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Abstract: In the past few years, concepts from non-

Hermitian (NH) physics, originally developed within the

context of quantum field theories, have been successfully

deployed over a wide range of physical settings where

wave dynamics are known to play a key role. In optics, a

special class of NH Hamiltonians – which respects parity-

time symmetry – has been intensely pursued along several

fronts. What makes this family of systems so intriguing is

the prospect of phase transitions and NH singularities that

can in turn lead to a plethora of counterintuitive phe-

nomena. Quite recently, these ideas have permeated

several other fields of science and technology in a quest to

achieve new behaviors and functionalities in nonconser-

vative environments that would have otherwise been

impossible in standard Hermitian arrangements. Here, we

provide an overview of recent advancements in these

emerging fields, with emphasis on photonic NH platforms,

exceptional point dynamics, and the very promising

interplay between non-Hermiticity and topological

physics.

Keywords: exceptional points; non-Hermitian physics; PT

symmetry; topological photonics.

1 Introduction

Quantummechanics dictates that every observable should

be described by means of a self-adjoint or Hermitian

operator. In this respect, the Hamiltonian of a system –

being no exception to this rule – must exhibit real eige-

nenergies and orthogonal eigenstates, attributes necessary

for unitary evolution and conservation of probability.

However, while this universal conservation principle does

apply for a closed system as a whole, there is nothing to

exclude the possibility of energy exchange among its

subsystems. When considered individually, each subsys-

tem can see an overall growth or decay in energy or prob-

ability norm – aspects that can phenomenologically be

accounted for through the adoption of complex energy

eigenvalues. Indeed, approaching quantum mechanical

phenomena from such a “nonconservative” standpoint can

be traced back to the early studies of Gamow [1] on particle

decay or other contributions on neutron scattering [2]. On

the other hand, in many classical settings like optics, non-

Hermiticity is not always welcome. In particular, energy/

power dissipation has been traditionally considered

something undesirable, an aspect to be mitigated at all

costs (typically through the use of amplification) in order to

maintain the performance metrics of a device or a system.

At this point, one may naturally ask as to whether loss is

always a problem. If not, is there a strategy to use it judi-

ciously in order to attain new degrees of freedom?

A radical change in the way we perceive many of the

aforementioned aspects occurred when Bender and

Boettcher [3] realized that a large class of non-Hermitian

(NH) Hamiltonians can exhibit entirely real spectra, pro-

vided that they commute with the parity-time (PT) oper-

ator. Here, the parity operator P represents a reflection in

the coordinate space with respect to the origin, while T

signifies the time-reversal operator. This rather counterin-

tuitive result suggests that a PT-symmetric Hamiltonian

can display altogether real eigenvalues whenever its

pertinent NH parameters lie in the PT symmetry unbroken

phase. On the other hand, once the non-Hermiticity

*Corresponding author: Demetrios N. Christodoulides, CREOL,

College of Optics and Photonics, University of Central Florida, Orando,

4304 Scorpius St, Orlando, USA, E-mail: demetri@creol.ucf.edu.

https://orcid.org/0000-0003-3630-7234

Midya Parto, CREOL, College of Optics and Photonics, University of

Central Florida, 4304 Scorpius St, Orlando, Florida, USA. https://

orcid.org/0000-0003-2100-5671

Yuzhou G. N. Liu and Babak Bahari, Viterbi School of Engineering,

University of Southern California, 3737 Watt Way, Los Angeles, Los

Angeles, California, USA

Mercedeh Khajavikhan, Viterbi School of Engineering, University of

Southern California, 3737 Watt Way, Los Angeles, Los Angeles,

California, USA; CREOL, College of Optics and Photonics, University of

Central Florida, 4304 Scorpius St, Orlando, Florida, USA. https://

orcid.org/0000-0002-7091-1470

Nanophotonics 2021; 10(1): 403–423

Open Access. © 2020 Midya Parto et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/nanoph-2020-0434
mailto:demetri@creol.ucf.edu
https://orcid.org/0000-0003-3630-7234
https://orcid.org/0000-0003-2100-5671
https://orcid.org/0000-0003-2100-5671
https://orcid.org/0000-0002-7091-1470
https://orcid.org/0000-0002-7091-1470


parameter exceeds a certain critical threshold, the eigen-

states spontaneously break PT symmetry, thus entering

into a PT broken phase. This marks the onset of a phase

transition that entails NH degeneracies, better known as

exceptional points (EPs) [4]. In addition, the eigenfunc-

tions associated with these NH operators are no longer

orthogonal with each other; instead, they are now skewed.

Starting from these premises, one can then directly show

that a necessary (albeit not sufficient) condition for a NH

Hamiltonian to be PT symmetric is that its complex

potential should satisfyV( r
→

) � V
∗( − r

→

) [3]. Fromhere, one

can conclude that the real part of the potential must be

symmetric with respect to the origin, while the imaginary

component must be antisymmetric.

While the physical ramifications of the aforemen-

tioned mathematical findings remained for several years a

matter of debate, a series of subsequent studies indicated

that optics could provide instead an ideal test bed to realize

and experimentally investigate the implications of PT

symmetry andNHphysics in actual settings (see Figure 1A–

D) [5–10]. After all, in photonic arrangements, the refrac-

tive index profile plays the role of the potential in quantum

mechanics. Consequently, optical PT symmetry can be

readily established by judiciously distributing the gain and

loss in such a way that the refractive index profile is an

even function of position while the optical gain/loss

emerges as an odd function in the spatial coordinates.

These early studies incited a flurry of research activities in

many and diverse fields such as microwaves [11],

electronics [12], mechanics [13], optomechanics [14, 15],

acoustics [16, 17], atomic lattices [18–20], etc., all aiming to

harness the very characteristics of PT symmetry and EPs.

A distinctive feature of optical arrangements is the

possibility of controlling both the real and imaginary parts

of the electromagnetic permittivity in an independent

manner, without being over-restricted by the Kramers–

Kronig relations. In this regard, photonic platforms can

host a multitude of fascinating wave phenomena that

solely arise owing to a synergy between PT symmetry and

EPs on the one hand and Hermitian symmetries on the

other hand. A profound example of such fruitful in-

teractions is the newly emerging field of NH topological

photonics. Topological notions originally arose within the

context of condensed matter physics after the discovery of

topological insulators (TIs), where electron conduction

was found to be prohibited in the bulk while it can take

place in the periphery of a material via topologically pro-

tected unidirectional edge states [21–23]. These de-

velopments in turn inspired further research endeavors in

employing topological notions in optical arrangements,

which led to the observation of unidirectional transport

and robust topological edge modes in coupled resonators

and waveguide lattices [24–26]. Unlike in early efforts

where the emphasis was on conservative optical systems,

quite recently, there has been an ever-growing interest in

expanding these concepts into NH photonic structures.

