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A B S T R A C T

The strong deviation in the properties of X-ray clusters from simple scaling laws highlights

the importance of non-gravitational heating and cooling processes in the evolution of

protocluster gas. We investigate this from two directions: by finding the amount of `excess

energy' required in intracluster gas in order to reproduce the observed X-ray cluster

properties, and by studying the excess energies obtained from supernovae in a semi-analytic

model of galaxy formation. Using the insights obtained from the model, we then critically

discuss possible ways of achieving the high excess specific energies required in clusters.

These include heating by supernovae and active galactic nuclei, the role of entropy, and the

effect of removing gas through radiative cooling.

Our model self-consistently follows the production of excess energy and its effect on gas

haloes. Excess energy is retained in the gas as gravitational, kinetic and/or thermal energy.

The density profile of a gas halo is then selected according to the total energy of the gas. Our

principal assumption is that in the absence of non-gravitational processes, the total energy of

the gas scales as the gravitational energy of the virialized halo ± a self-similar scaling law

motivated by hydrodynamic simulations. This relation is normalized by matching the model

to the largest observed clusters.

We model the gas distributions in haloes by using a two-parameter family of gas profiles.

In order to study the sensitivity of results to the model, we investigate four contrasting ways

of modifying gas profiles in the presence of excess energy. In addition, we estimate the

minimum excess energy required in a fiducial cluster of around 2 keV in temperature by

considering all available gas profiles. We conclude that the excess energies required lie

roughly in the range 1±3 keV particle21.

The observed metallicities of cluster gas suggest that it may be possible for supernovae to

provide all of the required excess energy. However, we argue that this scenario is only

marginally acceptable and would lead to highly contrived models of galaxy formation. On

the other hand, more than enough energy may be available from active galactic nuclei.

Key words: galaxies: clusters: general ± cooling flows ± galaxies: evolution ± galaxies:

formation ± X-rays: galaxies.

1 I N T R O D U C T I O N

Much progress has been made in recent years in the modelling of

galaxy formation, partly in response to an unprecedented amount

of new data, especially for galaxies at high redshift. This paper,

however, aims to constrain the model from the high-mass end, by

tackling the properties of X-ray clusters. This has the advantage

that the results are insensitive to the detailed physics of star

formation and feedback. Only a small fraction of the hot gas in

clusters is able to cool in a Hubble time, so that any star formation

has little effect on the structure of the gas halo. Since star forma-

tion and feedback are two of the least understood components of

galaxy formation, this seems to be a natural approach to take.

On the other hand, X-ray clusters do contain a fossil record of

the complex star formation history of their progenitors. The

amount of gas left in a cluster's halo depends on the amount

consumed in processes such as star formation. The heavy elements

(or metals) observed in the gas are the result of enrichment by

supernovae over billions of years. Like the metals, the energy

injected into the gas by supernovae and active galactic nuclei

(AGN) is retained in the gas if it is not radiated. We shall be

particularly interested in this `excess energy' that is retained in
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present-day clusters. X-ray clusters therefore provide important

constraints on the history of a large sample of baryons.

Broadly speaking, a complex physical system can be studied via

numerical methods, e.g., N-body simulations, or via analytic cal-

culations. In galaxy formation theory, the semi-analytic approach

has come to refer not just to an intermediate line of attack, but to a

specific class of models that use the hierarchical merger tree as

their starting point. In the cold dark matter (CDM) model

(Blumenthal et al. 1984), small haloes virialize first and pro-

gressively collapse into larger and larger haloes. The merger tree

follows the masses of these haloes as a function of time. The

evolution of the baryonic component in these haloes ± which

comprises ,1=10 of the total mass ± receives a simplified yet

physical treatment that models processes such as cooling, star

formation and supernova feedback, to name a few.

Although N-body simulations of dark matter (DM) clustering

now provide perhaps the best understood piece in the jigsaw of

how galaxies formed, the evolution of the baryonic component

remains much less well understood. In both hydrodynamic� DM

simulations and semi-analytic models (SAMs), many of the above

gas processes need to be approximated by simple rules. Never-

theless, using SAMs, we are able to efficiently explore the

unknown parameters in these processes, and study the range of

behaviour in these systems. In this way, SAMs have achieved

notable success in modelling many properties of galaxies (White

& Frenk 1991; Kauffmann, White & Guiderdoni 1993; Cole et al.

1994; Baugh et al. 1998; Guiderdoni et al. 1998; Kauffmann &

Charlot 1998; Somerville & Primack 1999).

In this paper we investigate the effect of excess energy on the

density profiles of gas haloes, and thus on the properties of X-ray

clusters. Excess energy is retained in the gas as thermal,

gravitational and/or kinetic energy as it passes through a merger

tree. Even if the gas is ejected from a halo, it is expected to

recollapse into a larger halo at a later time; thus the excess energy

is not lost. As a first approximation, the excess energy in a gas

halo is given by the total energy obtained from non-gravitational

heating, minus the energy lost via radiative cooling. By non-

gravitational heating we refer to heating by sources such as

supernovae and AGN. The total energy released by such sources

(though not necessarily injected into or retained by the gas) comes

to several keV per particle when averaged over all baryons in the

Universe. It therefore has the potential to strongly influence the

properties of X-ray clusters and galaxies.

It has been known for some time that the match between

theoretical predictions and the observed properties of X-ray

clusters is significantly improved if we assume that the gas is `pre-

heated' in some way (Kaiser 1991). Hydrodynamic simulations

without non-gravitational heating or cooling (Navarro, Frenk &

White 1995; Bryan & Norman 1998) obtain X-ray clusters that are

approximately `self-similar', in the sense that small clusters

(with temperatures T < 2 � 107 K� are similar to large clusters

�T , 108 K� scaled down in size. (Note that densities do not

change in such a scaling.) However, the gas haloes of observed

clusters are not self-similar. For example, the X-ray luminosities

of small clusters are an order of magnitude less than those

predicted by scaling down the luminosities of large clusters in this

way. This suggests that the gas distributions of small clusters are

less concentrated than in large clusters. In order to break the self-

similarity of X-ray clusters, excess energy is generally required.

Excess energy affects small clusters much more than large ones. It

can make the gas distribution more extended, or even remove

some gas from the halo. Different models for heating clusters and

breaking their self-similarity have been studied by a number of

authors (Evrard & Henry 1991; Kaiser 1991; Metzler & Evrard

1994; Navarro et al. 1995; Cavaliere, Menci & Tozzi 1997; Wu,

Fabian & Nulsen 1998, hereafter WFN98; Balogh, Babul & Patton

1999; Loewenstein 2000; Pen 1999; Ponman, Cannon & Navarro

1999).

In order to model the effect of excess energy on gas haloes, it is

necessary to have a continuous range of gas profiles to choose

from. The gas profile with density proportional to r22 has been

used successfully in many SAMs to model galaxies. However, it is

too simple for modelling the properties of X-ray clusters. In

particular, the core of the gas density profile has to be flattened in

order to obtain results that match the data (WFN98). In WFN98

we introduced a family of isothermal gas profiles into our SAM.

We assumed the gas to be in hydrostatic equilibrium inside

potential wells given by Navarro, Frenk & White (1997, hereafter

NFW) density profiles. This family of gas profiles enabled us to

increase the temperature of a gas halo uniformly, according to the

excess energy in the gas. The main results from that paper are that

we were able to fit the observed properties of X-ray clusters,

including their gas fractions, metallicities, X-ray luminosity±

temperature relation, temperature function, X-ray luminosity

function and mass-deposition-rate function, by including excess

energies of ,1 keV particle21.

However, for a given total energy possessed by the gas halo (the

sum of its thermal and potential energies), the isothermal profile

represents only one solution out of a continuous range of possible

solutions. Furthermore, it is uncertain how heating modifies a gas

halo, since that depends on details of how the heating occurred.

We therefore need to test the sensitivity of results to the way that

we modify the gas halo when excess energy is present. To do this,

we extend the family of isothermal profiles by requiring that gas

haloes obey polytropic equations of state: P / rgg ; where P is

pressure, and rg is gas density. Thus for a given potential well and

total gas mass, the gas profile has two degrees of freedom, given

by the parameter g, which effectively specifies the shape of the

temperature profile, and the normalization of the temperature

profile. The isothermal profiles are retrieved when g � 1; while

progressively steeper temperature gradients are obtained by

increasing g . We thus have the choice of increasing the

temperature of a gas halo uniformly with radius or preferentially

towards the centre, depending on the `heating model' that is used.

One of the main purposes of this paper is to constrain the level of

excess energy that intracluster gas must have in order to match the

observed properties of X-ray clusters. We then critically discuss

possible ways of obtaining this level of heating.

The SAM used in this paper is based on that described by

Nulsen & Fabian (1995, 1997, hereafter NF95 and NF97). A

discussion of the main areas of difference with other SAMs is

given in NF97. However, our study of X-ray clusters is not

affected by such differences, as their X-ray properties depend

almost entirely on their gas profiles only.

We use an open cosmology with Vm � 0:3 and no cosmological

constant. A Hubble parameter of H0 � 50 km s21 Mpc21 is

assumed throughout. We assume that density fluctuations are

described by a CDM power spectrum with a primordial spectral

index of n � 1 and normalized to give s8 � 0:75: In addition, we

assume a baryon density parameter of Vb � 0:02h22 (where H0 �
100h km s21 Mpc21� based on big bang nucleosynthesis and

deuterium abundance measurements (Burles & Tytler 1998;

Burles et al. 1999). For h � 0:5; this implies Vb � 0:08 and an

initial gas fraction of Vb=Vm � 0:27:
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1.1 Plan of the paper

The main results from our model are discussed in Sections 5 and 6.

Section 5 investigates the excess energies required in X-ray

clusters, and the relevant parts of the model are described in

Sections 2.1, 3 and 4.

Section 6 discusses the amount of excess energy obtainable

from supernova heating in our model, and therefore requires

knowledge of our star formation model as described in the rest of

Section 2.

In Section 7 we discuss some effects not accounted for by our

model that may possibly contribute to the excess energy. In the

process, we give a more formal definition of excess energy, and

discuss the theory behind the concept in some detail.

Finally, in Section 8 we discuss four possible scenarios for

breaking the self-similarity of clusters, aiming to be as model-

independent as possible. We consider three sources of energy:

supernovae, AGN and preferential removal of gas by cooling. We

also discuss the role of entropy in this problem (Section 8.2), and

emphasize that both energy and entropy are important in

determining the final gas distribution. In Section 9 we summarize

our conclusions.

2 B R I E F D E S C R I P T I O N O F T H E M O D E L

We begin with a general description of our model which can be

applied to any reasonable gas and DM halo profiles. More detailed

discussions of the gas processes and galaxy formation model can

be found in NF95 and NF97, which assumed essentially the same

physics as used here. In Appendix A we apply the rules given in

this section to the set of density profiles that we shall adopt.

2.1 Merger trees

Merger trees of virialized haloes are simulated using the Cole &

Kaiser (1988) block model. In a `complete' simulation, we use 20

levels of collapse hierarchy, where the smallest regions are 1:5 �
1010 M( in mass. In the block model, masses increase by factors

of 2 between levels, so that the mass of the largest block is 7:9 �
1015 M(: This allows us to simulate the full range of structures

from dwarf galaxies to the largest present-day clusters. However,

if we are considering X-ray cluster properties only, it is

,1000 times faster to simulate only the top 10 levels of the

collapse tree. The mass of the smallest regions is then 210 � 1:5 �
1010 � 1:5 � 1013 M(: In such low-resolution simulations some

additional assumptions need to be made, such as the value of the

gas fraction left over from the formation of galaxies.

Since every collapse of a block (which corresponds to a major

infall or merger) at least doubles the mass of the largest progenitor

halo, a new halo is said to virialize with each collapse. The virial

radius, r200, is defined such that the mean density within it is 200

times the background density of an Einstein±de Sitter universe of

the same age. The total mass of the halo inside r200 is equal to the

mass of the collapsed block. Likewise, the gas mass inside r200 is

the contribution from the entire block (unless the excess energy is

so high that the gas halo is unbound). The new halo is given gas

and DM density profiles, which allow the estimation of basic

quantities such as the cooling time of the gas. From this starting

point, the model proceeds to estimate the rate of star formation,

supernova feedback, metal enrichment and other quantities that

can be compared with observations. At the next merger, the

properties of the progenitor haloes (e.g., the mass of gas

remaining) are then incorporated into the new halo.

A collapse which is followed too closely by a larger-scale

collapse does not have time to form a virialized halo. It is

therefore not counted as a separate collapse. We allow a minimum

time interval between collapses, which is parametrized as a

multiple of the dynamical time. Our results are not sensitive to this

parameter, and it is given a value of 1.

2.2 Cold and hot collapses

For a gas halo to be considered hydrostatic, the gas at any radius

has to remain still for at least the time it takes for sound to travel

to the centre, which can itself be approximated by the free-fall

time. As discussed in NF95, if the ratio of cooling time to free-fall

time to the centre, t � tcool=tff ; is less than ,1, then the gas cools

fast enough that it is not hydrostatically supported. It fragments

and collects into cold clouds, which we assume to form stars with

a standard or slightly modified initial mass function (IMF). We

refer to this as a cold collapse, and the gas that takes part in it as

cold gas.

When t * 1; a hydrostatic atmosphere of hot gas (at roughly

the virial temperature) is able to form. In this case, a cooling flow

occurs if some gas has time to cool before the next collapse.

Cooling gas flows inward subsonically and remains hydro-

statically supported. In clusters of galaxies, cooling flows are

common, and observations show that the gas that cools does not

form stars with a standard IMF, but must remain as very small,

cold clouds or form low-mass stars (Fabian 1994). We refer to the

product simply as baryonic dark matter (BDM). A possible

mechanism for the formation of low-mass stars in cooling flows is

described by Mathews & Brighenti (1999), for the case of

elliptical galaxies.

