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Non-Hermitian effects of the intrinsic signs
in topologically ordered wavefunctions
Qi Zhang 1, Wen-Tao Xu1, Zi-Qi Wang1 & Guang-Ming Zhang 1,2✉

Negative signs in many-body wavefunctions play an important role in quantum mechanics

because interference relies on cancellation between amplitudes of opposite signs. The

ground-state wavefunction of double semion model contains negative signs that cannot be

removed by any local transformation. Here we study the quantum effects of these intrinsic

negative signs. By proposing a generic double semion wavefunction in tensor network

representation, we show that its norm can be mapped to the partition function of a triangular

lattice Ashkin-Teller model with imaginary interactions. We use numerical tensor-network

methods to solve this non-Hermitian model with parity-time symmetry and determine a

global phase diagram. In particular, we find a dense loop phase described by non-unitary

conformal field theory and a parity-time-symmetry breaking phase characterized by the zeros

of the partition function. Therefore, our work establishes a connection between the intrinsic

signs in the topological wavefunction and non-unitary phases in the parity-time-symmetric

non-Hermitian statistical model.
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I
n quantum mechanics, negative signs in the many-body
wavefunctions play an important role, as the interference relies
on a cancellation between amplitudes of opposite signs of the

wavefunctions. Recently, topologically ordered phases of matter
with anyonic excitations have attracted considerable attention due
to the potential application of topological quantum computation1–5.
A prototype topologically ordered state is given by the toric code
(TC) model1, and its ground-state wavefunction is an equal weight
superposition of all closed domain-wall loops. A closely related
topologically ordered state is the double semion (DS) model, whose
ground-state wavefunction is a superposition of all closed domain-
wall loops weighted by a π phase multiplying the number of closed
loops3,6. Due to the presence of such non-local phase factors, low-
energy excitations of the DS phase contain semions with opposite
chirality and bosonic bound states of two semions, in contrast to the
anyonic excitations (charge-vertices, magnetic-fluxes, and their
fermionic bound states) of the TC model. Actually it has been
speculated that the negative signs in the DS wavefunction are
intrinsic and cannot be removed by any local transformation7,8,
making it the first prototype example of a topological ground state
wavefunction with intrinsic signs. However, the norm of the DS
wavefunction is identical to that of TC9,10. Therefore, important
open questions arise what physical consequences are caused by
these intrinsic signs and whether unknown anyon condensed
phases are resulted in adjacent to the DS phase.

Meanwhile, it has been shown that non-Hermitian and parity-
time (PT) symmetric quantum systems provide a useful
description of dissipative quantum systems11,12. The fundamental
property of these systems is that an unusual spontaneous PT-
symmetry breaking (PTSB) phase with spectral singularity occurs.
In correlated many-body PT-symmetric systems, an exotic

universality class of quantum criticality occurs due to the pre-
sence of negative/complex Boltzmann weights13. In statistical
mechanics, a well-known example is the Yang–Lee edge
singularity14,15, where an imaginary magnetic field in the high-
temperature Ising model was demonstrated to trigger an exotic
phase transition described by non-unitary conformal field
theory (CFT).

In this work, we attempt to establish a connection between the
intrinsic sign problem in the topological wavefunction and the PT-
symmetric statistical model with negative Boltzmann weights, and
provide insight into the quantum effects of the intrinsic signs. By
proposing a generic DS wavefunction with two distinct tuning
parameters for a two-dimensional hexagonal lattice model, we
explore the possible topological phase transitions out of the DS phase.
In the tensor network representation, we express the non-local phase
factors in the DS wavefunction in terms of auxiliary spins on the dual
triangular lattice. By integrating out the physical degrees of freedom,
we map this wavefunction norm to the partition function of a two-
dimensional triangular lattice Ashkin–Teller model with imaginary
magnetic fields and imaginary three-spin triangular face interactions.
To solve this PT-symmetric statistical model with negative Boltz-
mann weights, we employ the corner-transfer-matrix renormaliza-
tion group (CTMRG) tensor-network method16–19. A global phase
diagram is fully determined. Adjacent to the DS phase, we find a
gapped dilute loop phase with condensed bosonic anyons, a gapless
dense loop phase described by a non-unitary CFT, and a PTSB phase
characterized by the zeros of the partition function in the thermo-
dynamic limit. The PTSB transitions described by exceptional
points20 are continuous, which have no Hermitian critical counter-
parts. In this sense, the derived phase diagram for the DS phase is
distinctly different from that for the TC phase. Further, the properties
of the emerged PTSB phase cannot be reproduced by the partition
function with positive Boltzmann weights. Although no dissipation is
involved, the intrinsic sign problem in the topological wavefunction is
thus closely connected with non-unitary phases in a non-Hermitian
PT-symmetric statistical model.