In this review article, we focus on novel phenomena

in photonics that are enabled by the synergies among

Figure 1: PT symmetry in optics.

(A) Different regimes associated with parity-time (PT)-symmetry breaking manifested in light propagation dynamics within a non-Hermitian

(NH) waveguide coupler [9]. (B) Enforcing single-mode lasing in a pair of PT-symmetric microring resonators, each supporting a multitude of

lasing states in isolation [55]. (C) A schematic representation of whispering-gallery-mode PT-symmetric microtoroid cavities [48]. (D) Coupled

quantum-cascade-laser (QCL) arrangement used to observe pump-induced suppression and revival of lasing [50].
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non-Hermiticity, topology, and various other types of

symmetries. In Section 2, we discuss PT symmetry and its

various realizations in nonconservative optical structures.

Section 3 focuses on the physics of EPs and the exotic ef-

fects displayed by photonic systems that happen to operate

in the vicinity of such NH degeneracies. Section 4 is

devoted to topological concepts and theirmanifestations in

connection with non-Hermiticity in the presence of certain

classes of symmetries. Finally, Section 5 provides a sum-

mary alongwith an outlook in this general area of research.

2 Non-Hermitian photonics and PT

symmetry

As mentioned earlier, an important class of NH Hamilto-

nians that are capable of exhibiting entirely real eigen-

values is that respecting PT symmetry. In optics, PT

symmetry can be established by judiciously distributing

gain and loss, processes that are readily accessible in a

wide variety of optical platforms ranging from bulk cavities

and optical fiber amplifiers to on-chip photonic circuits

(Figure 1A). In this regard, optics provides a fertile ground

for exploring NH phenomena and their ensuing effects

when considered in conjunction with other conservative

effects associated with light dynamics. This, in turn, has

led to a paradigm shift in molding the flow of light, which

was thus far traditionally limited to only shaping the

refractive index distribution, starting from the early

development of the first lenses and reaching the modern

era that witnessed the advent of more sophisticated optical

systems like photonic crystal fibers and metamaterials

[27–30]. In this section, we focus on some of the exotic

behaviors resulting from the introduction of non-

Hermiticity and PT symmetry in optical arrangements.

It should be noted that NH effects in photonic settings

are not limited to systems exhibiting optical absorption

and/or amplification [31–37]. Such phenomena can also

arise, for instance, owing to an energy exchange between

metastable guided states and leaky modes in optical fibers

or whenever a conservative subsystem is open [38–41].

2.1 Lasers and non-Hermitian symmetry

breaking

Lasers provide an ideal test bed for studying some of the

ramifications of non-Hermiticity. Both gain and loss are

indispensable components of any light system, especially

when there is a need to overcome optical absorption

through the use of amplification. It therefore comes as no

surprise that signatures of non-Hermiticity had already

been considered in early efforts on lasers, manifested, for

example, in mode nonorthogonalities that are known to

lead to the Petermann K-factor enhancement [42–44] in the

fundamental Schawlow–Townes linewidth [45] of a laser

cavity. Nevertheless, until very recently, almost all efforts

in designing laser resonators were aimed at lowering the

dissipation, something that was traditionally deemed

detrimental to the performance of these devices.

The recent developments in NH optics and PT sym-

metry have provided a systematic framework to explore

exotic regimes of behavior in laser systems. Perhaps, the

most archetypical example is a pair of two coupled iden-

tical cavities, with one being subjected to gain while the

other being subjected to an equal amount of loss.

Following the previous discussion, this arrangement is PT

symmetric, given that the gain/loss distribution is anti-

symmetric while index-wise is even [46–48]. In the vicinity

of the PT phase transition, i.e., at the EP, this structure was

shown to exhibit a counterintuitive pump-induced sup-

pression and revival of lasing (Figure 1D) [49–52]. Varia-

tions of this behavior have also been demonstrated in a

phonon laser arrangement [14], where substantial line-

width enhancement at the EP was found to occur [53]. This

latter effect is a by-product of the collapsing supermodes at

the degeneracy point, an extreme case of the mode non-

orthogonality mentioned earlier.

Onmany occasions, a primary goal in laser design is to

enforce single-mode operation to achieve a coherent, high-

quality output. A general trend in fulfilling this require-

ment is to use miniature semiconductor lasers. However,

the inhomogeneously broadened gain bandwidth in such

semiconductor-based active materials can easily span a

wavelength range that is many times larger than the free

spectral range associated with a typical microring cavity,

hence eluding the aforementioned goal of exclusively

lasing in a single longitudinal mode. One way to mitigate

this issue is to use dispersive elements similar to those

used, for example, in distributed feedback lasers. An

alternative route to accomplish this goal is to exploit the PT

symmetry in the underlying cavity structure. In this sce-

nario, by adjusting the pump levels in the system, one can

ensure that PT symmetry is broken for only one longitu-

dinal mode, while the other supported states are kept

below the PT threshold and hence exhibit real eigenvalues

with no amplification. This in turn ensures single-mode

operation of the device while all the other principal attri-

butes of the laser cavity remain intact. This scheme has

been lately demonstrated in microring lasers (involving

M. Parto et al.: Non-Hermitian and topological photonics 405



whispering gallery modes) without any compromise in

terms of slope efficiency or threshold pump intensities (see

Figure 1B, C) [54–57]. PT-symmetric lasers have also been

demonstrated in various other platforms such as electri-

cally pumped integrated arrangements [58, 59] and optical

fibers [60]. A similar approach can be applied to achieve

single-frequency lasing through the use of EPs, an aspect

demonstrated in dark-state lasers [61, 62].

Non-Hermiticity and loss management in active lat-

tices is shown to be an effective tool for implementing

various spin Hamiltonians in an optical platform [63–67].

In these schemes, the loss that vectorial electromagnetic

modes experience on the interface of metallic nanocavities

provides an effective way to establish the ferromagnetic

and antiferromagnetic type of exchanges. Based on such

arrangements, large arrays of nanolasers have been real-

ized, which emit in a single mode and with a desired to-

pological singularity [66, 67]. In laser arrays, the interplay

between supersymmetry (SUSY) and non-Hermiticity has

also been shown to result in single spatial mode operation.

In this regard, a waveguide array subject to gain is coupled

to a lossy superpartner. With the exception of the funda-

mental mode that has no counterpart in the partner array,

all other modes of the main array share the same eigen-

frequencies with those in the superpartner. By adjusting

the gain–loss contrast between the two arrays, one can

keep all the higher order modes of the array below the PT

symmetry breaking point, thus allowing the fundamental

mode to experience gain and subsequently lase [68, 69].

On-chip single-modemicrolasers based on EPs have so

far found applications in generating states with pre-

specified orbital angular momentum (OAM) on a chip.

