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Non-Hermitian multichannel theory of ultracold collisions modified by intense light fields tuned
to the red of the trapping transition
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We develop a systematic scheme to treat binary collisions between ultracold atoms in the presence of a
strong laser field, tuned to the red of the trapping transition. We assume that the Rabi frequency is much less
than the spacing between adjacent bound-state resonances. In this approach we neglect fine and hyperfine
structures, but consider fully the three-dimensional aspects of the scattering process, up to the wastal
We apply the scheme to calculate tBenatrix elements up to the second order in the ratio between the Rabi
frequency and the laser detuning. We also obtain, for this simplified multichannel model, the asymmetric line
shapes of photoassociation spectroscopy, and the modification of the scattering length due to the light field at
low, but finite, entrance kinetic energy. We emphasize that the present calculations can be generalized to treat
more realistic models, and suggest how to carry out a thorough numerical comparison to this semianalytic
theory.[S1050-29478)04902-4

PACS numbeps): 32.80.Pj, 34.50:s, 34.50.Rk

I. INTRODUCTION unified way, the modification of scattering lengths and pho-
toassociation spectral line shapes, regarding only isolated
We can modify and control certain aspects of ultracoldresonances. With this simple model we are able to take into
collisions using laser fields suitably tuned and polarized. Inaccount multichannel and dressing effects in the regime of
deed, recent experimenfd—8] and theoretica]9—11] stud- finite ultracold temperatures. As in R¢1.0], we take a step
ies have assured our ability to suppress inelastic ultracold?eyond the two-state approaches by neglecting fine and hy-
collision rates by light fields tuned to the blue of the trappingPerfine structures, but considering fully the three-
transition. Moreover, in the context of quantum degeneracydimensional aspects of the problem. For simplicity and con-
a zero-temperature calculatipt?] has shown the possibility c'et€ness, we introduce partial waves up todheave and
of modifying the scattering length associated with the inter-réat the particular case of a pair of sodium atoms in the

action potential of two ground-state atoms, in the presence resence of linearly pola}nzed, red-detune:-d photons._ln a
red-detuned photons. orthcoming paper we will present numerical calculations

Recent experiments show that Bose-Einstein condensatl)-ased on the present theory and a comparison between the

. . . effects of linear and circular polarizations. We emphasize
tion of trapped alkali-metal atoms occurs at finite ultracold b P

) _ that the present approach is easily extensible to higher partial
temperaturefl3-19. In this energy regime, we have devel- waves and other alkali-metal species. This treatment can also

oped a two-_st'c_lte model for _controlling scattering lengths a”%ccommodate more than one ground-state potential curve
photoassociation spectral line shapes of alkali-metal atomgnq retardation effects. Although it may be considered cum-
by red-detuned laser fieldd6]. However, at high enough persome, fine and hyperfine structures can, in principle, also
intensities of the light field, a two-state model cannot de-pe incorporated into the formalism.
scribe the collision completely. Due to multiphoton pro-  The solution of the coupled equations describing the col-
cesses, partial waves higher than thevave contribute ap- lision process is fully detailed in this paper, in a self-
preciably to the scattering17]. Furthermore, atom-field contained manner, for completeness and clarity. Although
dressing effects manifest themselves when the collision oowve present a systematic algorithm to calculate dressing ef-
curs in the presence of a strong enough laser field. Below fects to all orders, we illustrate the procedure through ex-
1K, light shifts become comparable to the entrance collisiorplicit calculations for a special situation relevant to sodium,
energies, even for detunings of several tens tifiom the  up to the second order in the ratio between the Rabi fre-
trapping transition. We expect dressing effects to be espeguency and the detuning. In the present treatment we intend
cially relevant to photoassociation spectral line shapes ofo emphasize multichannel, finite-temperature, and dressing
alkali-metal atoms, since this topic has been extensivelgffects, without unnecessary sophistication.
studied in the past few years mostly in the low-intensity To account for spontaneous emission from the excited
regime[18-2§. bound state, we adopt a non-Hermitian effective Hamiltonian
In this paper we present a systematic approach to treahat we describe in detail in Sec. Il. Following this specifi-
binary ultracold collisions in the presence of an intense lasecation of the problem in the undressed basis, including all the
field, tuned to the red of the trapping transition. The onlycoupled states up to the partéiwave, in Sec. Il we refor-
assumption we make concerning the light intensity is that thenulate the collision process in terms of the asymptotic
corresponding Rabi frequency is much less than the spacindressed states. In the dressed basis, the Hamiltonian is
between adjacent bound-state resonances. We predict, inagymptotically diagonal and this basis represents the actual
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incoming and outgoing physical states. In Sec. IV we con- |6)=1j=1,m;=0)|]I=2m=0)|N-1), (1f)
sider the closed-channel manifold assuming that it contains

an isolated resonance. In this way we simplify the closedand we have also included the radiation-field Fock stdtes
channel problem by regarding only the resonant contributioand|N—1) containingN and (N—1) photons, respectively.
to the corresponding Green function. We obtain$hmatrix ~ These states are normalized to unity, that(ig8) =6, 4,
elements in Sec. V, up to the second order in the ratio befor @,8=1, ... ,6. Theradiation can only couplél) to |3)
tween the Rabi frequency and the detuning. We also illusand |2) to |6), but there are other couplings that force the
trate the application of the procedure by calculating thentroduction of the statefgl) and|5), as we show below. The
asymmetric line shapes of photoassociation spectroscopyadiative couplings we consider are

and the modification of the scattering length by the light
field. In Sec. VI we discuss the region of parameter space (1H\[3)=(2H\[6)=11, (2)