Results
The DS tensor-network wavefunction. The DS model is defined
by the following Hamiltonian which acts on quantum spin-1/2
operators living on the edges of a two-dimensional hexagonal
lattice3

HDS ¼ �
X

v

Av �
X

p

Bp: ð1Þ

Here the vertex term Av and the plaquette term Bp shown in
Fig. 1a are given by

Av ¼
Y

k2EðvÞ
σzk; Bp ¼

Y

k2EðpÞ
σxk

Y

j2eEðpÞ
i 1þσzjð Þ=2; ð2Þ

where E(v) is the set of edges around a vertex v, E(p) is the set of

inner edges and eEðpÞ is the set of outer edges around a hexagon p.
Operator Av=−1 is associated to a semion or anti-semion
excitation, while operator Bp=−1 is a bosonic excitation of a
semion–antisemion pair. When all vertex terms Av=+1 restrict
the Hilbert space of states to the zero-flux subspace, the ground
state of the Hamiltonian is stabilized by Bp= 1 for all plaquettes:

Ψ0j i ¼
Y

p

ð1þ BpÞffiffiffi
2

p "j i�N ; ð3Þ

where "j i is the eigenvector of σz with eigenvalue σ=+1, and N
is the total number of spins. Actually, the loop representation
provides a very intuitive way to understand this wavefunction, in
which σ=−1 and σ=+1 states are interpreted as the presence

Fig. 1 Definition of the double semion model and its loop representation.

a The vertex term Av (green) and plaquette term Bp (yellow) of the DS

model, where the black dots are the locations of the physical degrees of

freedom. We have used the Pauli matrices σx, σz, and defined the operator

g ¼ ið1þσzÞ=2. b A typical loop configuration consists of two closed loops (red

lines), where the physical spin-down states σ=−1 form closed loops. The

red/black circles represent the physical spin-down/up state, and σ is the

quantum number of σz. c The auxiliary spin (blue arrows) configuration

corresponds to the loop (red lines) configuration, where the loops are

regarded as the domain-walls of auxiliary spins. d The auxiliary spins (blue

arrows) sp, sq are defined on the sites p, q and the physical spin (black/red

circles) σp,q is defined between the sites p and q, which satisfy spsq= σp,q.

The domain-walls (red lines) are assigned orientations according to the rule

that down/up auxiliary spins are on the left/right. A left-turn/right-turn of

the domain wall is associated with a phase factor e±iα, where the parameter

α is fixed as ei6α=−1.
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or absence of loops on the edges, as shown in Fig. 1b. Expanding
this product, we have the ground state as a superposition of all
closed-loop configurations with alternative signs3,6

Ψ0j i ¼
X

fLg
ð�1Þ#L Lj i; ð4Þ

where #L is the number of contractible closed loops in the
configuration L.

Moreover, it is very useful to express the DS wavefunction in
terms of tensor-network state (TNS)21. The loops can be regarded
as the domain-walls of local auxiliary Ising spins, which form a
dual triangular lattice, as shown in Fig. 1c. These auxiliary Ising
spins contain the crucial information about anyonic
excitations22,23. Importantly, when the domain-walls of the Ising
paramagnet are assigned orientations according to the rule
displayed in Fig. 1d, the non-local signs in the wavefunction can
be locally expressed in terms of these auxiliary Ising spins. In the
hexagonal lattice, the difference between the left/right-turnings
for a closed contractible orientated loop must be six, so we have
ei6α=−1. Then the many-body entangled state between the
physical spins and auxiliary spins is given by