Typically, the counterpropagating modes within a

microring laser cavity form a degenerate pair which tend to

simultaneously lase together once the gain exceeds

threshold. This precludes a direct generation of a vortex

beam with nonzero topological charge since the two

opposite azimuthal mode numbers tend to cancel each

other. NH schemes based on EPs have recently provided an

elegant method to selectively extract only one chiral mode

in such lasers [52, 60–72]. This class of devices can emit in a

tunable OAM order while operating in a broadband

fashion. Another interesting effect that is closely tied to the

aforementioned NH aspects is the so-called coherent per-

fect absorption, where a coherent monochromatic light

input is entirely absorbed by a lossy medium [73, 74]. In

this respect, a coherent perfect absorber (CPA) acts as a

time-reversed version of a laser. Interestingly, it has been

shown that a PT-symmetric cavity can simultaneously

behave as a laser and a CPA at the same frequency [75, 76].

2.2 PT-symmetric metamaterials and

non-Hermitian cloaking

The past two decades have witnessed considerable

research efforts that are geared to develop artificial mate-

rials, tailored to display properties that are not found in

nature. Yet, until recently, such electromagnetic meta-

materials have almost exclusively relied only onmodifying

the real permittivities and permeabilities associated with

the material elements [30]. The recent developments in NH

photonics have opened up new avenues in exploring light–

matter interactions in the entire complex plane of the ma-

terial constitutive parameters.

In the linear Hermitian domain, a one-dimensional

(1D) grating exhibits transmission and reflection properties

that are typically independent from the direction the light

impinges upon the structure. On the other hand, this

feature can be violated in a NH grating. In particular, one

can establish gain and loss regions within the unit cell of a

grating in such a way that the reflection coefficients are

direction dependent (Figure 2A) [77]. This asymmetricwave

propagation becomes mostly pronounced at the EP, where

light can propagate completely without reflection from one

side while exhibiting strong reflection in the opposite di-

rection, a process leading to unidirectional invisibility.

Interestingly, because the system is not conservative in this

case, the reflection values can greatly exceed unity [77].

Unidirectional invisibility was recently observed in various

platforms including photonic mesh lattices (see Figure 2B)

[78, 79], passive silicon periodic nanowires [80], multilayer

Si/SiO2 structures [81], organic films [82], and electro-

acoustic resonators [17].

The peculiar wave transport in NH systems is known to

result in other unconventional effects such as unidirec-

tional cloaking [83, 84]. This could be achieved via a

PT-symmetric surface that surrounds an object with an

arbitrary size. In such a scenario, a lossy part in the surface

is designed to entirely absorb the incoming wave while a

corresponding active segment can reemit the same amount

of power impinging on the object. The result is a broadband

cloaking device which benefits from relaxed design con-

straints owing to its active architecture. Another relevant

aspect to this discussion are the so-called “constant in-

tensity waves”. Typically, in a lossless medium, an elec-

tromagnetic wave (like a plane wave) can remain invariant

during propagation when the propagation space is homo-

geneous. Any inhomogeneity such as an obstacle would

inevitably cause reflections and scattering, which disturb

the original uniform wavefront. In sharp contrast to this

Hermitian picture, by introducing gain and loss in a
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general class of nonuniform potentials, one can construct

a constant-intensity wave solution, even systems with

random index distributions (Figure 2C) [85, 86].

Other types of PT-symmetric and complex lattices have

been studied and shown to behave quite differently from

their Hermitian counterparts. For instance, beamdynamics

in a PT-symmetric optical lattice can display bandmerging

effects in the associated complex band structure with EPs

emerging in the Bloch momentum space [6]. In addition,

even though the material parameters in such lattices are

isotropic, the light propagation through the array could

exhibit double refraction. This latter unusual behavior

stems from the skewedness in the associated Floquet–

Bloch modes of the structure. Nonreciprocal Bloch oscil-

lations is yet another peculiar phenomenon that can occur

in such complex crystals with no analog in Hermitian ar-

rays [87]. Other works have studied NH symmetry breaking

in graphene-like lattices [88], PT Talbot revivals [89], and

Anderson localization in disordered PT-symmetric ar-

rangements [90].

Extensions of these ideas have been lately pursued in

PT-symmetric metasurfaces. It has been shown that

negative refraction and planar focusing could be ach-

ieved in such NH sheets without engaging negative-

index metamaterials or phase-conjugating surfaces

[91–93]. Such structures could enable loss-free all-angle

negative refraction and planar lenses in free space.

PT-symmetric phase transitions have also been studied

in the polarization space of a complex metasurface, in

which the eigenstates eventually collapse on each other

on the Poincaré sphere when the system reaches an EP

[94]. Similar ideas have been exploited to diffract light

with asymmetric diffraction orders using a deformed

honeycomb metasurface with a diatomic Bravais-lattice

topology [95].

2.3 Nonlinear effects in non-Hermitian

systems

Nonlinear effects are an integral part of many optical

platforms used for implementing NH Hamiltonians. For

instance, gain saturation nonlinearities in active materials

are known to be responsible for stabilizing laser oscillators.

It is therefore natural to investigate the interplay between

nonlinearity and non-Hermiticity and the prospect for NH

phases such as PT symmetry under such conditions. In this

regard, it has been theoretically predicted that optical

Kerr nonlinearities can reverse PT-symmetric phases,

i.e., transforming a linear system in the PT-unbroken phase

to a nonlinear one with a broken symmetry and vice versa

[96]. Such nonlinearly induced phase transitions were later

shown to also hold in the case of gain saturation non-

linearities and were successfully observed in coupled

semiconductor microring lasers [97, 98]. Nevertheless,

even in the presence of these nonlinear processes, the

Figure 2: Unidirectional invisibility and

parity-time (PT)-symmetry.

(A) A schematic of a PT-symmetric grating

that exhibits unidirectional invisibility [77].

(B) Photonic mesh lattices utilized to

observe exceptional points [78]. (C) Plane

wave propagation in a scattering medium

with appropriately patterned gain and loss

resulting in a constant intensity wave

profile throughout the entire structure [86].

(D) Experimental setup employed to

demonstrate efficient wireless power

transfer in a nonlinear PT-symmetric

arrangement [99].
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eigenmodes of the system still retain their corresponding

forms in the linear regime [97]. Interestingly, nonlinear

processes can have practical implications in active envi-

ronments that go beyond lasers. For instance, it has been

shown that robust wireless power transfer could be

accomplished through the realization of a nonlinear

PT-symmetric circuit (Figure 2D) [99]. In this scenario, the

nonlinearity guarantees that the system remains in the

PT-unbroken phase for strong enough couplings, a feature

that allows for a wide range of accessible distances be-

tween the source and the receiver. This in turn eliminates

the need for constant tunings of the corresponding reso-

nators that is otherwise necessary to attain efficient power

transfer.

