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Non-Hermitian multichannel theory of ultracold collisions modified by intense light fields tuned
to the red of the trapping transition

R. Napolitano
Instituto de Quı´mica de Araraquara, Universidade Estadual Paulista, Araraquara, Sa˜o Paulo 14800-900, Brazil

and Instituto de Fı´sica de Sa˜o Carlos, Universidade de Sa˜o Paulo, São Carlos, São Paulo 13560-970, Brazil
~Received 15 August 1997!

We develop a systematic scheme to treat binary collisions between ultracold atoms in the presence of a
strong laser field, tuned to the red of the trapping transition. We assume that the Rabi frequency is much less
than the spacing between adjacent bound-state resonances. In this approach we neglect fine and hyperfine
structures, but consider fully the three-dimensional aspects of the scattering process, up to the partiald wave.
We apply the scheme to calculate theS matrix elements up to the second order in the ratio between the Rabi
frequency and the laser detuning. We also obtain, for this simplified multichannel model, the asymmetric line
shapes of photoassociation spectroscopy, and the modification of the scattering length due to the light field at
low, but finite, entrance kinetic energy. We emphasize that the present calculations can be generalized to treat
more realistic models, and suggest how to carry out a thorough numerical comparison to this semianalytic
theory.@S1050-2947~98!04902-6#

PACS number~s!: 32.80.Pj, 34.50.2s, 34.50.Rk
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I. INTRODUCTION

We can modify and control certain aspects of ultrac
collisions using laser fields suitably tuned and polarized.
deed, recent experimental@1–8# and theoretical@9–11# stud-
ies have assured our ability to suppress inelastic ultrac
collision rates by light fields tuned to the blue of the trappi
transition. Moreover, in the context of quantum degenera
a zero-temperature calculation@12# has shown the possibility
of modifying the scattering length associated with the int
action potential of two ground-state atoms, in the presenc
red-detuned photons.

Recent experiments show that Bose-Einstein conde
tion of trapped alkali-metal atoms occurs at finite ultraco
temperatures@13–15#. In this energy regime, we have deve
oped a two-state model for controlling scattering lengths
photoassociation spectral line shapes of alkali-metal at
by red-detuned laser fields@16#. However, at high enough
intensities of the light field, a two-state model cannot d
scribe the collision completely. Due to multiphoton pr
cesses, partial waves higher than thes wave contribute ap-
preciably to the scattering@17#. Furthermore, atom-field
dressing effects manifest themselves when the collision
curs in the presence of a strong enough laser field. Belo
mK, light shifts become comparable to the entrance collis
energies, even for detunings of several tens cm21 from the
trapping transition. We expect dressing effects to be es
cially relevant to photoassociation spectral line shapes
alkali-metal atoms, since this topic has been extensiv
studied in the past few years mostly in the low-intens
regime@18–26#.

In this paper we present a systematic approach to t
binary ultracold collisions in the presence of an intense la
field, tuned to the red of the trapping transition. The on
assumption we make concerning the light intensity is that
corresponding Rabi frequency is much less than the spa
between adjacent bound-state resonances. We predict,
571050-2947/98/57~2!/1164~12!/$15.00
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unified way, the modification of scattering lengths and ph
toassociation spectral line shapes, regarding only isola
resonances. With this simple model we are able to take
account multichannel and dressing effects in the regime
finite ultracold temperatures. As in Ref.@10#, we take a step
beyond the two-state approaches by neglecting fine and
perfine structures, but considering fully the thre
dimensional aspects of the problem. For simplicity and c
creteness, we introduce partial waves up to thed wave and
treat the particular case of a pair of sodium atoms in
presence of linearly polarized, red-detuned photons. I
forthcoming paper we will present numerical calculatio
based on the present theory and a comparison between
effects of linear and circular polarizations. We emphas
that the present approach is easily extensible to higher pa
waves and other alkali-metal species. This treatment can
accommodate more than one ground-state potential c
and retardation effects. Although it may be considered cu
bersome, fine and hyperfine structures can, in principle, a
be incorporated into the formalism.

The solution of the coupled equations describing the c
lision process is fully detailed in this paper, in a se
contained manner, for completeness and clarity. Althou
we present a systematic algorithm to calculate dressing
fects to all orders, we illustrate the procedure through
plicit calculations for a special situation relevant to sodiu
up to the second order in the ratio between the Rabi
quency and the detuning. In the present treatment we int
to emphasize multichannel, finite-temperature, and dres
effects, without unnecessary sophistication.

To account for spontaneous emission from the exci
bound state, we adopt a non-Hermitian effective Hamilton
that we describe in detail in Sec. II. Following this speci
cation of the problem in the undressed basis, including all
coupled states up to the partiald wave, in Sec. III we refor-
mulate the collision process in terms of the asympto
dressed states. In the dressed basis, the Hamiltonia
asymptotically diagonal and this basis represents the ac
1164 © 1998 The American Physical Society
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57 1165NON-HERMITIAN MULTICHANNEL THEORY OF . . .
incoming and outgoing physical states. In Sec. IV we c
sider the closed-channel manifold assuming that it conta
an isolated resonance. In this way we simplify the clos
channel problem by regarding only the resonant contribu
to the corresponding Green function. We obtain theS matrix
elements in Sec. V, up to the second order in the ratio
tween the Rabi frequency and the detuning. We also ill
trate the application of the procedure by calculating
asymmetric line shapes of photoassociation spectrosc
and the modification of the scattering length by the lig
field. In Sec. VI we discuss the region of parameter sp
where we expect this theory to be valid. Finally, in Sec. V
we conclude by summarizing the present approach and
senting some directions we will follow in a forthcoming p
per.

II. THE UNDRESSED POTENTIAL MATRIX

In this article we consider two sodium atoms in the h
perfine stateuF51,mF521&, as in Ref.@15#, so that the
lower molecular state involved is thea 3Su

1 . From this
lower molecular state, the colliding system can absorb a
detuned photon and be excited to a bound state of symm
3Sg

1 . Asymptotically, that is, when the interatomic distan
R approaches a large but finite valueR` at which we can
neglect the interaction between the atoms, thea 3Su

1 mo-
lecular state corresponds to two atoms in their2S ground
states. The3Sg

1 bound molecule asymptotically dissociat
into one atom in its2S ground state and another in its2P
first excited state. Because in this paper we ignore fine
hyperfine interactions, let us denote byj the electronic or-
bital angular-momentum quantum number of the asympt
two-atom system. Thus, if the two atoms are in their2S
ground states, thenj 50; and if one of the atoms is in its2S
ground state and the other in its2P first excited state, then
j 51. The j 50 state has angular-momentum projectionmj
50 along a space-fixedz axis, while thej 51 state may have
mj521, 0, or11. Therefore, the asymptotic electronic b
sis states relevant to this problem are denotedu j ,mj&, with
mj50 for j 50 andmj50,61 for j 51.

