates the expression of target genes by DNA binding at
specific response elements (EREs). Upon E2 binding, ERs
dissociate from the complex formed with some heat shock
proteins (like HSP70 and HSP90) in the cytosol, change their
conformation and migrate as homo- or hetero-dimers into the
nucleus (41).

The second signaling is controlled by an indirect ER
binding to DNA, mediated by different co-factors (like SP-
1, AP-1, and NF-κB) that exert their transcription regulation
by physical interaction with DNA (42). Finally, in the non
nuclear pathway, E2 induces very rapid cellular effects, acting
through receptors localized at the cell membrane, cytoplasm,
and mitochondria. Soon after binding E2, the membrane
receptors interact with the Gα and Gβγ proteins to stimulate
rapid signals (cAMP and cGMP) and trigger the activation of
several transduction pathways (43, 44). The activation of kinases
phosphorylates ER or other transcription factors resulting in
gene expression regulation (45). As far as GPER is concerned,
after E2 binding, it mediates a rapid membrane response
involving the activation of kinases, ion channels and second
messengers (46). In particular, in the endoplasmic reticulum,
GPER activation induces calcium release and PI3K-Akt pathway
activation, thus inducing cell proliferation (39, 40). Moreover,
although still debated, it seems now clear that GPER does
not physically associate with the mitochondria but, instead, its
ability to regulate intracellular calcium levels indirectly affects
mitochondrial function, including the so-called mitochondrial-
induced cell death (47). Earliest studies on GPER also suggest
how this receptor, although indirectly, regulates gene expression
via an importin-dependent mechanism (48, 49). A schematic
picture of possible estrogen action by genomic and plasma
membrane ER/GPER signaling pathways is reported in Figure 1.

Expression of Estrogen Receptors in the
Cardiac Tissue
First evidence of ERα and ERβ expression in the cardiac tissue
comes from a study performed in both female and male rat
cardiac myocytes and fibroblasts (50). Subsequently, both the
ERs were described in the human heart tissue (51) Later,
ERα was localized in the nucleus and in the sarcolemma and
intercalated discs of human cardiomyocytes (52). Additional data
obtained from female and male mice hearts showed that ERα

was mainly localized to the sarcolemma whereas ERβ to the
nucleus and cytosol of the ventricular and atrial cells (53). ERβ

was also described in human cardiac mitochondria (54). More
recently, isolated mouse cardiomyocytes showed the presence
of all the three ERα isoforms (ERα66, ERα46, and ERα36) in
the nucleus (55). However, conflicting evidence also exists as
concerns ERβ expression and localization in cardiomyocytes. Of
course, the use of antibodies of doubtful specificity (56) as well
as the wide variability of animal models and samples analyzed
(e.g., whole heart or isolated cardiomyocyte lysates) caused

the production of mutually contradictory data. For example,
the presence of ERβ in human cardiac mitochondria (54) is
still debated (57) and some reports have documented the total
absence of ERβ in isolated cardiomyocytes (55). More recently, in
a study exclusively conducted atmRNA level in rat cardiovascular
tissues, high expression levels of ERα were detected, followed
by GPER in terms of abundance, whereas ERβ appeared as
nearly undetectable (58). Finally, in line with these results, the
implication of ERβ in heart functional recovery after treatment
with specific agonists in different animal models of heart failure
also appears as still unclear (59–61).

As regards vascular smooth muscle cells (VSMCs), ERα was
found to localize to the nuclei and to the plasma membrane in
combination with caveolin-1, whereas ERβ was predominantly
nuclear (62, 63). Both estrogen receptors have been described also
in human adult aortic VSMCs (64). In these cells ERα and ERβ

appear as localized at the level of caveolae where a direct binding
to striatin is essential for their membrane localization (65).
Also GPER was detected in numerous cardiac compartments
of the human heart (66) and in coronary artery VSMCs (67).
During myocardial hypoxia due to infarction, GPER seems to be
upregulated in cardiomyocytes (68).

The question whether the beneficial actions offered by
estrogen are due to ERα or to ERβ stimulated a large number of in
vivo studies (69, 70). These studies were conducted in genetically
modified mice and the use of selective agonists or antagonists of
these receptors. However, which ER could play a major protective
role against I/R injury is still under debate. In fact, a role either
for ERα (71–74) or for ERβ (61, 75–77) has been hypothesized.
This discrepancy could be due to differentmodels of I/R and/or to
different doses and timing of treatments taken into consideration.

Estrogen Receptors: Genetically Modified
Mice
As mentioned above, experimental studies involving animal
models contributed to delineate the mechanisms involved in sex-
related differences in cardiac tolerance to ischemia. In particular,
most information derives from the study of genetically modified
animals (see Table 1). Unfortunately, several studies have been
performed almost exclusively on male animals, without taking
into account the differences in hormonal fluctuations between
sexes (127). In particular, studies based on different ERα gene
targeting in murine models have defined the role specifically
played by this receptor with particular reference to the different
functional domains that compose the protein. As a matter of
fact both estrogen receptors are composed by six functionally
distinct protein regions like a DNA binding domain (DBD),
a ligand-binding domain (LBD), a central region containing a
nuclear localization sequence (NLS) and two regions acting as
transcriptional activators (AF1 and AF-2), respectively located
at the carboxy- and amino-terminal ends (128). The protein
region responsible for the activity of E2 in the vascular system
and in the metabolic function was identified in the AF2 domain
(96), while the AF1 domain seems to be mainly involved in the
reproductive function (98). In the same way, it was demonstrated
that the localization at the plasma membrane of the receptor
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FIGURE 1 | Schematic picture of estrogen action by genomic and plasma membrane ER/GPER signaling pathways.