~Ψ
�� �

¼
Y

hpqri
ei

α
4ðspþsqþsr�3spsqsrÞ

Y

hpqi

1þ spsqσ
z
p;q

2
sj i σzp;q
���

E
; ð5Þ

where 〈pq〉 denotes the nearest-neighbor dual lattice sites, 〈pqr〉
stands for the minimal triangular faces. The DS tensor-network
wavefunction is obtained by summing over all the auxiliary spins:

Ψ0j i ¼
P

fsg sj~Ψ
� �

.
The above DS wavefunction is just the fixed-point wavefunc-

tion with zero correlation length. To study the phase transitions
out of the DS phase, we need a generically deformed DS
wavefunction with tuning parameters, and we can employ the
wavefunction approach to reveal its essential physics. When
subjected to two different magnetic fields h0x and h0z , the DS model
with the additional Zeeman terms are no longer exactly solvable.
If these additional terms are treated perturbably, the ground-state
wavefunction is obtained

Ψ h0x; h
0
z

� ��� �
¼ 1þ 1

8

X

hpqi
h0xσ

x
p;q þ 2h0zσ

z
p;q

� 	
2
4

3
5 Ψ0j i: ð6Þ

When the wavefunction corrections are expressed as the
operator product with the modified magnetic field parameters, we
have

Ψðhx; hzÞj i ¼
Y

hpqi
1þ hxσ

x
p;q þ hzσ

z
p;q

� 	h i
Ψ0j i; ð7Þ

which can be regarded as a generic DS wavefunction in an
expanded parameter space. Actually, the similar deformation has
been used to express the generic TC wavefunction23–25 and
Fibonacci quantum-net wavefunction26. For convenience, we
define hx � h cos θ and hz � h sin θ, where h expresses the loop
tension and θ is the spin angle. When h→ 1, the deformation
filters out the spin-polarized trivial state. It should be emphasized
that this generic wavefunction still has a local parent Hamilto-
nian. The possible continuous quantum phase transitions of such
a Hamiltonian are characterized by the so-called conformal
quantum critical theories27,28, where all equal-time correlators of
local operators are described by two-dimensional CFT.

Mapping to the parity–time-symmetric statistical model. To
study the possible topological phase transitions out of the DS
phase, the norm of the deformed DS wavefunction is considered.
By summing over the physical degrees of freedom, a double-layer

tensor network is obtained

Ψðh; θÞjΨðh; θÞh i ¼
X

fs;tg
exp �Hðs; tÞ½ �: ð8Þ

and can be regarded as a partition function of a statistical model:

H ¼
X

hpqi
Jðspsq þ tptqÞ þ J4spsqtptq þ J0

h i

� i 3α

2

X

p

ðsp � tpÞ þ
i 3α

4

X

hpqri
ðspsqsr � tptqtrÞ;

ð9Þ

where sp and tp are the auxiliary Ising spins in the ket and the bra
layers, the 2-spin and 4-spin couplings are given by

J ¼ 1

4
log

1þ h2 � 2h sin θ

1þ h2 þ 2h sin θ
;

J4 ¼
1

4
log

4h2cos2θ

1þ h4 þ 2h2 cos 2θ
;

ð10Þ

and the parameter α has been fixed as ei6α=−1. This is a two-
dimensional triangular lattice Ashkin–Teller model with ima-
ginary magnetic fields and imaginary three-spin triangular face
interactions. The imaginary terms of Eq. (9) originated from the
negative signs in the DS wavefunction, and this statistical model
is PT-symmetric, i.e., invariant under the combined operation of
parity symmetry P (sp→−sp and tp→−tp) and time-reversal
symmetry T (i→−i). This PT-symmetry ensures that all eigen-
values of the transfer matrix operator of the partition function are
either real or complex conjugate pairs29.