Two separated atoms can come together at different
pact parameters. Equivalently, we can describe the rotati
state of the approaching atoms by introducing the spher
harmonic functionsu l ,ml&[Yl

ml(u,w), where l 50,2,4, . . .
for bosons@27# and ml52 l ,2 l 11, . . . ,l 21,l . The angles
u andw describe the orientation of the interatomic axis w
respect to the space-fixed reference frame. Up to thel 52
partial wave (d wave! and for linear light-field polarization
the only coupled undressed states, including the ground s
are given by@10#

u1&[u j 50,mj50&u l 50,ml50&uN&, ~1a!

u2&[u j 50,mj50&u l 52,ml50&uN&, ~1b!

u3&[u j 51,mj50&u l 50,ml50&uN21&, ~1c!

u4&[u j 51,mj521&u l 52,ml51&uN21&, ~1d!

u5&[u j 51,mj51&u l 52,ml521&uN21&, ~1e!
-
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u6&[u j 51,mj50&u l 52,ml50&uN21&, ~1f!

and we have also included the radiation-field Fock statesuN&
and uN21& containingN and (N21) photons, respectively
These states are normalized to unity, that is,^aub&5da,b ,
for a,b51, . . . ,6. Theradiation can only coupleu1& to u3&
and u2& to u6&, but there are other couplings that force t
introduction of the statesu4& andu5&, as we show below. The
radiative couplings we consider are

^1uHI u3&5^2uHI u6&5\V, ~2!

whereV5A2VA and VA is the atomic Rabi frequency fo
the 32S→3 2P transition of sodium given byVA /(2pc)
'1.4796631023AI cm21, and I is the laser intensity in
W/cm2 @10#. Let us notice that the molecular Rabi frequen
V is a real quantity, independent ofR.

The total Hamiltonian for this problem has the form

H52
\2

2mR

]2

]R2
R1

L2

2mR2
1V~R!, ~3!

with the potential operator

V~R!5He~R!1H f1HI11j, ~4!

where L[2 i\R3¹ is the rotational angular-momentum
operator satisfying L2u l ,ml&5\2l ( l 11)u l ,ml& and
ẑ•L u l ,ml&5\ml u l ,ml&, R is the interatomic vector of pola
coordinates (R,u,w), m is the reduced mass of the collidin
partners,He(R) is the electronic Hamiltonian for a fixed in
teratomic separationR, H f is the radiation-field Hamiltonian
HI is the operator representing the interaction between
colliding atoms and the electromagnetic field,1 is the iden-
tity operator, andj is an arbitrary shift in energy we specif
below. The nonzero matrix elements ofHI are given by Eq.
~2!. The action ofH f on a Fock state containingN photons
of frequencyv is

H f uN&5\v~N1 1
2 !uN&. ~5!

Let E0 be the total electronic energy~not including atomic
kinetic energy! of two separated2S atoms andE1 the total
electronic energy of a2S atom and a distant2P atom.
Hence,He(R) is diagonal in the basis set$u j ,L,J,MJ&%:

He~R!u j ,L,J,MJ&5@WuLu
j ~R!1Ej2 i\gd1,j #u j ,L,J,MJ&,

~6!

where the Born-Oppenheimer potentialsWuLu
j (R) satisfy

limR→`WuLu
j (R)50 and R` is such thatWuLu

j (R'R`)'0,
and the Hund’s-case~a! eigenfunctionsu j ,L,J,MJ& are de-
fined as

u j ,L,J,MJ&[A2J11

4p
DMJ ,L

J* ~w,u,0!u j ,L&

and

u j ,L&[ (
mj 521

1

DL,mj

j* ~w,u,0!u j ,mj&. ~7!

Here,\g is the atomic linewidth~the molecular linewidth is
equal to 2\g @28#! of the 32P state of sodium that we in
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troduce at this point in anad hocfashion to account for the
spontaneous emission from the bound-state reson
@16,29#. The unnormalized symmetric top eigenfunctio
DMJ ,L

J* (w,u,0) and DL,mj

j* (w,u,0) are the Wigner rotation

matrix elements @30#. The functions u j ,L& refer to a
molecule-fixed reference frame that has itsz axis parallel to
R. Let us notice thatL50 for j 50 and L50,61 for j
51, given the isotropy of space. As explained in Ref.@10#,
the implicit R dependence of the molecular eigenfunctio
u j ,L,J,MJ& is of no appreciable effect due to the smallne
of the ratio between the electronic and nuclear mass~Born-
Oppenheimer approximation!. The meaning of the quantum
numbersJ and MJ is clear from the equationsJ[ j1L ,
J2u j ,L,J,MJ&5\2J(J11)u j ,L,J,MJ&, and ẑ•Ju j ,L,J,MJ&
5\MJu j ,L,J,MJ&, with J5u j 2 l u,u j 2 l u11, . . . ,j 1 l 21,
j 1 l andMJ52J,2J11, . . . ,J21,J.
g
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The Born-Oppenheimer molecular basis$u j ,L,J,MJ&% is
related to the asymptotic space-fixed basis$u j ,mj&u l ,ml&%
through the relation@31#

u j ,mj&u l ,ml&5 (
J5u j 2 l u

j 1 l

(
MJ52J

J

(
L52 j

j A2l 11

2J11

3^ j ,l ,mj ,ml uJ,MJ&

3^ j ,l ,L,0uJ,L&u j ,L,J,MJ&, ~8!

adopting the notation of Ref.@30# to write Clebsch-Gordan
coefficients as, for example,^ j ,l ,mj ,ml uJ,MJ&. In the un-
dressed basis, Eqs.~1!, the potential operator of Eq.~4! can
be represented by a 636 complex matrix through the use o
Eqs.~2!, ~5!–~8!:
V~R!53
W0

0~R! 0 \V 0 0 0

0 W0
0~R! 0 0 0 \V

\V 0 Va~R!2\Dc D~R!/A15 D~R!/A15 22A5D~R!/15

0 0 D~R!/A15 Vb~R!2\Dc 22D~R!/7 A3D~R!/21

0 0 D~R!/A15 22D~R!/7 Vb~R!2\Dc A3D~R!/21

0 \V 22A5D~R!/15 A3D~R!/21 A3D~R!/21 Vc~R!2\Dc

4 , ~9!
e
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where Dc[D1 ig is a complex quantity,D[v2(E1
2E0)/\,0 is the laser detuning that we assume to be ne
tive ~red detuning!, and we have defined the functions

D~R![W1
1~R!2W0

1~R!, ~10a!