was closely dependent on its palmitoylation, which in turn
favors its association with caveolin-1 in the lipid rafts (99, 100).
Indeed, any mutation blocking one of these events effectively
abrogates the migration of the receptor to the cell membrane
and the stimulation of the membrane specific signaling pathway
(129). The importance of striatin in mediating ERs correct
localization at plasma membrane was also demonstrated since
disruption of ER-striatin interactions abrogated E2-mediated
protection against vascular injury (101). More recently, the
central role of estrogen-mediated plasma membrane signaling in
EC proliferation and migration was further demonstrated by the
generation of a mutant version of ERα (KRR ERα), specifically
defective in this rapid signaling pathway (103).

Furthermore, some mouse models have been created in order
to dissect the different pathways triggered by the nuclear and
the non-nuclear ER signaling. The MOER mouse model (98),
expressing only the membrane domain (LDB-AF2 domain),
showed a phenotype that was very similar to that of ERα−/−.
However, these mice were still able to regulate some metabolic
pathways in response to estrogen treatment (130). On the other
hand, in murine models expressing only ERα nuclear mutant
(e.g., NOER) the beneficial vascular effects of estrogen were
lost (99). More recently, further studies on a different ERα

knockout (KO) mouse model have allowed to better define
the role played by the nuclear (ERαC451A) and non-nuclear
(ERαAF2◦) estrogen signaling in arterial protection (97).

ERβ KO mouse models have also been proposed in order
to better define the metabolic and vascular activity of ERβ

receptors (81, 106). Although showing a less severe phenotype
compared with ERα KO, these mice were characterized by
abnormalities of heart morphology (109), increased severity of
heart failure (HF) after MI as well as less functional recovery
after I/R, especially in female mice (75, 110). However, other
studies failed to reveal a specific protective role of ERβ in
atherosclerosis (112) or in vascular injury (107). Since these
two murine models displayed alternative splicing transcripts,
additional KO models were also generated (113, 114). Indeed,
in these mice the expression of a portion of ERβ in the prostate
was observed, suggesting the presence of some still active minor
transcripts (114). However, despite being sterile, these KO mice
showed a correct development of the main organs and a normal
homeostasis of the different body systems. In particular, Antal
and coworkers reported the absence of heart abnormalities in
16-month-old male mice (113).

As regards GPER KO, four different mouse models were
generated. However, no evident phenotype changes in terms
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TABLE 1 | Roles played by estrogen receptors in cardiac function in response to hormonal stimuli: studies in genetically modified animals.

Mouse model Genetic feature Vascular phenotype and estrogen response

ERα-Neo-KO Insertion of neomycin resistance cassette into ESR1 exon 1

resulting in an ERα mutant form lacking the functional AF-1 (78).

Protection of carotid arterial from injury (79). Preserved

endothelial NO production (80). Heart functional recovery after

I/R in ERαKO female hearts similar to that in WT (75). More

severe cardiac damage following I/R injury in male mice (73).

Cardiac growth unresponsive to E2 treatment (74).

ERα −/− Insertion of neomycin resistance cassette into ESR1 exon 2

resulting in complete deletion of ERα (81).

Loss of re-endothelialization process (82). Inhibition of NO

production in aorta (83). No protection in vascular injury (84).

Reduced coronary capillary density associated to decreased

VEGF expression and signaling (85).

ER1KO Targeted mutation of ERα (71) Decreased heart functional recovery in female ER1KO in

comparison to female WT (71).

NERKI +/− or ERα−/A (KI) Mutated allele in DBD (E207A/G208A, or AA) introduced onto

the ERα−/− background (86, 87).

Not determined

ENERKI Mutation in LBD domain of ERα (G525L) (88). Not determined

KIKO Generated by crossing NERKI+/− with ERα +/− mouse model

(89).

Not determined

ERα(EAAE/EAAE) transgenic

(KI)

Mutation of four amino acid in the DNA recognition helix

(Y201E, K210A, K214A, R215E) (90, 91).

Not determined

H2NES ERα mutant Insertion of some point mutations in the NLS combined with a

nuclear export signal (NES) in the D-domain (92, 93).

Not determined

ERαAF-10 Deletion of AF1 domain (amino acids 2-148) (94). Preserved endothelial NO production and re-endothelialization

process and prevention of atheroma (94). Inhibition of

neointimal hyperplasia protection in VSMC ERα AF-1 (95).

RαAF-20 Deletion of AF2 domain (aa 543–549) (96). Preserved endothelial repair but failed atheroprotective action

(96). Unresponsive to estrogens for beneficial arteriolar effects

(97).

MOER Expression of the ERα E domain (LBD-AF2) containing multiple

palmitoylation sites in an ERα−/− background (98).

Not determined

NOER or C451A-ERα Mutation of palmitoylation site of ERα. Absence of eNOS phosphorylation, vasorelaxation, acceleration

of endothelial healing (99, 100). Fully responsive to prevent

atheroma and Ang II–induced hypertension (97).

