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A flexible control of wave scattering in complex media is of relevance in different areas of classical
and quantum physics. Recently, a great interest has been devoted to scattering engineering in
non-Hermitian systems, with the prediction and demonstration of new classes of non-Hermitian
potentials with unique scattering properties, such as transparent and invisibile potentials or one-
way reflectionless potentials. Such potentials have been found for both continuous and discrete
(lattice) systems. However, wave scattering in lattice systems displays some distinct features arising
from the discrete (rather than continuous) translational invariance of the system, characterized by
a finite band of allowed energies and a finite speed of wave propagation on the lattice. Such distinct
features can be exploited to realize invisibility on a lattice with methods that fail when applied to
continuous systems. Here we show that a wide class of time-dependent non-Hermitian scattering
potentials or defects with arbitrary spatial shape can be synthesized in an Hermitian single-band
tight-binding lattice, which are fully invisible owing to the limited energy bandwidth of the lattice.

I. INTRODUCTION

In recent years there has been a surge of interest in
both classical and quantum systems that are described
by effective non-Hermitian (NH) Hamiltonians [TH3]. In
such systems, wave transport, localization and scatter-
ing can be deeply modified as compared to Hermitian
systems. In particular, a local NH scattering potential
displaying spatial regions with gain and loss, which serve
as sources and sinks for waves, can be suitably engineered
to control fundamental wave effects, such as interference
and diffraction, in ways that are impossible to realize
with conventional Hermitian systems. Suppressing wave
scattering, thus realizing transparency effects in inhomo-
geneous media, is known since long time for Hermitian
potentials [4H7]. However, most amazing effects, such
as invisibility, could be realized only when considering
NH potentials. Recently, wave reflection and scatter-
ing from complex potentials has sparked a great inter-
est with the prediction of intriguing phenomena, such as
unidirectional or bidirectional invisibility of the potential
[8H21], asymmetric scattering [22H24], constant-intensity
wave transmission across suitably-engineered NH scatter-
ing landscapes [25H30], reflectionless transmission based
on the spatial Kramers-Kronig relations [31H44] [46], [47],
and NH transparency [48].

In continuous media, wave reflection is usually described
in terms of continuous wave equations both in space and
time, such as the Helmholtz equation or the stationary
Schrédinger equation. However, in several physical sys-
tems, such as in quantum or classical transport on a lat-
tice [49H53] or in so-called discrete quantum mechanics
[54H56], space is discretized and wave transport is bet-
ter described by the discrete version of the Schrodinger
equation, where the the kinetic energy operator p? is re-
placed by a periodic function F(p,) of the momentum
operator p,, that describes the dispersion band of the lat-
tice. Owing to the importance of such a broad class of
discretized systems in different areas of physics, rang-
ing from photonics to condensed-matter physics and be-

yond, scattering engineering in discrete models is becom-
ing highly demanding and could provide a fertile ground
in many areas of science and engineering in which dis-
crete wave propagation is a key element. Like for the
continuous Schrodinger equation, reflectionless potentials
can be constructed for the discrete Schrédinger equa-
tion as well [8 57HE0], for example using the methods
of supersymmetry for discrete systems [8] [68H60]. Like-
wise, constant-intensity waves can be realized in suitably
engineered complex lattices [28-30], as demonstrated in
a recent experiment [30]. However, wave scattering in
lattice systems display some distinct features, such as
Bragg scattering, arising from the discrete (rather than
continuous) translational invariance in space of the sys-
tem, and characterized by a finite band of allowed ener-
gies and a finite speed of wave propagation on the lat-
tice. Such distinct features can prevent the extension to
discrete systems of wave scattering engineering methods
valid for continuous systems. For example, it has been
shown that the wide class of stationary Kramer-Kronig
potentials, which are unidirectionally or bidirectionally
reflectionless in continuous media, become reflective in
discrete media owing to Bragg scattering [43]. On the
other hand, the features of transport on a lattice aris-
ing from the discrete spatial invariance can be fruitfully
exploited to realize forms of transparency that would be
prevented in continuous systems. For example, since the
speed of propagation on a lattice has an upper bound v,,
(according to the Lieb-Robinson bound [61]), any poten-
tial that drifts on the lattice at a speed v faster than v,
is necessarily reflectionless [44] 45].

In this work we suggest a simple method to synthesize
space-time invisible potentials and defects of arbitrary
spatial shape in tight-binding lattices that exploits the
limited energy (frequency) bandwidth of the lattice, and
propose a feasible photonic setup for the realization of
such a broad class of invisible potentials. The method
strictly works for a system with a bounded energy spec-
trum and thus it fails when applied to continuous system,
where energy is unbounded.



II. WAVE SCATTERING ON A LATTICE

A. Model

Let us consider wave scattering from a time-dependent
NH potential or defect on a one-dimensional single-band
tight-binding lattice, which in physical space is described
by the coupled equations for the wave amplitudes 1, (t)
at various lattice sites n
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where x; = k¥ is the hopping amplitude between lattice
sites distant |I| on the lattice and the perturbation matrix
V,.1(t) describes the time-dependent scattering potential
or lattice defects, which is assumed to vanish fast enough
as |n,l| — oo. For example, for a local on-site scattering
potential the matrix V,, ;(¢) is diagonal, while for defects
of the hopping amplitudes the matrix V,, ;(¢) contains off-
diagonal non-vanishing elements. As for the time depen-
dence of the perturbation matrix, special cases are those
of a stationary (i.e. time-independent) or time-periodic
potentials. However, we assume here a rather general de-
pendence of time with the only constraint that |V, ;(t)|
is a bounded function of time, i.e. it does not secularly
grow in time, and can be expanded as a Fourier integral
or generalized Fourier integral (i.e. containing undamped
harmonic terms).