To estimate the masses of hot and cold gas produced in a

collapse, we use the gas and total density profiles to estimate tcool

and tff as functions of radius. To simplify computation, tff is

estimated using the free-fall time of a test particle in a uniform

background density, i.e., tff �
�������������������
3p=16Gr

p
; where G is the

gravitational constant, and the total density at the radius concerned

is substituted for r. (This gives a slight overestimate of tff, as

density actually increases towards the centre.) We thus obtain t(r),

and compare it to a critical value, t0, to determine if gas is hot or

cold. In well-behaved cases t increases monotonically with

radius, so that there exists a unique radius rcf, inside of which gas

is labelled as cold, outside as hot. As halo mass increases, the

trend is for rcf to move from outside the virial radius to the centre.

In other words, cold collapse gives way to hot collapse as we go to

more massive haloes. This transition is quite abrupt and takes

place over about one decade in mass.

From the above, it is clear that no single gas profile can always

describe the gas halo. Cooling modifies the gas distribution, and in

a cold collapse the assumption of hydrostatic equilibrium breaks

down completely. However, the gas profile used in the model is

only notional ± defined as that obtained in a notional collapse

with cooling ignored (Nulsen, Barcons & Fabian 1998). Used in

this way, it allows us to estimate the behaviour of different subsets

of gas. In the case of hot haloes, if the part that has cooled is small

compared to the whole, then the density and temperature of gas

away from the cooled region do not change significantly as the

halo reestablishes hydrostatic equilibrium. The original gas profile

therefore gives reasonable estimates of bulk properties.

Heating in the formation of X-ray clusters 891
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2.2.1 The criterion when excess energy is large

If the excess energy from heating is large enough to be

comparable to the binding energy of the gas halo (as defined in

Section 4), then t may not increase monotonically with radius (see

Appendix A for examples). Such cases can account for a fair

fraction of low-mass galaxies because of their smaller binding

energies. This raises the question of whether gas with t , t0

outside a core of gas where t . t0 still ends up cold after collapse.

Since the value of t and its interpretation are approximate, we opt

for a simple criterion in such cases, which determines whether all

or none of the gas halo takes part in a cooling flow (Appendix A).

We note that t(r) is a fairly flat function of radius if the strongly

heated gas halo is isothermal.

2.3 Star formation, supernova feedback, and cooling flows

Star formation is presumed to proceed rapidly in cold gas and

leads quickly to type II supernovae (SNII). This is assumed to

continue until the energy from supernovae is sufficient to eject the

remaining gas in the halo to infinity, or until the cold gas is used

up. If the gas halo is not ejected, supernova energy can modify the

gas density profile by increasing the total energy of the remaining

gas (see Section 4). The effect of this is generally small, but is

included for consistency. The remaining gas, which is hot, may

then take part in a cooling flow, depositing BDM if it manages to

cool by the next collapse or the present day. For haloes which

contain only hot gas or cold gas, the situation is naturally simpler

than described.

We only follow the production of SNII in our model. Precise

knowledge of the IMF is not required, since we only need to know

the number of SNII resulting from a certain amount of star

formation. It is generally assumed that the progenitors of SNII are

stars of mass M . 8 M(: For a standard IMF (more precisely the

Miller±Scalo IMF), we adopt the estimate of one SNII for every

80 M( of stars formed with M # 1 M( (Thomas & Fabian 1990).

In the simulations, we make the simplification that stars with

M . 1 M( are instantaneously recycled, so that only the total

mass of stars with M # 1 M( is recorded. This allows us to

calculate the mass of stars remaining in present-day clusters. Since

the lifetime of a star is approximately 1010�M=M(�23 yr; the

recorded stellar mass is a good approximation of this quantity.

[The above suggests that the amount of gas in a halo could be

overestimated by the model, since, in reality, stars of intermediate

mass �1 M( , M , 8 M(� recycle their gas as planetary nebulae

on intermediate time-scales. However, we find that in newly

formed haloes, the stellar mass is almost always &1/10 of the gas

mass, so that the effect of recycled gas on the latter is small

(haloes of a few 1012 M( are an exception, as ,1/3 of them have

more stars than this). Another minor problem occurs when only a

small fraction of the gas in a halo is cold, so that most of the cold

gas forms stars. In this case, the assumption of instantaneous

recycling can cause the amount of star formation to be

overestimated (in the extreme, all of the cold gas can be converted

into stars with M , 1 M(�: Fortunately, the fraction of stars

formed in such situations is very small, so that the error in the

stellar mass of present-day clusters is less than 1 per cent.]

In the simulations, we follow NF97 by boosting the above

supernova rate by a factor of 5. Hence each SNII is associated

with 16 M( of stars formed with M , 1 M(: This corresponds to

using a flatter slope for the IMF. Since the bulk of star formation

in our model occurs as massive bursts in dwarf galaxies, it should

not be surprising to find that the IMF is modified under such

circumstances.

To give an actual example, a power-law IMF with a slope of

x � 0:9 (the Salpeter IMF has x � 1:35�; and lower and upper cut-

offs of 0.1 M( and 50 M(, gives 1 SNII for every 15 M( of stars

with M , 1 M(: (Results are not very sensitive to the upper cut-

off, because very massive stars are rare.) Using this IMF, we can

estimate the error in our assumption that the stellar mass of a

present-day cluster is given by the stars with M # 1 M(: Suppose

that the stars in the cluster have an age of 5 Gyr instead of 10 Gyr;

then the surviving stars would be given by M , 0:521=3 �
1:26 M(: For the above IMF, the stellar mass in the range

0:1 M( , M , 1:26 M( is 11 per cent greater than that in the

range 0:1 M( , M , 1 M(: The stellar mass of model clusters

are therefore correct to ,10 per cent.

The energy per supernova available for the ejection of gas is

parametrized as 4 � 1050eSN erg (Spitzer 1978). Although the total

energy released by a supernova is typically ,1051 erg, a large

fraction of this is likely to be radiated, especially if the supernova

explodes in cold gas. Each SNII is assumed to release an average

of 0.07 M( of iron (Renzini et al. 1993). The solar iron abundance

is taken to be 0.002 by mass (Allen 1976). Renzini et al. find that

the average iron yield is fairly insensitive to the slope x of the IMF.

We note that a more recent compilation of average iron yields

from a range of SNII models (Nagataki & Sato 1998) shows a

wider dispersion, ranging from 0.07 to 0.14 M( of iron per SNII.

However, most of these SNII models assume that the progenitor

stars have solar metallicity, whereas the bulk of star formation in

our model occurs in low-metallicity dwarf galaxies. If we consider

only the low-metallicity SNII models, then the range narrows to

about 0.07±0.09 M( of iron per SNII.

When a new halo collapses, the mean iron abundance and mean

excess specific energy (Eexcess) of the gas are calculated and

assigned to the gas halo. The excess energy of a gas halo, as its

name implies, is the increase in its total energy (defined below)

relative to the total energy it would have in the absence of any

non-gravitational processes. In the model it is approximated by the

total energy injected by supernovae, minus the energy radiated in

progenitor haloes, over the history of the gas. If some gas is

removed from the gas halo by a cooling flow, Eexcess is assumed to

stay the same for the remaining hot gas. The reduction in Eexcess

by radiative cooling is easily accounted for, since the cooled gas is

either converted to stars/BDM, or is ejected from the halo by

supernovae. Since we assume that the gas is always ejected at the

escape velocity of the halo, the resulting value of Eexcess is simply

given by the binding energy of the gas halo (as defined below).

Other mechanisms that may affect Eexcess but are not accounted

for by the model are discussed in Section 7. In particular, if the gas

is displaced by strong heating, this can lead to an extra

`gravitational contribution' to the excess energy, that is usually

positive. Unfortunately, this contribution is in general difficult to

compute (without hydrodynamic simulations), and is likely to be

model-dependent as well. (The approximation to Eexcess made by

the model may be compared to the approximation made when

inferring the clustering of mass from the clustering of galaxies,

which is traditionally handled by a `bias parameter'.)

3 T H E D I S T R I B U T I O N O F T OTA L D E N S I T Y

I N H A L O E S

We begin by specifying the total density profile of a halo, which
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allows us to derive the shape of the potential well. This is then

used in the following section to derive gas density profiles.

From a series of N-body simulations in different cosmologies

and with both CDM and power-law fluctuation spectra, NFW

found that the density profiles of virialized haloes obey a universal

form, given by

r�r� � dcrcrit

�r=rs��1� r=rs�2
; �1�

where rcrit � 3H2=8pG; and H is the Hubble parameter at the

time of collapse. The characteristic density d c is calculated

according to a prescription described in the appendix of NFW.

This method amounts to setting the scale density, rs � dcrcrit;
equal to 3000 times the background density when the halo was

`assembled', subject to an appropriate definition of this assembly

time. The assembly time is a function of halo mass and redshift of

virialization only (given the cosmology and fluctuation spectrum).

From the value of d c and the mean density of the halo within

r200, the scale radius rs is uniquely determined. Thus d c is the

only `degree of freedom' in the profile. For convenience, x � r=rs

is often used to denote radius. The value of x at the virial

radius, c � r200=rs; is an important parameter known as the

concentration.

(On a technical point, our model actually differs slightly from

the original NFW prescription. This is because NFW defined the

mean density of a halo to be 200r crit, whereas we have chosen to

follow the spherical collapse model more closely when calculating

the mean density. By following their prescription for calculating

d c, we have preserved their explanation for its origin. However,

quantities such as rs and c will differ slightly.)

We make the further approximation that the NFW profile

describes the total density in a halo (i.e., including the gas density)

and that it is truncated to zero for r . r200: This allows us to

derive the gravitational potential as a function of x:

f�x� � a 2
ln�1� x�

x
� 1

1� c

� �
; �2�

where a � 4pGrsr
2
s :

To illustrate typical values of c obtained in this model, Fig. 1

shows a scatter plot of c against halo mass for our choice of

cosmology and fluctuation spectrum. For haloes that collapse at a

given redshift, c increases substantially with decreasing mass, e.g.,

the steep upper edge of the distribution is given by haloes that

virialize at z � 0: However, for a given mass bin, c decreases with

increasing redshift. As a result, the mean value of c does not vary

much with halo mass, because less massive haloes are more likely

to collapse at higher redshift.

4 T H E D I S T R I B U T I O N O F G A S I N H A L O E S

Given the NFW potential well (2) and the total gas mass within

r200, we make two further assumptions in order to calculate the gas

density profile. The first is that the gas is in hydrostatic

equilibrium, i.e.

dP

dr
� 2rg

df

dr
; �3�

and the second is that P and rg are related by some equation of

state. For example, if we assume a perfect-gas law and iso-

thermality, then P / rg and the only parameter is the temperature,

T. Once T is specified, the gas profile is uniquely determined.

Below, we first describe the general procedure that we use to

determine such parameters.

We refer to the gas profile obtained in the absence of excess

energy as the default profile. Since the NFW profile is not self-

similar (see Fig. 1), it is not possible to define a self-similar

default profile for gas haloes. In the absence of heating, it is

common to assume that kTl is proportional to ks2l for the DM

halo, where s is the velocity dispersion, and the brackets denote

some form of average. However, ks2l is non-trivial to compute for

the DM halo, and we are more interested with the total energy of

the gas halo than just its thermal energy, since any excess energy

would be added to the former. In order to retain some level of self-

similarity, we therefore postulate that the total specific energy of

the gas halo, Egas, is proportional to the specific gravitational

energy of the whole halo (which is modelled by the NFW profile):

Egas � K
1

Mtot

�
1

2
rtotf dV ; �4�

where Egas is defined by

Egas ;
1

Mgas

�
rg

3kT

2mmH

� f

� �
dV : �5�

The above integrals are performed out to the radius r200, Mtot and

Mgas are the total mass and total gas mass respectively, and the

total density r tot is given by the NFW density profile. The

Boltzmann constant is denoted by k, and mmH is the mean mass

per particle of the gas. Note that Egas , 0 in order for the gas halo

to remain gravitationally bound.

The constant of proportionality K is a parameter of the model. It

is calibrated by requiring that the default profiles of the largest

clusters approximate well those from X-ray observations. We

match to the largest observed clusters because if heating does

occur, we expect it to have least effect on them. Once Egas is

computed from (4), the gas profile is uniquely determined if it is

selected from a family with only one parameter (e.g., the

isothermal family). In general, a numerical procedure is required

to search for the gas profile with the matching value of Egas. The

X-ray clusters obtained in this way do closely follow the self-

similar scaling relations for Mtot, T and LX.

Figure 1. Scatter plot of concentration c versus halo mass. Halo masses

take discrete values in the block model. Each mass bin contains a

maximum of 100 points. Haloes were selected randomly from the

simulation regardless of redshift. The solid line gives the mean value of

each mass bin, and the dotted lines are plotted one standard deviation from

the mean.
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We refer to the value of |Egas| given by (4) as the binding energy.

As its name implies, the binding energy is the excess specific

energy required to unbind the gas halo.

When the excess specific energy, Eexcess, is non-zero, Egas is

increased accordingly:

Egas � K
1

Mtot

�
1

2
rtotf dV � Eexcess: �6�

This allows the heated gas profile to be found. In general, as

Eexcess increases, the gas temperature increases and the gas

distribution becomes more extended (i.e., the density profile

becomes flatter). Thus the excess energy goes into increasing both

the thermal energy and the potential energy of the gas halo.

If an isothermal family of gas profiles is used, heating increases

the temperature uniformly with radius. Frequently, properties such

as the luminosity of an X-ray cluster or the amount of gas able to

cool in a given time are sensitive only to the gas density near the

centre. Therefore, if we increase the temperature preferentially

towards the centre, then we can obtain the same changes in these

properties for less excess energy. A convenient way of modelling

non-isothermal profiles is to use a polytropic equation of state:

P / rgg : There are then two degrees of freedom, represented by g
and the constant of proportionality in the polytropic equation.

Since there are two parameters, a continuous range of gas profiles

now have the same value of Egas. Thus a further constraint is

required to determine the gas profile uniquely.

A heating model is obtained by specifying

(a) the constraint used to determine the default profile, and

(b) the path in parameter space followed by the gas profile as

Eexcess increases.

In order to obtain a good match to the largest clusters, the

parameter K is allowed to depend on (a). Thus, K may also be

regarded as part of the heating model. The specification of a

heating model is of course artificial; in reality, the gas profile is

determined by additional factors such as the gas entropy

distribution and how shock heating occurs. In lieu of a more

complex model, we shall use a few contrasting heating models to

test the sensitivity our results.