DPM Overexpression of the Disrupting Peptide Mouse (DPM) (aa

176–253) to inhibit ERα interaction with striatin (101).

Inability to stimulate EC migration and to inhibit VSMC growth in

vitro. Loss of protection against vascular injury in vivo (101).

(KRRki/ki) Mutated ERα (KRR) introduced onto the ERα−/− background

under the control of the endogenous ERα promoter (102).

Not determined (102).

EC (KRR ERα) inability to proliferate and migrate (103).

csERα-OE Conditioned cardiomyocyte-specific overexpressing ERα

(csERα-OE).

Increased LV mass, LV volume and cardiomyocytes length in

both sexes. Attenuated fibrosis and increased angiogenesis

and lymphangiogenesis in female ERα-OE after MI (104).

csERα−/− Cardiomyocyte-specific ERαKO (csERα−/−). Sex-differences in multiple structural parameters of the heart,

with minimal functional differences. Identification of different

gene networks potentially involved in cardiac biology (105).

ERβKO Insertion of neomycin resistance cassette into exon 3 of ESR2

(81, 106). Expression of several transcript variants lacking

exon 3.

Conserved inhibition of VSMC proliferation and increase in

vascular medial area (106, 107). Vasoconstriction and VSMC

abnormalities (106, 108). Defects in heart morphology and

increased hypertension with aging (106, 109). More severe

heart failure with increased mortality after MI in female KO mice

(106, 110). Less heart functional recovery after I/R in ERβKO

female hearts compared to WT (75, 106). Loss of inhibition of

Ang II-induced hypertrophy (106, 111). Conserved accelerated

re-endothelialization in female mice (81, 82). Absence of

atherosclerosis protection (112).

ERβKO Deletion of exon 3 by Cre/LoxP-mediated excision (113, 114).

Residual deleted ERβ protein in the prostate tissue (114).

No abnormalities of heart morphology, morphometry, and

ultrastructure in 16-month-old males (113). No vascular

phenotype determined (114). No cardioprotective effects of E2

on LV hypertrophy (115).

csERβ-OE Conditioned cardiomyocyte-specific overexpressing ERβ

(csERβ-OE).

No differences in heart structure and function compared with

WT mice. Improved survival and cardiac function in both sexes

compared to the WT counterparts after MI. Attenuated cardiac

fibrosis in males csERβ-OE mice (116).

(Continued)
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TABLE 1 | Continued

Mouse model Genetic feature Vascular phenotype and estrogen response

GPER KO1-4 Deletion of GPER30 open reading frame to generate KO1 (117)

KO2 (118) and KO3 (119). Insertion of full-length lacZ transcript

insertion, retaining the C-term portion of the protein in KO4

(120).

Absence of beneficial effects on vascular tone and blood

pressure (117, 121). Increased atherosclerosis progression

(117, 122). Abrogated vasodilator response (117, 123).

Increased blood pressure and vascular resistance with aging

(118). Loss of cardioprotection against I/R injury in male mice

(118, 124). Impaired LV cardiac function in male KO mice

(119, 125). No evident blood pressure problems in younger

mice (120).

csGPER-KO Cardiomyocyte-specific GPER KO. Alterations of cardiac structure and functional impairment. LV

dimension more affected in male KO mice compared to female

ones. Differential gene expression profiles affecting multiple

transcriptional sex-related networks (126).

of viability or reproductive function were observed. Three of
them (117–119) did not express GPER, whereas the fourth
mouse model synthesized a lacZ reporter fused with the C-
terminal portion of GPER, leaving open the question whether
this truncated protein could play a functional role (120). Several
vascular problems, in terms of increased blood pressure and
atherosclerosis, were shown in the first two models of GPER
KO (117, 118, 121–124).

In order to avoid systemic influence on ERs protective
effects on the heart, different mouse models were generated
characterized by genetically modified cardiomyocytes. Therefore,
CMs overexpressing ERα (104) or with defective expression of
ERα (105) were established. They demonstrated an important
role of ERα in cardiac mass development in both sexes. In
particular, ERα gain of function showed a more efficient cardiac
repair in female mice in comparison with male mice after
ischemic injury (104). As concerns ERβ, mice overexpressing
this receptor in the cardiomyocytes (116) showed an improved
survival after a MI in both sexes, compared with the wild
type counterparts. In addition, a more recent mouse model
carrying cardiomyocyte-specific GPER-KO showed structural
and functional cardiac alterations in both sexes with LV
defect more pronounced in the male mice characterized by an
inadequate heart remodeling (126). As extensively discussed in a
very recent review (131), ER cardioprotective potential should be
investigated in more detail in order to more precisely define the
role played by each receptor in the heart integrity and function.

Estrogen Regulatory Role on the Heart
Cardiovascular repair and regeneration is reached by a series
of mechanisms that include, on one hand, the reduction of
inflammation and the formation of new vessels, on the other the
survival and protection of cardiomyocytes (CMs), the activation
of a cardiomyogenic process and a sort of cellular anti-aging
program, i.e., an antioxidant activity. In this regard, E2 exerts
many pleiotropic effects, some of which have a beneficial role
on vascular endothelial cells as well as on smooth muscle and
cardiac cells.