In the absence of the scattering potential, V,,;(t) =
0, the eigenstates of Eq.(1) are extended Bloch waves,
Y (t) = explign —iE(q)t], with energy F = E(q) defined
by the dispersion relation

E(q) = =) riexp(—igl). (2)
l

A wave packet with carrier Bloch wave number ¢ propa-
gates on the lattice with a group velocity v, = (dE/dg).
For a lattice with short-range hopping, i.e. when
|ki| — O fast enough as |I| — oo, the group velocity
displays un upper bound, according to Lieb and Robin-
son [6I]. Likewise, the energy band displays a finite
width A. For example, for a tight-binding lattice with
nearest-neighbor hopping amplitude, x; = 0 for [ # £1
and k; = k for [ = %1, the tight-binding dispersion
curve reads FE(q) = —2kcosq, the energy band has a
finite width given by A = 4k, and the group velocity
vy = 2k sin g displays the upper bound v, = 2k = A/2.

B. Scattering analysis

Let us now consider a spatially-localized time-
dependent scattering potential and/or lattice defects,
described by the time-dependent perturbation matrix
Vi,m (t) with V,, o, (t) — 0 fast enough as |n, m| — oco. In
particular, for a local on-site scattering potential V;,(t)

the perturbation matrix V,, ., (t) is diagonal and given by
Vo,m(t) = Vi (t)0n,m. We assume that a Bloch (plane)
wave with wave number ¢, energy E = E(q) and positive
group velocity v, > 0, coming from n = —oo, is incident
from the left side toward the scattering region. We can
write the solution to Eq.(1) in the form

U, (t) = exp(ign — iEt) + ¢, (t) exp(—iEt) (3)

where the former term on the right hand side of Eq.(3) is
the incoming plane wave while ¢,,(t) are the amplitudes
of scattered wave on the lattice, which satisfy the coupled
equations

don
dt
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(4)
Equation (4) is a linear non-autonomous system with a
forcing term in the variables ¢,,(t) and should be solved
with the appropriate boundary conditions, which depend
rather generally on the time-dependence of the scatter-
ing perturbation matrix V), ,,(t). For a static (time-
independent) potential, the system is autonomous, ¢, (t)
is independent of ¢ and outgoing boundary conditions
should be imposed. The same holds for a time-periodic
potential, where Floquet analysis can be used [I8]. On
the other hand, for arbitrary time-dependence of the
potential Eq.(4) should be solved by considering the
initial-value condition ¢,(—tyo) = 0 at some remote time
to — oo. Here we will consider this rather general case.
In this case the NH scattering matrix V,, ,,,(¢) turns out
to be invisible provided that, for any arbitrary incident
wave, one has ¢, (t) — 0 for the scattered wave ampli-
tudes as |n| — oo for any time instant ¢.

C. The continuous (long-wavelength) limit of wave
scattering

In the limit of a tight-binding lattice with nearest-
neighbor hopping of amplitude x and for an on-site scat-
tering potential V,,(t), i.e. Vi m(t) = Viu(t)6n,m, we can
solve Eq.(1) by letting ¥, (n) = ¥(x = n,t), where the
wave function ¥ (z,t) of continuous space and time vari-
ables x and t satisfies the discrete Schrodinger equation
(see for instance [43], [62])
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where p, = —i0,; and V,,(t) = V(z = n, ).

The kinetic energy term in Eq.(5) is periodic in the mo-
mentum p,, which implies that a limited interval of en-
ergies are allowed in a lattice system, corresponding to
propagative (Bloch) waves. The invisibility method that
will be presented in the next section works provided that
the kinetic energy operator is bounded, like in a system
with discrete translational invariance, but breaks down
when the kinetic energy term is unbounded from above,

= =2k cos(pz ) (x,t) + V(z, t)p(x,t) (5)



like in a system with continuous translational symmetry.
This case is found in the so-called long-wavelength limit
of the discrete Schrodinger equation, which corresponds
to low-energy excitation of the system. Specifically, for
a potential V(z,t) that varies slowly with respect to x
over the lattice period and for low-energy excitation of
the system, we may expand the kinetic energy opera-
tor cos(p,) in the neighbor of p, = 0, i.e. we may let
cos(pz) ~ 1 — p2 /2 (long-wavelength approximation). In
this case, omitting an inessential constant energy poten-
tial term, Eq.(5) reads

0 0?

1% = kT V(e ) (©
which is the continuous Schrodinger equation describing
the scattering of a quantum particle in the NH time-
dependent potential V(x,t). In this limit we loose the
discrete translational invariance of the lattice and the
energy of the system becomes unbounded from above.

III. NON-HERMITIAN INVISIBILITY
A. The general result

NH invisibility in lattice systems has been predicted in
some previous works, including nearest-neighbor tight-
binding lattices under special stationary potentials syn-
thesized by the methods of supersymmetry [8] or for
harmonically-oscillating on-site potentials [I8], and for
the class of Kramers-Kronig potentials drifting on the
lattice at a speed faster than v, [44]. The last method
exploits the finite speed of wave propagation in the lat-
tice, so that any potential that drifts on the lattice at
a speed faster than v,, cannot reflect waves and thus is
transparent.