Va~R![
2W1

1~R!1W0
1~R!

3
, ~10b!

Vb~R![
5W1

1~R!12W0
1~R!

7
, ~10c!

Vc~R![
10W1

1~R!111W0
1~R!

21
. ~10d!

To derive this potential matrix we have chosen the ene
shift appearing in Eq.~4! to bej[2E02\v(N1 1

2 ), for the
sake of simplicity.

III. THE CLOSE-COUPLING FORMULATION
IN THE DRESSED-STATE REPRESENTATION

In the close-coupling formalism, described in detail
Ref. @10# and references cited therein, we look for wa
functions, written as

uCb~R!&5 (
s51

6
Fs,b~R!

R
us&, ~11!
a-

y

that satisfy the time-independent Schro¨dinger equation,
HuCb(R)&5EuCb(R)&, where H is the total Hamiltonian
given by Eq.~3!, E is an eigenvalue corresponding to th
continuous spectrum ofH, and the indexb enumerates the
eigenstates belonging to a givenE. The eigenvalueE of H is
a complex quantity, sinceH is not Hermitian, and in the
following we show that the suitable choice of asympto
boundary conditions implies a finite imaginary part ofE. It
then follows that the solution of the time-dependent Sch¨-
dinger equation,HuFb(R,t)&5 i\(]/]t)uFb(R,t)&, is given
by uFb(R,t)&5exp@2i Re(E)t/\1Im(E)t/\#uCb(R)&. Be-
cause Im(E),0, the amplitude of the stateuFb(R,t)& de-
creases exponentially, due to spontaneous emission. In
section we also show that the magnitude of Im(E) can be
made very small by choosing a sufficiently large red det
ing.

Substituting Eqs.~3! and ~11! into the time-independen
Schrödinger equation gives a matrix equation for the rad
amplitudesFs,b(R):

2
\2

2m

d2

dR2
Fb~R!1

L2

2mR2
Fb~R!1V~R!Fb~R!5EFb~R!,

~12!

where

Fb~R![@F1,b~R!F2,b~R!F3,b~R!F4,b~R!F5,b~R!F6,b~R!# t

is a 631 column matrix~the superscriptt indicates matrix
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transposing!, V(R) is the 636 complex potential matrix of
Eq. ~9!, andL2 is a 636 diagonal matrix containing, alon
its diagonal, the sequence of eigenvalues of the square o
rotational angular-momentum operator, ordered accordin
a
y

d
u-
in
f
n
-

he
to

the basis set of Eqs.~1!: (0,6\2,0,6\2,6\2,6\2). Asymptoti-
cally, Eq.~12! becomes\2d2Fb(R)/dR222mV`Fb(R)50,
whereV` is a 636 R-independent complex matrix define
as
V`[3
2E 0 \V 0 0 0

0 2E 0 0 0 \V

\V 0 2\Dc2E 0 0 0

0 0 0 2\Dc2E 0 0

0 0 0 0 2\Dc2E 0

0 \V 0 0 0 2\Dc2E

4 . ~13!
-

o

se

lly

-

The matrixV` is not diagonal at very large interatomic sep
ration, meaning that the coupling with the radiation is alwa
present. Therefore, the undressed states, Eqs.~1!, are not
suitable for describing the asymptotic states necessary to
fine theS matrix. In other words, in the actual physical sit
ation of a collision in the presence of photons, the incom
and outgoing scattering states are the stationary states o
asymptotic Hamiltonian. Accordingly, the normalized eige
states ofV` ~the dressed states! are obtained by diagonaliz
ing Eq. ~13! and are given by

uD1&[a2u1&1b2u3&, ~14a!

uD2&[a2u2&1b2u6&, ~14b!

uD3&[a1u1&1b1u3&, ~14c!

uD4&[u4&, ~14d!

uD5&[u5&, ~14e!

uD6&[a1u2&1b1u6&, ~14f!

with a6 andb6 complex quantities satisfyingua6u21ub6u2
51 and defined as

a2[
V

Auz2u21V2
, b2[

z2

Auz2u21V2
, ~15a!

a1[2
V

D1 ig
A D21g2

uz1u21V2
,

b1[2
z1

D1 ig
A D21g2

uz1u21V2
, ~15b!

z6[2
~D1 ig!

2
6

1

2FAuZu1Re~Z!

2
2 iAuZu2Re~Z!

2 G ,
~15c!

Z[~D1 ig!214V25~D214V22g2!12igD.
~15d!
-
s

e-

g
the
-

Although uD1& and uD3& are normalized and linearly inde
pendent, they are not orthogonal. The same occurs withuD2&
and uD6&. It is also worth noticing thatD,0 and uDu.g
.0, as we assume in the following.

It is easy to show that the quantitiesa65a6(D,V,g) and
b65b6(D,V,g) satisfy the property a6(lD,lV,lg)
5a6(D,V,g) and b6(lD,lV,lg)5b6(D,V,g) for all
real l.0. Hence, by choosingl51/uDu, we obtain a6

5a6(21,V/uDu,g/uDu) and b65b6(21,V/uDu,g/uDu),
that is, a6 and b6 can be viewed as functions of the tw
independent variablesV/uDu and g/uDu. The sign ofD is
fixed, D,0, thusa6 and b6 are fully specified by giving
V/uDu andg/uDu. In this paper we are interested in the ca
of large red detunings, namely,uDu@g and uDu@V. In par-
ticular, we can expanda6 andb6 up to the second order in
V/uDu to obtain

a2'12
V2

2~D21g2!
, b2'

V

D1 ig
, ~16a!

a1'2
V

D1 ig
, b1'12

V2

2~D21g2!
F11

4igD

D21g2G .

~16b!