The role played by estrogens in cardioprotection against
I/R injury pass through nitric oxide (NO) production (132).
NO seems to play several potential beneficial roles in the

cardiovascular system. Estrogen increases NO bioavailability
in the vascular system through both the signaling pathways
(genomic and non-genomic). Through the non-genomic
signaling, E2 binding to ERα lead to endothelial nitric oxide
synthase (eNOS) phosphorylation and activation. Upon estrogen
binding, caveolae membrane-associated ERα activates Src family
tyrosine kinases, PI3K/AKT kinase, and ERK1,2 to stimulate
eNOS in NO production (133, 134). In line with these in vitro
studies, an increase of eNOS activity together with a decreased
number of leukocytes normally accumulating on the vascular
wall after I/R injury has been observed in mice treated with
estrogen. Accordingly, treatment with inhibitors of PI3K or
eNOS abolished estrogen vascular protective effect (135). It has
also been reported that, in human EC, calcium ions, of great
importance in the regulation of nitric oxide synthase activity,
increase rapidly at physiological estrogen concentrations (136).
This modulation of Ca2+ homeostasis is ERα-dependent as
demonstrated by using ERα KO cells (137). More recently, an
estrogen-dendrimer conjugate (EDC) was reported to selectively
activate extra-nuclear ER, in both EC and CMs. However,
it seems able to attenuate infarct size in mice lacking ERα

expression in CMs but not in mice lacking ERα expression in
EC (138). This suggests that a different mechanism may be
responsible for cardioprotection in CMs and EC.

As far as VSMC was concerned, it was observed that their
proliferation was strictly controlled by kinase-mediated signal
transduction. This kinase activity was in turn regulated by
a balance between phosphorylation and dephosphorylation
events. Indeed, the estrogen-mediated phosphatase activation
determines the inhibition of several kinases leading to cell
proliferation and migration block. In particular, VSMC
proliferation was inhibited by phosphatase 2A, whose activation
was mediated by interaction with ERα (139). More recently, in
a mouse model with the selective blockade of the membrane-
initiated ER signaling (KRRki/ki) the central action of PP2A in
metabolic homeostasis has been reported (102).

Non-genomic signaling pathways seem to have a key role
in mediating the regulatory action of estrogens in all the
cellular components of the cardiovascular system. As a matter
of fact, the blockade of the non-genomic signaling impaired
the transcriptional response of genes involved in the vascular
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function, indicating that the rapid estrogen signaling may
contribute to physiological vascular gene regulatory activity (101,
103). Nonetheless, a strong cross talk between the genomic and
non-genomic estrogen pathways has been hypothesized.

As concerns GPER, its vasodilatory effect was analyzed by
using GPER agonists in vitro (140) or in KO mouse models,
as discussed above (117, 118, 121). Furthermore, accumulating
literature indicates that GPER vasorelaxation in vivo could be
mediated by both endothelium-dependent and endothelium-
independent mechanisms. In the former case, as in the arteries’
relaxation, estrogen binds to GPER and leads to the production
of nitric oxide in coronary EC by eNOS activation (140).
In the endothelium-independent way, the E2-GPER effect on
smooth muscle cells relaxation is mediated by the stimulatory
activity of calcium- and voltage-activated potassium channels
(67). The observed antiproliferative effect of GPER on EC
(141) may provide an optimal balance for the opposite effects
exerted by ERs on these cells. For example, in rat aortic EC,
E2 elicits opposite effects depending on whether the signal
depends on ERα or GPER (142). In fact, as for VSMC, GPER
seems to act in concert with ERs in inhibiting proliferation
and stimulating the differentiation rate of these cells (121,
143, 144). A GPER-mediated paradoxical effect of estrogen in
vascular function (relaxation vs. contraction) was also described
in porcine coronary arteries, involving the signaling pathway that
passes through the transactivation of EGFR (145).

Several studies have shown that estrogen prevents cardiac
hypertrophy, in particular through ERβ signaling (146). Firstly,
it has been shown how ERs stimulate the production of the
myocyte-enriched calcineurin-interacting protein (MCIP1), an
inhibitor of calcineurin activity via PI3K. In this way, ERβ

signaling blocks the angiotensin II (Ang II)- or endothelin-1
(ET-1)- mediated stimulation of key hypertrophy and ventricular
remodeling genes in CMs (146). Thereafter, E2 inability to
prevent Ang II-induced hypertrophy and fibrosis in ERβ KO
mice was also demonstrated, underscoring the relevance of ERβ

in counteracting cardiac hypertrophy (111, 147). Accordingly,
the same authors demonstrated that E2 exerted regulatory
effects on the synthesis, localization and function of histone
deacetylase (HDA) class I (pro-hypertrophic) and class II (anti-
hypertrophic), important modulators of cardiac hypertrophy.
In this context, ERβ activation suppressed Ang II-induced
HDAC2 (class I) production and de-repressed the opposite
effects of Ang II on HDAC4 and HDAC5 (class II) (148).
The key role of ERβ on hypertrophy was confirmed in vivo
in hearts derived from ERβ KO mice (111, 147, 148). It is
well-known that Ang II stimulates cardiac hypertrophy, in
part by inhibiting KLF15 expression. In turn, E2 binding to
ERβ appears able to reverse Ang II action, allowing KLF15
transcriptional regulation activity on cardiac hypertrophic gene
expression (149). Furthermore, ERβ plays an anti-fibrotic role
influencing cardiac fibroblast homeostasis down-modulating
TGFβ expression and signaling, otherwise stimulated by Ang-
II (150). As regards cardiac fibroblasts, it has very recently
been hypothesized that E2, either via ERα or ERβ signaling,
could exert opposite effects on the synthesis and secretion of
key components of the extracellular matrix, i.e., collagen I