Here we widen the class of NH invisible potentials on a
lattice, beyond the nearest-neighbor approximation and
including also scattering from off-diagonal (hopping) de-
fects in addition to on-site (diagonal) potential, exploit-
ing the finiteness of the energy bandwidth of the lattice.
The main physical idea is as follows. Let us assume that
the Fourier spectrum V;, ,,,(w) of the perturbation scat-
tering matrix V;, ,,,(¢), defined by

Vi (w) = / - AtV i (t) exp(iwt) (7)
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vanishes for all frequencies w < wq (or, likewise, for any
frequency w > —wyp), where wy is larger than the band-
width A of the tight-binding lattice. The interaction of
the incidente wave with the time-varying potential is in-
elastic and involves the absorption or emission of energy
quanta from the oscillating potential [63] [64]. However,
since the Fourier spectrum of the oscillating potential is
composed by w > wp frequency components solely, the
energies E' of the scattered wave are constrained by the
inequality [I8, [65] E° = E+w > E4wy > E + A,

i.e. they fall outside the allowed energy band of the lat-
tice. Therefore, far from the scattering region where the
lattice is uniform, the scattered waves are Bloch waves
but with an imaginary Bloch wave number, i.e. they are
evanescent waves decaying toward zero as |n| — oo. This
means that the scattered waves cannot be propagative in
the homogeneous lattice regions, far from the scattering
potential, which clearly implies invisibility.

We emphasize that this result holds regardless of the spe-
cific spatial shape of the potential and specific shape of
incoming waves, so that the kind of invisibility induced
by the temporal modulation does not require any spe-
cial tailoring in space of the scattering potential nor spe-
cial initial excitation of the system with prescribed input
state (such as e.g. in Ref.[30]). From this simple phys-
ical picture, we can conclude that the following general
property holds:

Any scattering NH matriz perturbation Vi, o (t) such that
its Fourier spectrum vanishes for frequencies w < wo (or
likewise for frequencies with w > —wy), with wy larger
than the width A of the tight-binding lattice band, is in-
visible

To prove the above general property, let us integrate the
coupled equations (4) for the scattered wave amplitudes
on(t) at various lattice sites with the initial condition
¢n(—to) = 0 at a far remote time ¢ty — oo using a mod-
ified Laplace-Fourier method. To this aim, let f(¢) be
a regular function of time ¢, defined for ¢ > —ty and
bounded (or growing in time lower than any exponen-
tial) as t — co. For a given time ¢; > 0, arbitrarily large,
let us introduce the modified Fourier-Laplace spectrum

Fw) = / 1 dtf(t) exp(iwt — et) (8)

—to

where € > 0 is a small positive number. Note that the
previous relation reduces to the usual Fourier spectrum
in the limit € = 0 and t;,t9 — oo. The inverse relation
to Eq.(8) reads (see Appendix)

o0
16 = 5 exple) [ dwfO@yexp(-iut) ()
2r Lo

which is valid for —tg < t < —t;.

Here we are interested in considering the triple limit
to,t1 — 00, € = 01 with etg — 0 and et; — oo. Multi-
plying both sides of Eq.(4) by exp(iwt — et) and integrat-
ing over time t from —tg to t1, taking into account that
dn(—to) exp(eto) = ¢n(—to) = 0 and ¢y (t1) exp(—et1) ~
0 in the above mentioned limit, one obtains

+ Z Rn— l¢lﬁ)

— / AW (D (w - Q) = (10)
1 —o0
Z w) exp(iql).
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In deriving Eq.(10), we used the relation

/ 1 dtVy, 1 (t)éu(t) expliwt — et)

—to
L 2(e)
~ mdQVn,l(Q) D (w—0Q) (11)

which is valid in the large to,#; limit, as shown in the
Appendix. Since V;,;(Q) = 0 for Q < wy, from Eq.(10)

it readily follows that the spectral amplitude qBﬁf) (w) de-

pends on all other spectral amplitudes QASI(E) (W) at fre-
quencies w’ < w — wg. Moreover, in the large tg,t; and

small e limits, V9 (w) 2 V;, ;(w) = 0 for w > wy (see Ap-

n,l
pendix), so that the forcing term of the spectral ampli-

tude ¢ (w) [the term on the right hand side of Eq.(10)]
vanishes for w < wy. This implies that

¢ (w) =0 (12)

for any frequency w < wy, in agreement with the physical
picture that the scattered waves cannot transport ener-
gies (frequencies) smaller than F 4 wg. Therefore we can
write

h dw () exp(—iwt).  (13)

wo

1
On(t) = o exp(et)

Let us now consider the behavior of ¢, (t) as n — +oo,
i.e. far from the scattering region. In this limit, the
spectral amplitudes (ﬁgf) (w) with w > wy satisfy the linear
dispersion equation

(E+w+i€)dd )+ knid(w)=0  (14)
l

which is obtained from Eq.(10) by neglecting the vanish-
ing scattering matrix elements as n — 4oco. The solu-
tion to Eq.(14) is given in terms of superposition of Bloch
waves, namely ¢ (w) ~ Vi (w)exp(iQin) as n — oo
with some complex amplitudes Y (w) and complex Bloch
wave numbers Q@+ = Qi (w). The complex Bloch wave
numbers are obtained as a solution of the dispersion equa-
tion