The impact of non-Hermiticity on nonlinear pro-

cesses such as that of three- and four-wave mixing has

also been investigated. In this vein, non-Hermiticity

could assist phase-matching in optical parametric am-

plifiers when a Hermitian system cannot satisfy these

conditions [100, 101]. Such techniques could facilitate

parametric amplification in long-wavelength regimes

using on-chip semiconductor arrangements with large

nonlinearities. In addition, the interplay between

nonlinearity and non-Hermiticity in a PT-symmetric

optical coupler can lead to interesting functionalities

such as optical switching [102] and selective parametric

amplification in the spectral domain [103]. Similar

concepts have also been considered in optomechanical

settings, where the nonlinearity is induced by me-

chanical vibrations [15]. Along different lines, it has

been shown that PT symmetry can be established solely

by optical nonlinear processes, without requiring active

elements [104]. Such nonlinearity-induced PT effects

are instead enabled by parametric gain in a three-wave

mixing scenario.

Another interesting function emerging from the com-

bined effects of optical gain and loss is providing addi-

tional tools to control light transport in active nonlinear

environments [7, 105]. An important class of such NH sys-

tems satisfies PT-symmetric conditions with balanced

amplification and decay [106–108]. In this vein,

PT-symmetry plays a crucial role in determining the sta-

bility regimes of nonlinear excitations such as optical sol-

itons in such settings. For instance, it has been predicted

and experimentally observed that contrary to other NH

nonlinear systems wherein self-trapped states emerge as

fixed points in the parameter space, discrete PT solitons

can form a continuous family of solutions [79, 108].

Moreover, the synergy between non-Hermiticity and

nonlinearity has been deployed to demonstrate unidirec-

tional light transport [109, 110]. Such structures could lead

to new approaches in developing all-dielectric on-chip

optical components such as circulators.

3 Exceptional points in optics

An EP is a special type of degeneracy in the complex

parameter space of a non-Hermitian Hamiltonian. The

most profound characteristic of an EP that distinguishes it

from a regular Hermitian degeneracy is the fact that not

only the eigenvalues degenerately coalesce at this point

but also their corresponding eigenvectors simultaneously

collapse on each other-leading to an abrupt reduction in

dimensionality. In general, an EP is said to be of the order

N, if at the same time, N eigenvalues and their respective

eigenvectors fuse with each other at this NH degeneracy

[111, 112]. This exotic property in turn leads into an array of

fascinating effects that are unique to NH systems operating

at or close to such singularities (see Figure 3A–D). In this

section, we discuss some of these unconventional aspects.

3.1 Enhancement effects around EPs

Over the years, optics has provided some of the most ac-

curatemetrology tools for a variety of sensing applications.

These devices range from optical gyroscopes and ta-

chometers to chemical and biomedical sensors, to name a

few. In this regard, optical resonators have been widely

utilized for such purposes mainly due to their ability to

provide a strong interaction between the light field and the

sensing target. In recent years, the development of

ultralow-loss microtoroids [113] and low loss silicon

microresonators [114] has sparked a great deal of interest in

implementing photonic sensors on a chip.

In spite of their remarkable performance, standard

microcavity resonators (characterized by a set of orthog-

onal modes) are still limited within the bounds imposed by

their Hermitian nature. This aspect can be better under-

stood from the perspective of standard perturbation theory.

As is well known, if a Hermitian system is perturbed to

order ε, then its eigenvalues λ can be obtained from the

familiar power series λ = λ0 + λ1 ε + λ2 ε
2
+···, fromwhere one

can quickly conclude that the response of any Hermitian

arrangement is at best linear with respect to the

disturbance ε. In contrast, if a NH system is biased at an EP

of order N, once perturbed to order ε, its associated

eigenvalues instead follow a Newton–Puiseux series

λ = λ0 + λ1 ε
1/N
+ λ2 ε

1/N
+··· In other words, when an

NH configuration is placed at an EP of orderN, its first order

response is now expected to vary according to ε
1/N. Given
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that for small ε, ε1/N ≫ ε, then it is straightforward to

deduce that an NH arrangement (at an EP) can react

considerably more drastically than its Hermitian counter-

part. Intuitively, this distinctive behavior stems from the

abrupt phase transition associated with the reduction in

the dimensionality of the corresponding eigenspace. As a

result, when dealing with small input signals, the response

of EP-based structures can be boosted by orders of

magnitude.

Lately, this magnified response provided by EPs has

been employed to realize optical sensors with enhanced

performance. This can be achieved for example by incor-

porating two or more scatterers around a passive micro-

cavity which establishes an EP involving the two

counterpropagating whispering-gallery modes within the

structure [115, 116]. Theoretical results suggest that such an

arrangement could enhance single-particle detection

sensitivity by a factor of seven as compared to an isolated

microcavity [117]. This concept was later demonstrated

experimentally both in active and passive photonic plat-

forms. In an active scenario, coupled microring lasers in

binary and ternary PT symmetric photonic molecule ar-

rangements have been used to demonstrate second- and

third-order EPs, respectively (Figure 3A) [118]. In this case,

more than an order of magnitude sensitivity enhancement

has been reportedwhich can be boosted even further by the

amplitude of the gain present in the system. An alternative

realization involves a passive single whispering-gallery

optical microresonator which is brought to a second-order

EP by using two lossy Rayleigh scatterers [119]. A third

scatterer is then used as the target object to be detected

which causes a frequency splitting in the complex plane.

From a practical perspective, the augmented response

enabled via NH degeneracies has found direct applications

in Sagnac-based gyroscopes [120], which can be realized by

retrofitting a helium–neon ring laser gyroscope (He–Ne

RLG) with a Faraday rotator and a half-wave plate (see

Figure 3C) [121]. Combined with Brewster windows sur-

rounding the gain tube, these components can then intro-

duce a differential gain/loss contrast in the system,

necessary for establishing an EP. Experimental measure-

ments on such devices indicate a square-root dependence

of the frequency response on the gyration speed, in contrast

to the linear behavior in a standard arrangement, leading to

a twenty-fold enhancement in sensitivity. A different

implementation of an EP-enhanced Sagnac effect has been

experimentally demonstrated using a microring Brillouin

laser (Figure 3D) [122]. By incorporating a fiber taper in the

vicinity of the microring, a dissipative coupling takes place

between the two counterpropagating modes involved. This

in turn induces a second-order EP at a critical pump-

detuning frequency, resulting in a four-fold increase in the

Sagnac scale factor while allowing for measuring rotations

of approximately one revolution per hour.

Figure 3: Enhanced sensitivity using exceptional points (EPs).