Since this model has the symmetry hx→−hx, the tuning
parameters are limited to 0 ≤ h ≤ 1 and −π/2 ≤ θ ≤ π/2 in the
following. In general, this model cannot be solved analytically
except the following two special limits:

1. When hx= 0, we have J4→∞, the Ising spins in two layers
are locked together, and the imaginary terms vanish, leading to an
inter-layer partial order 〈st〉= ±1. The norm of the DS and TC
wavefunctions become identical9,10 and Eq. (9) is reduced to a
two-dimensional triangular lattice Ising model: H ¼
�2J

P
hpqiτpτq with J ¼ 1

2
log

1�hz
1þhz

. For hz > 0, it is known that a

ferromagnetic critical point30 exists at hz= (31/4−1)/(31/4+ 1)
and denoted by H. This critical point separates the intra-layer
ferromagnetic phase and intra-layer paramagnetic phase, corre-
sponding to the dilute loop phase and the DS phase, respectively.
For the antiferromagnetic coupling hz < 0, however, there is no
phase transition up to the multicritical point (hz=−1) due to the
presence of spin frustration31.

2. When h= 1 and −π/2 < θ < π/2, the inter-layer coupling
J4= 0 reduces the model Eq. (9) to two decoupled single-layer
Ising spin models

Hs ¼ J
X

hpqi
spsq �

i3α

2

X

p

sp þ
i3α

4

X

hpqri
spsqsr; ð11Þ

with J ¼ 1
4
log 1�sin θ

1þsin θ. In the loop representation, the partition

function of Hs is just the single-layer O(n=−1) loop model:

Zs ¼ 2
X

fLg
e2JlLð�1Þ#L; ð12Þ

where lL is the combined length of the closed contractible loops.
By mapping Eq. (11) to the antiferromagnetic Potts model, two
exactly solvable critical points (A and E) were found32–34. The

point A (e2J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
3

pp
) is characterized by a non-unitary CFT

with a central charge c=−3/5 or an effective central charge c*=

3/5. Meanwhile, the point E (e2J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3

pp
) corresponds to the

fixed point of the dense loop phase35, which is described by a
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non-unitary CFT with a central charge c=−7 or an effective
central charge c*= 1. However, when the two-spin coupling J is
very small, the imaginary terms in Eq. (11) become dominate,
yielding zeros of the partition function. Namely, the weights for
different configurations in the partition function exactly cancel
and the free energy is no longer continuous. In the following, we
will employ the tensor-network numerical methods and find
another phase transition point L at e2J ≈ 1.18. Further, the zeros of
the partition function are actually distributed in a regionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffi
3

pp
≤ e2J<1:18, forming a non-unitary spontaneously

PTSB phase.

Tensor-network numerical calculations. To establish the global
phase diagram of the generic DS wavefunction, we will apply the
numerical CTMRG method16–19 to the PT-symmetric statistical
model Eq. (9) with negative Boltzmann weights. In order to
obtain the local tensors of TNS, each auxiliary spin sp is repre-
sented by a circle in Fig. 2a, and then the generic wavefunction is
expressed as a double-line TNS, whose local tensors are defined
on the vertices of the hexagonal lattice. For convenience, we
transform the hexagonal lattice into the square lattice by com-
bining two local tensors with nearest-neighbor triangle faces into
one local tensor Q. Contracting the physical indices of Q and Q*

leads to the local double-layer tensor Q shown in Fig. 2b, and the
wavefunction norm is expressed by

Z ¼ tTr �
vertex

Q


 �
¼ Tr ðTLxÞ; ð13Þ

where “tTr” denotes the tensor contraction over all auxiliary
indices, T is the column-to-column transfer matrix operator
displayed in Fig. 2c, and Lx is the number of columns. To
determine the phase diagram, we need to calculate the dominant
eigenvalues of transfer operator T, which contains the crucial
information about the phase transitions. Since the spectrum can
be complex, we sort the eigenvalues according to their moduli.

As a comparison, we first calculate the phase diagram for the
generic TC wavefunction. Since the imaginary terms are absent,
Eq. (9) reduces to the two-dimensional Ashkin–Teller model on a
triangular lattice, and the transfer operator is Hermitian. So the
powerful variational uniform matrix–product-state (VUMPS)
method19,36,37 can be applied. In Fig. 3a, we show the correlation
length ξ as a function of hz along the hx= 0.1 cut, and a sharp
peak appears at hz= 0.1378, indicating a continuous phase
transition from the inter-layer partial ordered phase (〈s〉= 〈t〉=
0, 〈st〉 ≠ 0) to the ferromagnetic phase (〈s〉 ≠ 0, 〈t〉 ≠ 0). In Fig. 3b,
ξ along the hz=−0.1 cut is displayed, and a sharp peak around

hx= 0.3196 represents a continuous phase transition from the
partial ordered phase to the paramagnetic phase (〈s〉= 〈t〉=
〈st〉= 0). Moreover, in Fig. 3c, a less sharper peak appears at hz=
0.4590 along the hz= 0.7−hx cut, implying the phase transition
from the ferromagnetic phase to the paramagnetic phase.