E+w=E(Qs)=— Z Ko, €xp(—iQ+n). (15)

with Im(Q4+) < 0 and Im(Q_) > 0 Since the energy
E+w > E+A falls outside the band, the imaginary parts
of @+ are strictly nonvanishing and thus the Bloch waves
qz%f) (w) are evanescent, exponentially decaying as n —
Foo for any frequency w > wp. Indicating by Q4 ., >0
the minimum of |Im(Q4)| over the range of frequencies
w > wy, from Eq.(13) for n — oo one has

628 ~ o= exp(et \ [ vy exptit - iQ.m)

< %exp(et) ’/dwY+ (w) exp(iwt)

exp(=Q+.mn) (16)
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and thus |¢, ()] — 0 as n — oo for any time instant ¢.
Likewise, one has |¢,(t)] — 0 as n — —oo for any time
instant ¢, indicating that the NH scattering perturbation
matrix is invisible.

Clearly, the invisibility property strictly requires a fi-
nite bandwidth of allowed energies in the system, and
thus it breaks down in the continuous (long-wavelength)
limit of lattice dynamics. In fact, in this limit the dynam-
ics can be described by a usual continuous Schrodinger
equation [Eq.(6)] with an unbounded range of allowed en-
ergies. Since the energies E’ of scattered waves can now
fall into allowed energy intervals, they are now propaga-
tive (rather than evanescent) waves, and the invisibil-
ity property is thus lost: Only for some special tailored
space-time potentials scattering can be prevented (see for
instance [40]).

B. Illustrative examples

To exemplify the main result presented in the previous
subsection and to check the correctness of the theoretical
analysis, let us consider a scattering matrix which can be
factorized as

me (t) = R(t)Tn,m (17)

with a time-independent matrix 7}, ,,, and a function of
time R(¢). An invisible potential is obtained, for exam-
ple, by assuming for R(t) a superposition of positive-
frequency harmonics, ie. R(t) = ), Aqexp(iwat),
with frequencies w, > A. The frequencies w, could be
rather generally incommensurate, so as a standard Flo-
quet analysis of inelastic scattering [I8 [63] cannot be
applied. Yet our general analysis discussed in previous
subsection predicts invisibility of the scattering poten-
tial. As for the form of the matrix 75, ,,, we consider
two typical cases. The first one corresponds to a local
on-site scattering potential, i.e. T, = Vp0pn,m, while
the second case corresponds to a defect in the hopping
amplitudes of the lattice, for example we can assume
Tm = 0n,00m,1 + 0n,10m,0, which corresponds to modify
the hopping amplitude between sites n = 0 and n = 1 of
the lattice from k1 to k1 + R(t).

Figures 1 and 2 demonstrate the invisibility of the os-
cillating scattering perturbation in the two cases. The
figures depict the evolution of a forward-propagating
Gaussian wave packet, which is scattered off by the
time-varying potential. At initial time ¢ = 0 the wave
packet is localized at the left side far from the scat-
tering region, and propagates forward toward the scat-
tering region. Coupled equations (1) have been nu-
merically solved using an accurate variable-step fourth-
order Runge-Kutta method. We assumed a tight-binding
lattice with nearest and next-to-nearest neighbor hop-
ping amplitudes k1 = k1 = 1, kKo = K_o2 = 0.2 and
k; = 0 for I # £1,42. The bandwidth of the lattice
is A = 4. In Fig.1 we have a local scattering poten-
tial V,, = Vyexp(—n?/w?) of amplitude Vo = 5 and size
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FIG. 1. Numerically-computed propagation of a Gaussian
wave packet in a tight-binding lattice with nearest and next-
to-nearest neighbor hopping across a time-varying local scat-
tering potential Vi m(t) = VaR(t)dn,m. The scattering po-
tential is V,, = Vbexp(—z?/w?); the modulation function
is R(t) = Ajexp(iwit) + Azexp(iwzt) in (a), and R(t) =
A1 cos(wit) + Az cos(wet) in (b), with incommensurate fre-
quencies wy and ws. Parameter values are given in the text.
The lattice is excited at initial time ¢ = 0 with the Gaussian
wave distribution t,,(0) = exp{—[(n + 90)/10]* + ign} with
carrier Bloch wave number ¢ = 7/2. The left panels show
on a pseudo-color map the time evolution of the amplitudes
|15 (t)|, whereas the right panels show the behavior of the am-

plitudes |1, (t0)| at final time to = 100 (small blue dots), after

the wave packet has fully crossed the scattering region. The

open red circles in panels (b) depict the behavior of |¢x (to)]
that one would observe in the absence of the scattering poten-
tial, i.e. for the freely-moving wave packet. Note that in (a)

the two curves are overlapped, indicating that the scattering
potential is invisible.