4.1 A two-parameter family of gas density profiles

We now derive the family of gas profiles used in our model,

assuming a polytropic equation of state and a perfect-gas law. If

we first let g � 1; then T is constant and equation (3) gives

rg�r� / exp 2
mmH

kT
f�r�

h i
: �7�

Inserting the expression (2) for the NFW potential yields

rg�r� / �1� x�h=x; �8�
where h � mmHa=�kT� is a dimensionless parameter that

characterizes the slope of the density profile. Recall that a is

the characteristic gravitational potential of the NFW profile. The

mean value of h obtained by fitting this model to highly luminous

X-ray clusters is approximately 10 (Ettori & Fabian 1999).

For g ± 1; we use P / rgg to eliminate P in equation (3), and

then use rg21
g / T to get

d

dr

kT

mmH

� �
� 2

g 2 1

g

df

dr
: �9�

Substituting for the potential gives

T

T200

� 1� g 2 1

g
h200

ln�1� x�
x

2
ln�1� c�

c

� �
; �10�

where h200 � mmHa=�kT200� is the value of h at the virial radius

(where x � c�: Thus, using g . 1 causes the temperature to

increase monotonically towards the centre. Substituting rg /
T �1=g21�; we get

rg

rg;200

� 1� g 2 1

g
h200

ln�1� x�
x

2
ln�1� c�

c

� �� � 1
g21

; �11�

where rg,200 is the gas density at the virial radius. It is

straightforward to show that this approaches the isothermal form

(8) as g! 1: We henceforth use the parameters g and h200 to

specify the gas profile.

It is also useful to compute the `entropy', s � T=n
2=3
e ; where ne

is the electron density, and ne / rg: For our purposes, s may

simply be regarded as a label for the adiabat that the gas is on. For

the gas to be stable to convection, the entropy must increase with

radius. When g � 5=3; the entropy is constant with radius; thus

the atmosphere is marginally stable to convection. Atmospheres

with higher values of g and steeper temperature gradients convect

to reduce the temperature gradient. Hence 5/3 is the maximum

value of g used in the model. The minimum value used is g � 1:
We do not use lower values of g , as there is little evidence for the

temperature in haloes to increase with radius, both from X-ray

cluster observations and hydrodynamic simulations.

In Figs 2, 3 and 4 we display the density, temperature and

entropy profiles of a selection of gas haloes covering a range of

h200 and g values. All other parameters, in particular the total gas

mass and NFW potential well, have been kept constant. In each

Figure 2. Gas density profiles, with parameters representative of those

obtained in heating models A and B (see Fig. 5 and text). The same total

gas mass and NFW potential well were used throughout (we set c � 5�:
The solid curve (the default profile for the purposes of this figure) uses

h200 � 10 and g � 1: The series of dotted profiles have g � 1 but

decreasing values of h200, namely h200 � 8:5; 7.1, 6.0 and 5.1. These

values were chosen so that their total specific energies, Egas, increase at

regular intervals. The flattest profile, h200 � 5:1; has zero total energy and

is marginally bound. The series of dashed curves have the same total

energies as the dotted curves, but have the following parameters:

�h200;g� � �10; 1:1�; (10,1.3), (8.7,5/3) and (6.8,5/3). Notice that for the

same increase in Egas, increasing g has a greater effect on densities at small

radii than reducing h200. Finally, the dot-dashed curve uses g � 1:2 and

h200 � 28; and is representative of default profiles obtained in Models C

and D.
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figure, the series of dotted curves and dashed curves represent two

different ways of heating the gas halo represented by the solid

curve. In each series, the value of Egas was required to increase at

regular intervals from that of the solid curve up to a value of zero.

Hence the gas halo with the most energy in each series is only

marginally bound. By comparing the two series, it is evident that

profiles with the same total energy can differ significantly.

4.2 Profile selection: the heating models

4.2.1 The default profile

The first step is to determine the default profile. In a two-

parameter family of gas profiles, a profile can be specified by

the value of Egas and one further constraint. We shall consider

two different constraints for selecting default profiles: g � 1 or

g � 1:2; depending on the heating model. The former yields

isothermal gas haloes in the absence of heating, and is motivated

by its simplicity. The latter is motivated by the temperature

profiles of X-ray clusters measured by Markevitch et al. (1998),

who approximated their results with a polytropic index of 1.2±1.3.

For each constraint, we need to calibrate the parameter K used in

equation (4).

We calibrate K by matching the model clusters obtained with

Eexcess � 0 to the largest observed clusters. We do not attempt to

estimate K theoretically, as it is our opinion that Egas depends on

how the collapse occurred in detail. For example, how the gas

collapsed relative to the dark matter affects how much energy was

transferred between the two components. [However, we do assume

that such processes result in the scaling law expressed in (4).]

To calibrate K for the case of g � 1; we use the results of Ettori

& Fabian (1999), who fitted the surface brightness profiles of 36

X-ray clusters with LX * 1045 erg s21: When fitting to avoid any

cooling flow region, they obtain a mean value of h � 10:29; with

an rms scatter of 1.55. (Since the temperature is constant, h and

h200 are the same.) In order to match this, we set K � 1:2; which

gives a mean value of h � 10:5 in the corresponding model

clusters. However, the scatter of h in our model is only ,0.5. If

we now set the gas fraction of clusters equal to 0.17 (the mean

value obtained by Evrard 1997 and Ettori & Fabian 1999,

assuming h � 0:5�; we find that the model clusters naturally

follow the observed LX 2 T relation for clusters more luminous

than 2 � 1045 erg s21 (Allen & Fabian 1998a). (We refer to

bolometric luminosities throughout.) Note that this fit is possible

because the largest observed clusters roughly follow the self-

similar relation LX / T2; instead of the steeper relation obeyed by

smaller clusters.

Turning to the case of g � 1:2; we note that, compared to the

isothermal profiles, these models are almost always poorer fits to

the surface brightness profiles of real clusters (Ettori & Fabian

1999). Hence for this case we calibrate K by simply matching the

LX 2 T relation measured by Allen & Fabian (1998a). As above,

we set the gas fraction of all clusters equal to 0.17. We find that

K � 1:5 results in an LX 2 T distribution that best fits the data.

The resulting clusters have h200 < 28: An example of such a

profile is shown in Figs 2 to 4 as dot-dashed curves, for

comparison with the solid curves �g � 1 and h200 � 10�: Notice

that although the two density profiles have different shapes, they

roughly follow each other and intersect at two points. (The higher

value of h200 � 28 merely implies that the temperature at r200 is

lower by a factor of 2.8 compared to the h200 � 10 case.)

Since g is fixed for both types of default profile, it is not hard to

show that h200 is a function of the NFW concentration c only. We

find that it is only a weakly increasing function of c in both cases.

Since the model clusters have a relatively small scatter in c and

h200, they are close to self-similar when heating is absent.

4.2.2 The heated profile

When excess energy is present, the default profile is modified to

give the heated profile. We model this in two ways: by decreasing

h200 while keeping g constant, or by increasing g while keeping

h200 constant. The former has the effect of increasing the

temperature at all radii by the same amount (to see this, multiply

equation 10 by T200 and note that h200T200 remains constant). The

latter steepens the temperature gradient while ensuring that the

temperature at r200 stays constant, so that heating is concentrated

towards the centre.

Since there are two types of default profile, we have four

heating models in total. These are summarized in Fig. 5. Models A

and B have default profiles with g � 1 and Models C and D have

Figure 3. As Fig. 2, but showing temperature profiles (note that the

temperature scale is linear). Temperatures have been normalized so that the

solid curve has a temperature of unity. Increasing g leads to steeper

temperature gradients without changing the temperature at the virial radius

�x � c�: In contrast, reducing h200 increases the temperature uniformly.

Figure 4. As Fig. 2, but showing `entropy' profiles, given by the

expression T=r
2=3
g : Most of the profiles are quite steep, but increasing g

(dashed curves) results in much flatter entropy profiles. Isentropic profiles

are obtained when g � 5=3:
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default profiles with g � 1:2: Heating increases g in Models A

and C, but reduces h200 in Models B and D.

There are a few loose ends to tie up. If the excess energy is so

high that Egas . 0; then the gas is not bound and it does not form a

halo. However, for Models A and C, the gas halo may still be

bound when g has increased to 5/3. Therefore, to increase Egas

further, we reduce h200 instead, as shown in Fig. 5.

5 T H E E X C E S S E N E R G I E S R E Q U I R E D I N

X - R AY C L U S T E R S

In this section we present the cluster results obtained with each of

the four heating models. Since we are concerned solely with

clusters here, the parameter t0 and the star formation model play

almost no part in the results. (No cold collapse occurs in the model

clusters for all reasonable values of t0.)

The simulations are `low-resolution' in the sense that they only

use the top 10 levels of the collapse tree (Section 2.1). Hence the

smallest regions have masses of 1:5 � 1013 M(: Each simulation

used a total of 10 000 realizations of the merger tree. We set the

gas fraction of every cluster equal to 0.17 (Evrard 1997; Ettori &

Fabian 1999) for definiteness. The formulae used to calculate the

bolometric luminosity LX, the emission-weighted temperature T,

and the instantaneous mass deposition rate MÇ , are given in

Appendix A. All quantities were evaluated at z � 0:
One simulation was performed for each heating model, and in

each case all of the clusters were given a constant excess specific

energy. For each heating model, we found the excess specific

energy that best fitted the data by matching to the LX 2 T relation

of David et al. (1993) in the first instance.

The best-fitting excess energy for each heating model is given

in Table 1. The resulting LX 2 T distributions are displayed in

Figs 6 to 9. The slopes of the distributions given by Models B and

D are slightly steeper than the observed slope. This suggests that

we need to relax our assumption of a constant Eexcess for all

clusters. It is also evident that the LX 2 T distributions flatten

slightly at high temperatures, tending to LX / T2; in agreement

with the largest observed clusters (Allen & Fabian 1998a).

Recall that we calibrated the largest clusters to match the LX 2 T

relation of Allen & Fabian (1998a) when heating is absent. The

Figure 5. A schematic diagram of how gas profiles are selected in each

heating model. The first step is to find the default profile: depending on the

heating model, it has either g � 1 or g � 1:2; h200 is then determined by

requiring that the total specific energy, Egas, satisfies (4). (Note that the

parameter K � 1:2 for Models A and B, and K � 1:5 for Models C and D.)

The filled circles give only the approximate positions of default profiles,

since h200 depends on the NFW concentration c. The heated profile is

found in the second step: any excess specific energy increases Egas

accordingly, and may increase the temperature uniformly (Models B and

D), or increase the temperature preferentially towards the centre (Models

A and C; these are modified to accommodate the upper limit of g � 5=3

when heating is very strong).

Table 1. Best fitting values of excess energy for
each heating model, obtained by matching to the
LX 2 T relation measured by David et al. (1993).
Excess energy per particle is calculated as
(mmHDEgas).

Heating Model Excess Energy (keV particle21)

A 1.8
B 2.8
C 2.2
D 3.0

Figure 6. Contour plot of the cluster X-ray luminosity±temperature

distribution obtained from Model A, with heating included at the level

given in Table 1. The contours are spaced at equal logarithmic intervals.

The long straight line is the best fit (for bolometric luminosities) taken

from David et al. (1993). The extent of the line corresponds roughly to the

extent of the data.

Figure 7. Same as Fig. 6 but using Model B.
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results thus confirm that the largest clusters are least affected by

the excess energy (see also fig. 1 in WFN98). However, the hottest

clusters shown are, in fact, about a factor of 1/3 less luminous than

before heating. We do not attempt to correct for this relatively

small discrepancy. It is possible that, in reality, Eexcess would be

more diluted, i.e., smaller than we have assumed, in the largest

clusters.

As expected, Models A and C require less heating than the other

models, because they concentrate heating towards the centre of

clusters, where most of the luminosity comes from. In addition,

Models C and D require slightly more excess energy than Models

A and B, respectively. Nevertheless, the highest excess energy in

Table 1 is only about 50 per cent more than the lowest, over a set

of very different heating models.

We display the X-ray luminosity function, temperature function

and mass deposition rate (MÇ ) function from the same simulations

in Figs 10, 11 and 12, respectively. In each plot we have used a

different line for each heating model. Superimposed on each plot

are the observed data, as described in the captions. The same

remarks regarding the simulated and observed MÇ functions made

in the previous section apply here. (However, the exclusion of

clusters cooler than 2 � 107 K has practically no effect on the MÇ

functions simulated here, for most gas haloes below this

temperature have been unbound.)

The luminosity and temperature functions obtained with all four

heating models give good fits to the data. However, the model MÇ

functions give relatively poor fits.

Models C and D give particularly poor fits where _M .
100 M( yr21: This is because the mass deposition rate of large

clusters are too high in these models. This can be attributed to the

flatter cores of their gas density profiles. The poor performance of

Models C and D support the result that the g � 1:2 gas profiles are

relatively poor fits to the surface brightness profiles of large

clusters compared to the g � 1 profiles (Ettori & Fabian 1999).

Models A and B show a deficit of clusters with small cooling

flows � _M � 10±100 M( yr21�: The main reason for the deficit is

that the excess energies are now too high for the smallest clusters.

We have repeated the simulation for Model B using lower excess

energies in clusters less massive than 246 � 1012 M(: The excess

energies are given in Table 2; they increase steadily with mass up

to 246 � 1012 M(: The resulting LX 2 T distribution and MÇ

function are shown in Figs 13 and 14, respectively. Both show a

Figure 8. Same as Fig. 6 but using Model C.

Figure 9. Same as Fig. 6 but using Model D.

Figure 10. The X-ray luminosity functions given by all four heating

models. The model results are plotted as follows: Model A: solid line,

Model B: dashed line, Model C: dot-dashed line, Model D: dotted line. The

curve is the best-fitting Schechter function for the ROSAT Brightest Cluster

Sample bolometric luminosity function (Ebeling et al. 1997).

Figure 11. The X-ray temperature functions given by all four heating

models, plotted with the same line styles as in Fig. 10. The straight line is

the power-law fit obtained by Edge et al. (1990).
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better match to the data than before. The new MÇ function has an

increased number of small cooling flows, and the new LX 2 T

distribution reaches to lower temperatures (due to the reappear-

ance of ,2 keV clusters, which were previously unbound).