and III, by these cells (151). Regarding the debated question
dealing with the possibility that GPER could or not activate an
autonomous signal, it has been observed that estradiol treatment
of infarcted rats improved ventricular remodeling triggering both
GPER and ERα activity. Indeed, both receptors activate their
membrane-specific signaling that converged into the common
PI3K/AKT/eNOS pathway (152). As regards CMs, GPER was
suggested to activate signaling of PI3-kinase contributing to
cardioprotection in females (153). Interestingly, the PI3K
pathway seems to be strictly related to autophagic processes
involved in cardioprotection (154), and it has been very recently
reported that GPER could counteract CM hypertrophy by up-
regulating the PI3K-AKT-mTOR signaling pathway, therefore
modulating autophagy (155). A further mechanism of estrogen-
induced cardioprotection involving GPER was investigated using
its agonist (called G1) in a mouse model of I/R injury. Both
G1 and E2 exerted a cardioprotective activity by inhibiting
mitochondria permeability transition pore opening that normally
leads to apoptotic cell death of CMs after I/R injury (47, 156). A
further study demonstrated that post-ischemic GPER activation,
preserving mitochondrial structural integrity, decreased ROS
production and mitophagy, resulting in reduced myocardial
infarct size in both sexes (157). As discussed before, specific
GPER KO cardiomyocytes exhibited left ventricular dysfunction
and adverse remodeling more pronounced in male KOmice than
in female. Furthermore, DNA microarray analysis revealed gene
expression differences between sexes, with particular reference
to the mitochondrial and inflammatory pathways (126). Finally,
the pivotal role of GPER and the involvement of Notch1
pathway in mediating physiopathology of female rat hearts were
hypothesized (158).

The effects of E2 on myocyte regeneration have also been
investigated. Several studies focused on cardiomyogenesis have
established that the genesis of new cardiomyocytes from the
preexisting cardiomyocyte pool occurs at a low rate (159, 160).
The presence of multipotent cardiac stem cells (CSCs), normally
residing within the cardiac niche, has extensively been studied
(161, 162) as well as CSC induction to proliferate, migrate, and
undergo lineage commitment in response to infarction injury
(163). Accordingly, it has been demonstrated that CSCs isolated
from adult rodent hearts express stem cell surface markers (c-
Kit/Sca-1) and display several stem cell functions (161, 164, 165).
Indeed, c-Kit+ precursor cells, which accumulate in the infarcted
area, showed increased ERα expression, suggesting a direct effect
of E2 on cardiac progenitor cells in situ (166).

Estrogen-replacement therapy and acute myocardial
infarction were evaluated in a rat experimental model. It
has been observed that estrogen-replacement therapy increases
the homing of bone marrow stem cells into myocardium and
stimulate angiogenesis enhancing ERα and ERβ expression (167).
The possibility of ERα-mediated paracrine cardioprotective
function has been proposed as one of the major mechanism used
by post-infarct cardiac c-kit+ cells (i.e., inducing CM survival).
Accordingly, infusion of E2 treated-CSCs into the isolated mouse
hearts after acute I/R gave rises to a powerful protective effect
probably due to a major production of CSC-derived protective
factors (168).
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MITOCHONDRIA AS SUBCELLULAR
TARGETS OF ESTROGEN

Mitochondria drive different cellular processes by providing
chemical energy and they are particularly important in heart
muscle cells where mitochondrial dysfunction is associated with
important pathological changes leading to impaired cardiac
function (169). In fact, dysfunctional mitochondria would
ultimately lead to myocardial cell apoptosis and death during
I/R injuries.

On the other hand, autophagy, characterized by the formation
of autophagosomal vesicles containing degenerating cytoplasmic
contents, is considered primarily as a cytoprotective process.
Particularly, mitophagy, a selective form of autophagy, represents
a protective mechanism that contributes to eliminate damaged
mitochondria thus reducing mitochondria-mediated apoptosis
and necrosis in the myocardium (170). Accordingly, it has been
suggested that autophagy counteracts mitochondrial dysfunction
by autophagosome formation, possible embedding of damaged
mitochondria in autophagolysosomes and their digestion. This
allows the cells to remove injured mitochondria that often
represent a source of ROS. During I/R, mitochondria suffer
a deficiency to supply the CMs with chemical energy also
contributing to oxidative stress and to the cytosolic ionic
alterations, especially of Ca2+ (171). Interestingly, it has been
hypothesized that different types of cardiomyocyte calcium
channels could exhibit a marked sexual dimorphism and that
their function could be regulated by ERα, ERβ, and GPER, i.e.,
by non-nuclear estrogen receptor signals (131).

Sex plays a pivotal role in the cardiac tolerance to I/R
injury, and it has been reported that male myocardium is more
sensitive than the female one. Recent studies have suggested that
mitochondria are a major target of cardioprotective signaling
(31, 172). Furthermore, numerous studies have suggested that
in females mitochondria could be modified and less sensitive
to I/R injury. In addition, it was reported that mitochondria
from females undergo several posttranslational modifications of
enzymes involved in the redox metabolism generating less ROS
during the reoxygenation phase following ischemia (173–176).