where we expect this thepry to be valid. Finally, in Sec. VIl \yhere = V20, andQ, is the atomic Rabi frequency for
we conclude by summarizing the present approach and prere 325_,32p transition of sodium given by, /(2mc)
senting some directions we will follow in a forthcoming pa- _; 4796a« 10731 cm %, and | is the laser intensity in

per. W/cn? [10]. Let us notice that the molecular Rabi frequency
Q) is a real quantity, independent Bf
Il. THE UNDRESSED POTENTIAL MATRIX The total Hamiltonian for this problem has the form
In this article we consider two sodium atoms in the hy- 72 52 L2
perfine statgF=1mg=—1), as in Ref.[15], so that the H=->——R+ > TV(R), 3
lower molecular state involved is tha 33 . From this 2uR R 2uR

lower molecular state, the colliding system can absorb a reql—v
detuned photon and be excited to a bound state of symmetry
32; . Asymptotically, that is, when the interatomic distance V(R)=H(R)+H{+H,+ 1§, 4
R approaches a large but finite val&®, at which we can
neglect the interaction between the atoms, ah&. | mo-
lecular state corresponds to two atoms in th&s ground

states. The’> bound molecule asymptotically dissociates . . L
g
into one atom in its®S ground state and another in it coordinates R, 0,¢), u is the reduced mass of the colliding

first excited state. Because in this paper we ignore fine anparrttner:]siHe(R) r'stithg le_:e?tr;)hmcr I-:jai\ng;ltg_r;:alr:jf:_)'r ;iflltxi(ij ':'
hyperfine interactions, let us denote pythe electronic or- eratomic separatior, Hy 1S In€ raciation-tield Hamiitonian,

bital angular-momentum quantum number of the asymptotié—l' is the operator representing the interaction between the
two-atom system. Thus, if the two atoms are in thé® colliding atoms and the electromagnetic fieldis the iden-

ground states, thejr=0; and if one of the atoms is in IS tity operator, and is an arbitrary shift in energy we specify

ground state and the other in it® first excited state, then below. The nonzero matrix elements idf are given by Eq.
j=1. Thej=0 state has angular-momentum projectia (2). The action ofH; on a Fock state containing photons

=0 along a space-fixedaxis, while thej =1 state may have of frequencye is

ith the potential operator

where L=—iARXYV is the rotational angular-momentum
operator  satisfying L?|I,m)=#2(1+1)[l,m) and
z-L|l,m)=Am|l,m), R is the interatomic vector of polar

m;=—1, 0, or+1. Therefore, the asymptotic electronic ba- H|N)=FAaw(N+2)|N). (5)
sis states relevant to this problem are dendfenh;), with
m;=0 for j=0 andm;=0,+1 for j=1. Let Ey be the total electronic energyot including atomic

Two separated atoms can come together at different imkinetic energy of two separatedS atoms ancE; the total
pact parameters. Equivalently, we can describe the rotation&lectronic energy of &S atom and a distanfP atom.
state of the approaching atoms by introducing the sphericatience,H¢(R) is diagonal in the basis séfj,A,J,M;)}:
harmonic functions“,m|>EY|m'(0,go), wherel=0,2/4 . .. : Candi . a0
for bosons[27] andm;=—1,—1+1,...|—1J. The angles He(RIj, A9, M) =[ W, (R) +; Ihyal'J]|J’A’J’MJ>(é)
6 and ¢ describe the orientation of the interatomic axis with .
respect to the space-fixed reference frame. Up tolth2  where the Born-Oppenheimer potentiaN{M(R) satisfy
partial wave @ wave) and for linear light-field polarization, limg_., W/, (R)=0 andR., is such thatw},;(R~R.,)~0,
the only coupled undressed states, including the ground statend the Hund’s-caséa) eigenfunctiongj,A,J,M;) are de-

are given by{10] fined as
1)=|j=0,m;=0)|l=0,m,=0)|N), (18 _ 2J+1 .
| > |J ] >| | >| > |],A,J,MJ>E WD\RA*J‘A(QD,Q,O)“’A)
and
|3)=[j=1,m;=0)|I=0,m=0)|N—1), (1o 1

A= X DR (e,00]im). ()
|4)=|j=1m;=—1)|I=2m=1)|N—1), (19 -
Here,f y is the atomic linewidtHthe molecular linewidth is

15)=[i=1m;=1)[I=2m=—-1)[N—-1), (1 equal to Zy [28]) of the 3?P state of sodium that we in-
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troduce at this point in aad hocfashion to account for the The Born-Oppenheimer molecular basig,A,J,M ;)} is
spontaneous emission from the bound-state resonancelated to the asymptotic space-fixed bafigm;)(l,m)}
[16,29. The unnormalized symmetric top eigenfunctionsthrough the relatiof31]

Dﬂ,,*J'A(cp,a,O) and DJA*’mj(<p,0,0) are the Wigner rotation

matrix elements[30]. The functions|j,A) refer to a i J i 2141
molecule-fixed reference frame that hasztaxis parallel to [, mp)[l,m)= ; DEEDIRY 23+ 1