If it is true that Eexcess increases with cluster mass, then this may

be hard to reconcile with heating by supernovae, because we then

expect Eexcess to become more diluted with increasing halo mass

(see Section 6). In this case, a significant amount of energy

injection would have to occur in clusters themselves (possibly by

AGN). However, we note that this result is somewhat model-

dependent, for it is possible to avoid it by combining different

heating models. If large clusters are heated preferentially towards

the centre (as in Model A) but small clusters are heated more

uniformly (as in Model B), then it is possible that an excess energy

of roughly 1.8 keV particle21 across all clusters could satisfy all

the data (see Tables 1 and 2). Such a scenario may result from a

characteristic scale in the spatial distribution of the heat source

(supernovae or AGN). Alternatively, a strong wind may distribute

its energy more efficiently through a small (proto)cluster, because

the cluster is closer to being unbound, i.e., it is more disturbed.

5.1 Using all available gas profiles

By using all the available gas profiles in the two-parameter family

(i.e., independently of any heating model), we have also found the

minimum excess energy required to put a fiducial cluster on the

observed LX 2 T relation.

We considered the specific case of a halo of mass 1:23 �

1014 M(; which virializes at z � 0 with a gas fraction of 0.17.

Such a cluster has a temperature of around 2 keV, depending on

the amount of heating. To obtain the NFW profile, we assumed the

same cosmology as before. The problem was structured as

follows. We first found the locus of points in (h200,g)-space which

put the cluster on the observed LX 2 T relation. From these points

we then found the one which had the least excess energy.

However, the gas profile specified by (h200,g) only tells us the

value of Egas ± to compute Eexcess we also need the `default' value

of Egas, i.e., when heating is absent. In what follows, we assume

that the default value of Egas is given by equation (4) with K � 1:2
(as in Models A and B).

Fig. 15 shows contours of excess energy in parameter space,

labelled in keV particle21. The gas halo becomes unbound for

excess energies above 3.1 keV particle21. The dashed curve gives

the parameters of gas haloes that lie on the best-fitting power law to

the observed LX 2 T distribution (David et al. 1993). The shaded

area contains gas haloes that lie within the 1s region of uncertainty

for this best fit. Note that it represents the uncertainty in the mean

Figure 12. The mass deposition rate functions (plotted cumulatively) for

all four heating models, plotted with the same line styles as in Fig. 10. The

jagged line is the same function taken from Peres et al. (1998), modified by

using a cluster age of 6 Gyr.

Table 2. Table of excess energies used with Model B to
improve the mass deposition rate function, which is
shown in Fig. 14.

Halo Mass (1012 M() Excess Energy (keV particle21)

$246 2.8
123 2.3
61 1.9
35 1.5
15 1.1

Figure 13. As Fig. 7, but using excess energies which increase with halo

mass, as given in Table 2. Model B was used. Previously unbound groups

now appear at temperatures below 2 keV.

Figure 14. As Fig. 12 but for Model B only, using increasing excess

energies with halo mass as given in Table 2. The number of small cooling

flows has increased, improving the fit to the data.
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properties of X-ray clusters, and should not be confused with the

dispersion in the LX 2 T relation. From the plot, the gas profile with

g � 5=3; h200 � 26 requires the least excess energy to match the

best-fitting relation. It has an excess energy of 0.95 keV particle21.

If the shaded region is taken into account, the minimum excess

energy is roughly 0.7 keV particle21. It should not be surprising that

the above profile is marginally stable to convection. We `save

energy' by concentrating the heating where it makes the most

difference, i.e., near the centre, but convection limits the extent to

which we can do this. The gas halo that requires the least heating is

therefore the one with the isentropic atmosphere. This suggests that

the g � 5=3 profile probably requires the least heating among all

possible gas profiles.

A similar plot displayed in Fig. 16 shows contours of

entropy (given by s � T=n
2=3
e � at a radius of 0.1r200. The entropy

varies significantly along the dashed line, from around 200 keV cm2

to 600 keV cm2. The plot shows that the energy requirements are

reduced if heating raises the entropy as much as possible. (We

discuss this further in Section 8.2.) The model entropies may be

compared to the results of Ponman et al. (1999), who measured the

entropies of groups and clusters at this radius in order to avoid

possible cooling flows. However, these authors used emission-

weighted temperatures to compute the entropy, whereas we have

used radial-resolved temperatures. When this is accounted for, the

above range of entropies are all consistent with the data.

So far we have assumed that in the absence of heating Egas �
23:1 keV particle21; as given by equation (4) using K � 1:2: If

we use K � 1:5 instead (as in Models C and D), then the default

value of Egas becomes 1:5=1:2 � �23:1� < 23:9 keV particle21:
As this is lower than before, all excess energies are increased by

0.8 keV particle21. We can generalize further by considering what

parameters the cluster would need in order to lie on the self-

similar relation LX / T2 normalized to the largest observed

clusters (Allen & Fabian 1998a). The gas profiles which satisfy

this relation are given by the thick solid line in Fig. 15. As

expected, it passes close to the points �h200; g� � �10; 1� and

(28,1.2), where the default profiles of our heating models are

found. Thus the thick line roughly sweeps out the locations of

possible default profiles. By assuming a g � 1 default profile in

the above analysis, we obtained the highest default value of Egas,

and therefore the lowest possible excess energies.

6 T H E E F F E C T O F S U P E R N OVA H E AT I N G

In this section we investigate the amount of excess energy

obtainable from supernova heating. Complete simulations with 20

levels of collapse hierarchy were performed with Models A and B.

Each simulation used 100 realizations of the merger tree. Below,

we begin by setting the parameters of the galaxy formation model.

6.1 Setting the model parameters

There are three parameters that remain to be set. They are the

critical ratio of cooling time to free-fall time, t0, the efficiency of

supernova feedback, eSN, and the boost in the rate of supernovae.

As mentioned in Section 2.3, we assume that supernova rates are

boosted by a factor of 5 for this work. Intuitively, this should

increase the amount of supernova heating; however, we shall

demonstrate that the resulting excess energies are quite insensitive

to this parameter. All three parameters are kept constant in each

simulation.

We assume an initial gas fraction of 0.27 (Section 1). Unless

stated otherwise, the resulting X-ray clusters have a mean gas

Figure 15. Contour plot in parameter space for a fiducial cluster of mass

1:23 � 1014 M(; collapsing at z � 0 with a gas fraction of 0.17. The

dashed curve gives the parameters of gas haloes that lie on the best-fitting

LX 2 T relation obtained by David et al. (1993), and gas haloes in the

shaded region lie within the region of uncertainty of this relation. The thin

contours are labelled by excess energy (keV particle21), measured relative

to an isothermal default profile (as in Models A and B). The profile that

requires the least excess energy to match the LX 2 T relation is given by

g � 5=3 and h200 � 26: It has an excess energy of 0.95 keV particle21.

The thick solid line roughly sweeps out the positions of other possible

default profiles (see text).

Figure 16. Similar to Fig. 15, showing also contours of entropy at a radius

of 0.1r200 (dotted lines). The contour labels give s � T=n
2=3
e in units of

keV cm2.
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fraction of 0.17 and a scatter of about 0.01, in agreement with the

gas fraction used in the previous section.

6.1.1 Setting eSN

The feedback parameter eSN controls the amount of star

formation, which can be characterized by the fraction of gas

turned into stars by the present day. Using the Coma cluster as a

large sample of baryons, the mass ratio of hot gas to stars inside a

radius of 1.5h21 Mpc is about 15, assuming h � 0:5 (White et al.

1993). In order to match this, we set eSN � 0:3 for Model A and

eSN � 0:25 for Model B. We find that the required value of eSN is

almost independent of the value of t0, unless t0 takes an

`extreme' value (,10 times greater or smaller than 1). In fact, a

much larger fraction of baryons is converted into BDM than into

stars (as can be seen from the primordial and cluster gas fractions).

Most of the BDM is formed in the haloes of massive galaxies and

small groups.

6.1.2 Setting t0

The parameter t0 controls the transition from cold to hot collapse.

From its definition, we know that t0 , 1: However, we consider a

range of values: t0 � 1 to 0.4, and an extremely low value of 0.1,

to illustrate its effect on the resulting excess energies. Table 3 lists

the three sets of parameters used in the simulations.

6.2 The excess energies from supernova heating

For Model A, a scatter plot of excess energies versus halo mass is

displayed in Fig. 17, along with the mean and standard deviation

for each mass bin. All of the scatter plots in this section were

generated by randomly selecting up to 100 haloes for each mass,

regardless of redshift (only the most massive haloes have less than

100 points plotted, because they are so rare). Up to a mass of

,1012 M(, the excess energies clearly increase with mass. Above

,1012 M(, star formation gives way to cooling flow behaviour, so

that the mean excess energy changes little. However, the scatter

reduces significantly due to an averaging effect. A gradual

decrease in excess energy can be detected in the most massive

haloes, due to dilution by the accretion of primordial gas.

The ratio of excess energy to binding energy gives a measure of

the excess energy's ability to change the gas distribution. Recall

that we define the binding energy to be equal to |Egas| in the

absence of heating. Fig. 18 shows a corresponding plot of binding

energy for the same simulation as above. The ratio of excess

energy to binding energy is displayed in Fig. 19. It has a strict

upper limit of 1, above which gas haloes are not bound. The

distributions of points in mass bins below ,1012 M( are very

similar, and lie roughly in the range 0.2±0.6. The lowest mass bins

are an exception, because some of their haloes have no excess

energy at all; this causes the mean to dip for the lowest bins. As

Table 3. The values of
eSN and t0 used with
Models A and B.

eSN t0

Model A 0.3 1.0
Model B 0.25 0.4
Model B 0.15 0.1

Figure 17. Scatter plot of excess energy versus halo mass, using Model A.

Each mass bin contains a maximum of 100 points. Haloes were selected

randomly from the simulation, regardless of redshift. The solid line gives

the mean value of each mass bin, and the dotted lines are plotted one

standard deviation from the mean.

Figure 19. As Fig. 17, but showing the ratio of excess energy to binding

energy. The dip in the mean for the lowest mass bins is caused by haloes

which have zero excess energy. This can only occur when a halo has no

progenitors. Therefore the dip is an artefact of the finite mass resolution.

Notice that the finite points in the second lowest mass bin already have a

similar distribution to higher mass bins.

Figure 18. As Fig. 17, but showing the magnitude of the binding energy

versus halo mass. Note that the energy is now plotted logarithmically.
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explained in the caption, this is purely an artefact of the finite

mass resolution.

The approximately scale-invariant behaviour below ,1012 M(

can be understood as follows. Below a certain halo mass, almost

all of the galaxies produce sufficient supernova feedback to eject

their gas. In addition, the gas is always ejected with excess energy

equal to the binding energy of the host halo (for the model

assumes that the gas is ejected at the escape velocity). As a result,

for haloes in, or slightly above, the said mass range, the ratio of

excess energy to binding energy simply reflects the ratio of the

binding energies of its progenitors to itself (ignoring the dilution

of excess energy by primordial gas for simplicity). The similarity

in the distribution of points in each mass bin (below ,1012 M()

simply implies that these ratios do not change much with mass.

For haloes *1012 M(, the ratio drops dramatically due to

the cessation of star formation. Above 1014 M( ± in the regime of

X-ray clusters ± the excess energies have hardly any effect on the

gas haloes.

Since the behaviour shown in Fig. 19 is largely due to the

binding energies of haloes, it should depend little on the heating

model. Fig. 20 shows the corresponding plot for Model B, with the

parameters t0 � 0:4 and eSN � 0:25: As expected, it is almost the

same as for Model A. However, a difference does occur if t0 is

reduced further. For Fig. 21, we used the parameters t0 � 0:1 and

eSN � 0:15 with Model B. In this case, star formation is restricted

to much smaller haloes, so that the decline is also shifted to a

lower mass scale. (A side effect is that more gas is lost in cooling

flows, so that the gas fraction of clusters is 0.15 instead of 0.17.)

This scenario is unlikely to occur in reality, not only because we

expect t0 , 1; but also because the characteristic luminosity, Lp,

of the luminosity function of galaxies (fitted with a Schechter

function) would be too small.

6.3 More on heating clusters with supernovae

The excess energies obtained above are clearly too low to satisfy

the energy requirements of X-ray clusters (Section 5). The

relationship between excess energies and binding energies also

suggests that it would be difficult to increase the amount of

heating significantly in this model. Indeed, we find that the excess

energies of clusters are not sensitive to eSN, nor the supernovae

rate per unit star formation. For example, the parameters eSN �
0:1 and eSN � 1:0; used with Model A, give virtually identical

excess energies in clusters to those shown in Fig. 17 ± indeed, the

rest of the plot is hardly modified. If instead we remove the factor-

of-5 boost in supernova rates (implying a change in the IMF), the

excess energies of clusters are only reduced from around 0.05 to

0.03 keV particle21.

Expanding on the previous section, the excess energy of a

cluster is essentially determined by the binding energies of the

most massive progenitors in its merger tree (looking backwards in

time along each and every branch) to produce SNII. Although

these progenitors might not be able to eject their atmospheres,

they are still likely to leave the gas with Eexcess close to the

binding energy. Furthermore, the extent to which Eexcess is diluted

by primordial gas in the final cluster is also mainly a function of

the merger tree. The net result is that changing eSN or the IMF has

little effect on the excess energy of clusters. What they do affect is

the amount of gas converted into stars: the more efficient the

supernova feedback, the less stars are formed.

The above suggests that we can increase the excess energies of

clusters by increasing t0. We find that by increasing t0 from 1 to

3, the transition from star formation to cooling flow behaviour is

shifted to haloes that are roughly 4 times more massive. As a

result, Eexcess in clusters increases from around 0.05 to 0.12 keV

particle21. This agrees very well with a simple scaling argument:

since binding energy scales roughly as M
2=3
tot ; the 4-fold increase in

the mass scale of the transition region implies that Eexcess should

increase by a factor of 42/3; this is indeed the case, but the increase

is clearly too small.