The scattering boundary conditions are more natura
stated in the dressed-state representation, Eqs.~14! and~15!,
than in the undressed, Eqs.~1!, as we show below. There
fore, if we define the 631 column matrix Gb(R)
[M 21Fb(R), whereM is the 636 complex matrix defined
as

M[3
a2 0 a1 0 0 0

0 a2 0 0 0 a1

b2 0 b1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 b2 0 0 0 b1

4 , ~17!
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1168 57R. NAPOLITANO
then Eq.~11! is equivalently written in terms of the dresse
states and the radial amplitude 631 column matrixGb(R)
as

uCb~R!&5 (
s51

6
Fs,b~R!

R
us&5 (

s51

6
Gs,b~R!

R
uDs&,

where Gs,b(R)5(n51
6 (M 21)s,nFn,b(R). By left-

multiplying Eq. ~12! by M 21 and noticing thatV(R)Fb(R)
5V(R)MM 21Fb(R)5V(R)MGb(R), we obtain the matrix
Schrödinger equation in the dressed-state representation

d2

dR2
Gb~R!2

2m

\2
M 21V`MGb~R!2

L2

\2R2
Gb~R!

2U~R!Gb~R!50, ~18!

where we have added and subtractedM 21V`M and intro-
duced the 636 complex matrix U(R), satisfying
limR→`U(R)50 andU(R'R`)'0, and defined in terms o
the potential matrixV(R) as

U~R![
2m

\2
M 21@V~R!216E2V`#M , ~19!

with 16 representing the 636 identity matrix. Let us also
notice thatL2 satisfies the propertyM 21L2M5L2, since the
radiation does not couple states of different rotational qu
tum numbers@32#.

The statesuD1& and uD2& have degenerate eigenvalu
2E1\z2 of V` , the statesuD3& and uD6& have degenerate
eigenvalues2E1\z1 , and the statesuD4& and uD5& have
degenerate eigenvalues2E2\Dc . In this article we assume
that the kinetic energyEk[\2k2/(2m).0 is much less than
2\D.0, since we are considering the regime of ultraco
temperatures and large red detunings. Asymptotically,t
50, let us suppose we prepare the system in the stateuDa&,
for a51,2; the total Hamiltonian eigenvalue of the system
the atoms are fixed at rest at positionR` , is equal to\z2 ,
because then (d2/dR2)Ga,b(R)50. Therefore, if we prepare
the system in the stateuDa&, for a51,2, but now with a
finite kinetic energy Ek , then (d2/dR2)Ga,b(R)5
22mEk /\2Ga,b(R) and E5Ek1\z25\2k2/(2m)1\z2 .
It follows from Eqs.~15c! and~15d! that the imaginary par
of the eigenvalueE is Im(\z2),0 and that Im(\z2) van-
n-

f

ishes asuDu becomes much greater thanV. Moreover,
choosing a positive real kinetic energy is equivalent to i
posing oscillatory asymptotic solutions forGa,b(R), that is,
Ga,b(R)'c1exp@ikR#1c2exp@2ikR#, with c1 and c2 being
independent ofR for R'R` . Now, for example, forr
53,6 and usingE5Ek1\z2 , we have the asymptotic radia
equation d2Gr,b(R)/dR22YGr,b(R)50, with the defini-
tion Y[2m(2Ek2\z21\z1)/\2. The functionGr,b(R)
assumes the asymptotic behaviorGr,b(R)'d1exp@yrR
1iyiR#1d2exp@2yrR2iyiR#, where d1 and d2 are indepen-
dent of R for R'R` , y r[A@ uYu1Re(Y)#/2, and y i[
2A@ uYu2Re(Y)#/2 @AY56(y r1 i y i), since it follows
from Eqs.~15c! and ~15d! that Im(Y),0#. Becausey r.0
we must imposed150 for Gr,b(R) to be finite asymptoti-
cally; indeed, withd150, Gr,b(R) vanishes forR'R` . A
similar reasoning implies thatGr,b(R), for r54,5, also van-
ishes forR'R` . Thus only the statesuD1& and uD2& are
accessible asymptotically, corresponding to open chan
for the collision; the other states are therefore the clo
channels in this problem, manifesting themselves o
through resonances.

In the dressed-state representation the off-diagonal ma
elements of the Hamiltonian vanish asymptotically and
can apply the analysis of Ref.@16# generalized to the multi-
channel case. The first step is then to distinguish betw
closed and open channels and break Eq.~18! into two matrix
equations, one for the open-channel manifold and the o
for the closed-channel manifold. As we have discussed in
previous paragraph, the open-channel manifold correspo
to the 232 block of the Hamiltonian comprising the sub
space spanned by the first two dressed statesuD1& anduD2&.
The closed-channel manifold is spanned by the last f
dressed states, corresponding to a 434 block of the Hamil-
tonian. The open-channel 232 block is coupled to the
closed-channel 434 block by the off-diagonal blocks: on
234 and the other 432. Thus, we can write the 636 ma-
trix U(R) as a 232 matrix whose elements are also mat
ces:

U~R!5FUgg~R! Uge~R!

Ueg~R! Uee~R!
G , ~20!

whereUgg(R) is a 232 complex matrix,Uee(R) is 434,
Uge(R) is 234, andUeg(R) is 432. Now we are able to
give explicit expressions of the different blocks of the mat
U(R), Eq. ~20!. From Eqs.~9!, ~13!, ~17!, and ~19!, it fol-
lows that
Ugg~R!5
2m

G\2F a2b1W0
0~R!2a1b2Va~R! 2A5a1b2D~R!/15

2A5a1b2D~R!/15 a2b1W0
0~R!2a1b2Vc~R!

G , ~21!

Uge~R!5
2m

G\2F a1b1@W0
0~R!2Va~R!# 2a1D~R!/A15 2a1D~R!/A15 2A5a1b1D~R!/15

2A5a1b1D~R!/15 2a1A3D~R!/21 2a1A3D~R!/21 a1b1@W0
0~R!2Vc~R!#

G , ~22!
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Ueg~R!5
2m

G\2F 2a2b2@W0
0~R!2Va~R!# 22A5a2b2D~R!/15

b2D~R!/A15 A3b2D~R!/21

b2D~R!/A15 A3b2D~R!/21

22A5a2b2D~R!/15 2a2b2@W0
0~R!2Vc~R!#

G , ~23!

and, finally,

Uee~R!5
2m

G\2F a2b1Va~R!2a1b2W0
0~R! a2D~R!/A15 a2D~R!/A15 22A5a2b1D~R!/15

b1D~R!/A15 Vb~R! 22D~R!/7 A3b1D~R!/21

b1D~R!/A15 22D~R!/7 Vb~R! A3b1D~R!/21

22A5a2b1D~R!/15 A3a2D~R!/21 A3a2D~R!/21 a2b1Vc~R!2a1b2W0
0~R!