It has been proved that23 the partial ordered phase, ferromagnetic
phase, and paramagnetic phase of the Ashkin–Teller model
correspond to the TC phase, Higgs phase, and confining phase,
respectively. So a global phase diagram can be derived as displayed

Fig. 2 Local tensors and transfer matrix operator of the double

tensor-networkstate (TNS). a The TNS of the generic double semion

wavefunction. The large blue circles denote the auxiliary spins sp, small

circles are the physical spins σp,q, and the yellow dashed box shows the unit

cell. b The local double-line tensor Q on the square lattice is obtained by

contracting two local tensors on the hexagonal lattice. The local double-

layer tensor Q consists of two layers, where s and t denote the auxiliary

spins in ket and bra layers, and σ is the physical degrees of freedom. c The

one-dimensional column-to-column transfer matrix operator T of the

double-layer tensor network.

Fig. 3 Correlation length for the generic toric code wavefunction. The

correlation length ξ for different bond dimensions D along the a hx= 0.1 cut;

b hz=−0.1 cut; and c hz= 0.7−hx cut.

Fig. 4 Global phase diagrams of the generic toric code (TC) and double

semion (DS) wavefunctions. a The phase diagram of the generic TC

wavefunction with two tuning parameters hx and hz. The Higgs phase and

confining phase correspond to charge and magnetic anyon condensed phases,

respectively. Capital letters (black dots) indicate critical/transition points,

where point J is a tricritical point, and others are the phase transition points.

The phase transition lines JH and JKF belong to the two-dimensional Ising

universality class, and the line IJ is characterized by the Kosterlitz–Thouless

transition. b The phase diagram of the generic DS wavefunction with two

tuning parameters hx and hz. Adjacent to the DS phase, there exist a gapped

dilute loop phase, a gapless dense loop phase, and a spontaneously party-

time-symmetry breaking (PTSB) phase. The diagram is characterized by

different critical points in the hx−hz plane, where the point E is the fixed point

of the dense loop phase, the points B and C are two tricritical points, and

others are phase transition points. The phase transition line BH is described by

the two-dimensional Ising universality class. The phase transition lines AB, BC,

and CF are described by non-unitary conformal field theories, while the line CL

is a discontinuous phase transition.
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in Fig. 4a. The TC phase is enclosed by the Higgs and confining
phases, corresponding to the electric and magnetic anyon
condensed phases, respectively. Both condensed phases are gapped,
and there is a critical line IJ between them, characterized by the
Kosterlitz–Thouless transition. Meanwhile, the critical lines JH and
JKF belong to the two-dimensional Ising universality class. The

points I and J can be exactly determined as ðhx; hzÞ ¼ ð
ffiffiffi
3

p
=2; 1=2Þ

and (hx, hz)= (2/5, 1/5), because the first corresponds to the critical
point of two-decoupled Ising models (J4= 0) and the second to the
critical point of a four-state Potts model (J= J4).

To establish the corresponding phase diagram of the generic
DS wavefunction displayed in Fig. 4b, we have to employ the
CTMRG method because the transfer matrix operator is non-
Hermitian. The correlation length and the dominant eigenvalues
are calculated and shown in Fig. 5a–c to determine the phase
boundaries. The associated critical properties are deduced by
estimating the central charges (Fig. 5d, e). In Fig. 5a, the
correlation length is shown as a function of hz along the cut hx=
0.5. As hz decreasing from unity, a sharp peak first appears at
hz ≈ 0.271, indicating a continuous phase transition from the
dilute loop phase to the DS phase. The peak positions are nearly
the same as various bond dimensions. When hz is further
decreased, a hump appears around hz ≈−0.470 and gradually
becomes a peak with increasing bond dimension. After this
hump, the model enters into a dense loop phase. By fitting the
scaling relation of the entanglement entropy38 at the point
(hx, hz)= (0.5, −0.8) inside the dense loop phase, we estimate an
effective central charge c* ≈ 2.00 as shown in Fig. 5d. Considering
that the exactly fixed point E is inside this region and is described
by the non-unitary CFT with a central charge c=−7 × 2, we can
conclude that the gapless dense loop phase is characterized by the
non-unitary CFT with an effective central charge c*= 2.