6.3.1 The simulated iron abundances

The clusters shown in Figs 19 and 20 have an iron abundance of

about 0.08 Z(. Although this is lower than the observed range of

0.2±0.3 Z( (Fukazawa et al. 1998), we reiterate that this is not the

reason for their low excess energies. Like the gas-to-stellar mass

ratio, the iron abundance can be controlled by the parameter eSN.

For example, reducing eSN by a factor of 3 increases both the

stellar mass and the iron abundance of clusters by about a factor

of 3.

The large number of type SNII per unit stellar mass required to

Figure 20. The ratio of excess energy to binding energy obtained from

Model B, using t0 � 0:4 and eSN � 0:25: Note the strong similarity with

Fig. 19.

Figure 21. The ratio of excess energy to binding energy obtained from

Model B, using t0 � 0:1 and eSN � 0:15: The lower value of t0 causes star

formation to cease at lower masses, resulting in a notable difference from

Fig. 20.
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enrich cluster gas to the observed metallicities has been discussed

by other authors (Arnaud et al. 1992; Elbaz, Arnaud & Vangioni-

Flam 1995; Brighenti & Mathews 1999). It is possible that a large

fraction of the iron in cluster gas is due to type Ia supernovae,

which we have not included. Nagataki & Sato (1998) suggest that

between 30±90 per cent of the iron in X-ray clusters may be due to

type Ia supernovae. It is also possible that the observed

metallicities (which are emission-weighted) overestimate the

average metallicities of cluster gas, due to the existence of steep

metallicity gradients (Ezawa et al. 1997; Allen & Fabian 1998b).

7 L I M I TAT I O N S O F T H E M O D E L

In our model, we make the approximation that the excess specific

energy of a gas halo is equal to the total energy injected over the

history of the gas. i.e.

Eexcess <
1

Mgas

� �
G dV dt; �12�

where Mgas is the mass of the gas halo, and G is the net heating

rate per unit volume. In general, G thus includes heating by

supernovae and AGN, and accounts for the energy lost through

radiative cooling. We refer to G simply as the rate of non-

gravitational heating. The volume integration is made over all of

the gas that eventually forms the gas halo, and so the volume itself

is irregular and varies with time.

However, there are mechanisms other than G that can affect the

final value of Eexcess, and hence warrant at least a mention. In what

follows, we shall consider a single halo and the evolution leading

up to its virialization. We use the term `protohalo' to refer to the

contents of this halo at all times earlier than the virialization time

(note that the protohalo is not itself a halo, but it can contain

progenitor haloes).

Briefly, the mechanisms are as follows.

(i) If the evolution of the gas distribution (which otherwise

traces the DM distribution fairly well) is modified significantly by

non-gravitational processes, then there can be a `gravitational

contribution' to Eexcess.

(ii) If the gas pressure outside the protohalo is raised

significantly due to heating, then the work it does on the

protohalo may need to be included.

(iii) In any progenitor halo that contains hot gas, work is done

(by the gas remaining) on gas that cools out near the centre. This

has the effect of reducing Eexcess.

(iv) Gas that is converted to stars and BDM is generally located

in positions of minimum potential. Removal of this gas may

therefore increase the mean energy of the gas that remains.

The mechanisms have been listed in order of increasing

sophistication in the arguments required. We consider each of

them below, and attempt to quantify their effects on Eexcess. We

also give a more formal definition of Eexcess, and discuss the

evolution of Egas in some detail. For definiteness, we shall base

our discussion on the protohalo of a cluster, but it can be

generalized to smaller haloes.

Quite aside from the effects mentioned above, there remains the

possibility that when the excess energy is large, some of the gas

associated with a DM halo may extend beyond the virial radius.

Also, there is some uncertainty in the efficiency with which gas

that is ejected from a halo recollapses into larger haloes. We

assumed that such effects are small in our model.

If the heating of protocluster gas is very uneven, e.g., if the gas

is heated by the radio jets of AGN, then the main effect may be to

unbind part of the intracluster medium. In this case, smaller

clusters would have lower gas fractions than larger clusters.

However, in order to match the observed LX 2 T relation, the

excess energies would still need to be very high. The X-ray

luminosity of a 2-keV cluster is an order of magnitude below the

self-similar prediction (see, e.g., fig. 1 of WFN98). Since LX

scales as the gas density squared, we would need to unbind 2/3 of

the gas to reduce LX by an order of magnitude (assuming that the

shape of the gas density profile remains unchanged). The excess

energy averaged over all of the gas is then <2/3 of the binding

energy of the cluster.

7.1 The `gravitational' contribution

We begin with a simplified scenario in which no gas is converted

into stars or BDM in the protohalo. We generalize the definition of

Egas (equation 5) to apply to the protohalo at any time, by

including the kinetic energy of bulk motion:

Egas ;
1

Mgas

�
rg

3kT

2mmH

� 1

2
v2 � f

� �
dV ; �13�

where v is the velocity of the gas, and the volume of integration is

as explained above. At early times, the protohalo occupies a

roughly spherical region; it later condenses into sheets, filaments

and haloes. As a first approximation, the potential f can therefore

be calculated from the mass distribution of the protohalo, ignoring

all matter outside it. [Using a larger region to calculate f does not

affect our argument, but this simplifies estimates of Egas(t).] We

set f � 0 at infinity.

In Appendix B (equation B12) we show that Egas obeys

dEgas

dt
� 1

Mgas

�
rg

­f

­t
� G

� �
dV ; �14�

where we have assumed that the gas pressure at the boundary of

the protohalo is negligible. This implies that the rate of change of

Egas is given by the net rate of non-gravitational heating, plus a

weighted average of ­f=­t: Since f is dominated by the

contribution from DM, we shall make the approximation

throughout that f is unchanged by modifications in the gas

distribution. This leads to the important observation that the gas

processes which drive G do not have an immediate effect on the

other, gravitational term. (This would not be the case if, for

instance, that term included ­rg/­t instead of rg.) This allows us

to consider the two terms on the right-hand side separately.

In the absence of non-gravitational processes (implying G � 0�;
we expect Egas to increase as the system expands, and to decrease

after the turnaround time, ta. The final value of Egas, at the

virialization time tv, is given by equation (4) in our model. A

schematic diagram of this is shown in Fig. 22. Equation (4) itself

simply expresses how we expect Egas to scale in the absence of

non-gravitational processes.

The formal definition of Eexcess is thus the difference between

the actual value of Egas at tv and the value obtained in the absence

of non-gravitational processes. Now suppose that the inclusion of

non-gravitational heating does not modify the gas distribution at

all. In this case, the gravitational term in equation (14) is not

affected. Eexcess is then given by equation (12) exactly. This is

illustrated in Fig. 22 by a single, small injection of energy at time

th. The subsequent evolution of Egas is unchanged.
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If the energy injected is large (comparable to |Egas|), then it can

make the gas distribution more extended in the potential well of

the protohalo. This is likely to reduce the magnitude of the

gravitational term in equation (14), because more weight is given

to areas of smaller |f |, where j­f=­tj is also likely to be smaller.

The net change in Egas between energy injection and tv is therefore

reduced. This is illustrated by the solid curve resulting from the

large injection of energy in Fig. 22. Its deviation from the dashed

curve (which would describe Egas if the gas distribution were not

modified) leads to an excess energy that is larger than the energy

originally injected. We refer to the difference between the solid

and dashed curves at tv as the `gravitational contribution' to

Eexcess. In general, the gravitational contribution is given by

1

Mgas

� �
�rg 2 rg;G�

­f

­t
dV dt: �15�

Here and below, we use a subscript `G' to imply the same system

evolved without including non-gravitational processes.

The above argument suggests that provided Egas;G�th� .
Egas;G�tv�; the gravitational contribution associated with a large

injection of energy is likely to be positive, especially if the above

inequality is large. From Fig. 22 we can see that this is no longer

true if th is earlier than some time t1, given by Egas;G�t1� �
Egas;G�tv�: However, a rough estimate of t1 gives t1 � 0:09tv (using

the spherical collapse model and assuming that the radius of the

system at t1 is equal to the virial radius). It therefore seems likely

that most of the heating would occur after t1.

In general, the gravitational contribution to Eexcess is difficult to

estimate, and would require modelling with hydrodynamic

simulations. It would depend on the total energy injected, and

when it was injected (on average). It would probably be stochastic

as well. This is reminiscent of the `bias parameter' used to relate

the clustering of galaxies to the clustering of DM, suggesting that

perhaps the exact value of Eexcess can be related to the energy

injected by some bias parameter.

From Fig. 22, the maximum possible gravitational contribution

would in principle be given by injecting sufficient energy at ta to

raise Egas to almost zero. Assuming that the gas so dispersed that

­f=­t < 0; the gravitational term in equation (14) then vanishes.

Hence Egas < 0 at tv, and Eexcess would be greater than the energy

injected by Emax < �Egas;G�ta

tv
: The axis of Egas in Fig. 22 has been

marked with intervals of Emax, according to rough estimates of the

absolute values of Egas,G at ta and tv (derived in Appendix C). In

this idealized example, Eexcess is therefore ,50 per cent greater

than the energy injected. Such an increase could assist in breaking

the self-similarity of clusters.

7.2 Work done at the outer boundary

If gas in the protohalo does work on gas outside, we would expect

this to reduce Egas, and vice versa. Conceptually this is quite

simple, but we need to follow the gas in more detail than before.

We introduce the term `protogas halo' to refer strictly to the gas

which eventually forms the gas halo. (Thus it does not include gas

that is converted into stars or BDM before virialization. We do not

explicitly account for gas that is recycled from stars, which should

be only a small fraction of the intracluster medium.) The mass of

the protogas halo is thus constant with time.

To distinguish this from our earlier discussion, we introduce egas

to give the total specific energy at a position comoving with the

gas:

egas � 3kT

2mmH

� 1

2
v2 � f: �16�

Integrating this over the mass of the protogas halo gives the total

energy,
�

egas dm � MgasEgas: In Appendix B, we show that

d

dt

�
egas dm �

�
�2Pv� Tv� ´ dA�

�
rg

­f

­t
� G

� �
dV ; �17�

The only change from equation (14) is the additional surface

integral, in which P is the gas pressure, T is the viscous stress

tensor, and dA is a vector element of surface area. The surface

integral gives the rate of work done by the protogas halo on other

gas. The viscous term is almost certainly negligible for our

purposes, so we assume that it vanishes. The work done at the

outer boundary of the protogas halo is then a straightforward

integral of P dV.

Part of the motivation for estimating this is because, if the gas is

heated when it is diffuse, then it is conceivable that the work done

by compressing the protogas halo would boost the final excess

energy (due to the increased pressure). Note that it is the change in

work done as a result of heating that we are interested in. Since

hydrodynamic simulations which do not include non-gravitational

processes result in almost self-similar X-ray clusters, we can be

assured that any work done does not prevent them from following

a self-similar energy equation such as (4). For simplicity, we shall

consider the total work done after the turnaround time, to see if

this effect can increase Eexcess.

We expect most of the work to occur on those parts of the outer

boundary which form the ends of filaments and, possibly, the

edges of sheets, because density and temperature are highest at

these surfaces. Although the rest of the outer boundary has a much

larger area, we shall assume that the pressure there is so small that

the work done there is no more than that at the end of filaments.

For filaments, the volume swept out by the end surfaces should be

comparable to the volume of the filaments. This is because infall

occurs along the filaments in general. Using the spherical collapse

model for comparison, the volume of the sphere at turnaround is

8V200, where V200 is the volume of the virialized halo. Let there be

Figure 22. A schematic diagram of the evolution of Egas with time. The

times th, ta and tv give the time of energy injection, the turnaround time and

the virialization time respectively. The lowest curve gives the evolution of

Egas in the absence of non-gravitational heating or cooling. Eexcess is

defined as the deviation from this curve at tv. The other two solid curves

show the effects of injecting a small and large amount of energy. In the

latter case, there is a `gravitational contribution' to the excess energy,

given by the difference between the solid and dashed curves at tv.
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an effective pressure Peff; then the work done on the protogas halo

between the turnaround time and virialization is 7feffV200Peff,

where 7feffV200 is the effective volume swept out by the said

surfaces. Letting Peff � rg;effkTeff=�mmH�; where we have defined

an effective density and temperature, the work done is then given

by

7f effV200

rg;effkTeff

mmH

� 7f eff

rg;eff

rg

kTeff

Mgas

mmH

� �
; �18�

where rg is the mean density of the virialized gas halo, and Mgas/

mmH is the number of particles in the gas halo. It follows that the

contribution to Egas is given by

7f eff

rg;eff

rg

kTeff

keV

� �
keV particle21: �19�

The volume filling factor of filaments, which we use to

approximate feff, naturally depends on the threshold density

above which we define our filaments. From hydrodynamic

simulations of the IGM in a CDM V � 1 cosmology (Zhang

et al. 1998), threshold overdensities of about 1 to 5 (relative to the

background baryon density) result in filamentary structures, but

higher than ,10, the structures obtained become dominated by

knots rather than filaments. Most of the filamentary structures also

appear to be in place by z � 5; and exhibit mild evolution after

that (Zhang et al. 1998). We shall use a fiducial value of f eff ,
0:01 and a fiducial overdensity of 10. In an V � 1 universe, rg is

200 times the background density. In the simulation, the filaments

have a typical temperature of ,1023 keV. We thus obtain a

fiducial value of 7 � 0:01 � 0:05 � 1023 � 3:5 � 1026 keV

particle21 for the work done in the absence of heating. This is

clearly negligible.

If all of the gas in the filaments is heated strongly to a

temperature of ,1 keV, then the gas haloes within would also be

flushed out. This would momentarily increase the effective density

of the filaments. Substituting the values rg;eff=rg � 1=3 and

kTeff � 1 keV; the work done becomes 0.02 keV particle21. In

reality, the gas would continue expanding out of the filaments, so

that the volume filling factor feff would increase. Assuming that

the gas expands adiabatically, rg;effTeff / Peff / 1=f
g
eff ; where

g � 5=3: This suggests that the actual work done would be less

than the above estimate, and therefore !1 keV particle21. The

caveat is that we have not accounted for gas that is more diffuse

than the filaments, which may also be heated to ,1 keV particle21.

7.3 Work done on hot gas that cools

In this and the following section, we consider how the conversion

of gas into stars and BDM inside the protohalo may affect the total

energy of the gas remaining.