(A) Coupled microring lasers equipped with microheaters used to realize a third-order EP [118]. (B) A coupled microtoroid phonon laser

operating at an exceptional point [53]. (C, D) EnhancedSagnac effect in EP-basedgyroscopes implemented in a ring laser gyroscope [121] and a

Brillouin laser cavity [122], respectively.
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Interestingly, enhancement effects in systems

involving EPs are not limited to sensing [123, 124]. In fact, it

has been suggested that these NH degeneracies can

considerably modify light–matter interactions within an

active structure, leading into substantially higher sponta-

neous emission rates (Figure 3B) [125]. As opposed to

traditional spontaneous emission theories that lead to

“infinite” values at an EP, an analysis that consistently

takes into account the local density of states predicts a

bounded response. Specifically, in passive structures

involving second-order EP2 degeneracies, this bound is

found to be a four-fold enhancement in the associated

spontaneous emission. Another consequence emerging

from the presence of an EP in such settings is the emission

lineshape itself which can deviate from the Lorentzian

profile, thus resulting in a nonlinear scaling of the spon-

taneous emission with the associated resonance quality

factors. Similar studies have also been conducted within

the context of NH photonic crystals hosting third-order EP3

degeneracieswhere an eight-fold enhancement is expected

[126]. These results can also be generalized to EPs of higher-

order N inducing larger emissions by a factor of
���

N
3

√

[126].

The fact that EPs are highly sensitive to changes in

their environment is not always desirable. For instance, an

EP sensor can also be excessively vulnerable to fabrication

errors and imperfections that are inevitable in experiments.

In this respect, exceptional surfaces have been suggested

as a possible avenue to combine the robustness required

for practical applications with the characteristic sensitivity

offered by EPs [127]. One way to achieve this is to introduce

a unidirectional coupling between the counterpropagating

modes of amicroring cavity. The resulting NHHamiltonian

describing the system features an exceptional surface in

the parameter space. In this case, undesired perturbations

such as random variations in the coupling coefficients or

the resonant frequency of the cavity cause the system to

move across this exceptional surface, thusmaintaining the

useful properties of an EP. On the other hand, when

external scatterers start to perturb the cavity, the structure

is promptly pushed out of the exceptional surface as a

result of the bidirectional coupling that is now induced

between the counterpropagating modes. In this latter case,

an amplified response could be measured in the spectral

splitting of the device. The exceptional surfacesmentioned

here are also known to arise in other photonic arrange-

ments such as three-dimensional (3D) PT-symmetric pho-

tonic crystals [71, 128].

The prospect of using EPs for optical sensing has

recently prompted an investigation of practical aspects

associated with these applications such as noise figures. In

particular, because boosting the input signal is typically

accompanied by an unwanted enhancement of various

noise sources, it is not immediately clear if EP-based sen-

sors could offer a superior signal-to-noise ratio (SNR) [129,

130]. To this end, the role of classical noise in the form of

mesoscopic fluctuations on the spectral and temporal

behavior of resonator-based arrangements operating near

an EP has recently been studied [131]. In these configura-

tions, the presence of noise results in frequency detuning

among the constituent resonant entities, which in turn

modifies the conditions for reaching an EP. Moreover,

statistical averaging of the aforementioned fluctuations

could smear the spectral features, hence downgrading the

effective sensitivity of EP-based sensors to noise-limited

values. Along different lines, the performance of EP

sensing can be analyzed from the point of view of quantum

noise theory [132]. In this vein, it has been shown that by

using the quantum Fisher information one could obtain a

lower bound for the SNR associated with an EP sensor.

These theoretical results predict that by implementing an

EP amplifier near the lasing threshold in conjunctionwith a

heterodyne detection scheme, an improved SNR perfor-

mance as compared with Hermitian sensors can be

achieved.

3.2 Encircling EPs and mode conversion

A remarkable behavior of NH degeneracies is related to

the dynamical behavior of their associated Hamiltonian.

In Hermitian settings, a cyclic evolution that occurs in an

adiabatic manner tends to preserve an eigenstate of the

system, apart from a geometric phase factor [133]. This

picture could completely break down in the case of NH

structures involving an EP. A possible scenario in this

regard is when the system undergoes a cyclic evolution in

a quasi-static fashion. In this case, the instantaneous

eigenstateswill swapwith each other at the end of a single

cycle, apart from acquiring a geometric phase [134, 135].

This peculiar behavior can be attributed to the geometry

of the intersecting complex Riemann sheets unique to

nonconservative systems and has been experimentally

observed in microwave [136] and optical cavities [137] as

well as exciton–polaritonic arrangements [138]. Alterna-

tively, the NHHamiltonianmay change in such a way that

the EP encirclement can no longer be considered adia-

batic [139]. Such dynamical evolutions are known to give

rise to chiral mode conversions, where the final state of

the system is determined by the direction of EP encircle-

ment [140]. This exotic behavior has been experimentally
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demonstrated in a coupled optical waveguide arrange-

ment [141]. By properly designing the boundaries and

losses of each waveguide, a dynamical EP encirclement

could be effectively realized in the parameter domain.

Owing to the chiral behavior, the output of the system

toggles between the even and odd supermodes depending

on the direction of propagation of light, regardless of the

input beams. A parallel experiment on this chiral mode

conversion was carried out in an optomechanical system,

where a nonreciprocal transfer was observed between two

vibrational modes of a silicon membrane embedded in a

high-finesse optical cavity [142]. Similar effects have also

been observed in silicon-based photonic architectures

[143]. More recently, an analytical explanation of this

chiral and robust state conversion mechanism was pro-

vided through the asymptotics of exact solutions, along

with the fact that this effect can persist even in the pres-

ence of nonlinearities [144, 145]. In addition, the possi-

bility of a single-channel optical omni-polarizer was

proposed that benefits from this chiral response [144].

Finally, some of the peculiar features arising from the

process of winding around multiple NH singularities or

EPs have also been explored by invoking the topological

notion of homotopy (Figure 4A) [146].

3.3 Symmetries and topology meet EPs

The recent advances in the field of NH physics has incited a

flurry of research activities aimed at understanding the

interplay between symmetries and topology on the one

hand and EPs on the other hand. Such studies can provide

a guideline to achieving new symmetry-protected NH

phases that have no counterpart whatsoever in the Her-

mitian domain. For instance, it has been shown that aDirac

point with a nontrivial Berry phase can split into isolated

pairs of EPs in the presence of non-Hermiticity [147]. The

ensuing double Riemann sheet associated with these EP

pairs in turn leads to a bulk Fermi arcwhich bridges the two

EPs in the complex band structure (Figure 4B). This latter

effect is a direct by-product of non-Hermiticity and is

different from surface Fermi arcs that arise from Weyl

points in 3D Hermitian systems. In addition, the EPs ob-

tained in this fashion exhibit half-integer topological

Figure 4: Exceptional rings and higher-order effects.