In particular, Colom and co-authors (174) demonstrated a
significant sex difference in the function of cardiac mitochondria.
Female rats showed minor cardiac mitochondria content and
produced less H2O2 than male rats. On the other hand, male
myocytes, thanks to the higher density of β-adrenergic receptors,
are more responsive to β-adrenergic stimulation than females.
This induces an increase in the influx of Ca2+ in cardiac
cells. Male myocytes are thus particularly prone to calcium
overload (177). According with this, it was observed an improved
survival of CMs overexpressing ERβ isolated from mice of both
sexes, together with a significant reduction of the maladaptive
remodeling and the recovery of cardiac function after MI in
comparison with wild type CMs. These effects seem to be

associated to a better maintenance of Ca2+ homeostasis and to
less cardiac fibrosis following MI (116).

Mitochondria isolated from hearts of adult male and female
rats differ in the sensitivity of the permeability transition pore
(MPTP) to the calcium load. In particular, mitochondria isolated

from female animals appear more resistant to swelling induced
by high Ca2+ concentration. It can be hypothesized that the
higher ischemic tolerance of female myocardium may be related
to the lower sensitivity of MPTP to the calcium induced swelling.
Accordingly, it has been observed that a specific ERβ agonist
reduced mitochondria-mediated apoptosis and contribute to the
preservation of mitochondrial integrity after I/R injury (178).

Bcl2 protein, located at mitochondrial membranes, provides
protection against pro-apoptotic stimuli (179), and its expression
level is associated with improved recovery of cardiac function
after I/R, and reduced infarction area due to a reduced apoptotic
cell death (180). Moreover, Bcl2 prevents permeabilization of the
outer mitochondrial membrane (181) after I/R thus preventing
the release of cytochrome c from mitochondria and subsequent
apoptosis. To note, the expression of Bcl2 was found controlled
by ERβ (182). It was also reported that the cardioprotection
observed in female sex may be related to a greater protein
expression of the sarcolemmal and mitochondrial K(ATP)
channels. According with this, the blockade of K(ATP) channels
significantly increased the damage in the female heart after I/R
(183, 184).

Mitochondrial dynamics (i.e., fission/fusion processes) is
critical for a correct mitochondrial function, and alterations of
mitochondrial dynamics have been associated with neuropathies,
non-alcoholic fatty liver disease progression, type 2 diabetes,
and CVD (185–187). Very recently, an uncontrolled balance
of mitochondrial dynamics was shown to contribute to cardiac
dysfunction during I/R injury (188). Several proteins are involved
in mitochondrial dynamics: for instance, mitofusins (MFN) and
optic atrophy protein 1 (OPA1) participate to mitochondrial
fusion process, while mitochondrial fission is manly orchestrated
by dynamin-related protein 1 (DRP1) and fission protein 1
(FIS1) (185). Alterations in this mitochondrial dynamics produce
altered mitochondria in their shape and size: a prevalence
of fusogenic mechanisms favors the formation of a large
mitochondrial network; on the contrary, if fission mechanisms
prevail a mitochondrial fragmentation occurs (189). In different
in vivo and in vitro models of ischemia or I/R, it was observed
that the inhibition of DRP1 selectively blocks DRP1-dependent
mitophagy, which is triggered to eliminate mitochondria
damaged during the early phase of ischemia in the brain (190).
After the inhibition of DRP1, CMs were found to show a
significant decrease of oxygen consumption with a negligible
alteration of ATP production after I/R (191). Accordingly, in I/R-
induced alterations of CMs, mdivi-1, a chemical inhibitor of the
mitochondrial fission protein DRP1 that induces mitochondria
elongation (192), preserved the mitochondrial structure and
significantly reduced the myocardial infarction area (193, 194).
Current studies thus indicate that several chemical compounds
prevent the alterations of mitochondrial dynamics. However,
further toxicological and pharmacokinetic studies are needed
before their clinical use.

A very interesting role of sex hormones was reported in
mitochondrial biogenesis occurring in the right ventricle after
the heart failure associated with pulmonary hypertension. In
particular, Liu and co-workers, by studying ovariectomized
female rats, found that estrogen therapy counteracted the
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loss mitochondrial mass and maintain the cardiac oxidative
metabolism. They therefore hypothesized that estrogen could
prevent maladaptive remodeling of the right ventricle that
often lead to the severe dysfunction frequently associated with
pulmonary hypertension (195). Furthermore, it has also been
suggested that E2 induces mitochondriogenesis in H9c2 cultured
cardiomyocytes through the increase of PGC-1α expression. This
effect seems to be mediated by GPER, since specific agonists of
this receptor mimic the activity of estrogen (196). However, it
should be underlined that other authors (197), in a study in a
murine model of hemorrhagic trauma, reported that the effect
exerted by estrogen on mitochondrial biogenesis and function at
the cardiac level is mediated by both ERα and ERβ.

Although a direct or indirect influence of estrogens on
mitochondrial dynamics has not yet been observed in
cardiac models, it was found that I/R injury increased ROS
production, mitochondrial fission, and increased levels of DRP1
in cardiomyocytes (198). Moreover, in a DRP1 KOmouse model,
a cardiac-specific impairment of left ventricular functions has
also been observed. These mice died within 13 weeks through the
suppression of autophagic flux, thus underlining the pivotal role
of autophagy or mitophagy in CM homeostasis (e.g., maintaining
the ionic equilibrium) (199). A schematic picture suggesting
the possible sequence of events at mitochondrial level after I/R
injury in response to activation of the putative non-nuclear ER
pathway is reported in Figure 2.