w = 2, while in Fig.2 we have a defect of the hopping
amplitude between sites n = 0 and n = 1, described
by the perturbation matrix T, ,, = 0p,00m,1 + 0n,10m,0-
Two different modulation functions R(t) have been used,
namely R(t) = A; exp(iw1t)+ Az exp(iwst) [Figs.1(a) and
2(a)], and R(t) = Ajcos(wit) + Agcos(wat) [Figs.1(b)
and 2(b)]. Parameter values are Ay = Ay = 1, wy = 5,
and wy = v/18. Note that in the former case the mod-
ulation function has a positive-frequency spectrum and,
since wy 2 > A, invisibility is clearly observed according
to the theoretical analysis. Conversely, in the latter case
the Fourier spectrum of R(t) is bilateral, corresponding

200

0.6
05}
2
g 04 B
° g S
3 03 § 3
®
0.2} : e
3
0.1 :
0
150 0 150 200 100 O 100 200
lattice site n lattice site n
100 0.6
05
® 0.4 5
el & Q
- 2 R
2 ‘503 :og
= I 2
®© s
0.2 H
0.1
9 N EY.YAV- SN
-200 0. 200 200  -100 0 100 200
lattice site n lattice site n
FIG. 2. Same as Fig.1, but for a perturbation scatter-

ing matrix describing a time-varying hopping defect V;, », =
R(t)(6n,00m,1 + 0n,10m,0) between sites n = 0 and n = 1.
Parameter values are given in the text.

to an Hermitian perturbation, and invisibility is not any-
more observed.

C. Physical implementation

Synthetic lattices based on photonic, mechanical,
acoustic, electrical or ultracold atomic systems could pro-
vide possible physical platforms for the observation of
the invisibility effect predicted in this work. Here we dis-
cuss in details a possible experimental setup based on
photonic quantum walks of light pulses in coupled fiber
loops [66]. Photonic quantum walks realize a synthetic
lattice in time domain, enabling a flexible control of non-
Hermitian terms in the Hamiltonian. They have provided
recently a fascinating platform to experimentally access
a wealth of novel non-Hermitian phenomena, including
parity-time symmetry breaking [67, 68], non-Hermitian
topological physics [69H73], non-Hermitian Anderson lo-
calization [74], constant-intensity waves and induced
transparency in complex scattering potential [30], and
multiple non-Hermitian phase transitions [75]. The sys-

tem consists of two fiber loops of slightly different lengths
L 4+ AL (short and long paths) that are connected by a
fiber coupler with a coupling angle 5. Two synchronized
amplitude and phase modulators are placed in one of the



two loops to control on demand the amplitude and phase
of the traveling pulses at each transit. The traveling
times of light in the two loops are T+AT, where T = L/c,
¢ is the group velocity of light in the fiber at the probing
wavelength, and AT = AL/e < T is the time mismatch
arising from fiber length unbalance. The light dynamics
of the optical pulses at successive transits in the two loops
is considered at discretized times ¢t = t' = nAT + mT,
where n = 0,41, £2, ... defines the site number of the
synthetic lattice at various time slots and m is the round-
trip number, assumed to match the traveling time T

along the mean path length L. Indicating by uELm ) and

vflm) the field amplitudes at the discretized times ¢]* of
the pulses in the two loops, light dynamics in the cou-
pled fiber loops is governed by the discrete-time coupled
equations (see e.g. [30], 45} 68, [71] [73] [75] [76])

u%m“) = [cos Bugﬁ)l + ¢ sin 5%(:::)1} exp[—2iV,§m)] (18)
oM+l — [cos ﬂvT(Lnj)l + isin ﬁuglni)l} (19)

where Vn(m) is the complex NH scattering potential that
is realized by suitable control of synchronized phase and
amplitude modulators. In the absence of the scatter-
ing potential, i.e. for V,Em) = 0, the synthetic lattice
shows discrete spatial invariance and the corresponding
Bloch eigenfunctions to Eqs.(18) and (19) are given by
W™ w™)T = (@, ) explign — iE(q)m], where q is the
spatial Bloch wave number and E(q) is the quasi energy.
Owing to the binary nature of the lattice, two quasi-
energy bands are found with dispersion relations Ey(q)
given by

E.(q) = tacos (cos B cosq) . (20)

Note that for a coupling angle 8 close to 7/2, i.e. for
B =m/2— p with |p| < 1, the dispersion relations of the
two quasi energies read

Bl (q) = £ F peos(q), (21)

i.e. they correspond to the shifted dispersion curves of
two tight-binding lattices with nearest-neighbor hopping
amplitude k = £p/2. In order to observe the NH invisi-
bility predicted in this work, we consider the continuous-
time limit of the discrete-time quantum walk [73], which
is obtained by assuming a coupling angle § close to 7/2,
ie. B =m/2—p with |p| < 1, and a small and slowly-
varying amplitude of the scattering potential amplitude,
ie. |W§m)| ~ O(p) < 1 and Vn(mﬂ) ~ V,Sm). At first
order in p, Egs.(18) and (19) take the form

uimth) = [puiﬂ_)l + wﬁﬁﬂ oxp(—Ziwgm)) (22)

n

o = (ool +iu) - (23)

n—1

From the above equations, one can eliminate from the

(m)

dynamics the variables vy, ’, yielding a second-order dif-
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FIG. 3. Invisible NH oscillating potentials in a

photonic quantum walk.
vim = R, exp[—(n/3)?] with modulation function
R, = Aiexp(iwim) + Azexp(iwem) in (a), and R, =
Aj cos(wim) + Az cos(wem) in (b). Parameter values are
B = 097 x /2 (coupling angle), Ay = 0.1, A2 = 0.06,
w1 = 0.1, and w2 = v/2/15 ~ 0.0943. Initial excitation
condition of the system is u&o) = 0n,—15 and vSL()) = 0, cor-
responding to a single optical pulse injected into one of the
two fiber loops at time slot (lattice site) n = —15. The left
panels show the discrete-time evolution of the light inten-
sity (Jul™|? + [v™|?) at various lattice sites n on a pseudo
color map, whereas the right panels show the evolution of
15 = (W™ —al™ ) + o™ = 50™|?), where @5™ and 5™
are the pulse amplitudes in the fiber loops that one would
observe in the absence of the scattering potential. In (a)
one clearly sees that far from the scattering region one has