R. Let us notice thatA=0 for j=0 and A=0,+1 for j I M= A=

=1, given the isotropy of space. As explained in Ré&D], X(j,1,m;,m|J,M )

the implicit R dependence of the molecular eigenfunctions

li,A,3,M;) is of no appreciable effect due to the smallness X(j.1LA013,A),A,3,My), ®

of the ratio between the electronic and nuclear m&ssn-
Oppenheimer approximationThe meaning of the quantum adopting the notation of Ref30] to write Clebsch-Gordan

numbersJ and M, is clear from the equationd=j+L,  coefficients as, for exampléj,I,m;,m;|J,M;). In the un-
J?)j,A, I M) =%23(J+1)|j,A,I,M}), andz-J|j,A,J,M;)  dressed basis, Eqél), the potential operator of E¢4) can
=AM,lj,A,J,M,), with J=|j—I|,|j—I|+1,...j+I—1, be represented by a66 complex matrix through the use of
j+landM;=-J3,-J+1,...J-1J. Egs.(2), (5—(8):
'WSR) 0O 1O 0 0 0 T
0 WYR) 0 0 0 #Q
#Q 0 V(R —AA. D(R)/\15 D(R)/YJ15 —2\BD(R)/15
V(R)= , 9
(R) 0 0 D(R)/\V15  Vu(R)—hA. —2D(R)/7  3D(R)/21 ©
0 0 D(R)/4/15 —2D(R)/7  Vu(R)—#A,  3D(R)/21
I nQ  -2{5D(R)/15 3D(R)/21 3D(R)/21  Vc(R)—#iA, |

where A,(=A+iy is a complex quantity,A=w—(E, that satisfy the time-independent Scllimger equation,
—E)/%<0 is the laser detuning that we assume to be negaH| ¥ 4(R))=E| V¥ 4(R)), whereH is the total Hamiltonian

tive (red detuning, and we have defined the functions given by Eq.(3), E is an eigenvalue corresponding to the
continuous spectrum dfi, and the index3 enumerates the
D(R)=W3(R)—Wg(R), (108  eigenstates belonging to a givEn The eigenvalu& of H is
a complex quantity, sincél is not Hermitian, and in the
2WH(R) + W3(R) following we show that the suitable choice of asymptotic
aR=—"—7F——, (10b  boundary conditions implies a finite imaginary partif It

then follows that the solution of the time-dependent Sechro
dinger equationH|® 4(R,t))=i7(d/t)| P 4(R,1)), is given

1 1
Vi(R)= SWi(R)+2Wo(R). (100 BY[®4(R.1)=exq~i Re(E)t/h+Im(E)t/A]| ¥ 4(R)). Be-
7 cause ImE)<O0, the amplitude of the sta@b 4(R,t)) de-
creases exponentially, due to spontaneous emission. In this
10W(R)+ 11W3(R) section we also show that the magnitude of Ejp(can be
V(R)= 21 : (10d  made very small by choosing a sufficiently large red detun-
ing.

To derive this potential matrix we have chosen the energy Substituting Eqs(3) and (11) into the time-independent
shift appearing in Eq4) to be&= — Ey—ho(N+ 1), for the Schralinger equation gives a matrix equation for the radial

sake of simplicity. amplitudesF; 5(R):
k2 d? L2
lll. THE CLOSE-COUPLING FORMULATION — o ——F(R)+ ——F 4(R)+ V(R)F 4(R)=EF4(R),
IN THE DRESSED-STATE REPRESENTATION 2 dR? 2uR?

12
In the close-coupling formalism, described in detail in (12

Ref. [10] and references cited therein, we look for wave, here
functions, written as

6 Fa(R)=[F15(R)F25(RIF35(R)F45(R)Fs55(RIFes(R)T'
Fa’,,B( R)
[Wa(R)= 2 —g—lo), (11)

is a 6X1 column matrix(the superscript indicates matrix
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transposing V(R) is the 6x6 complex potential matrix of the basis set of Eq$l): (0,6%2,0,642,642,6%2). Asymptoti-
Eqg.(9), andL? is a 6x6 diagonal matrix containing, along cally, Eq.(12) becomesi?d?F 4(R)/dR?—2uV.F 4(R)=0,
its diagonal, the sequence of eigenvalues of the square of thvehereV,, is a 6X6 R-independent complex matrix defined
rotational angular-momentum operator, ordered according tas

“E 0 7O 0 0 0
0 -E 0 0 0 AQ
AQ 0 —hA—E 0 0 0
Va= 0 0 —#A—E 0 0 (13
0o o0 0 0 —hA—E 0
0 40 0 0 0 —hA—E

The matrixV., is not diagonal at very large interatomic sepa-Although |D,) and |D3) are normalized and linearly inde-
ration, meaning that the coupling with the radiation is alwayspendent, they are not orthogonal. The same occurs|Dith
present. Therefore, the undressed states, Bgs.are not and|Dg). It is also worth noticing that <0 and|A|>y
suitable for describing the asymptotic states necessary to de-0, as we assume in the following.

fine theS matrix. In other words, in the actual physical situ- It is easy to show that the quantitias =a-.(A,,y) and
ation of a collision in the presence of photons, the incomingy. =b. (A,Q,y) satisfy the propertya.(AAXQ,\7)
and outgoing scattering states are the stationary states of thea. (A,Q,y) and b-(AANQ,Ay)=b.(A,Q,v) for all
asymptotic Hamiltonian. Accordingly, the normalized eigen-real A\>0. Hence, by choosing.=1//A|, we obtaina.
states ofV., (the dressed stateare obtained by diagonaliz- =a.(—1,Q/|A|,y/|A]) and b.=b.(—1Q/|A|,/|Al]),
ing Eq. (13) and are given by that is,a.- andb. can be viewed as functions of the two
independent variable®/|A| and y/|A|. The sign ofA is