G , ~24!

whereG[a2b12a1b2 is the determinant ofM . The 636 complex matrixU(R) is not symmetric, reflecting the fact that th
Hamiltonian is not Hermitian to account for spontaneous emission.

Let us define the 231 column matrixGgb(R)[@G1,b(R) G2,b(R)] t and the 431 column matrixGeb(R)[@G3,b(R)
G4,b(R) G5,b(R) G6,b(R)] t. Thus, it is straightforward to derive from Eqs.~18! and ~20! the following matrix equations:

d2

dR2
Ggb~R!1F k2122

Lgg
2

\2R2
2Ugg~R!GGgb~R!5Uge~R!Geb~R!, ~25a!

d2

dR2
Geb~R!2Fk2141s1

Lee
2

\2R2
1Uee~R!GGeb~R!5Ueg~R!Ggb~R!, ~25b!

wherek2[2mEk /\2[2m(E2\z2)/\2, k2[22m@Ek1Re(\z22\z1)#/\2, 12 is the 232 identity matrix,Lgg
2 is a 232

diagonal matrix containing the sequence (0,6\2) along its diagonal,14 is the 434 identity matrix,s is a 434 diagonal matrix
defined as

s[2
2m

\ F i Im~z22z1! 0 0 0

0 Re~z1!1D1 ig1 i Im~z2! 0 0

0 0 Re~z1!1D1 ig1 i Im~z2! 0

0 0 0 i Im~z22z1!

G , ~26!

andLee
2 is a 434 diagonal matrix containing the sequence (0,6\2,6\2,6\2) along its diagonal.

Equations~25! are in a form suitable for applying scattering boundary conditions, becauseUgg(R), Uee(R), Uge(R), and
Ueg(R) vanish asymptotically and so does the physically acceptable solution for the matrixGeb(R), as we have discusse
above. AsR tends toR` , it follows from Eq. ~25a! that the asymptotic form ofGgb(R) can be written as@33#

Ga,b~R!' iA m

2p\2k
H da,bexpF2 i S kR2

p l b

2 D G2Sa,bexpF i S kR2
p l a

2 D G J , ~27!
e

l,

-

ng

-

wherea,b51,2, l 1[0 (s wave! and l 2[2 (d wave!, and
Sa,b are the elements of the scattering matrix. From elem
tary collision theory the meaning of the indexb is now clear:
b51 corresponds to ans-wave in the entrance channe
while b52 corresponds to ad-wave. Analogously, the index
a specifies the exit-channels- or d-wave. In the following
sections we establish an algorithm to obtain the 232 S ma-
trix for this problem.

IV. THE CLOSED-CHANNEL MANIFOLD

The 434 matrix Uee(R) appearing in Eq.~25b! can be
viewed as a function not only ofR, but also of the param
etersa6 and b6 defined by Eqs.~15!. Thus, we can write,
n-
explicitly, Uee(R)[Uee(a2 ,b2 ,a1 ,b1 ,R). It is apparent
from their definition and Eqs.~16! thata2 andb1 tend to 1,
and b2 and a1 to 0 in the limit of vanishingV or infinite
uDu. Taking the case of zero intensity or infinite red detuni
as reference, we define the 434 matricesU0(R)[Uee(a2

51,b250,a150,b151,R) and Up(R)[Up(a2 ,b2 ,
a1 ,b1 ,R)[Uee(a2 ,b2 ,a1 ,b1 ,R)2U0(R). Explicit ex-
pressions forU0(R) and Up(R) are readily obtained from
Eq. ~24! and we notice thatU0(R) is a real 434 matrix. The
eigenvalues ofU0(R) are 2mW0

1(R)/\2, 2mW1
1(R)/\2 ~dou-

bly degenerate!, and 2m@3W0
1(R)/714W1

1(R)/7#/\2. Let
d0(R) be the 434 diagonal matrix obtained by diagonaliz
ing U0(R). It is easy to verify that there is a 434 orthogonal
matrix A (A215At), independent ofR, such thatd0(R)
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5AtU0(R)A. An explicit form of A can be chosen as

A5F A3/3 0 A6/3 0

2A5/5 A2/2 A10/10 A5/5

2A5/5 2A2/2 A10/10 A5/5

2A15/15 0 2A30/15 A15/5

G , ~28!

whose columns give orthonormal eigenvectors ofU0(R).
Hence, writingUee(R)5U0(R)1Up(R) in Eq. ~25b! and
left-multiplying the resulting equation byAt, we obtain, after
rearranging terms and definingG̃eb(R)[AtGeb(R),

d2

dR2
G̃eb~R!2@k2141d0~R!#G̃eb~R!

5AtUeg~R!Ggb~R!1Atuee~R!Geb~R!, ~29!

where, for convenience, we have defined the 434 complex
matrix uee(R) as

uee~R![
Lee

2

\2R2
1Up~R!1s. ~30!

Following the procedure of Ref.@16#, now we solve Eq.
~29! in terms of its Green function, using its right-hand si
as the source. Accordingly, letfn(R) be the 431 column
matrix satisfying the homogeneous differential equat
d2fn(R)/dR22d0(R)fn(R)5kn

2fn(R), wherekn
2 is a 434

diagonal matrix containing the sequence of positive numb
(kn,3

2 ,kn,4
2 ,kn,5

2 ,kn,6
2 ) along its diagonal~in the closed-

channel manifold the indices run from 3 to 6!. The indexn
51,2,3, . . . enumerates the discrete spectrum of this hom
geneous differential equation. Becaused0(R) is real, each
element offn(R) can be chosen as a real function. T
homogeneous problem has, besides the discrete, also a
tinuous spectrum. However, as we have discussed in the
vious section, we are looking for solutions such thatGeb(R)
vanishes asymptotically and, therefore, we construct the
responding Green function in terms of the discrete eig
functions only. Since the functionsfn(R) for all natural
numbersn form a complete set in the discrete spectrum
the homogeneous problem, the solution of Eq.~29! can be
expressed as

G̃n,b~R!5(
n

gn,n,b

kn,n
2 2k2

fn,n~R!, ~31!

where the indexn assumes the values from 3 to 6 to spec
the 4 matrix elements ofG̃eb(R) andfn(R), and the quan-
tities gn,n,b involve the source terms on the right-hand si
of Eq. ~29!:

gn,n,b5E
0

R`
fn,n~R!@AtUeg~R!Ggb~R!