If a progenitor halo contains hot gas which cools out, then work

may be done by the protogas halo on the gas that cools. (In cold

collapses this should be very small, as the gas is in general not

pressure-supported.) This would reduce the total energy of the

protogas halo. However, the gas remaining started out at larger

radii; therefore it had a higher than average potential energy

before cooling started. This effect is discussed more generally in

the next section, and it works in the opposite direction. The net

effect can be investigated with a spherical hydrodynamic

simulation of a hot gas halo which cools.

Here, we describe a simple way to obtain an upper limit on the

work done, using our simulations. Suppose that the protogas halo

has an inner surface or `bubble' that lies inside some progenitor

halo that contains hot gas (the `bubble' is likely to quite irregular).

Let rg and T be the density and temperature at this surface. Then

the work done as the bubble shrinks is
�

P dV ��
kT=�mmH� rg dV : We shall assume that the gas halo is

isothermal. Now, rg dV at the bubble wall is smaller than the

mass of the corresponding gas that cools out, because the latter

had an initial density greater than rg. It follows that if we replace

rg dV in the integral with dm, the mass of gas that cools, then we

would overestimate the work done. Hence kTmBDM=�mmH� gives

an upper limit on the total work done, where mBDM is the mass of

hot gas converted into BDM in our simulations. (Note that it does

not actually matter whether the gas is converted into BDM, stars,

or a cold disc.)

However, if all of the hot gas in the progenitor halo cools out,

then the `bubble wall' must lie outside the gas halo, where the

pressure is probably negligible. This suggests that we should not

count such cases at all.

Over the history of the protogas halo, the total work done on hot

gas that cools is thus ,
P

kTmBDM/(mmH), where the summation is

made over all progenitor haloes that did not cool out all of their

hot gas. The reduction in Egas is therefore less than

1

Mgas

� �X
mBDM

kT

keV

� �
keV particle21: �20�

We computed this quantity using Model B (i.e., only isothermal

gas profiles) and both sets of parameters given in Table 3. For

small clusters �T < 2 keV�; we obtain around 0.25 keV particle21,

with a scatter of 50 per cent each way. For large clusters

�T < 10 keV), the upper limit is about double this. The two

simulations gave similar results.

[We note that the bubble is just an imaginary surface for

separating different subsets of gas. If heating (in the form of G)

occurs inside a bubble, gas outside can still be heated via the

surface term in equation (17). For most purposes, the distinction is

best ignored.]

7.4 The effect of gas removal

Having developed the machinery to follow clumps of gas

individually, it is natural to ask whether the spatial distribution

of the protogas halo can itself result in excess energy. This

becomes clear if we consider the protogas halo at very early times.

Its outer boundary is then almost spherical, but it would contain

many `bubbles' inside, as described above. If the bubbles occur

preferentially towards the centre of the sphere, then the gas would

have positive excess energy, because fractionally more gas would

be found at larger radii and higher potentials than in a uniform

distribution. Again, we are comparing to the case without non-

gravitational processes, for which the protogas halo is just a

uniform sphere at very early times. In Section 8.4, we suggest how

a positive excess energy can occur in this way, and make simple

estimates of its magnitude.

To estimate the excess energy, it is easier to make comparisons

when the halo has virialized, because the time evolution of�
egas dm is complicated. Consider a virialized gas halo obtained

without cooling: only a subset of its gas particles would remain in

the gas halo if the system were evolved with cooling included. If

this subset has a more extended distribution than the entire gas

halo, then the subset would have a positive excess specific energy.

Assuming that the gas is isothermal for simplicity, Eexcess can be
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estimated by comparing Egas for the subset with that for the entire

gas halo.

We note that the above method actually overestimates Eexcess,

for it does not account for the work done on the cooling gas, and it

probably overestimates the gravitational contribution in the

following way. Since we compute Egas after virialization, the

evolution of
�

egas dm for the subset of gas particles is already

accounted for. Since the subset is more extended than the whole,

there is likely to be a positive gravitational contribution. However,

in reality, gas belonging to the subset would gradually fall to

smaller radii to replace cooled gas. The method does not account

for this, and therefore overestimates the gravitational contribution.

If a hydrodynamic simulation of a cluster is performed with

cooling, all these effects would be naturally accounted for. In this

case, Eexcess could be computed exactly by comparing with the

same cluster evolved without cooling.

8 B R E A K I N G T H E S E L F - S I M I L A R I T Y O F

C L U S T E R S

In Section 5, we showed that excess energies of about 1 keV

particle21 or more are required to match the properties of X-ray

clusters. However, we found that our model generates only

,0.1 keV particle21 from supernova heating. Nevertheless, the

excess energy deduced from the iron abundance of X-ray clusters

can be as high as 1 keV particle21 (WFN98). To obtain this result,

we made two crucial assumptions: that most of the iron originated

from SNII, and that a large fraction of the supernova energy ± we

assumed 4 � 1050 erg per supernova ± is retained.

Unfortunately, the first assumption is already in doubt. A recent

analysis suggests that SNIa supply 30±90 per cent of the iron in

clusters, depending on the supernova model (Nagataki & Sato

1998). Recall that the same amount of iron contributed by SNIa

corresponds to ,10 times less energy. As for the supernova energy

that is retained, Thornton et al. (1998) have made a systematic

study of supernovae exploding in cold gas (1000 K) in a range of

gas densities and metallicities. They find that in the late stages of

evolution, the supernova remnants have total energies of about

�9±30� � 1049 erg (they assumed initial energies of 1051 erg per

supernova). We note that if the supernova rate is sufficiently high

that remnants overlap before going radiative, then the heating

efficiency may be higher in reality. We are therefore unable to rule

out supernovae as the source of the required energy, based on the

present data. However, it is our opinion that this scenario is only

marginally acceptable.

The purpose of this section is to move beyond the confines of

our model, and discuss other possible approaches to breaking the

self-similarity of clusters.

8.1 Supernova heating

Assuming that all the excess energy can be provided by

supernovae, we consider the basic properties that such a model

would need to have. First of all, it is clear that a large fraction of

the iron in clusters would have to come from SNII. To obtain

enough supernovae, most of the stars observed in present-day

clusters would need to be formed with a flattened IMF: for

example, boosting the standard supernova rate by a factor of 5,

and assuming a gas-to-stellar mass ratio of 15 (the same

parameters as in Section 6), gives an iron abundance of ZSNII �
0:15 Z(; provided that all of the iron is deposited in the

intracluster gas. This corresponds to 1 keV particle21 if we set

eSN � 1:8. (Since this is already very high for eSN, we would not

want ZSNII to be much lower.) Note that practically all SNII would

have to have such a high heating efficiency, and so most star-

forming galaxies would have to be involved in the heating process.

We showed in Section 6 that the main obstacle to obtaining

higher excess energies in our model was the assumption that gas is

ejected at the escape velocity of host haloes. For gas heated by

supernovae to escape from a halo with much greater than the

escape energy, it needs to find a clear path out of the halo.

Unfortunately, this is difficult if the site of star formation is

surrounded by a hot gas halo, and a continuous infall of cooling

gas may also be problematic. If a clear path is not found, then gas

surrounding the site of star formation would be heated gradually;

it would leave the heat source as soon as it had sufficient energy to

escape the halo, and so it would be ejected with no more than the

escape energy. Since haloes *1012 M( generally contain hot gas,

we shall suppose that the heating occurred in less massive haloes.

In addition, we show in a separate paper (Wu, Fabian & Nulsen

2000) that most of the gas associated with haloes in the range

,5 � 1012±1014 M( must lie outside their virial radii, and so it is

clear that at least some of the heating must have occurred in less

massive haloes. The gas would therefore be ejected with excess

energies *10 times the binding energy of these haloes (see

Fig. 18). To do this, supernovae would need to carve out

`chimneys' in the surrounding gas, for the hot gas to escape from.

This could be made easier by delaying star formation until most of

the gas has settled into a cold disc, e.g., by magnetic pressure,

turbulence and/or angular momentum support.

To keep radiative loss to a minimum, gas needs to be rapidly

heated to very high temperatures (,1 keV) and then ejected. Gas

that is not ejected must not receive much of the energy, as the

cooling times of galaxies are relatively short. There is also the

problem of dilution: if only a certain fraction of the intracluster

medium is heated in this way, then gas would need to be ejected

with correspondingly higher excess energies.

A side effect of this scenario is that the ability of supernovae to

regulate star formation would be greatly diminished. Since most

of the energy must be channelled into gas that is ejected, the main

role of supernovae is to regulate the quantity of cold gas that is left

in the halo. However, for the same amount of supernova energy,

the amount of gas that is ejected is &1/10 of that in a more

conventional model which assumes that gas is ejected at about the

escape velocity. Therefore another more effective regulator of star

formation would be required. Otherwise, the bulk of star

formation would occur in the smallest haloes, and more massive

haloes would become very gas-deficient. One possibility would be

to assign a long time-scale for star formation in cold gas,

following other SAMs (Kauffmann, White & Guiderdoni 1993;

Cole et al. 1994; Somerville & Primack 1999), although the

published time-scales would need to be increased.

Is it possible for supernova heating to continue in the hot gas

haloes of groups? Observations suggest that 10±20 per cent of

cold gas deposited in cooling flows may form stars (Cardiel,

Gorgas & Aragon-Salamanca 1998). In addition, the binding

energies of haloes *1013 M( in mass are around 1 keV particle21

or more, so it would be possible to reach the required excess

energies in these haloes without ejecting their gas. We shall briefly

discuss some of the difficulties with this model. First, groups are

gas-poor compared to clusters (Wu et al. 2000), so it is unclear

how much gas would be available to form stars, especially as the

cooling times are increased by the low gas density. Secondly, gas
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cools and forms stars gradually in a cooling flow, so that

supernovae would heat surrounding gas which is in the process of

cooling. It is therefore unclear how efficiently supernovae can heat

the gas that does not cool, since the heating may simply slow

down the cooling flow.

In any case, the model described is already tightly constrained

by the present data, so it can be tested in several ways with future

observations. Spatially resolved spectral analysis will allow us to

measure the average metallicity of intracluster gas properly. Most

of the present measurements are emission-weighted, which would

overestimate the average metallicity if a negative metallicity

gradient is present. Better estimates of the SNIa contribution to the

iron abundance may also rule out the above model. Our own

results suggest that if X-ray clusters with T , 2 keV turn out to be

isothermal, then their excess energy should be about 2 keV

particle21, instead of 1 keV particle21 (see Fig. 15). Spatially

resolved temperature and density profiles would therefore further

constrain the energy requirements and therefore the models that

are allowed.

The above discussion may be altered if hypernovae releasing

,1052 erg each (Iwamoto et al. 1998) were common. Since the

progenitors of hypernovae are believed to be stars of mass

*40 M(, such a scenario would still require an IMF strongly

biased towards very massive stars.

8.2 Pre-collapse gas at high entropy

Thus far, we have used the total energy of a gas halo as the main

constraint on its structure. In this section we shall discuss a

different constraint, namely the gas entropy, which we measure

with the quantity s � T=n
2=3
e :

It was proposed by Evrard & Henry (1991) and Kaiser (1991)

that a better match to the LX 2 T relation could be obtained if the

IGM was `preheated' to a high entropy prior to collapse of the gas.

Navarro et al. (1995) used this method in hydrodynamic

simulations of three clusters, using a gas fraction of 0.1 in an

Einstein±de Sitter universe. By giving all gas particles a uniform

high entropy at a redshift of z � 3 (no radiative cooling was

included), they were able to obtain clusters that closely followed

LX / T3:
More recently, Ponman et al. (1999) have measured the entropy

of gas in clusters at one-tenth of the virial radius (to avoid possible

cooling flow regions) and found that the entropies measured in

poor clusters and groups were higher than predicted assuming

self-similarity. Instead, the entropies appeared to settle on a lower

limit or `floor' given by T=n
2=3
e , 100h21=3 keV cm2: This

suggested that perhaps all of the gas had been preheated to this

entropy, so that outside any cooling region, the entropy would

have at least this value (since shock heating always increases the

entropy). Balogh et al. (1999) investigated this idea by assuming

that the preheated gas evolves adiabatically. Using an initial

entropy consistent with the observed `entropy floor', they

found that the isentropic model could fit the properties of

groups �T & 1 keV�; but could not match the properties of

clusters. This was attributed to the need for accretion shocks to

raise the entropy further in clusters.

We have stressed that clusters need to have sufficient excess

energy in order to match the LX 2 T relation. We therefore argue

that preheating the gas to an entropy floor alone would not solve

the problem unless the excess energy is sufficiently high.

However, this may turn out to be a superfluous point, since

creating an entropy floor probably requires large amounts of

energy anyway (see below). We also note from Fig. 16 that the gas

profile which requires the least excess energy to match the data

also has the highest entropy near the centre. Therefore it clearly

helps if we try to raise the entropy as high as possible.

The energy required to raise the entropy to a certain level

depends very much on the density of the gas. Since the IGM is

very diffuse in places, it seems that a relatively high entropy can

be achieved with very little energy. However, the difficulty is

heating most of the gas in the protocluster in this way, especially

the gas which eventually forms the core of the cluster. This is

because the minimum density experienced by the gas is limited by

the overdensity that led to the cluster in the first place (as well as

smaller scale density fluctuations). The spherical collapse model

gives a simple illustration of this constraint.

To estimate the `advantage' of heating the gas at low density,

we need to compare the density at the time of heating to the final

density of the gas, i.e., we need to estimate the compression ratio.

Using the spherical collapse model, the turnaround radius of the

sphere is twice the final virial radius, so that the mean density of

the sphere has a minimum equal to 1/8 of the mean density of the

virialized halo. This simple model suggests that adiabatic

compression can increase the temperature of preheated gas by a

factor of 4 at most.