IDy)=a_[1)+b_|3), (148 fixed, A<O, thusa. andb. are fully specified by giving
B Q/|A] and y/|A|. In this paper we are interested in the case
[Dy)=a_|2)+b_[6), (14D o large red detunings, nameljA|>y and|A|>Q. In par-
ticular, we can expand.. andb.. up to the second order in
[Dg)=a.[1)+b,|3), (140 (/|A| to obtain
[D4)=14), (14d
1 —QZ b —Q 16
|D5>E|5>v (14¢ a-~=~ _2(A2+72)’ 7~A+iy’ (169
[Dg)=a.[2)+Db.[6), (146
2 .
with a. andb. complex quantities satisfying..|2+ |b-.|? a,~— Q_ . b.~ 0 [1+ 4iyA
=1 and defined as A+iy 2(A%+ yz)[ A%+ 5?2
(16b

Q 3

=— b =— 15 , "
Ve |?P+Q? VIE_|?+Q? (159 The_ scattering boundary condmons_ are more naturally
stated in the dressed-state representation, @4sand(15),

0 A2+ 42 than in the undressed, Egd), as we show below. There-
a,=-— - , fore, if we define the &1 column matrix Gg(R)
42+ 02

Atiy =M" 1Fﬁ(R) whereM is the 6<6 complex matrix defined
as
A2+ 2
b,=— 2t ] LA, (15b) i i
A+iy Vg, 2+Q a_ 0 a, 0 0 O
0O a- 0 O O ay
(A+| ) Z+Re(Z Z Re(Z)
{o=— = 12 12 b 0 b, 0 0 0
M= 1
(15c) 0 0 10 o 7
0 0 0O 01 O
Z=(A+iy)2+40%2=(A%+40%— y*) +2i yA.
(150 0 b 0 0 O by
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then Eq.(11) is equivalently written in terms of the dressed ishes as|A| becomes much greater tha@d. Moreover,

states and the radial amplitude<@ column matrixG 4(R)
as

S Fo4(R) % G, 4(R)
[We(R)= 3 g —lo)= 2 —"g—ID,),

where G, 4(R)==°_,(M™ %), F,4(R). By left
multiplying Eq. (12) by M~ and noticing thaV(R)F z(R)
=V(R)MM ~*F 4(R) = V(R)MG4(R), we obtain the matrix
Schralinger equation in the dressed-state representation:

d? 2u L?
ﬁGB(R)—?M VwMGB(R)—ﬁZRZGB(R)
—U(R)G4(R)=0, (18)

where we have added and subtracdd V.M and intro-
duced the &6 complex matrix U(R), satisfying
limg_.U(R)=0 andU(R~R,)~0, and defined in terms of
the potential matri/(R) as

_2p
U(R)="ZM V(R ~1LE- V.M, (19)

with 1 representing the 86 identity matrix. Let us also
notice thatl? satisfies the propertyl “*L2M =L2, since the

radiation does not couple states of different rotational quan

tum numberg 32].

The stategD,) and |D,) have degenerate eigenvalues
—E+#A{_ of V,,, the state$D3) and|Dg) have degenerate

eigenvalues-E+#%¢, , and the statefD,) and|Ds) have
degenerate eigenvaluesE—# A, . In this article we assume
that the kinetic energi,=%2k?/(2u)>0 is much less than

choosing a positive real kinetic energy is equivalent to im-
posing oscillatory asymptotic solutions f@, z(R), that is,

G, s(R)~ciexdikR]+cexd —ikR], with ¢; and ¢, being
independent ofR for R=~R,. Now, for example, forp
=3,6 and usinde=E,+#%{_, we have the asymptotic radial
equationd®G,, 4(R)/dR?~YG, 4(R)=0, with the defini-
tion Y=2u(—E—#A{_+A{,)IH% The functionG, 4(R)
assumes the asymptotic behavids, ;(R)~d.exduyR
+iyR]+dexd —yR—iuR], whered; and d, are indepen-
dent of R for R~R,, v,=[|Y|+Re(Y)]/2, and v,=
—\[IY]|-Re()]/2 [VY==*(v+iy), since it follows
from Egs. (150 and (15d that Im(Y')<0]. Becausev,>0

we must imposed; =0 for G, 5(R) to be finite asymptoti-
cally; indeed, withd, =0, G, 4(R) vanishes foR~R... A
similar reasoning implies th&, 5(R), for p=4,5, also van-
ishes forR~R,. Thus only the statefD;) and|D,) are
accessible asymptotically, corresponding to open channels
for the collision; the other states are therefore the closed
channels in this problem, manifesting themselves only
through resonances.

In the dressed-state representation the off-diagonal matrix
elements of the Hamiltonian vanish asymptotically and we
can apply the analysis of R€fL6] generalized to the multi-
channel case. The first step is then to distinguish between
closed and open channels and break (&6) into two matrix
equations, one for the open-channel manifold and the other
for the closed-channel manifold. As we have discussed in the
previous paragraph, the open-channel manifold corresponds
to the 2x2 block of the Hamiltonian comprising the sub-
space spanned by the first two dressed s{@es and|D.).