Moreover, the correlation length ξ is also calculated along the
hx-axis and shown in Fig. 5b. As hx is increased, a peak appears

around hx= 0.785 and is enhanced by larger bond dimensions.
For hx > 0.785, the system enters into a special phase, where the
largest eigenvalues of the transfer matrix are given by a complex
conjugate pair and the resulting many-body phase spontaneously
breaks the PT-symmetry11,13. To clearly see the PTSB phase,
several leading eigenvalues of the transfer matrix along the circle
line h= 0.85 are displayed in Fig. 5c. For θ > 0.19π, the model is
in the gapped dilute loop phase, in which the dominant
eigenvalues of the transfer matrix are real and positive. At θ ≈
0.19π, the arguments of the leading eigenvalues reveal an
exceptional point, where the corresponding eigenvectors coalesce.
After this exceptional point, the arguments of a pair of complex
dominate eigenvalues vary continuously in the PTSB phase.
Moreover, the absolute value of the leading eigenvalue (red line)
shows a cusp at θ ≈−0.07π between the PTSB phase and dense
loop phase, indicating a discontinuous change of the free energy.
For θ <−0.07π, the dominate eigenvalue becomes real in the
dense loop phase and the arguments of the second and third
largest eigenvalues become ±2π/3, which are related to the
momenta carried by the corresponding eigenvectors.

With these numerical results, a global phase diagram of the
generic DS wavefunction can be fully established. From our
numerical results, the CF line describes a continuous phase
transition without any symmetry changes, while the BC line is a
continuous phase transition with spontaneous PTSB. But both
phase transitions are characterized by a non-unitary CFT with an
effective central charge c* ≈ 1.01, and one of the fitting is displayed
Fig. 5e. The corresponding central charge may correspond to the
c=−2 non-unitary CFT. Meanwhile, the phase transition line AB
is described by the same non-unitary CFT with the central charge
c=−6/5 as the critical point A, and the line BH is the same as the
two-dimensional Ising phase transition. More importantly, it should
be mentioned that the continuous PTSB transitions are composed
of the exceptional points, where the corresponding leading
eigenvectors coalesce. On the other hand, the zeros of the partition
function are distributed along the line AL, and the transition line CL
corresponds to discontinuous ones.

Discussion
It should be emphasized that, the three non-topological phases
adjacent to the DS phase in Fig. 4b are associated with the physics
of two decoupled two-dimensional triangular lattice Ising spin
model Eq. (11). On the decoupled line h= 1, the single-layer spin
model allows us to perform exact diagonalization on a larger
lattice size. For the two-column transfer operator TTt with a
periodic boundary condition, the arguments of the eigenvalues
related to the lattice momenta vanish. As shown in Fig. 6a, the
absolute values of the eigenvalue spectrum reveal a discontinuous
phase transition point L at (θ ≈−0.05π), where many eigenvalues
of the transfer matrix cross and the partition function changes
sign. In Fig. 6b, the arguments of the eigenvalue spectrum have
clearly demonstrated the presence of the exceptional points at A
and E, where the spectra become completely real. This is not
surprising because the exactly solvable non-Hermitian PT-sym-
metric models described by non-unitary CFTs always have the
entire real spectra39. Since the transfer matrix cannot be trans-
formed into a Hermitian operator, the nature of the critical points
A and E is non-Hermitian and non-unitary. Although both A and
E are exceptional points, there is an essential difference: the
dominant eigenvectors coalesce at the point A, while the coales-
cing eigenvectors at point E are not the dominant ones. And the
logarithms of moduli of the eigenvalues cross at both the points L
and A, which are two boundary points of the PTSB phases.