ESTROGEN REGULATED miRNAs AND
THEIR EFFECT ON MYOCARDIUM AND
CARDIAC VASCULAR SYSTEM

Estrogens/estrogen receptor interaction regulates cardiovascular
function through either gene expression or epigenetic
mechanisms. This last mechanism of action is also dependent
on miRNA action (200). miRNAs are highly conserved short
non-coding RNAs (19-25 nucleotides) that control many
developmental and cellular processes in eukaryotic organisms
by post-transcriptional regulation of mRNAs by binding to
their 3’ untranslated regions, thus triggering their translational
inhibition with or without RNA degradation. miRNA expression
is strongly regulated at different levels, e.g., during development
and for tissue specific functions (201).

Of relevance is, in fact, the role of miRNAs in regulating
vascular cell aging, which in women after menopause appears
similar to that detected in men (202). This obviously supports
the knowledge of a regulatory role of estrogen in fertile woman.
Notably, this different regulation might also rely on sex-linked
miRNAs. Actually, about 120 miRNAs have been identified on
human X chromosome, whereas only 4 on the Y chromosome.
This appears as an intriguing result per se. In addition,
although random X-inactivation should equilibrate female and
male expression levels, a number of unbalancing mechanisms
have emerged so far. In fact, genes escaping X chromosome
inactivation could play a critical a role. Moreover, the number
of these genes increases with age and it has been suggested
that this could lead to an increased susceptibility of women

to inflammatory and autoimmune disease (203). In this field,
the interesting study of Florijn and co-workers remarked the
harmful effects of the X-linked miRNAs in cardiovascular disease
suggesting that the sex-biased miRNA network could play a key
role in heart failure with preserved ejection fraction observed in
women (202). This hypothesis is only partially in accord with
the suggested protective effects of estrogen regulated miRNAs
reported elsewhere. Furthermore, estrogens modulate miRNA
profiles also during their maturation pathway (204). Numerous
lines of evidence underline the importance of estrogen therapy
in postmenopausal women to restore the correct level of miRNA
expression among many other aging-related physio-pathological
aspects. Estrogen protective action on cardiac vascular system
has prevalently been associated with the ERα signaling that
is responsible of vasodilation, inhibition of inflammation and
regulation of the oxidative stress also blocking apoptosis. All
these processes play a role in preserving the correct function
of endothelial cells, modulating vasoconstriction and inhibiting
proliferation of VSMC. Specific miRNA signatures have been
associated with cardiac and vascular aging under estrogen control
(202). Some estrogen regulated miRNAs and their effect on
cardiac and vascular cells are reported in Table 2.

MI is consequent to a protracted ischemic injury of
vasculature and hypoxic conditions that are characterized
by continuous deficit of cardiomyocyte oxygenation and
inflammation in the infarcted area. This picture is amplified
by increased oxidative stress, i.e., ROS production, and
cardiac muscle cell death (222). In the attempt to reduce
tissue damage, the infarcted heart undergoes a cardiac self-
remodeling that frequently results in increased fibrosis, dilated
cardiomyopathy and heart failure (HF) (223). In this context,
miRNA roles have broadly been investigated using both cardiac
cell cultures and mouse models of cardiac infarction. It is
now clear that miRNAs are implicated in cardiac proper
functions as well as in pathogenesis of cardiac cell injury,
leading to HF. For instance, some miRNAs have directly
been associated with estrogen cardioprotective action against
oxidative stress. The cystathionine-γ-lyase (CSE), the enzyme
involved in cardioprotective H2S generation (224), is indirectly
regulated by miR-22 levels as miR-22 specifically down-regulates
the Sp1 transcription factor, involved in CSE transcription.
Indeed, 17β-estradiol treatment determines down-modulation
of this miRNA by ERα action, thus reconstituting Sp1 levels
both in cultured cardiomyocytes and in ovariectomized rat
hearts (225).

An independent risk factor for HF, and consequently for
cardiovascular morbidity and mortality, is cardiac hypertrophy,
either concentric or eccentric. The former consists of an increase
in ventricular wall thickness without chamber enlargement.
The latter promotes chamber dilation with no increase or
even decrease of left ventricular wall thickness (226). This
remodeling is characterized by age-specific relative changes in LV
mass, volumes, and chamber performance during diastolic and
systolic function. Differences of this remodeling between pre-
and post-menopausal women suggest a key role for estrogen.
Indeed, E2 deficiency in the heart of ovariectomized mice
increases the age-related ventricular concentric remodeling that,
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FIGURE 2 | Schematic picture suggesting the possible sequence of events at mitochondrial level after I/R injury in response to activation of the putative non-nuclear

ER pathway.

at sub-cellular level, is underlined by the functional impairment
of mitochondria.

The molecular mechanisms associated with this
ventricular dysfunction have also been correlated to miR-
23a levels. In absence of estrogens, miR-23a high level in
cardiomyocytes directly targets peroxisome proliferator-
activated receptor-γ co-activator 1-α (PGC-1α) down-regulating
its expression. This protein is a modulator of mitochondrial
function and its heart-specific deletion has recently been
associated to cardiac dilation with LV thinning (227).
However, as indicated by Sun and colleagues, the E2
deficiency might mediate a possible role of PGC-1α also
in concentric remodeling through the miR-23a dependent
reduction (228).