1Atuee~R!Geb~R!#ndR. ~32!

Equations~31! and ~32! are easily verified by substitutio
into Eq. ~29! and assuming thatfn,n(R) are properly nor-
n

rs

-

on-
re-

r-
-

f

malized. In the notation of Eq.~32!, a symbol like @Q#n

stands for the element with indexn of the 431 column
matrix Q. Let us notice thatkn,4

2 5kn,5
2 and fn,4(R)

5fn,5(R) for all n, since both pairs of quantitie
@kn,4

2 ,fn,4(R)# and @kn,5
2 ,fn,5(R)# correspond to the sam

eigenvalue ofU0(R), namely, 2mW1
1(R)/\. Moreover, we

also assume that there are values ofn and n53,4,5,6 for
which kn,n

2 5fn,n(R)50. It is particularly true that a purely
repulsive potentialW1

1(R) does not support bound states an
in this case, surelykn,4

2 5kn,5
2 5fn,4(R)5fn,5(R)50 for all

n; kn,6
2 andfn,6(R) are different from zero for somen only

if the eigenvalue 2m@3W0
1(R)/714W1

1(R)/7#/\2 of U0(R)
supports bound states.

We assume that the light field is nearly resonant with
isolated bound state, sayn5r , of the attractiveW0

1(R) po-
tential~of 3Sg

1 symmetry!. Thus,k2'k r ,3
2 , sincen53 is the

index corresponding to the eigenstate ofU0(R) with eigen-
value 2mW0

1(R)/\2, as explained above. Now

Gr,b(R)5(n53
6 Ar,nG̃n,b(R) for r53,4,5,6 and, from Eq.

~31!, we can approximateGr,b(R) by taking into account
only the resonant term and neglecting the others:

Gr,b~R!'Ar,3

gr ,3,b

k r ,3
2 2k2

f r ,3~R!. ~33!

Let us notice that in Eq.~28! all the elementsAr,3 are differ-
ent from zero, showing that the dominant contribution
Gr,b(R) is indeed given by Eq.~33! for all r53,4,5,6. This
resonant approximation was checked numerically for
two-state problem of Ref.@20# and turned out to be excellen
After some algebraic manipulation of Eqs.~32! and~33!, we
obtain

Gr,b~R!'Ar,3

Q r ,3,b

k r ,3
2 2k22wr ,3

f r ,3~R!, ~34!

where

Q r ,3,b[E
0

R`
f r ,3~R!@AtUeg~R!Ggb~R!#3dR, ~35a!

wr ,3[E
0

R`
f r ,3~R!@Atuee~R!A#3,3f r ,3~R!dR. ~35b!

The notation@Atuee(R)A#3,3 in Eq. ~35b! stands for the entry
of the 434 matrix Atuee(R)A with row and column indices
both equal to 3.

V. THE CONTINUUM GROUND STATES
AND THE S MATRIX

Having found a valid approximation to the solution of th
closed-channel problem, Eqs.~34! and ~35!, in this section
we consider the open-channel manifold and the obtaining
the corresponding 232 scattering matrix. Similarly to
Uee(R), the 232 potential matrixUgg(R), Eq. ~21!, is a
function also of the parametersa6 and b6 of Eqs. ~15!,
Ugg(R)[Ugg(a2 ,b2 ,a1 ,b1 ,R). Since we are intereste
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in finding the modification in the collision process caused
the light field, in the previous section we have assumed
case ofa25b151 andb25a150 as reference. Accord
ingly, let us define the 232 matrices:U ref(R)[Ugg(a2

51,b250,a150,b151,R), that is diagonal, and
Um(R)[Um(a2 ,b2 ,a1 ,b1 ,R)[Ugg(a2 ,b2 ,a1 ,b1 ,R)
2U ref(R). It is easy to obtain explicit expressions of th
matricesU ref(R) andUm(R) from Eq. ~21!. With these defi-
nitions, we rewrite Eq.~25a! as

d2

dR2
Ggb~R!1F k2122

Lgg
2

\2R2
2U ref~R!GGgb~R!

5Uge~R!Geb~R!1Um~R!Ggb~R!. ~36!

The solution of the homogeneous differential equation sp
y
e

i-

fied by makingUge(R)50 andUm(R)50 on the right-hand
side of Eq.~36! gives the phase shifts for the entrances and
d waves in the absence of radiation. Thus, letGa

0(R), a
51,2, be the real regular solution of the homogeneous pr
lem satisfying the scattering boundary condition:Ga

0(R)
'sin(kR1ha2pla/2) asR tends toR` . Here,l 1[0 andl 2

[2, andha[ha(k) is the phase shift of thel a wave in the
absence of the light field. Now let us takeGa

1(R), the real
irregular solution of the homogeneous problem that has
asymptotic behaviorGa

1(R)'cos(kR1ha2pla/2), and de-
fine the complex functionGa

c (R)[Ga
1(R)/k1 iGa

0(R)/k
that behaves asymptotically asGa

c (R)'exp@i(kR1ha

2pla/2)#/k. Therefore, imposing the scattering bounda
conditions of Eq.~27!, it is straightforward to verify that the
solution of Eq.~36! is @16#
ry

g

Ga,b~R!52A m

2p\2k
da,bGa

0~R!exp@ iha#1E
0

R`
Ga~R,R8!@Uge~R8!Geb~R8!1Um~R8!Ggb~R8!#adR8, ~37!

whereGa(R,R8) is the Green function given byGa(R,R8)[2Ga
0(R)Ga

c (R8)u(R82R)2Ga
c (R)Ga

0(R8)u(R2R8), with the
step functionu(x2x8)51 if x.x8 andu(x2x8)50 otherwise, for all realx andx8. From imposing the scattering bounda
conditions and using Eqs.~34! and ~35a!, it also follows that

Sa,bexp@2 iha#5da,bexp@ iha#2 iA2p\2

mk
I a,b , ~38!

where the quantityI a,b is given by

I a,b5
L r ,3,a

k r ,3
2 2k22wr ,3

E
0

R`
f r ,3~R!@AtUeg~R!Ggb~R!#3dR1E

0

R`
Ga

0~R!@Um~R!Ggb~R!#adR, ~39!

and we have definedL r ,3,a as

L r ,3,a[E
0

R`
Ga

0~R!@Uge~R!A#a,3f r ,3~R!dR. ~40!