Alternatively, we can compare the minimum density obtained

above to a fiducial density of ne � 1023 cm23 near the centre of a

cluster (above which cooling can significantly modify the entropy

during the life of the cluster). The mean gas density at turnaround

for a halo that collapses at time t is given by 200f gas=�48pGt2�;
where fgas is the gas fraction. This implies an electron density of

ne;min � 2:0 � 1025f 0:2=t2
10 cm23; where t10 � t=�1010 yr� and

f 0:2 � f gas=0:2: Thus the temperature increase when this gas is

compressed to density ne � 1023 cm23 is a factor of

13t
4=3
10 �n23=f 0:2�2=3; where n23 � ne=�1023 cm23�: In reality,

this factor is much reduced by clumping of the gas into filaments

and sheets by the turnaround time, so that typical value of ne,min

should be much higher than we have estimated. In addition, the

central region of the cluster, with roughly the fiducial density of

ne � 1023 cm23; almost certainly virialized at an earlier time as a

less massive halo. If this virialization time is used in t10 and the

filamentary nature of the gas at turnaround is accounted for, then

the temperature increase due to adiabatic compression is only a

factor of a few.

To obtain more precise estimates, we need to use a

hydrodynamic simulation. Assuming that the temperature increase

is a factor of 4, the isentropic profile in Fig. 16 which requires the

least excess energy has a temperature of just over 3 keV at 0.1r200.

This would therefore imply a temperature of (3/4) keV before

compression, or a thermal energy of (9/8) keV particle21.

8.3 Heating by active galactic nuclei

Energetically speaking, the total energy released in the formation

of massive black holes at the centres of galaxies is sufficient to

heat all the baryons in the Universe to very high excess energies.

However, the mechanism for injecting this energy into the gas is

uncertain: this may occur through jets and winds, but the energy

released in this form is not well known. On the other hand, the

energy released as radiation is relatively well measured.

Ensslin et al. (1998) have estimated the total energy released by

black hole formation in the Coma cluster. They assumed a mass-

to-light conversion rate of e < 0:1; and roughly the same rate of
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energy release in relativistic particles and magnetic fields (as in

the jets of radio galaxies). They concluded that the total energy

released in the latter form was comparable to the thermal energy

of the gas in the Coma cluster. Therefore, if all of this energy was

injected into the gas, it could significantly modify the gas

distribution of the cluster.

It is possible to make a similar estimate by averaging over all

the baryons in the Universe. From the observed luminosity density

of AGN, the total mass density of black holes in the Universe can

be determined. Using the X-ray background intensity at 30 keV,

Fabian & Iwasawa (1999) obtain a range of �6±9� �
105 M( Mpc23 for the black hole density. [This is higher than

earlier estimates (Soltan 1982; Chokshi & Turner 1992), which

used optical counts of AGN. It is likely that these counts suffered

from strong intrinsic absorption (Fabian et al. 1998).] Assuming a

mass-to-light conversion rate of 0.1 and a black hole density of

6 � 105 M( Mpc23; the total energy radiated by AGN is then 6:4 �
1058 erg Mpc23: If the same amount of energy is available in

relativistic particles and magnetic fields, and it is divided

uniformly over all the baryons in the Universe, we would obtain

an energy injection of 3.7 keV particle21. As before, we have

assumed Vb � 0:08 and h � 0:5: This amount of heating would

therefore be more than enough to break the self-similarity of

clusters.

On the downside, we note that only about 10 per cent of AGN

have observed radio jets. If such jets provide the only mechanism

for AGN to heat surrounding gas, then the estimated excess energy

would be correspondingly reduced. However, it is possible that

radio-quiet quasars may also heat surrounding gas through

outflows of thermal gas or poorly collimated `jets' of radio-

emitting plasma (Fabian 1999; Kuncic 1999).

The advantage of this form of heating over supernova heating is

that it need not be intimately connected with the process of star

formation. By obtaining the required energy from AGN, super-

novae would be able to perform their usual role as regulators of

star formation (see above). In addition, since an AGN is a single

powerful source of energy, the gas being heated is more likely to

be raised quickly to a very high temperature (*1 keV). In this

case, the cooling times would be comparable to those of X-ray

clusters and radiative loss would be minimised.

8.4 Preferential removal of gas

As explained in Section 7.4, it is possible that the removal of

cooled gas can result in an excess specific energy in the gas that

remains to form the intracluster medium.

The excess energy can be estimated from the subset of gas

particles, in a cluster evolved without non-gravitational processes,

which would remain in the gas halo if radiative cooling is

included. If the subset has a more extended distribution than the

entire gas halo, then a positive excess energy would result. This

would occur if gas at smaller radii had a higher probability of

cooling out than gas at larger radii.

Such a scenario may occur as follows. Theory predicts that the

first haloes of a given mass to collapse should be much more

strongly clustered than the background density distribution

(Kaiser 1984). For instance, the large-scale over-densities that

created present-day clusters also raised the overall density of

smaller-scale fluctuations, so that the first galaxy haloes to

collapse had a high probability of being associated with future

clusters. The above has been used to explain the strong clustering

of `Lyman-break galaxies' (LBGs) observed at z , 3 (Adelberger

et al. 1998; Giavalisco et al. 1998; Steidel et al. 1998), where good

agreement with theoretical predictions have been obtained if the

typical LBG is associated with a halo of mass ,1012 M(. N-body

simulations show that the densest peaks in the distribution of

LBGs are likely to be the progenitors of future clusters (Governato

et al. 1998; Wechsler et al. 1998). If we make the reasonable

assumption that the large-scale over-density that led to a cluster

was highest near the centre, then it seems likely that the LBGs

would form preferentially near the centre of the cluster. Naturally,

as more of the protocluster goes non-linear, galaxies would

become more uniformly distributed in the protocluster. Never-

theless, the first subhaloes of a given mass to collapse also have

the highest mean gas density, so that they have the shortest cooling

times. Hence gas is more likely to cool out, and be removed, near

the centre of the cluster.

To obtain an upper bound on the excess energy obtainable in

this way, we modelled the virialized cluster (in the no-cooling

case) with singular isothermal spheres �r / r22� for both the gas

and dark matter. Assuming a primordial baryon fraction of 0.27, a

cluster gas fraction of 0.17 is obtained if we remove all of the gas

inside a radius of (10/27)r200 in the above gas distribution (recall

that this amount of cooling was obtained in our simulations). The

difference in Egas before and after the gas is removed thus gives

the excess energy. Since the gas is isothermal, it is necessary to

calculate only the gravitational term in Egas, for the thermal terms

cancel when we take the difference. The result is Eexcess �
�10=17� ln�10=27�GMtot=r200 � 0:58GMtot=r200; where Mtot is the

total mass of the halo. For the cluster displayed in Fig. 15 (which

has a virial radius of 1.46 Mpc), this gives an excess energy of

1.4 keV particle21.

In reality, the gas removed must be more extended than

assumed above. Removing a uniform fraction of gas at each radius

naturally leads to no excess energy. If we model the more general

case by removing the gas in two component: a `uniform'

component, followed by all the gas inside a radius of fr200, then

we get

Eexcess � 2
f ln f

1 2 f

GMtot

r200

: �21�

For example, if half of the gas removed in the uniform component,

then f � 5=�27 2 5� � 5=22: This gives Eexcess � 0:44GMtot=r200;
or 1.0 keV particle21 for the above cluster. Increasing the uniform

component to 3/4 of the gas removed, so that f � 2:5=19:5; gives

Eexcess � 0:30GMtot=r200 or 0.7 keV particle21.

In a separate paper (Wu et al. 2000), we show that groups are

even more strongly affected by heating than clusters, so that most

of their gas is outside their virial radii. It does not seem possible

for cooling alone to explain this phenomenon. Therefore the above

mechanism would have to be supplemented by heating in the

conventional sense.

8.5 The bottom line

Of the three main methods discussed, supernova heating appears

only marginally acceptable based on current data, and requires a

much higher heating efficiency than is commonly assumed.

Preferential cooling also struggles to provide sufficient excess

energy, and would not be able to explain our results for groups.

Since it is possible for AGN to provide more than enough energy,

this would be our preferred choice. However, the actual heating
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mechanism in this case is uncertain. It remains possible that all

three mechanisms contribute to the excess energy.

9 C O N C L U S I O N S

We have constucted a self-consistent semi-analytic model which

follows the excess energies resulting from supernova heating and

radiative cooling, and modifies newly collapsed gas haloes

accordingly. The gas profiles of virialized haloes are selected

from a two-parameter family of polytropic gas profiles in NFW

potential wells.

In the absence of non-gravitational heating or cooling, the gas

haloes of model clusters are approximately self-similar, in

agreement with the results of hydrodynamic simulations. In

particular, their bulk properties follow self-similar scaling laws

such as LX / T2: The model was then normalized by matching to

the largest observed X-ray clusters, as these are least affected by

non-gravitational heating.

Four contrasting `heating models' were used to investigate the

excess energy required to match X-ray cluster data. Each heating

model represented a different way of modifying gas profiles in the

presence of heating. In addition, we investigated the excess energy

available from supernova heating in our model, and discussed

effects our model could not account for which may possibly

contribute to the excess energy of gas haloes. In the last section,

we discussed other approaches to obtaining the required excess

energy, including a significantly modified model for supernova

heating, heating by AGN, and the removal of gas at low potentials.

We summarize our main conclusions below.

(1) The semi-analytic model is able to reproduce the observed

LX 2 T relation, temperature function, luminosity function and

mass deposition rate function, provided that the simulated X-ray

clusters are given excess energies of ,1 keV particle21 in order to

break their self-similarity.

(2) The excess energies required by each of the four heating

models to match the observed LX 2 T relation lie in the range

1.8±3.0 keV particle21. By analysing a fiducial cluster with T <
2 keV; we find that the minimum excess energy required is about

1 keV particle21 when all the available gas profiles are considered

(the winning profile in this case is isentropic). We note that other

authors require similar amounts of heating (Pen 1999; Loewen-

stein 2000).

(3) If the process that produces the excess energy ejects gas in

galactic winds at the escape velocity of the host halo (as assumed

by our model), then the resulting excess energies in haloes of all

masses follow a distinct pattern. This is largely determined by the

binding energies of haloes and the halo merger tree. The excess

energies are therefore not sensitive to parameters such as the

efficiency of supernova heating, eSN.

(4) In this case, the resulting excess energies in clusters are only

,0.1 keV particle21, an order of magnitude less than the required

amount.

(5) If the gas distribution is made more extended by a high level

of energy injection before the cluster virialized, then a positive

`gravitational contribution' to the excess energy is likely. This

may help to ease the energy requirements and will need to be

investigated with hydrodynamic simulations.

(6) Of the approaches discussed in Section 8 for obtaining the

required excess energy, more than enough energy is available from

AGN, supernova heating is only marginally acceptable, and

preferential cooling struggles to provide sufficient excess energy.

However, it remains possible that all three mechanisms contribute

to the excess energy of X-ray clusters.

It seems likely that similar excess specific energies to those in

clusters also occur in groups (Wu et al. 2000), in which case a

large fraction of the gas that belongs to groups would be outside

their virial radii. This may explain their steeper LX 2 T relation

(see also Balogh et al. 1999).

Future measurements of the gas density and temperature

profiles of groups and small clusters should clarify these issues,

and place much stronger constraints on the excess energy in low-

temperature clusters.
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A P P E N D I X A : F O R M U L A E F O R M O D E L L I N G

T H E G A S P R O C E S S E S

The equations used to model the gas processes described in

Section 2 are given below, along with formulae for some observed

quantities. Where required, we assume polytropic gas profiles in

NFW potential wells, as derived in Sections 3 and 4.1. We remind

the reader that the gas profiles used in the formulae are notional,

as explained in Section 2.2. To denote radius we use r and x

interchangeably, where r is the physical radius and x � r=rs:
We always calculate the quantities LX, MÇ , emission-weighted

temperature, and cooling flow power at a redshift of zero; thus any

evolution in these quantities over the life of a halo is accounted

for.

A1 The extent of cold gas, xcf

When a new halo forms, the ratio between the cooling time and

the free-fall time to the centre of the halo, t � tcool=tff ; determines

whether gas is able to form a hot hydrostatic atmosphere. A hot

gas halo forms when t . t0; where t0 is a parameter of the model.

If t , t0; then the gas remains cold in general (as virialization

shocks would be radiative and any heating would be transitory).

When t is greater or less than t0 everywhere, the above criteria

are simple to apply. Otherwise, if t increases monotonically with

radius, then there is a unique radius, xcf, where t � t0: Gas inside

of xcf is then classified as cold, and the remaining gas forms a hot

gas halo. In all cases, our model requires there to be one radius xcf

which lies in the range 0 to c, such that gas inside xcf is classified

as cold, and that outside as hot. Since t (x) is comparable to t0 in a

narrow range of halo masses (corresponding to normal galaxies),

the variation of t with radius is of concern only for this mass

scale. For this reason we will only discuss in detail gas profiles

used in Section 6 (i.e., those belonging to Models A and B). We

first derive the general expression for t(x) before considering less

well-behaved cases.

The cooling time of gas is given by

tcool � 3

2

rgkT=mmH

nenHL�T� ; �A1�

where rg, T, ne and nH (the electron and hydrogen number

densities respectively) are all functions of r. The three densities

are simply proportional to each other. The cooling rate is given by

nenHL(T), where L(T) is the cooling function. We use the cooling

function of BoÈhringer & Hensler (1989), which depends on

metallicity as well as temperature. We assume that the metallicity

of every gas halo is constant with radius. A simple estimate of tff is

obtained by computing the free-fall time for a test particle to reach

the centre of a sphere of uniform density:

tff �
���������������

3p

16Grtot

s
; �A2�

where r tot, the total density of the halo at the radius concerned,

has been substituted for this density. (The formula given is a factor

of
���
2
p

greater than that for a collapsing sphere of uniform density.)

This method does not account for the increased r tot towards the

centre of the halo, and so it is a slight overestimate.

It follows that

t � tcool

tff

� 3

2

���������
16G

3p

r
r2

g

nenH

 !
a

h200

T

T200

r
1=2
tot

L�T�rg

; �A3�

where we have used the expressions h200 � ammH=�kT200� and

a � 4pGrsr
2
s ; the latter being the characteristic potential of the

NFW profile. We assume a primordial composition of 0.9

hydrogen to 0.1 helium by number, which gives m � 0:619 and

r2
g=�nenH� � 1:707m2

H: Expanding r tot(x) and rg(x), we obtain

t�x� � 3

2

���������
16G

3p

r
r2

g

nenH

 !
ar

1=2
s

h200rg;200

1

L�T�g�x� ; �A4�

where we have defined

g�x� � x1=2�1� x�

� 1� g 2 1

g
h200

ln�1� x�
x

2
ln�1� c�

c

� �� � 1
g21

2 1
:

�A5�
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If 0 , xcf , c; then the equation t�xcf� � t0 is solved

numerically.