A rat model of myocardial ischemia showed that
mortality was increased when accompanied with estrogen
deprivation (due to ovariectomy). This elevated mortality
was associated with miR-151-5p down-regulation. This

miRNA binds to the 3
′

UTR of FXYD1, the gene codifying
for phospholemman protein (PLM, an important regulator
of ion transport and a substrate for protein kinases A

and C), inhibiting its expression. PLM is known to alter
cardiac membrane excitability. Thus, in the ovariectomized
myocardial ischemic group of animals, the absence of estrogen,
reducing miR-151-5p levels favored PML increase, with Ca2+

accumulation in cardiomyocytes eventually exacerbating cardiac
malfunction (229).

Finally, a recent miRNA specific microarray study on
cardiomyocytes treated or not with estrogen showed an
increased expression of a further miR: the miR-494. The
authors correlated the expression of this miRNA with
estrogen dependent cardioprotection and identified in the
nuclear factor kappa B (NF-κB) repressing factor (NKRF)
the specific target of this miR in cardiomyocytes. In brief,
miR-494 overexpression could mimic the estrogen specific
cardioprotection reducing the oxidative stress-induced
injury (230).

CONCLUSIONS

In this paper we summarized some molecular mechanisms that
lead to favorable or unfavorable evolution of remodeling of
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TABLE 2 | Some estrogen regulated miRNAs and their effect on myocardium and cardiac vascular system cells.

miRNA Vascular

cells

Functions Targets References

miR-126-3p Endothelial

cells

Migration

Angiogenesis

Spred1 (205)

miR-221&-222 Endothelial

cells

Inflammation ETS-1 (206)

miR-106b Endothelial

cells VSMC

Apoptosis PTEN (207)

miR-143/-145 VSMC Proliferation

Contraction

ACE (208)

miR-30 Endothelial

cells VSMC

Angiogenesis

Apoptosis

Inflammation

Ang2 (209)

miR-203 VSMC Proliferation SRC, ERK (210)

miR-144 Endothelial

cells

VSMC

Inflammation

Metabolism

COX2

Rac1

ABCA1

(211)

(212)

(213)

miR-146a Endothelial

cells

Inflammation

Senescence

TRAF6, IRAK1

NOX4

(214)

(215)

miR-21 VSMC

Fibroblast

Inflammation

Proliferation

PPARα,

Spry1

NF1B,CDC25A

(216)

(217)

(218)

miR-125 Endothelial

cells

Angiogenesis RTEF-1, VEGF (219)

miR-34 Endothelial

cells

Senescence

Inflammation

SIRT-1 (220, 221)

the heart after injury, e.g., in I/R, and how these mechanisms
may depend on the effect of sex hormones, of estrogen non-
genomic effects in particular. On the basis of the results described
above, it appears well-documented that all cell components of the
cardiovascular system (such as cardiomyocytes and fibroblasts,
as well as endothelial and vascular smooth muscle cells) of
males and females, also in virtue of their hormonal differences,
differently counteract exogenous or endogenous insults. In this
context, the emerging role of non-genomic effects of estrogen on
cardiovascular cell homeostasis and remodeling could represent
a formidable, novel challenge for this field of investigation. The
idea that a prompt, very rapid, i.e., in seconds, response could be
played out in order to counteract an injury appears fascinating as
well as conceivable: the “classical” genomic activity of hormones
appears, in our mind, as too slow in order to face damage
and to survive. However, apart from the possible role of this
mechanism in the evolution of the species (which should merit a
specific discussion), the influence of the estrogen hormone and its
pathways in determining cardiovascular cell homeostasis appears
as pivotal and should merit more targeted analyses.

A last point deals with sex-specific studies. Although many
experimental studies dealing with the analysis of sex differences
in the cardiovascular system, either in physiological or in
pathological conditions, have been published in the recent
years, the molecular mechanisms whereby sex specificities
may influence the remodeling and the adaptive response to

injury are still to be defined in detail. As a general rule,
these studies suggested resilience as a milestone of the female
sex, including cellular and tissue responses to environmental
insults. Experimental studies, e.g., in freshly isolated cells from
males and females are, however, quite complicated. The use
of “typical” cultured cells is in fact useless in this field since
the great majority of cell lines derive from cancer cells or
from established highly proliferating cell lines and we know
that these models do not adequately apply to the study of
vascular or cardiac cells. Hence, the main bias in the study of
the different response of XX and XY cells is the availability
of strong and effective cell models. Thus, the influence of
hormones, sex hormones in particular, on cardiovascular cell
system homeostasis in males and females represents a complex
challenge that should properly be investigated in the next years
by using cell pathology approaches in parallel with in vivo
analyses. One further important issue should be referred to
hormone variations in the lifespan of men and women that,
due to its peculiarities, can be fully investigated neither in vitro
nor in vivo. Consequently, translation of the results obtained
in these experimental studies into clinical practice cannot be
performed or it should be performed, when appropriate, very
carefully. Notwithstanding this, experimental studies appear
indispensable: clinical data are often descriptive rising questions
to which mechanistic studies could try to answer. To do this,
preclinical studies that incorporate both sexes will be crucial
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to allow the translation of information from basic research to
clinical practice.
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