The closed-channel manifold is spanned by the last four
dressed states, corresponding to>a#4 block of the Hamil-
tonian. The open-channel X2 block is coupled to the
closed-channel A4 block by the off-diagonal blocks: one
2X4 and the other X2. Thus, we can write the 66 ma-

trix U(R) as a 2<2 matrix whose elements are also matri-

—#A>0, since we are considering the regime of ultracold®®S*

temperatures and large red detunings. Asymptoticallyt, at

=0, let us suppose we prepare the system in the Hatp

for «=1,2; the total Hamiltonian eigenvalue of the system, if

the atoms are fixed at rest at positiBn, is equal toi{_,
because therdf/dR?) G, 4(R)=0. Therefore, if we prepare
the system in the statfD,), for «=1,2, but now with a
finite kinetic energy E,, then @%dR%)G, 4(R)=
—2uEy /%G, 4(R) and E=Ey+#{_=h%k?/(2u) +H{_ .
It follows from Eqs.(15¢ and(15d) that the imaginary part
of the eigenvalué& is Im(2{_)<0 and that Img_) van-

Ugg(R)  Uge(R)

UR)=
Ueg(R)  UedR)

: (20)

whereUyy(R) is a 2X2 complex matrix,UeR) is 4x4,
Uge(R) is 2X4, andUg(R) is 4X2. Now we are able to
give explicit expressions of the different blocks of the matrix
U(R), Eq. (20). From Egs.(9), (13), (17), and(19), it fol-
lows that

a_b,W5(R)—a,b_V,(R) 2\5a,b_D(R)/15

2
Ugg(R):_Mz : (21
I'h 2\5a,b_D(R)/15 a_b,W(R)—a,b_V(R)
5, | a:bWo(R)=V4(R)]  —a,D(RI/V15 -a,D(R)/V156  2/5a,b,D(R)/15
UgdR)= L@

I'7%| 2Ba,b,D(R)/15 —a,3D(R)/21 —a,3D(R)/21 a,b,[W3(R)—V(R)]
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—a_b_[W(R)—V4(R)] —25a_b_D(R)/15

21 b_D(R)//15 J3b_D(R)/21
Ued R~ 12 b_D(R)/\15 J3b_ D(R)21 |’ 3
—2J5a_b_D(R)/15 —a_b_[WS(R)—V(R)]
and, finally,
a_b,V,R)—a,b_W3R) a_D(R)/\V15 a_D(R)/\15 —2\5a_b,D(R)/15
y (R):Z_,u b.D(R)/\15 Vp(R) —2D(R)/7 J3b.D(R)/21 o8
ee 42 b.D(R)/\/15 —2D(R)/7 Vp(R) V3b,D(R)/21

—2{5a_b,D(R)/15  3a_D(R)/21 3a_D(R)/21 a_b V. R)—a,.b_W(R)

wherel'=a_b, —a b_ is the determinant df1. The 6X 6 complex matriXxJ(R) is not symmetric, reflecting the fact that the
Hamiltonian is not Hermitian to account for spontaneous emission.

Let us define the 21 column matrixGgyz(R)=[G1 4(R) G,4(R)]' and the 41 column matrixGes(R)=[G34(R)
G44(R) Gs4(R) Gw(R)]t. Thus, it is straightforward to derive from Eq4d.8) and (20) the following matrix equations:

d? L2
ﬁGgB(R)‘F kle_h;::jz _Ugg(R) GgB(R):Uge(R)GeB(R)a (256)
2 2 Lge

ﬁGeﬁ( R)—| k°1,+s+ oR? +UedR) [Geg(R)=U¢((R)Gyp(R), (25b)

wherek?=2uE, /h?=2u(E~#{_)Ih? k*=—2u[Ey+Re(hl_—#{.)1Ih? 1, is the 22 identity matrix,L, is a 2x 2
diagonal matrix containing the sequence (¥)6along its diagonall, is the 4x 4 identity matrix,s is a 4x 4 diagonal matrix
defined as

im(Z_—¢.) 0 0 0
21 0 ReEZ)+A+iy+ilm() 0 0
T h 0 0 REL)+A+iy+ilm(Zo) 0 ’ (26)
0 0 0 im(z_—¢.)

andL2,is a 4x4 diagonal matrix containing the sequence {,6%2,64.2) along its diagonal.

Equations(25) are in a form suitable for applying scattering boundary conditions, beddyg®), U.«(R), Ug(R), and
Ucq(R) vanish asymptotically and so does the physically acceptable solution for the 18ayiR), as we have discussed
above. AsR tends toR.,, it follows from Eq. (253 that the asymptotic form oB44(R) can be written a$33]

G, s(R)~i\/— 5. sexpg —i s, exdi| kre e |l 27)
# 2mhk| P # 2

kR_T)

where ¢,8=1,2,1,=0 (s wave andl,=2 (d wave, and explicitly, U.{R)=U.(a_,b_,a; b, ,R). It is apparent
S..s are the elements of the scattering matrix. From elemenfrom their definition and Eqg16) thata_ andb, tend to 1,
tary collision theory the meaning of the indgxs now clear: andb_ anda_, to 0 in the limit of vanishing() or infinite
B=1 corresponds to as-wave in the entrance channel, |A|]. Taking the case of zero intensity or infinite red detuning
while 8= 2 corresponds to d-wave. Analogously, the index @as reference, we define the<4 matricesUy(R)=Ug¢(a-
a specifies the exit-channet or d-wave. In the following =1b-=0a,=0b,=1R) and Uy(R)=Uy(a_,b_,

sections we establish an algorithm to obtain the2S ma- @+ .b+,R)=Ueda_,b_,a, b, ,R)—Uy(R). Explicit ex-
trix for this problem. pressions folJy(R) and Uy(R) are readily obtained from