(A) Exceptional point (EP) encirclement in theparameter space of a systemsupporting two EPs. In this case, nonhomotopic loops encircling EP1

indicated in the diagram result in different dynamic and stroboscopic evolution behaviors [146]. (B) A bulk Fermi arc that connects a pair of EPs

arising from a single Dirac point in the presence of radiation losses in a rhombic lattice having elliptical air holes embedded in a dielectric

substrate [147]. (C) Real and imaginary parts of the complex band structure associated with a non-Hermitian square lattice photonic crystal

exhibiting a ring of EPs [150]. (D) Helical waveguide lattices with controllable losses utilized to observe a Weyl exceptional ring in their

corresponding band structure [156].
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invariants, which could manifest themselves in the far-

field polarization of the light scattered by the implemented

photonic crystal [147]. Along similar lines, there have been

proposals to observe bulk Fermi arcs in solid state, where

the required non-Hermiticity could be induced via ferro-

magnetic leads attached to a TI [148].

A Dirac Hamiltonian that deviates from the Hermitian

regime is also known to exhibit other interesting effects. To

this end, a circuit realization of NH Dirac and Weyl Ham-

iltonians under the influence of a pseudomagnetic field

which is artificially induced by a judicious spatial variation

of the circuit elements has been proposed [149]. In this

scenario, the combined effect of non-Hermiticity along

with the pseudomagnetic field lifts the degeneracy and

leads to the emergence of Landau-level–like flat bands in

the band structure of the system.Another example involves

an accidental degeneracy in the form of a Dirac cone in the

Hermitian band structure of a square-lattice photonic

crystal [150]. Once non-Hermiticity is at play in the form of

radiation losses, this Dirac point transforms into a ring of

EPs (Figure 4C) which manifest themselves in the angle-

resolved reflection measurements.

Another topic of interest is the synergy between sym-

metry and EPs. In this vein, symmetry-protected excep-

tional surfaces are known to generically arise in NH band

structures with an increased dimensionality as compared

with the case with no symmetries [151]. In this context, NH

symmetries can transport nodal NH semimetals into

symmetry-protected NH metals. Other works have also

investigated these concepts in nonconservative systems,

where exceptional surfaces are protected by various con-

straints such as PT and parity-particle-hole (CP) symme-

tries [128, 152]. Similar studies have predicted symmetry-

protected exceptional rings which are characterized by

nonzero topological invariants [153].

In Hermitian topological physics, an important family

of degeneracies are the celebrated Weyl points. Such de-

generacy points can be interpreted asmagnetic monopoles

in reciprocal space which are characterized by a quantized

Chern number [154]. A closely related concept is a Weyl

nodal ring, which is essentially a 3D generalization of Dirac

nodes. These latter rings happen to have trivial Chern in-

variants while acquiring a nonzero Berry phase over a

closed path that encircles the entire ring in the momentum

space. Quite recently, a set of NH degeneracies termed

Weyl exceptional rings have been theoretically predicted

which feature both a nontrivial Chern number and a

quantized nonzero Berry phase [155]. This intriguing

behavior stems from the topology of the Riemann surface

which is unique to NH arrangements. Weyl exceptional

rings were later experimentally demonstrated in a Floquet

system realized in a 3D photonic bipartite lattice

comprising evanescently coupled helical waveguides

written in silica (Figure 4D) [156]. The required non-

Hermiticity in this platform is obtained by incorporating

equidistant breaks within the waveguides in one of the

sublattices to impose a controlled amount of loss. Experi-

mental measurements confirm a topological transition

where Fermi arc surface states emerge in the system after

increasing the dissipation levels.

4 Non-Hermitian topological

physics

Topological physics is an emerging field that aims to un-

derstand and harness a set of new properties arising in a

recently discovered phase of matter – properties that tend

to remain invariant during a continuous deformation of the

system [21–23]. A prime example of such material systems

is that of TIs, where electron conduction occurs along the

edges while it is prohibited in the bulk [157–160]. In recent

years, the prospect of using topological notions in optics to

utilize the unique attributes offered by topologically

nontrivial structures has been the subject of intense

research efforts [25, 26, 161–164]. In this regard, unidirec-

tional transport and robust topological edge modes have

been demonstrated in coupled resonators and waveguide

lattices [24–26]. The field of topological photonics took a

drastic turn after the pioneering experiment of Ref. [25] that

demonstrated topologically protected light transport in a

magnet-free photonic structure. Quite recently, the field

also made a substantial leap forward after optical ampli-

fication/attenuation was introduced in conjunction with

topology. In this regard, it has been shown that the synergy

between non-Hermiticity and topology can lead to more

efficient coherent light sources with superior performance

in terms of robustness and emission characteristics. In

addition, the very possibility of realizing NH topological

systems in photonic platforms has led to a new field of

research, namely NH topological physics, which makes an

effort to understand and predict the response of topologi-

cal phases in the presence of non-Hermiticity [165, 166]. In

this section, we summarize some of the advances in this

exciting field.

4.1 Topological lasers

The fact that lasers are susceptible to defects and disorder

has always posed a significant challenge in the
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performance of these devices. Such imperfections are in

general inevitable during the fabrication process or may

develop in time due to operational degradation and mal-

function. These in turn could lead to spatial localization of

light within the cavity, eventually leading to lower output

powers or even a sudden shutdown of the laser itself. In

addition, on many occasions, an array of coupled lasers is

used to boost the total emitted power via coherent

constructive interference among individual elements. In

such scenarios, the system would be even more prone to

random deficiencies and failure. It is in this vein that to-

pological features have been sought as a means to develop

laser systems that could be immune to perturbations.

In one dimension, an archetypical topological struc-

ture is that offered by the Su–Schrieffer–Heeger (SSH)

model [167]. When terminated properly, such an array

hosts topologically protected defect states with

eigenvalues that reside in the middle of the bandgap and

are robust against structural disorders. Lasing in this defect

state has been demonstrated in systems involving polar-

itons (Figure 5A) [168], microring cavities (Figure 5B, C)

[169, 170], and photonic crystals [171]. Depending on the

pumping pattern used, this NH lattice exhibits different

regimes of behavior, as dictated by its associated symme-

tries [169, 172]. In this regard, by appropriately distributing

optical gain and loss among the constituent elements, the

defect state can be induced to lase in a single-mode fashion

while maintaining its topological features in the NH

domain. In particular, the lasing edge mode in the SSH

array was found to be resilient to both on-site and

tunneling disorders [168, 170]. Moreover, unlike the bulk

modes, this edge state lases at a wavelength that tends to

remain unperturbed even at high pumppower levels where

non-Hermiticity plays an important role [169].

Figure 5: Topological lasers.