The parametersb2 anda1 , according to Eqs.~16!, are approximatelyb2'V/(D1 ig) anda1'2V/(D1 ig) for large
red detunings (V/uDu!1). Using Eqs.~16!, ~21!, ~22!, and~23!, it follows thatUeg(R) andUge(R) are proportional toV/uDu
andUm(R) is proportional toV2/D2, in the limit of large red detunings. From Eqs.~39! and~40! it then follows thatI a,b is
proportional toV2/D2. Hence, we can iterate Eq.~37! to obtain a perturbation series forGgb(R) in the parameterV2/D2,
using also Eqs.~34! and~35a!. Substituting this estimate ofGgb(R) into Eqs.~38! and~39! gives the approximated scatterin
matrix. In this paper we illustrate this procedure up to the second order inV/uDu. In this case, Eqs.~37! and ~39! give

I a,b5A 2m

p\2k
F L r ,3,aL̃ r ,3,b

k r ,3
2 2k22wr ,3

1E
0

R`
Ga

0~R!@Um~R!#a,bGb
0~R!dRGexp@ ihb# , ~41!

where we have defined

L̃ r ,3,b[E
0

R`
Gb

0~R!@AtUeg~R!#3,bf r ,3~R!dR. ~42!

Using Eqs.~38! and ~41! gives theS matrix elements:

Sa,b5F da,b2
2iL r ,3,aL̃ r ,3,b

k~k r ,3
2 2k22wr ,3!

2
2i

k E0

R`
Ga

0~R!@Um~R!#a,bGb
0~R!dRGexp@ i ~ha1hb!#. ~43!
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Using Eqs.~10!, ~16!, ~21!–~24!, ~26!, ~28!, ~30!, ~35b!, ~40!, and ~42!, we can rewrite the matrix elements of Eq.~43!
explicitly as

S1,15H 12
2p iV2

~D1 ig!2F @Qr ,3,1#
2

3@~Ek2\D r !1 i\g#
2PaG J exp@2ih1#, ~44a!

S1,25S2,15
4p iV2

3A5~D1 ig!2FPD2
Qr ,3,1Qr ,3,2

~Ek2\D r !1 i\gGexp@ i ~h11h2!#, ~44b!

S2,25H 12
2p iV2

~D1 ig!2F 4@Qr ,3,2#
2

15@~Ek2\D r !1 i\g#
2PcG J exp@2ih2#, ~44c!

where we have defined the quantities

Qr ,3,a[A 2m

pk\2E0

R`
Ga

0~R!@W0
1~R!2W0

0~R!#f r ,3~R!dR, ~45a!

Pa[
2m

pk\2E0

R`
G1

0~R!@W0
0~R!2Va~R!#G1

0~R!dR, ~45b!

PD[
2m

pk\2E0

R`
G1

0~R!@W1
1~R!2W0

1~R!#G2
0~R!dR, ~45c!

Pc[
2m

pk\2E0

R`
G2

0~R!@W0
0~R!2Vc~R!#G2

0~R!dR, ~45d!

e[
\2

2mE0

R`
f r ,3~R!

1

R2
f r ,3~R!dR, ~45e!

Er[
\2k r ,3

2

2m
, and \D r[2\D2Er14e. ~45f!

Equations~44! are valid up to the second order inV/uDu. TheseS matrix elements contain information relevant in th
context of photoassociation line shapes and modification of scattering lengths. Ifg50, this theory is Hermitian and theS
matrix is unitary,S†5S21, meaning that the total probability is conserved. Thus, in the case ofgÞ0 the total probability is
not conserved and this loss is proportional to the amount of probability flux going into spontaneous emission from th
state, that is, the total probability loss is proportional to the photoassociation line shape. Then we can obtain the line s
an s wave in the entrance channel by taking the differenceJs[12uS1,1u22uS1,2u2, and, for ad wave, we defineJd[1
2uS2,2u22uS1,2u2. From Eqs.~44! it follows that, up to the second order inV/uDu,

Js'
8pgV2

~D21g2!2F @Qr ,3,1#
2@2D~Ek2\D r !1\~D22g2!#

6@~Ek2\D r !
21~\g!2#

2PaDG , ~46a!

Jd'
8pgV2

~D21g2!2F2@Qr ,3,2#
2@2D~Ek2\D r !1\~D22g2!#

15@~Ek2\D r !
21~\g!2#

2PcDG . ~46b!

Let us notice that these line shapes are asymmetric and require the knowledge of thek-dependent integrals of Eqs.~45!. We
do not attempt to calculate these integrals in the present article, because here we focus only on the theoretical pro
obtain the line shapes of Eqs.~46!. In a forthcoming paper we will calculate the quantities@Qr ,3,1#

2, Pa , @Qr ,3,2#
2, andPc

numerically, and present a comparison of the present theory with a numerical close-coupling calculation, to check the
of this semianalytic approach. In a forthcoming paper we will also investigate the dependence of the collision proces
polarization of the light field. The line shapes of Eqs.~46!, due to their physical relevance, will be granted full attention in t
separate paper. Therefore, it is not our purpose here to analyze thoroughly the line shapes above, but it is important t
that they show the Wigner-threshold-law behavior for low entrance kinetic energies, since in this case the quantities@Qr ,3,1#

2

and @Qr ,3,2#
2 are proportional tok2l 11 @20#.
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For low enough entrance kinetic energies, the dominant contribution to the collision process comes from thes wave alone
and we can show that in this caseh1'2kA0, whereA0 is an energy-independent parameter called the scattering length. I
presence of light, the scattering length is modified according to Eq.~44a!. Thus, by writingS1,1[exp@22ikA#'122ikA, we
obtain

A'A01
pV2

k~D21g2!2F @Qr ,3,1#
2@~D22g2!~Ek2\D r !22\Dg2#

3@~Ek2\D r !
21~\g!2#

2~D22g2!PaG
2

2ipgV2

k~D21g2!2F @Qr ,3,1#
2@2D~Ek2\D r !1\~D22g2!#

6@~Ek2\D r !
21~\g!2#

2PaDG , ~47!
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whereA is the modified scattering length that now acquir
an imaginary part, reflecting the absorption into an unsta
bound-state resonance. We notice also that ifg50 the
imaginary part vanishes, as we would expect. The quant
@Qr ,3,1#

2 andPa are proportional tok at low enough kinetic
energies, and this cancels thek in the denominator of the
second and third terms on the right-hand side of Eq.~47!. As
we have mentioned above, in a forthcoming paper we w
concentrate on the line shapes of photoassociation. We
also focus on a numerical investigation of the modification
the scattering length by light, given the importance of t
subject for experimental purposes.