Eq. (24) and we notice thdt 3(R) is a real 4<4 matrix. The
eigenvalues oblo(R) are 2uW3(R)/%2, 2uWi(R)/A? (dou-
bly degenerate and 2u[3W5(R)/7+4Wi(R)/7]/%2%. Let
The 4X4 matrix U.(R) appearing in Eq(25b can be dy(R) be the 4<x4 diagonal matrix obtained by diagonaliz-
viewed as a function not only dR, but also of the param- ing Uy(R). Itis easy to verify that there is ax44 orthogonal
etersa. andb. defined by Eqs(15). Thus, we can write, matrix A (A"1=A"), independent oRR, such thatdy(R)

IV. THE CLOSED-CHANNEL MANIFOLD
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=AU(R)A. An explicit form of A can be chosen as malized. In the notation of Eq32), a symbol like[Q],
stands for the element with index of the 4X1 column
V313 0 J6/3 0 matrix Q. Let us notice thatxj,=«2s and ¢, 4R)
—\5/5 212 10110 5/5 o8 —¢n 5(R) for all n, since both pairs of quantities
A= , (28 [Kn4 dn4(R)] and[Kn5 éns(R)] correspond to the same
—\5/5 =22 10110 \5/5 eigenvalue ofUy(R), namely, 4W3(R)/%. Moreover, we
2y15/15 0 —/30/15 /15/5 also assume that there are valuesnofind v=23,4,5,6 for

_ . which Kn ,=¢n.,(R)=0. It is particularly true that a purely
whose columns give orthonormal eigenvectorsWwj(R).  repulsive potennaW (R) does not support bound states and,
Hence, writingUe(R) =Uy(R) +Uy(R) in Eq. (25b and ;, th|s case, surelyen4 Kn5 bna(R)= dns(R)=0 for all
left-multiplying the resulting equation b4!, we obtain, after n: Kn s and ¢, (R) are different from zero for some only

rearranging terms and definirge(R) =A'Gey(R), if the eigenvalue &[3WA(R)/7+4WL(R)/7]/%2 of Uy(R)
42 supports bound states.
_Zéeﬁ( R)—[K214+do(R)]5eﬁ( R) _ We assume that the light field is nearly_resolnant with an
dRrR isolated bound state, say=r, of the attractiveW(R) po-

t t tential (of 334 symmetry. Thus,x?~ k5, sincev=3 is the
=AUeg(R)Ggp(R) +AU(R)Geg(R), (29 index corresponding to the eigenstatelhf(R) with eigen-

1 2 i
where, for convenience, we have defined the4complex value 2uWo(R)/7", as  explained above.  Now,

_<6 = _
matrix u.(R) as Gp,B(R)—Ev:SAp,VG?,B(R) for p—3,4,5,§ ar_1d, from Eq.
(31), we can approximaté&, ;(R) by taking into account
Lée only the resonant term and neglecting the others:
Ued(R)= pEsY; +Uy(R)+s. (30
Or 3.8
G, zs(R)=A R). (33
Following the procedure of Ref16], now we solve Eq. ps(R=Aoaz 23— 2 $ral

(29) in terms of its Green function, using its right-hand side
as the source. Accordingly, let,(R) be the 4<1 column  Let us notice that in Eq28) all the element#\, ; are differ-
matrix satisfying the homogeneous differential equationent from zero, showing that the dominant contribution to
d2¢n(R)/dR?—do(R) ¢pp(R) = Kﬁqbn(R), whereKﬁ isa4x4 G, s(R) is indeed given by Eq.33) for all p=3,4,5,6. This
diagonal matrix containing the sequence of positive numbergesonant approximation was checked numerically for the
(k25,62 4,625,129 along its diagonal(in the closed- two-state problem of Ref20] and turned out to be excellent.
channel manifold the indices run from 3 t9. @he indexn  After some algebraic manipulation of Eq82) and(33), we
=1,2,3 ... enumerates the discrete spectrum of this homoobtain
geneous differential equation. BecaudgR) is real, each
element of$,(R) can be chosen as a real function. The r 3,8
homogeneous problem has, besides the discrete, also a con- Gpp(R)=A,3 fﬁbr aR), (34)
tinuous spectrum. However, as we have discussed in the pre- Kram K
vious section, we are looking for solutions such tGag(R) Where
vanishes asymptotically and, therefore, we construct the cor-
responding Green function in terms of the discrete eigen- R.
functions only. Since the functiong,(R) for all natural ®r,3,BEf & A(RI[AUeg(R)IGgs(R)13dR, (353
numbersn form a complete set in the discrete spectrum of 0
the homogeneous problem, the solution of E2P) can be

R.,
expressed as W, 5= fo 1 ARI[AUR)A]; 36 (RIR. (35b)

gn v B
v ﬁ( R)= Z ¢” o(R), 31 The notatior] A'u.(R)A]3 3in Eq. (35b) stands for the entry
of the 4X4 matrix Alu.o(R)A with row and column indices

where the index assumes the values from 3 to 6 to specify both equal to 3.

the 4 matrix elements dT‘Beﬁ(R) and ¢,(R), and the quan-

nV

tities g,,,,, g involve the source terms on the right-hand side V. THE CONTINUUM GROUND STATES
of Eq. (29): AND THE S MATRIX
R., Having found a valid approximation to the solution of the
gn,v,ﬁ:f bn,(RI[AUgg(R)Ggp(R) closed-channel problem, Eq&4) and (35), in this section
0 we consider the open-channel manifold and the obtaining of
+ Al R)Geg(R)],dR. (32 the corresponding 22 scattering matrix. Similarly to