The scattering potential is

I~ 0, indicating that the scattering potential in invisible.
Conversely, in (b) the potential is not invisible.

ference equation for uEJ"), which is solved by letting [73]
u = (@) {9 m) + ()" m)f. 1)

In Eq.(24), Sli)(m) are slowly-varying functions of the
discrete time m which satisfy the decoupled continuous-



time Schrédinger equations

A e ) ()

27 = *+xK 77[1”+1 + Kwn—l + Vn(t)’d}n (25)
where we have set kK = (p/2), t = m (considered as
a continuous variable) and V,,(¢) = V(™. Therefore,

in the continuous-time limit the light pulse dynamics in
the photonic quantum walk setup emulates the scatter-
ing dynamics from a NH time-dependent potential V;,(t)
on two independent tight-binding lattices with nearest-
neighbor hooping amplitudes +x. Provided that the
Fourier spectrum of the potential V,,(¢) vanishes for all
frequencies w smaller than the bandwidth 4« of the tight-
binding lattices, the scattering potential turns out to
be invisible. An illustrative example, showing an in-
visible potential in the quantum walk system, is shown
in Fig.3. The figure depicts the numerically-computed
light pulse dynamics in the coupled fiber loops, as ob-
tained by solving the discrete-time coupled equations
(18) and (19), i.e. without any approximation, for a
coupling angle § = 0.97 x 7/2 and for a scattering po-
tential V™ = R, exp[—(n/3)?] with modulation func-
tion R,, = Aj exp(iwym)—+ Az exp(iwem) in Fig.3(a), and
R, = A; cos(wim) + Az cos(wem) in Fig.3(b) (A; = 0.1,
Ay =0.06, w; = 0.1, wy = v/2/15 ~ 0.0943). The system
is initially excited, at time m = 0, with a single pulse
injected into one of the two loops at the site n = —15,
far from the scattering potential, i.e. we assumed as an
initial condition u{) = 8, _15 and v\ = 0. The initial
excitation spreads along the lattice and is scattered off
by the oscillating potential near the n = 0 region. In
the former case, where the complex modulation function
R,, is composed by positive-frequency components solely,
with frequencies larger than the width of the lattice band,
the potential turns out to be invisible [Fig.3(a)], while in
the latter case, corresponding to a real modulation func-
tion with positive and negative frequency components,
the potential in not invisible and scattered propagative
waves are clearly visible [Fig.3(b)].

D. Invisibility in two-dimensional lattices

The previous analysis has been focused to invisibility
in one-dimensional lattice systems, however the results
can be readily extended to scattering by local space-time
perturbations in two-dimensional (2D) single-band lat-
tices, namely any scattering NH perturbation such that
its Fourier spectrum vanishes for frequencies w < wg (or
likewise for frequencies with w > —wyp), with wy larger
than the width A of the tight-binding lattice band, is
invisible. In fact, the main physics underlying the invis-
ibility property of such scattering potentials is that the
energies of the scattered waves fall outside the allowed
energy band of the lattice. Therefore, far from the scat-
tering region where the lattice is uniform, the scattered
waves are Bloch waves but with an imaginary Bloch wave

number, i.e. they are evanescent waves decaying toward
zero at infinity. This result holds regardless of the spatial
dimensionality of the lattice, indicating that invisibility
is observed also for 2D lattice systems. As an illustrative
example, let us consider the scattering in a 2D square
lattice with nearest-neighbor hopping amplitude s from
a local NH on-site potential V,, ,, (), which is described
by the discrete Schrédinger equation

dn,m
dt

1

= —K (wn+1,m + /(bnfl,m + 1pn,m+1 + /(bn,mfl)
+ Vn,m (t)ﬁ}n,m (26)