(A) Lasing in the topological defect state of a one-dimensional Su–Schrieffer–Heeger (SSH) array of polaritonicmicropillar cavities [168]. (B, C)

Similar SSH structures implemented based on microring resonators [169, 170]. (D) All-dielectric two-dimensional (2D) topological laser array

using microrings coupled via intermediary links to induce an artificial gauge field [174]. (E) Topological lasing in a photonic crystal fabricated

on an yttrium iron garnet (YIG) substrate [175]. (F) Electrically pumped topological laser demonstrated in a valley photonic crystal based on

quantum cascade lasers (QCLs) [178].
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The concept of topological edge transport in a two-

dimensional (2D) laser array is yet another avenue that has

been pursued in a number of platforms. In this respect,

various methods have been used to induce a topologically

nontrivial response in these active settings. The prospect of

realizing 2D topological lasers has also been pursued in all-

dielectric photonic platforms. To achieve this, arrays of

coupled microcavities with asymmetric intermediary rings

have been used to emulate the presence of an artificial

magnetic field (see Figure 5D) [173, 174]. By pumping the

boundaries of such a lattice, topological transport in the

lasing edge mode has been reported. As compared with a

similar but trivial array, higher slope efficiencies and

robust single-mode operation is observed even for pump

intensities high above threshold. Along different lines, a

topologically nontrivial square lattice has been imple-

mented by depositing magneto-optic materials in the

substrate of a photonic crystal, where time-reversal sym-

metry (TRS) can be broken when applying a magnetic field

(Figure 5E) [175]. The resulting topological structure is then

optically pumped, thus promoting unidirectional lasing

along the interface of this square lattice with its sur-

rounding topologically trivial triangular crystal. Similar

schemes have been utilized in exciton–polaritonic systems

[176]. Alternatively, topological features can be induced in

a crystal via the valley degree of freedom [177]. Using this

technique, electrically pumped topological lasers have

been experimentally realized in the THz regime in a valley

photonic crystal inscribed in a QCL wafer (Figure 5F) [178,

179]. The lasing edgemode in such a device can be immune

to backscattering due to defects that do not cause inter-

valley scattering. Interestingly, the role of topology in la-

sers is not limited to the edge states confined at the

boundaries of a photonic system. Rather, it has been sug-

gested that by judiciously interfacing topological and

trivial crystals, one can form a highly confined 2D cavity

enabled by band inversion reflections [180]. This reflection

mechanism can then lead to single-mode lasing with high

vertical directionality.

4.2 Non-Hermitian symmetries and

topology

In the Hermitian domain, it is well known that symmetries

play a pivotal role in topological arrangements. In 2D

systems, for example, a Chern insulator could be obtained

when the TRS is broken [181]. In fact, the concept of topo-

logical protection is often closely intertwined with certain

types of symmetries associated with the system [22, 158].

When generalizing topological notions to NH systems, it is

therefore natural to ask as to how NH symmetries would

interact with topology. Do topologically nontrivial phases

exist in certain open systems in various dimensions that

satisfy a specific type of symmetry? Can NH symmetries

protect a topological edge state?

Answering some of the aforementioned questions has

been the subject of numerous recent studies. The existence

of topologically protected defect states in PT-symmetric 1D

SSH lattices has been predicted and observed in passive

coupled waveguides inscribed in silica (Figure 6A) [182,

183]. Various regimes of PT-broken and unbroken were

examined as a function of the dimerization in this same

structure, and the onset of topological phase transitionwas

shown to be linked to the mean displacement of the light

traveling in this discrete lattice. The role of NH symmetries

in protecting the defect state of an SSH topological array

that respects PT symmetry has also been studied [184]. In

such cases, unlike the trivial eigenstates, the topological

defect modes preserve their associated eigenvalues even in

the presence of perturbations that respect PT symmetry.

Remarkably, in some cases, NH symmetries like for

example that of NH charge-conjugation or PT symmetry

can be the origin of topological edge states, even when a

similar Hermitian system is topologically trivial [172, 185,

186]. Therefore, the corresponding defect state resides at

the boundary of two regions that are characterized by

different NH parameters, and is known to emerge from a

continuum in the band structure. Similar effects have been

studied in a PT-symmetric Aubry–André–Harper (AAH)

model [187].

As mentioned earlier, breaking TRS is yet another way

to endow a physical system with nontrivial topological

properties. In static optical systems, however, such TRS

breaking can typically emerge from gyromagnetic effects

[24, 161, 162]. In this regard, alternative methodologies

geared at breaking TRS in the NH domain have been pur-

sued, like for example, Floquet systems in 1D quantum

walks [188] and 2D lattices for implementing Chern in-

sulators [189, 190]. Alternative techniques for realizing

Chern insulators in active platforms have also been sug-

gested that rely on the interplay between nonlinearity and

non-Hermiticity [191]. On a different front, endowing to-

pological systems with NH symmetries has been used to

develop optical devices with new functionalities. These

include PT-symmetric resonator arrays in microwave sys-

tems (see Figure 6B) [192], optical isolators in waveguide

arrays [193], optical limiters [194], and microring laser ar-

rays capable of light steering [195].

There are currently ongoing efforts aiming to find a

unified classification of topological NH systems with

different types of symmetries [196, 197]. In this respect,
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even though similar studies in Hermitian TIs [198, 199] can

provide a baseline, studies suggest stark distinctions be-

tween such arrangements and their NH analogs. For

instance, it has been found that the NH counterparts of

some of the fundamental symmetries, which are distinct in

the Hermitian regime, are in fact equivalent to each other

and can be unified [200]. This could lead to nonequilibrium

states that are unique to NH topological settings, and im-

plies that in general, the topological classifications of NH

symmetries are expected to be quite different from the ones

known in the Hermitian domain.

4.3 Non-Hermitian bulk-edge

correspondence and non-Hermitian

skin effects

The hallmark of topological phases is the presence of edge

states that emergeat theboundariesbetweenstructureswith

different topological invariants. In theHermitian regime, this

exotic behavior is a by-product of the bulk-boundary corre-

spondence which relates the topological properties of bulk

media to their boundary states [22]. Nevertheless, despite a

growing interest in NH topological systems and their appli-

cations [46], it is not immediately clear how this correspon-

dence could be translated to such settings [201–204].

Perhaps, a prominent example of how conventional bulk-

boundary correspondence could no longer hold in the NH

regime is theso-called“non-Hermitianskineffect” [202, 205–

208]. In accordancewith this, anNHstructurewith extended

bulk states under periodic boundary conditions could

behave in a completely different way when terminated with

open boundaries. In particular, for certain regions of the NH

parameter space, suchbulkmodesall collapse into localized

edge modes – a clear violation of the standard bulk-

boundary correspondence. This interesting NH phenome-

non has recently been observed in photonic mesh lattices

(Figure 6C) [209] and is currently the subject of further

studies that aim to shed light on how different NH symme-

tries could modify the skin effect [196, 207].