Ue«R), the 2<2 potential matrixUy4(R), Eqg. (21), is a
Equations(31) and (32) are easily verified by substitution function also of the parametees. and b.. of Egs. (15),
into Eq. (29) and assuming thap, ,(R) are properly nor- Ug(R)=Ug4(a_,b_,a, b, ,R). Since we are interested
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in finding the modification in the collision process caused byfied by makingU,¢(R)=0 andU(R)=0 on the right-hand
the light field, in the previous section we have assumed thgide of Eq.(36) gives the phase shifts for the entrarscand
case ofa_=b, =1 andb_=a, =0 as reference. Accord- d waves in the absence of radiation. Thus, G}(R), «
ingly, let us define the 2 matrices:U(R)=Ugg(@- =12, be the real regular solution of the homogeneous prob-
=1pb_=0a,=0b,=1R), that is diagonal, and |em satisfying the scattering boundary conditic®®(R)

2T s easy o obtan expici expressions of the ~SMER! 7 Tio2) 3SR tends (0. Herel=0 and
~ —reR T . -7 =2, andn,= n,(K) is the phase shift of the, wave in the
matricesU (R) andUn(R) from Eq.(21). With these defi- 00 ot the light field. Now let us take(R), the real

nitions, we rewrite Eq(253 as ) .
a(253 irregular solution of the homogeneous problem that has the

d2 L2 asymptotic behavimGi(R)wcoskRﬂL n.,— ™ 2), and de-
ﬁGgﬁ(RH k?1,— ﬁzifz_uref(R) Ggs(R) fine the complex functionG¢(R)=G(R)/k+iG°(R)/k
that behaves asymptotically assé(R)~exdi(kR+ 7,

=Uge(R)Geg(R) +Un(R)Gya(R). (36)  —m.2)]/k. Therefore, imposing the scattering boundary

conditions of Eq(27), it is straightforward to verify that the
The solution of the homogeneous differential equation specisolution of Eq.(36) is [16]

Ry
G p(RI=2\| S50, sGURIEXIT 7,1+ | G RRUge )Gy R)+Un(R)Ggs(ROLLAR,, (@D
2hK 0

whereg,(R,R") is the Green function given bg,(R,R")= —Gg(R)GZ(R’)a(R’ —R)—GZ(R)Gg(R’)H(R— R"), with the
step functiond(x—x')=1 if x>x" and 6(x—x") =0 otherwise, for all reak andx’. From imposing the scattering boundary
conditions and using Eq$34) and (353, it also follows that

) ) . [27h

Sa,ﬁexq =1 7]&] = 5a,BeXF{I 7]&] =1 WI a,B (38)

where the quantity,, s is given by

A‘I’,3,a R t R 0
lop=7 5 |  Pra(RIAUHR)Gy(R)J3dR+ | Go(RI[Un(R)Ggp(R)].AR, (39
Ky 3~ K"~ Wr3/0 0
and we have defined, 3, as
Re 0

Ar,(_%,ozE fo Ga(R)[Uge(R)A]a,Bd’r,S(R)dR- (40)

The parameterb_ anda, , according to Eqs(16), are approximatelp_~Q/(A+iy) anda,~—Q/(A+ivy) for large
red detuningsQ/|A|<1). Using Eqs(16), (21), (22), and(23), it follows thatU,(R) andU 4¢(R) are proportional td)/|A|
andU(R) is proportional taQ?/A?, in the limit of large red detunings. From Ed89) and(40) it then follows thatl o IS
proportional toQ)?/A2. Hence, we can iterate E¢37) to obtain a perturbation series f@y4(R) in the parametef)?/A?,
using also Eqs(34) and(353. Substituting this estimate @4(R) into Egs.(38) and(39) gives the approximated scattering
matrix. In this paper we illustrate this procedure up to the second ord@/|ia|. In this case, Eqg37) and(39) give

2 Ay aKr Re i
|Q,B:\/Wﬁ’:k[ Sa 138 fo Ga(RI[Um(R)1. sG3(RIAR exli g, (4D

2 2
\‘Kr’s_ K _Wr,3

where we have defined

~ R
A gp= JO GR(R)[A'Uey(R) 350 s(R)AR (42)

Using Eqs.(38) and(41) gives theS matrix elements:

2iA;3,A 35 2

Re o 0 ,
B M kg <SRRI YRR exti (7, + 7). 43

Sa‘B: 0
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Using Egs.(10), (16), (21)—(24), (26), (28), (30), (35b), (40), and(42), we can rewrite the matrix elements of E¢23)
explicitly as

B 27i0% [ [Qra4l? .
S““l (Atiy A BEhA ) Tihy] o[ SRZm) (443
_ _ 477iQ2 [ Qr,3,1Qr,3,2 .
81’2_82’1_3\/§(A+i7)2[PD_ (Ex—fiA) Tihiy exdi(n71+72)], (44b)
- 27i0% [ 4[Q 3. .
32'2‘{1 (Atiy2 (B hA)Tihy] e[ SR (440
where we have defined the quantities
2 R
Qrsa=\ s J GoR)[W5(R) —W(R) ] ¢, 5(R)AR, (453
akh<Jo
_ 2p (Re _ 0
A=z fo GRIW(R)— V4(R)IG(R)dR, (45D)
2u (Re
0= 2 JO G2(R)[Wi(R)—W5(R)IG(R)dR, (450
— 2p (R, _ 0
S fo G(R)[Wo(R)— Ve(R)IG3(R)dR, (450)
=ﬁ—2fR°° R)= 4, (R)dR 45
G_Z,M 0 ¢r,3( )R2¢r,3( )dR, (45¢
ﬁZKr23
E,;=—, and %A =-AA-E,+4e. (451)
2u