where v, () is the wave amplitude at site (n,m) of
the square lattice. As in Sec.III.B we consider a scat-
tering potential of the form. V,, ,,(t) = R(t)V,, n with a
time-independent matrix V,, ,,,, defining the spatial shape
of the local 2D scattering potential, and a modulation
function R(t) given by either R(t) = Ajexp(iwit) +
Az exp(iwat) or R(t) = Ajcos(wit) + Az cos(wat) with
incommensurate frequencies w; and wy. Figure 4 illus-
trates the invisibility of the oscillating scattering poten-
tial when the modulation amplitude R(t) is of the first
type. The figure depicts the evolution of an initial Gaus-
sian wave packet, propagating at an angle of 45° with
respect to the primitive vectors of the Bravais lattice,
which is scattered off by the Gaussian-shaped 2D po-
tential V,,,,, = Vpexp(—n?/w? — m?/w?). At initial
time ¢ = 0 the wave packet is localized at the bot-
tom left side of the lattice, far from the scattering re-
gion, and propagates along the main lattice diagonal
toward the scattering region. Coupled equations (26)
have been numerically solved using an accurate variable-
step fourth-order Runge-Kutta method on a square lat-
tice comprising 42 x 42 sites; parameter values used in
the simulations are k = 1, Vy = 25, w = 2, w; = 10,
wy = 2v/18, and A; = Ay = 1. The bandwidth of
the lattice is A = 8x = 8. The initial condition is
Yn.m(0) = Nexp[—(n+7)%/9—(m~+7)2/9+im(n+m)/2],
where N is the normalization constant. Panels (a),
(b) and (c) of Fig.4 show the temporal evolution of
the wave packet in the absence of the scattering po-
tential [Fig.4(a)], for a modulated NH scattering poten-
tial with R(t) = A; exp(iwit) + Agexp(iwat) [Fig.4(b)],
and for a modulated Hermitian scattering potential with
R(t) = A; cos(wit) + Az cos(wat) [Fig.4(c)]. The full dy-
namical evolution is shown in the movies 1,2 and 3 of the
Supplemental Material [77]. Clearly, in the latter case
[Fig.4(c)] the potential is not invisible, and a large frac-
tion of the incoming wave packet is scattered off by the
oscillating Hermitian Gaussian-shaped potential. On the
other hand, after the scattering event the wave packet
in Fig.4(b) propagates as if the scattering potential were
not present. This is clearly shown in Fig.4(d), which
depicts the numerically-computed evolution of the error
function I(t) = maxy m |¥n,m(t) — ¥n,m| on a log scale,
where )y, (t) and 1, ,, (t) are the amplitudes at lattice
site (n,m) and at time ¢ with or without the scattering
potential, respectively. Clearly, I(t) — 0 as t — oo is the
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FIG. 4. Scattering dynamics of a wave packet in a 2D square lattice from a space-time Gaussian-shaped on-site scattering
potential. Parameter values are given in the text. The five panels in (a), (b) and (c¢) show on a pseudo-color map the
numerically-computed evolution of the wave packet amplitudes |¢, »(t)| at a few increasing times ¢t (t = 0, t = 5, t = 7.5,
t =10 and t = 15 from left to right). In (a) there is not any scattering potential, in (b) there is the NH (invisible) space-time
scattering potential, in (c) there is the Hermitian space-time scattering potential. (d) Temporal behavior of the error function
I(t), on a log scale, measuring the wave packet reconstruction of the wave packet after the scattering event. Curves 1 and 2

refer to the scattering by the non-Hermitian and by the Hermitian potentials, respectively.

signature of potential invisibility.

IV. CONCLUSIONS AND DISCUSSION

Wave scattering from complex potentials in non-
Hermitian systems has received a great and increasing
interest in the past recent years, with the ability of tai-
loring the scattering properties of complex media in un-
precedented ways and with the discovery of new classes
of scatteringless and invisible potentials. Wave scattering
is deeply influenced not only by the presence of NH po-
tentials with gain and loss regions, that serves as source
and sinks of waves, but also by the continuous or discrete
spatial translational invariance of the system.

Most of methods so far suggested to realize invisible or
transparent potentials, both in continuous and discrete
NH systems, rely on special tailoring of the potential
shape, using for example the methods of supersymme-
try, the spatial Kramers-Kronig relations or other related
techniques. In this work we suggested a new route toward
the realization of invisible potentials in NH systems with
discrete spatial translational invariance, which does not

J

require any special tailoring of the potential shape. The
key characteristic of our new method is modulating in
time any arbitrary potential shape by a complex modu-
lation amplitude satisfying a minimal requirement, that
makes any potential shape invisible. The main physical
idea is that any scattering potential or defective region
on a lattice, rapidly oscillating in time with only posi-
tive (or negative) frequency components, cannot scatter
any propagative incoming wave into another propagative
(reflected or transmitted) wave in the lattice: owing to
the finite band of allowed energies in the lattice, any
scattered wave is evanescent, regardless of the potential
shape. As a result, any potential shape can be made in-
visible by making it oscillating in time under a minimal
constraint. Our approach to realize invisibile potentials
in discrete systems could open up a whole new avenue for
the design of synthetic media with novel scattering prop-
erties that do not rely on special engineering of material
parameters. As a possible physical platform to experi-
mentally demonstrate the new strategic method of invis-
ibility, we suggested wave scattering in synthetic lattices
based on photonic quantum walks in coupled-fiber loops,
which can nowadays be routinely realized in a photonic
laboratory

Appendix A: Some properties of modified Laplace-Fourier integral

1. Definition and inverse relation. Let f(t) a complex and regular function of time ¢, defined for ¢ > —ty and
bounded (or increasing but less than exponential) as ¢ — co. Indicating by € > 0 a small positive number and ¢; a



large positive time instant, we define the modified Fourier-Laplace spectrum of f(¢), denoted by f () (w), as

fOWw) = /l1 dtf(t) exp(iwt — et), (A1)

—to

where —0o < w < oo is the frequency. The use of the modified Fourier-Laplace transform avoids the singularities
that might arise in usual Fourier analysis when f(¢) is bounded but non-vanishing or even weakly (non-exponentially)
growing for ¢+ — co. In this work we are mainly interested in the triple limits #,%; — oo and € — 0T, with

toe > 0, tie — oo.