To obtain xcf, the model follows an algorithm which first

determines whether or not t(x) is `well-behaved'. This is done by

first approximating it as proportional to 1/g(x). Although L(T) is a

complicated function when considered over several decades of

temperature, the amount that T can vary in a given halo is limited.

The steepest temperature profile we use that may be of concern is

given by g � 5=3 and h200 < 10; which is used in Model A. Here

the temperature rises by about a factor of 3.5 from r200 to the

centre. In general, the temperature range in a halo is much smaller,

so that the mean variation of L(T) in haloes is not large.

In Fig. A1 we illustrate the general behaviour of 1/g(x), using

c � 5 and the same values as in Fig. 2 for g and h200. The

qualitative behaviour is the same for other values of c. For small

enough x, 1/g(x) always diverges. This is simply due to the

divergence of the NFW density profile and, as long as the

minimum occurs at sufficiently small x, as with the solid curve

�g � 1 and h200 � 10�; it is ignored. As we decrease h200 or

increase g , the minimum moves to larger radii, and 1/g(x)

becomes a flatter function. Eventually, the minimum disappears

and, if g is large, 1/g(x) becomes a steep decreasing function of x.

Since t and its interpretation are approximate, we use an

algorithm which is relatively simple. The criteria for whether

1/g(x) is well-behaved is given by its slope at x � 0:5: When this

slope is positive (the well-behaved case), 1/g(x) is sure to have a

minimum inside x � 0:5: If t . t0 at this minimum, then xcf � 0;

if t�c� , t0; then xcf � c; otherwise, t�xcf� � t0 is solved

numerically.

When this slope is negative instead, 1/g(x) is either relatively

flat or strongly decreasing at larger radii (see Fig. A1; note that

the latter occurs in Model A but not Model B). In this case, if

t�0:5� . t0 �x � 0:5 being where the slope is measured), then

xcf � 0 and all the gas is considered hot. We have made the

assumption that even if t , t0 at larger radii, there is sufficient

hot gas in the centre to provide a working surface on which

infalling gas can shock to high temperatures, so that a hydrostatic

atmosphere can still form (as discussed in Section 2). If

t�0:5� , t0, then xcf � c and all the gas is considered cold. [For

completeness, the algorithm actually allows for the situation, very

rare in Models A and B, when t�c� . t�0:5� in a `poorly behaved'

halo. In this case, it finds a numerical solution if t0 lies between

t (0.5) and t (c).]

A2 The fraction, funbind, of cold gas that forms stars

Supernova feedback from star formation is assumed to eject the

rest of the gas once there is sufficient energy to do so. The

fraction, funbind, of cold gas that forms stars is given by

f unbind

Mgas�x , xcf�
MSN

eSN4 � 1050 erg � Mgas�x . xcf�jEgasj

� �1 2 f unbind�Mgas�x , xcf�jEcoldj; �A6�
where Mgas is the total gas mass in the specified region, and MSN is

the mass of stars formed per resulting SNII. For a standard IMF

MSN � 80 M( (Thomas & Fabian 1990). Since we boost super-

nova rates by a factor of 5, MSN � 16 M( in this paper. The

energy released by one supernova into surrounding gas is eSN

4 � 1050 erg: Egas is defined in equation (5), and Ecold is defined as

for Egas, except that the thermal term is set equal to zero. |Egas| and

|Ecold| are average quantities which estimate the energies per unit

mass required to eject the hot and cold gas respectively.

If the solution to funbind in the above equation is greater than 1,

then the gas halo is not ejected. In this case, all the cold gas is able

to form stars and f unbind � 1:

A3 The mass of BDM that forms from hot gas

Whenever there is hot gas in a halo, some of it may be able to cool

to form baryonic dark matter (BDM) before the next collapse. The

cooling radius, rcool, is obtained by solving numerically the

equation

3

2

rgkT=mmH

nenHL�T�
����
r�rcool

� Dt; �A7�

where the left-hand side is the cooling time, and Dt is the time

from virialization to the next collapse or the present day,

whichever is sooner.

The mass of BDM formed is equal to the mass of gas inside

rcool minus the mass which has already formed stars, if any.

Sometimes no hot gas is able to cool in the given time, in which

case no cooling flow operates.

A4 The mass cooling rate, MÇ

The instantaneous mass cooling rate, MÇ , is estimated using

_M � dMgas�r�
dr

����
r�rcool

drcool�t�
dt

����
t�Dt

; �A8�

where Mgas(r) is the gas mass inside a radius of r, t is the time

since the virialization, and Dt is as defined above. The cooling

radius as a function of t, rcool(t), is obtained by substituting t for Dt

in equation (A7).

By differentiating equation (A7) with respect to rcool, we obtain

dt

drcool�t� <
3

2

r2
g

nenH

a

h200rg;200rsL�T�
d

dx

Trg;200

T200rg

 !
; �A9�

where we have assumed that dL�T�=dr is small. Expanding the

Figure A1. Plot of 1/g(x) [which is roughly proportional to t (x)], using the

same parameters and linestyles as in Fig. 2. The solid curve is given by

g � 1 and h200 � 10; the dotted curves are obtained by reducing h200, as

in Model B, and the dashed curves by increasing g , as in Model A (see text

for discussion).
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derivative gives

d

dx

Trg;200

T200rg

 !
� g 2 2

g
h200

rg;200

rg

1

x�1� x� 2
ln�1� x�

x2

� �
:

�A10�
Since dMgas�r�=dr � 4prg�r�r2; it follows that

_M � 4p
2

3

nenH

r2
g

r3
sr

2
g;200

a

g

g 2 2

x2�rg=rg;200�2L�T�
1

x�1� x� 2
ln�1� x�

x2

� �
��������
x�xcool

:

�A11�

A5 The cooling flow power

The cooling flow power is the bolometric luminosity of the

cooling flow region. It is given by

5

2

_Mk T�r � rcool�
mmH

; �A12�

which uses the enthalpy, 5kT=�2mmH�; to estimate the total energy

radiated per unit mass. It corresponds observationally to the

bolometric luminosity inside the cooling radius.

A6 The X-ray luminosity, LX

This is the sum of the cooling flow power and the bolometric

luminosity due to the gas outside rcool:

LX �
�r200

rcool

nenHL�T�4pr2 dr � 5

2

_MkT�r � rcool�
mmH

: �A13�

By the time of observation, the density profile of gas that

belonged to r , rcool differs substantially from that of the notional

gas profile due to the effects of radiative cooling. Hence the

cooling flow power is estimated separately. Although the changes

due to cooling are also felt outside rcool, because the volume is a

rapidly increasing function of the radius, the effect is only

significant close to rcool, so that we treat the atmosphere as

unmodified from the notional gas profile outside rcool.

A7 The emission-weighted temperature

This is the temperature that is implied whenever we refer to the

temperature of a cluster as a whole (as in Section 5). We calculate

the temperature as weighted by the luminosity outside rcool. It is

thus given by

Tew �
� r200

rcool
T�r�nenHL�T�p4r2 dr� r200

rcool
nenHL�T�4pr2 dr

: �A14�

A P P E N D I X B : G A S E N E R G Y E Q UAT I O N

We derive below the equations that govern Egas and egas. Egas,

defined in equation (13), is the mean total specific energy of gas in

a protohalo. The definitions of protohalo and protogas halo are

given in Section 7. We use egas (equation 16) to follow the total

specific energy of the gas at a position which moves with the gas.

The gas equations may be written

­rg

­t
� 7 ´ rgv � 0; �B1�

for the conservation of mass,

rg

dv

dt
� 27P� 7 ´ T 2 rg7f; �B2�

for the conservation of momentum and

rgT
dS

dt
�
X3

i;j�1

Tij

­vi

­xj

� G; �B3�

for the conservation of energy. Here rg, T, P, S and v are,

respectively, the density, temperature, pressure, specific entropy

and velocity of the gas, f is the gravitational potential, and T is

the viscous stress tensor (with components Tij). The Lagrangian

time derivative is

d

dt
� ­

­t
� v ´ 7: �B4�

The first term on the right in the energy equation is the viscous

heating rate. The second term, G, is the net additional heating rate

per unit volume due to effects other than adiabatic and viscous

heating. Such processes include supernova heating and radiative

heat loss.

The specific enthalpy is defined as H � e� PV ; where e is the

specific energy and V � 1=rg is the specific volume. Using the

first law of thermodynamics, de � T dS 2 P dV ; gives dH �
T dS� V dP; so that

rg

dH

dt
� rgT

dS

dt
� dP

dt
�
X3

i;j�1

Tij
­vi

­xj

� G� ­P

­t
� v ´ 7P; �B5�

where we have used the energy equation (B3) and expanded the

Lagrangian derivative. Using the momentum equation (B2) to

replace 7P in the last term gives, after some algebra,

rg

dH

dt
� 7 ´ �Tv� � G� ­P

­t
2 rg

d

dt

1

2
v2 2 rgv ´ 7f: �B6�

Converting v´7f in the last term into time derivatives of f , and

rearranging, we get

rg

d

dt
H � 1

2
v2 � f

ÿ �
2

­P

­t
� rg

­f

­t
� 7 ´ �Tv� � G: �B7�

Using equation (B1) and rgH 2 P � rge; this can be rewritten as

­

­t
rg e� 1

2
v2 � f

ÿ �h i
� 7 ´ rgv H � 1

2
v2 � f

ÿ �h i
� rg

­f

­t
� 7 ´ �Tv� � G: �B8�

Integrating this over a comoving volume V, we get�
V

­

­t
rg e� 1

2
v2 � f

ÿ �h i
dV �

�
­V

2rgv H � 1
2

v2 � f
ÿ �� Tv

h i
´ dA�

�
V

rg

­f

­t
� G

� �
dV ;

�B9�
where dA is a vector element of surface area. However, for any Q

and comoving volume V,

d

dt

�
V

Q dV �
�

V

­

­t
Q dV �

�
­V

Qv ´ dA; �B10�

so that when the partial derivative on the left-hand side of equation

(B9) is taken outside the integral, we get extra terms which cancel
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most of the surface terms, giving

d

dt

�
V

rg e� 1
2

v2 � f
ÿ �h i

dV �
�
�2Pv� Tv� ´ dA

�
�

V

rg

­f

­t
� G

� �
dV : �B11�

In Section 7.1 we assume a simplified scenario where no gas is

`removed' to form stars and BDM in the protohalo. We also

assume that the gas pressure and viscosity at the boundary of the

protohalo are negligible. If V is the volume occupied by gas in the

protohalo, then the surface integral above vanishes. Substituting

3kT=�2mmH� for e and using the definition of Egas (equation 13),

we obtain the result

dEgas

dt
� 1

Mgas

�
V

rg

­f

­t
� G

� �
dV : �B12�

In Sections 7.2 to 7.4, we follow the gas in the protohalo in

more detail, defining the protogas halo to include only gas that

eventually belongs to the virialized gas halo. Thus the mass of the

protogas halo is constant with time. The volume, V, that it

occupies is irregular at early times, containing `pockets' of gas

which are excluded from the protogas halo because they later

convert into stars or BDM. Using egas � e� 1
2

v2 � f
ÿ �

and dm �
rgas dV ; we rewrite equation (B11) as

d

dt

�
egas dm �

�
�2Pv� Tv� ´ dA�

�
V

rg

­f

­t
� G

� �
dV ; �B13�

where
�

egas dm is the total energy of the protogas halo. The

surface integral gives the rate at which the protogas halo does

work on neighbouring gas. In Section 7 we investigate the

pressure term only.

A P P E N D I X C : T H E E VO L U T I O N O F E G A S , G

In this appendix we obtain a simple expression for the variation of

Egas,G with time (where the subscript `G' implies that the system is

evolved without including non-gravitational processes), and obtain

rough estimates of Egas,G at ta and tv (see Fig. 22).

If the gas and dark matter have the same distribution, then

4pGrg;G � f gas7
2f for some constant f gas , 1: Now, by integrat-

ing by parts twice, we obtain Green's Theorem:�
f72 _f dV ;

�
�f7 _f 2 _f7f� ´ dA�

�
_f72f dV ; �C1�

where _f � ­f=­t: If the integrals are made over all space and f
vanishes at infinity, then the surface integrals vanish. Since rg;G /
72f; it follows that�
rg;G

­f

­t
dV � ­

­t

�
1
2
rg;Gf dV : �C2�

In order to substitute into equation (B12), where the integration is

made over the volume of the protohalo only, we need to assume

that rg;G � rtot � 0 outside the protohalo. The volume of

integration above can then be shrunk down to the protohalo.

Setting G � 0; equation (B12) gives

dEgas;G

dt
� 1

Mgas

d

dt

�
1
2
rg;Gf dV : �C3�

Therefore

Egas;G � 1

Mgas

�
1
2
rg;Gf dV � constant: �C4�

In Section 7.1, we define the quantity Emax � �Egas;G�ta

tv
: The

above result thus implies that

Emax � 1

Mgas

�
1
2
rg;Gf dV

� �ta

tv

<
1

Mgas

�
2 1

4
rg;Gf dV

����
tv

; �C5�

where we have assumed that the integral scales as the inverse of

the radius of the system, and that the turnaround radius is twice

the virial radius.

To obtain a rough estimate of the absolute value of Egas,G at tv,

we assume that the kinetic term in equation (13) is zero, and

estimate the thermal term. The gravitational binding energy of the

halo is equal to
� �1=2�rtotf dV : The virial theorem then implies

that the thermal energy of the gas halo is approximately

f gas�21=2� � �1=2�rtotf dV ; where f gas � rg;G=rtot is a constant

and possible boundary terms at r200 have been ignored. Dividing

by Mgas gives the specific thermal energy of the gas:� �21=4�rg;Gf dV=Mgas: Therefore

Egas;G�tv� <
1

Mgas

�
3

4
rg;Gf dV

����
tv

< 23Emax; �C6�

as shown in Fig. 22. It follows that Egas;G�ta� < 22Emax:
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