Compared to the phase diagram of the TC phase, distinct physics
is introduced by the intrinsic signs in the DS wavefunction. Since the

Fig. 5 The numerical results of the generic double semion wavefunction.

The correlation length ξ for different bond dimensions D along the a hx=

0.5 cut and b hx-axis, where hx and hz are two tuning magnetic field

parameters. c The free energy f ¼ �log ðjλ0jÞ (red line) from the leading

eigenvalue λ0 and the arguments argðλjÞ (blue lines) of three dominant

eigenvalues λj of the transfer matrix operator along the circle h= 0.85,

where h is the loop tension and θ is the spin angle. d The finite scaling of the

entanglement entropy S versus the correlation length ξ at the point

(hx, hz)= (0.5, −0.8) inside the dense loop phase. The blue line is S ¼

ðc�=6Þlog ξ þ S0 with the estimated effective central charge c*≈ 2.00,

where S0 is a non-universal constant. The red dots are the numerical data.

e At the point (hx, hz)= (0.500, −0.470) on the phase transition line CF in

the phase diagram Fig. 4b between the double semion phase and the dense

loop phase, the estimated effective central charge is c*≈ 1.01.
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bosonic anyon excitations of the DS phase are related to the charge
anyons of the TC phase, the gapped dilute loop phase corresponds to
the Higgs phase, while the dense loop phase corresponds to the
confining phase even though it is a gapless phase and described by a
non-unitary CFT. But the PTSB phase is an emerging non-unitary
phase, where the auxiliary Ising spins oscillate spatially and the pairs
of the bosonic anyons condense. This emerging phase may be caused
by the breakdown of Mermin–Wagner theorem, which usually for-
bids spontaneous breaking of continuous symmetries in dimensions
d≤ 2. However, when the unitarity is broken in statistical systems
with negative Boltzmann weights, the Mermin–Wagner theorem is
no longer valid. The properties of the PTSB phase deserves further
investigation. Moreover, there is a logarithmic attraction between the
charge anyons along the transition line IJ because of its unitary CFT
description, while along the transition line AB of the DS there is
logarithmic repulsion between the pairs of bosonic anyons due to the
negative scaling dimensions of the auxiliary spins from the non-
unitary CFT. It should be noticed that both topological phase tran-
sitions out of the DS phase into the dense loop phase or the PTSB
phase are non-unitary, while the phase transition into the dilute loop
phase is still unitary. And the phase transition between the PTSB
phase and the dilute loop phase is also non-unitary.

In summary, the quantum effects of the negative signs in a
generic DS wavefunction have been explored using tensor net-
work representation. The norm of this wavefunction is mapped to
the partition function of a two-dimensional triangular lattice
Ashkin–Teller model with imaginary magnetic fields and ima-
ginary three-spin triangular face interactions. Using the CTMRG
method, the global phase diagram has been fully established.
Adjacent to the DS topological phase, we found a gapped dilute
loop phase, a gapless dense loop phase described by non-unitary
CFT, and a PTSB phase filled with zeros of the partition function
in the thermodynamic limit. So our study has proved that the
negative signs in the topological DS wavefunction are intrinsic
and deeply connected to the negative Boltzmann weights of a PT-
symmetric statistical model, shedding light on the understanding
of topologically ordered phases of matter. Further, the intrinsic
sign of a topologically ordered wavefunction can be understood as
an obstruction to mapping a quantum topologically many-body
state to a classical partition function. In two dimensions, there is a
broad class of topologically ordered phases suffering such a sign
problem, including twisted quantum doubles and even more
generic string-net models40. The DS state is the first prototype
one, and the similar investigations can be carried out to identify

novel correlated many-body phases of matter with inherent
quantum nature, whose physical properties cannot be reproduced
by a partition function with positive Boltzmann weights.

Methods
The phase diagrams in Fig. 4 are determined from numerical tensor-network
methods. The key challenge in the numerical tensor-network method is the con-
traction of the tensor network generated by Q. In general, the contraction of an
infinitely large tensor network is implemented by finding the approximate envir-
onments with controllable errors. In our numerical calculation, we use the infinite
matrix product state (iMPS) to approximate the environment for Hermitian sys-
tem, and their main procedures are summarized in Fig. 7a, b. For a non-Hermitian
system, the corner transfer matrix (CTM) is used to approximate the environment
and their main ideas are explained in Fig. 7c–e.