Attempts to explain the NH skin effect have been at the

core of developing an appropriately modified formalism

that could successfully describe the bulk-boundary corre-

spondence in the NH domain. In this regard, two main

methods have been implemented so far, each focusing on

either the complex spectra of the corresponding NH

Hamiltonian and its associated point/line degeneracies

[196, 207, 210], or the non-Bloch nature of the eigenstates in

an open boundary geometry [205, 206, 211]. In the first

approach, topological invariants are interpreted in terms of

dynamical phases which depend not only on the eigen-

states of the Hamiltonian, but also the associated complex

eigenspectrum. In this context, similar to the concept of a

topological bandgap in the Hermitian domain, an NH

system can be considered as topologically nontrivial if its

complex energy spectrum encircles a prespecified base

point in the complex plane [210]. Using this, a new kind of

bulk-boundary correspondence is then established,

wherein a winding number is defined as the degeneracy at

the chosen base point. This latter topological invariant

Figure 6: Symmetries and higher-order ef-

fects in non-Hermitian (NH) topological

systems.

(A) Parity-time (PT)-symmetric Su–

Schrieffer–Heeger (SSH) Hamiltonian

realized in a waveguide array inscribed in

fused silica [182]. (B) Selective

enhancement of a topological defect state

in a one-dimensional (1D) array of dielectric

microwave resonators by utilizing

PT-symmetry [192]. (C) Topological

funneling of light via the NH skin effect in a

1D chain with anisotropic couplings (top).

The input beam is always funneled through

the topological interface localized in the

middle of the structure, irrespective of its

initial launching position (bottom) [209].

(D) A two-dimensional (2D) NHmodel which

supports second-order topological corner

states (left). Such a system could be

physically realized using microring

resonators with intermediary links (right)

[219].
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represents the number of independent edge states in a

semi-infinite arrangement. In this formalism, onefinds that

unlike Hermitian topological lattices which require at least

two bands in their band structure, an NH system could

exhibit topological behavior in the absence of any sym-

metry constraints even within a single band. Other results

also related to the role of NH degeneracies in this matter

have been reported [212].

Alternatively, the breakdownof the conventional bulk-

boundary correspondence in NH arrangements can be

attributed to the non-Bloch nature of the eigenstates in

such systems. To address this issue, a non-Bloch Chern

number could be defined in a 2D lattice which successfully

takes into account the aforementioned NH skin effect [206].

Considering amodifiedNHversion of theHaldanemodel, it

has been shown that while the Hermitian Chern number

fails to capture topological phase transitions, the new NH

Chern number successfully predicts such topological

phases and is a faithful indicator of the number of chiral

edge modes in this scenario. In contrast to the first

approach mentioned previously, this formalism explicitly

relies on the non-Bloch eigenstates to redefine the bulk-

edge correspondence. Similar findings have been also

presented in 1D NH settings [205, 211].

We would like to mention that there are several mod-

ifications of the non-Bloch formalism that intend to intro-

duce a self-consistent framework for NH topological

systems. One such result exploits the biorthogonal basis for

NHHamiltonians to redefine the bulk as well as edge states

in terms of the left and right eigenstates [213]. Based on

these, a biorthogonal polarization parameter is then

introduced that is shown to be quantized and capable of

describing the topological properties of the corresponding

NH structure. In addition, it has been suggested that by

defining a modified version of the periodic boundary con-

ditions, one could restore the Hermitian bulk-boundary

correspondence even in the presence of non-Hermiticity

[214]. This could be achieved by introducing a new

parameter in this type of boundary conditions. The

resulting generalized parameter space can then be used to

bridge the open boundary skin effects with the bulk

Hamiltonian in a periodic geometry.

4.4 Higher-order non-Hermitian topological

effects

In a conventional N-dimensional TI, a nontrivial topolog-

ical invariant guarantees the existence of N−1–dimen-

sional gapless edge states. Examples include topological

transport of surface states and edge modes in 3D and 2D

systems, respectively. This paradigm was extended

recently [215] by introducing higher-order topological in-

sulators (HOTI), wherein generalized multipole moments

are posed as quantized electromagnetic observables [215–

217]. By using Wilson loop operators, these quantized

multipole moments are proved to act as topological in-

variants that can lead to topologically protected boundary

states. Examples of such HOTIs include second-order 2D

and 3D TIs with topologically protected corner and hinge

states, respectively [217].

In the context of NH systems, higher-order topological

effects could lead to interesting effects that are absent in the

Hermitian domain [218]. For instance, HOTIs could arise as a

result of non-Hermiticity [219]. This can happen for example

in a 2D array of coupled microring cavities with on-site gain

and loss arranged in a staggeredmanner (Figure 6D). In this

scenario, although the structure is topologically trivial in the

Hermitian limit, by increasing the gain/loss levels above a

certain threshold value, a higher-order topological phase

transition occurs. The resulting second-order TI is a host to

four degenerate corner states in the boundaries of the

structure. This behavior can be justified by using a bio-

rthogonal form of nestedWilson loops to establish a higher-

order bulk-boundary correspondence [219]. Along different

lines, higher-order cornermodeswithin the skin states ofNH

2D and 3D lattices have been studied [220] both in reciprocal

and nonreciprocal regimes. These NH behaviors have been

shown to be governed by a biorthogonal bulk-boundary

correspondence [213].

As mentioned before, the usual bulk-boundary corre-

spondence defined for Hermitian TIs can break down in the

presence of non-Hermiticity. Interestingly, the higher-

order bulk-boundary correspondence could also be modi-

fied when translated to the NH domain [221]. In this

context, symmetry protected second-order TIs with corner

states localized asymmetrically in one boundary have been

predicted in 2D NH lattices [221, 222]. In 3D, the breakdown

of Hermitian bulk-boundary correspondence can lead to

the emergence of anomalous second-order corner modes

instead of hinge states. This discrepancy can be rectified

via proper use of a non-Bloch eigenstate formalism [221].

5 Summary

In this article, we provided an overview of the recent ad-

vances in the field of NH optics. We discussed how various

optical platforms exhibiting gain and loss can be utilized to

investigate different aspects associated with PT symmetry

and NH phenomena. In addition to enabling new func-

tionalities within the discipline of photonics that have no
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counterparts in the Hermitian domain, such optical re-

alizations have also played a key role in the emerging field

of NH topological physics that aims to understand and

utilize the synergy between topological notions and non-

Hermiticity. More importantly, although PT symmetry,

EPs, and the interplay of topology and non-Hermiticity

have been extensively explored in the classical and semi-

classical regimes, still little is known about the ramifica-

tion of these developments in a fully quantum domain. In

addition, despite intensive recent efforts, a universal the-

ory of NH bulk-boundary correspondence that self-

consistently describes topologically nontrivial behavior

in all dimensionalities is still elusive. Given that many of

these aspects remain unexplored, we believe that further

activities in this field will not only yield results that are

fundamental in nature, but they could also introduce new

tools in photonics and other fields for a new generation of

devices and systems.
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