This limit is justified by the need to make vanishing the boundary value terms, at t = —ty and ¢ = ¢, of the functions
¢1(t) exp(et) when deriving the dynamical equations (10) in Fourier space, given in the main text.

After integration Eq.(A1) by parts, it readily follows that f(=)(w) decays at least as exp(+iwt; ) /w for w — 00, and
it is thus integrable. Equation (A1) can be reversed as follows. Let us multiply both sides of Eq.(A1l) by exp(—iwT)
and integrate with respect to w from —oo to co. One obtains

o0 t1

/_00 dw f() (w) exp(—iwT) = / dw dtf(t) exp(iwt — et + iwT) (A2)

—00 —to
Interchanging the integration order on the right hand side of Eq.(A4) and taking into account that
/ dw expliw(T — t)] = 2w6(T — t)

one obtains

oo t1
/ dw £ (w) exp(—iwr) = 2 / dtf(t) exp(—et)d(t — 7) (A3)
—00 —to
Therefore, for —tg < 7 < t1, one has
f(r)= % exp(er) /OO dw f©) (w) exp(—iwT) (A4)

which provides the inverse spectral relation.

2. Relation to the ordinary Fourier spectrum. When f(t) admits of a Fourier spectrum f(w), defined in the
usual way as

fw = [ £ (1) expliot), (45)

— 00

the modified Fourier-Laplace spectrum f (e) (w) converges to f (w) in the triple limit mentioned above. In fact, we can
write f(¢)(w) as the ordinary Fourier spectrum of the product between f(t) and the function h(t) defined by

o 0 t<—tyg, t>1
h(t) = { exp(—et) —to <t <ty, (A6)
ie.
fOw) = / dtf(t)h(t) exp(iwt). (A7)
Using the convolution theorem of Fourier integral, one has
o = [ dofw-2)6@ (A8)
where
Glw) = i}}( )= 1 /°° dth(t) exp(it) = expli(w + i€)t1] — exp[—i(w + i€)to] (A9)
T\ T e P N 27i(w + 7€) '
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In the triple limit tg,t; — 00, € — 07 with etg — 0 and et; — oo, one has
exp(—iwtp)
27i(w + 7€)

Note that |G(w)| = 1/[2mvVw? + €?] is a narrow and peaked function at around w = 0, with G(0) = 1/(2me) diverging

as € — 0 and with a full-width ~ 2¢ vanishing as ¢ — 0. Moreover, G(w) is a rapidly oscillating function of w with

local zero mean for |w| > 1/tg, so that the main contribution to the integral in Eq.(A8) is obtained for 2 ~ 0. In the
e — 07 limit, we can thus set G(w) = Ad(w), where A is the area subtended by the function G(w), i.e.

Az/ide(w):—/Zdw(m. (A11)

Gw) ~ (A10)

The integral on the right hand side of Eq.(A11) can be computed in complex w plane using the residue theorem, after
closing the integration path by a semi-circumference of large radius in the lower Im(w) < 0 half plane. This yields

A = exp(—etyg) =1 (A12)

where we used the limit ety — 0. Therefore, in the triple limit ¢o,t; — oo with ety — 0, et; — 00, one has G(w) ~ §(w)
and thus, from Eq.(A8), f(9(w) ~ f(w).
3. Convolution relation. Finally, let us calculate the modified Fourier-Laplace transform of the product f(¢)g(t), i.e.
the integral

t1

Iw) = dtf(t)g(t) exp(iwt — et) (A13)

—to
assuming that ¢g(t) can be Fourier transformed in the usual way. To this aim, let us write f(¢) and g(¢) in terms of
their modified Fourier-Laplace and Fourier spectra, respectively, i.e. let us insert the inverse relations

1 o0 . . 1 [ . )
flt)= 7 exp(et)/ dwlf(e) (w1) exp(—iwrt) , g(t) = %/ dws §(w2) exp(—iwat) (A14)
into Eq.(A13). One obtains
1 t1 ) ) R
Iw) = W/ dt/ dwl/ duws £ (w1)§(ws) expli(w — w1 — wo)t]. (A15)
a —to —00 —00
After introduction of the function
bt Q) — —iQ
o) = dt exp(i§2t) = exp(i€tt) : exp(—iftto) (A16)
—tq ZQ
one obtains
1 (o] o0 . R
1@ = gz [ o [ donf )0 — w1 - ws). (a17)

Note that in the limits tg,t; — oo, ©(Q = 0) = (t; + to) diverges, whereas for €2 # 0 the ratio ©(2)/©(0) vanishes.
Moreover, ©() is a rapidly oscillating function of Q with local zero mean for |Q2] > 1/ty. Therefore, in the limits
to,t1 — oo one can assume O() ~ AJ(Q) in the integral on the right hand side of Eq.(A17), where A is the area
subtended by () and given by

A= / T a0e(©) = . / ¥ apSeion) ;;Xp(_m“) . (A18)

The integral on the right hand side in Eq.(A18) can be readily computed in complex Q plane using the residue
theorem, yielding A = 27 independent of ¢g and t;. After letting ©(£2) ~ 275(£2) in Eq.(A17), one finally obtains

1)~ 5 / " o O — wa)ilwn) (A19)

21 J_ o

— 00

which is analogous to the convolution relation of ordinary Fourier integral.
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