The transfer matrix operator for the norm of the generic TC wavefunction is a
Hermitian operator, so we can calculate its environments using iMPS with bond
dimension D and optimize the iMPS using the VUMPS algorithm19,36,37 in Fig. 7a.
The (j+ 1)th dominant eigenvalue λj of the column-to-column transfer operator
can be calculated from the local tensors of iMPS, as shown in Fig. 7b. Then the
correlation length ξ can be obtained: ξ ¼ �1=log ðjλ1=λ0jÞ.

Since the transfer matrix operator for the norm of the generic DS wavefunction
is non-Hermitian, its environments cannot be worked out using variational
method. Instead, we solve the partition function using the CTM method, and the
environment is approximated using edge tensors and corner tensors with bond
dimension D. These tensors can be optimized using the CTMRG algorithm16–19 in
Fig. 7c. The correlation length can also be calculated, and the (j+ 1)th dominant
eigenvalue λj is defined in Fig. 7d. The entanglement entropy S can be obtained by
S ¼ �Tr ðρlog ρÞ, where the reduced density matrix ρ is defined in Fig. 7e.

We should emphasize that the CTMRG calculations do not converge when all
dominant eigenvalues are complex. However, due to the double layer structure of
the partition function, it can be derived that the most dominant eigenvalue of the
double layer transfer operator is always real and positive. In the PTSB phase,
the single layer transfer operator has a pair of dominant eigenvalues ∣λ∣e±iϕ, but
the equal moduli dominant eigenvalues of the corresponding double-layer transfer
operator are given by ∣λ∣2 and ∣λ∣2e±i2ϕ, where ∣λ∣2 has two-fold degenerate. When
the couplings between two layers are turned on, there are small splits between the

Fig. 6 The spectrum of the two-column transfer operator TTt for the

single layer spin model. With the periodic boundary condition, we

calculate the spectrum of the single layer spin model with the

circumference Ly= 12, where λj is the (j+ 1)th dominant eigenvalue and θ is

the spin angle. a The red lines represent �log ðjλj=λ0jÞ, where each red line

corresponds to an eigenvalue, and the spectrum becomes nearly

continuous in the filled areas. The black dashed lines correspond to the

phase transition points L and A in the phase diagram Fig. 4b. b The blue

dots are the arguments of the spectrum argðλjÞ that become nearly

continuous in the filled areas. The vertical dashed lines indicate two exactly

solvable points E and A in the phase diagram Fig. 4b.

Fig. 7 Main procedures of the numerical tensor-network methods. a In

the variational uniform matrix-product-state (VUMPS) algorithm, the

environment (light blue background) of an infinite tensor network is

approximated by the infinite matrix-product-state (iMPS), which consists of

local tensors (light blue squares) with a bond dimension D. The iMPS is

optimized by maximizing the tensor network with the variational method.

b The eigen-equation T jj > ¼ λj jj > of the column-to-column transfer

operatorT is approximated by the local tensors, where the green box is the

eigenvector jj > with the (j+ 1)th largest eigenvalue λj. c In the corner-

transfer-matrix renormalization group (CTMRG) algorithm, the

environment (light blue background) of an infinite tensor network is

approximated by the edge fixed point tensors (light blue squares) and

corner fixed point tensors (light blue snip single corner squares) with a

bond dimension D. d The eigen-equation T
2
jj > ¼ λj jj > of the column-to-

column transfer operator T
2
is approximated by the edge tensors and local

double tensors. e The tensor network representation of the reduced density

matrix ρ in the CTMRG algorithm, where Z is the normalization factor. The

red dashed line emphasizes that the up/down cut bonds are regarded as

the row/column of the reduced density matrix.
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moduli of these dominant eigenvalues, leading to one positive dominant eigen-
value. Thus the CTMRG calculations can slowly converge in the PTSB phase.

Data availability
The data that support the findings of this study are available from the corresponding

author on request.
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