The present article is to be viewed as a discussion
multichannel predictions expressed by Eqs.~46! and ~47!. It
is worth remarking that these results are consequences o
solution of the Schro¨dinger equation using approaches to d
ferent stages of the theory already considered usual in
literature. However, not all of these usual approaches
incorporated into a single unified treatment, as we have
sented here. The importance of the present procedure re
in this unification of techniques and the possibility of
extension to treat more realistic situations, as the introd
tion of fine structure, for example. Also, if the magnitude
the detuning is greater than the Rabi frequency, the per
bative iteration of Eqs.~37!–~39! can be easily extended t
higher orders in the perturbation parameter,V/uDu, as long
as the power broadening is much less than the separatio
the adjacent bound-state resonances, that is, as long as
resonance remains isolated.

VI. VALIDITY OF THE THEORY

Our first approximation involves the neglect of fine a
hyperfine structures; also the magnitude of the red detun
is assumed to be very large as compared with the Rabi
quency. If we chooseD/(2pc)'21.0 cm21, we satisfy
both requirements: fine and hyperfine structures are s
compared with the magnitude of the attractive potential an
Rabi frequency corresponding to 1 cm21 implies an intensity
of I'23105 W/cm2, meaning thatV/uDu!1 for any rea-
sonable value of laser intensity. Adjacent3Sg

1 resonances
for D/(2pc)'21.0 cm21 are separated by about 0.1
cm21. Thus, imposingV/(2pc)!0.14 cm21 implies that
the intensity must satisfyI !4.53103 W/cm2. Such an in-
tensity is achievable experimentally, and in this circumsta
power broadening is important, requiring changing t
present theory to include effects of more than one resona
s
le

s

ll
ill
f
s

f

the

he
re
e-
des

c-
f
r-

of
ach

g
e-

all
a

e
e
ce

being excited. This generalization to overlapping resonan
is not impossible to accomplish, but we can still apply th
isolated-resonance theory for red detunings of magnitu
satisfyinguDu/(2pc)*10.0 cm21, in which case the separa
tion between adjacent resonances is about 1.0 cm21, imply-
ing the conditionI !23105 W/cm2.

A typical situation in a trap corresponds to temperatu
from a few tens to a few hundreds ofmK, and densities from
about 1010 to 1014 cm23. Let us fix the density to about 1011

cm23. Then we estimate a mean interatomic distance
about 43104a0, wherea0 is the Bohr radius. The longest
range Born-Oppenheimer potential curves appearing in
~9!, for example, are the ones corresponding asymptotic
to one ground-state2S atom and one first-excited-state2P
atom. These curves behave asymptotically asC3 /R3, where
C3 is on the order of a few atomic units@34#. Thus, the
R-dependent part of the potential matrix is about 331029

cm21. Even at the low laser intensity of 1 W/cm2, the Rabi
frequency is about 231023 cm21, or about 105 times greater
than the magnitude of theR-dependent part of the potentia
matrix, anduDu/(2pc)'1.0 cm21 is 108 times greater. The
centrifugal terms appearing in Eq.~12!, for instance, are ei-
ther zero or 3\2/(mR2). At R`'43104a0, 3\2/(hcmR`

2 )
'231028 cm21. Thus, we can safely chooseR`

'43104a0 as the asymptotic region of this theory.
It now remains to determine the minimum asymptotic

netic energy for which this theory is valid. We mentioned
the beginning of Sec. III that the stationary states of the to
Hamiltonian have an exponentially decreasing amplitude
to loss through spontaneous emission. Accordingly, fo
colliding system to survive during the whole process, t
decreasing amplitude must remain significant from the s
to the end of the scattering encounter. Letv be the initial and
final relative speeds of the colliding partners~in this problem
the open channels correspond to the same asymptotic kin
energy!. Thus, the time taken for the atoms to move from
distance aboutR` to their encounter region is approximate
R` /v, and from their breaking apart to their reaching t
asymptotic region again is on the same order,R` /v. The
total duration of the collision process is about 2R` /v. It
follows from Sec. III that the amplitude of the asymptot
stationary states decays as exp@Im(\z2)t#, with Im(\z2)
,0. At the end of the collision, this factor give
exp@2 Im(\z2)R` /v# and we impose 2uIm(\z2)uR` /v!1,
or v@2uIm(\z2)uR` . Up to the second order inV/uDu, this
condition becomes
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Using g/(2p)'10 MHz, uDu/(2pc)'1.0 cm21, R`'4
3104a0, andV/(2pc)'1.4796631023A2I cm21, we ob-
tain v/I @0.12 cm/s, where the intensityI is given in W/cm2.
Using the reduced mass of sodium,m'1.91310223 g, and
defining the collision temperature asT[mv2/(3kB), where
kB is Boltzmann’s constant, according to Eq.~48! T must
satisfy the inequality

T

I
@6.6310210 K,

a condition well satisfied in current experiments.

VII. CONCLUSION

In this article we have developed a non-Hermitian mu
channel procedure to treat binary collisions of ultracold
oms in the presence of a red-detuned laser field. We h
obtained the scattering matrix elements up to the second
der in the ratio between the Rabi frequency and the detun
and showed that this approach is valid for a significant ra
of experimental conditions. The perturbation series can
easily extended to higher orders. As practical results of th
calculations, we have presented the multichannel line sha
of photoassociation spectroscopy for thes andd wave in the
entrance channel, and the light-modified scattering length
low but finite entrance kinetic energies. Although we ha
, J
et

er

L.

L
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e
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-
ve
r-
g,
e
e

se
es

or
e

truncated the partial waves at thel 52 manifold, the inclu-
sion of higher partial waves is straightforward, at least
this case with no fine or hyperfine structure.

In future work, we will be considering the line shapes
Eqs.~46! and the modification of scattering lengths, Eq.~47!,
in greater detail. We will investigate numerically these qua
tities for conditions relevant to actual experiments. The d
ferences between linear and circular polarization effects
be examined and we expect them to be appreciable, as in
case of blue detuning@10#, due to the inherently differen
topologies of the respective sets of adiabatic potential cur
Guided by the present model of ultracold collisions, we w
develop a fully numerical close-coupling calculation to tre
the scattering exactly. The exact numerical results will de
mine the boundaries of the parameter space within which
semianalytic theory is valid. We expect that these investi
tions will be relevant to the interpretation of many expe
mental results yet to appear.
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