Equations(44) are valid up to the second order /|A|. TheseS matrix elements contain information relevant in the
context of photoassociation line shapes and modification of scattering lengths.0f this theory is Hermitian and th&
matrix is unitary,S'=S"1, meaning that the total probability is conserved. Thus, in the cagedf the total probability is
not conserved and this loss is proportional to the amount of probability flux going into spontaneous emission from the bound
state, that is, the total probability loss is proportional to the photoassociation line shape. Then we can obtain the line shape for
an's wave in the entrance channel by taking the differeBe=1—1S,; 4/°—|S; 42, and, for ad wave, we defineZ =1
—|S,4%2—|S; 42 From Eqgs.(44) it follows that, up to the second order {/|A|,

87y0? [[Qr3112[2A(Ey—hA,)+h(A2-y))]
=R 3 —pAl,
(A2+927 B[(Ec—hA)*+(fiy)?] i (40
87y0? [2[Q, 3202 2A(Ey—hA,)+h(A2—y?)]
o~ 2 —PA|.
T a2+ 15 (Ex—hA )2+ (hy)?] i (46D

Let us notice that these line shapes are asymmetric and require the knowledg&-afejhendent integrals of Eggls). We

do not attempt to calculate these integrals in the present article, because here we focus only on the theoretical procedure to
obtain the line shapes of Eqgl6). In a forthcoming paper we will calculate the quantit[@,sll]z, P, [Q,,3,2]2, and P,
numerically, and present a comparison of the present theory with a numerical close-coupling calculation, to check the accuracy
of this semianalytic approach. In a forthcoming paper we will also investigate the dependence of the collision process on the
polarization of the light field. The line shapes of EG¥), due to their physical relevance, will be granted full attention in this
separate paper. Therefore, it is not our purpose here to analyze thoroughly the line shapes above, but it is important to mention
that they show the Wigner-threshold-law behavior for low entrance kinetic energies, since in this case the q@ngigﬂ?s

and[Q; 3,]° are proportional tk?' ** [20].
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For low enough entrance kinetic energies, the dominant contribution to the collision process comes Bamavtikealone
and we can show that in this cage~ — kA, whereA, is an energy-independent parameter called the scattering length. In the

presence of light, the scattering length is modified according to(4&g. Thus, by writingS, ;=ex{d —2ikA]~1-2ikA, we
obtain

702 [[Qr31]2[(A2—72)(Ek—ﬁAr)—2ﬁA72]
A=A = —(A%2— 2P
o k(A2+ 72)2l 3[(Ex—hA)?+(hy)?] ( vIPs
2i Ty Q? “Qr31]2[2A(Ek_ﬁAr)+h(A2_72)]
— = -P,A 4
k(AZ+ 72)2{ 6[(Ex—7iA,)*+(hy)?] = @7

whereA is the modified scattering length that now acquiresbeing excited. This generalization to overlapping resonances
an imaginary part, reflecting the absorption into an unstablés not impossible to accomplish, but we can still apply this
bound-state resonance. We notice also thaty#0 the isolated-resonance theory for red detunings of magnitudes
imaginary part vanishes, as we would expect. The quantitiesatisfying|A|/(27¢c)=10.0 cnm'%, in which case the separa-
[Qr31]* and P, are proportional td at low enough kinetic  tion between adjacent resonances is about 1.0%cimply-
energies, and this cancels tkein the denominator of the ing the conditionl <2x 10° W/cn?.

second and third terms on the right-hand side of @@). As A typical situation in a trap corresponds to temperatures

we have mentioned above, in a forthcoming paper we Wwillgm 5 few tens to a few hundreds @K, and densities from
concentrate on the line shapes of photoassociation. We willy o+ 18%t0 1014 cm~3. Let us fix the density to about 1b
also focus on a numerical investigation of the modification of

h ttering lenath by light. given the importan £ thi cm 3. Then we estimate a mean interatomic distance of
€ scattering length by ight, given the importance ot this ¢ 4x 10%a,, wherea, is the Bohr radius. The longest-
subject for experimental purposes.

The present article is to be viewed as a discussion o[ange Born-Oppenheimer potential CUrves appearing in EqQ.
9), for example, are the ones corresponding asymptotically
fi@ one ground-statéS atom and one first-excited-staté®

solution of the Schidinger equation using approaches to dif- &0M. These curves behave asymptotlcgllycg$R3, where
ferent stages of the theory already considered usual in thes iS on the order of a few atomic uni{84]. Thus, the
literature. However, not all of these usual approaches arB-dependent part of the potential matrix is about B)~°
incorporated into a single unified treatment, as we have precm™ *. Even at the low laser intensity of 1 W/énthe Rabi
sented here. The importance of the present procedure residégquency is about 2 10”2 cm™*, or about 18 times greater
in this unification of techniques and the possibility of its than the magnitude of thR-dependent part of the potential
extension to treat more realistic situations, as the introducmatrix, and|A|/(27c)~1.0 cm ! is 10® times greater. The
tion of fine structure, for example. Also, if the magnitude of centrifugal terms appearing in E(L2), for instance, are ei-
the detuning is greater than the Rabi frequency, the pertuther zero or 22%/(uR?). At R,~4x10%,, 3#2%/(hcuR?)
bative iteration of Eqs(37)—(39) can be easily extended to ~2x10° 8 cm . Thus, we can safely choosd.
higher orders in the perturbation parame®f|A|, as long ~4X 10%a, as the asymptotic region of this theory.

as the power broadening is much less than the separation of It now remains to determine the minimum asymptotic ki-
the adjacent bound-state resonances, that is, as long as eawdtic energy for which this theory is valid. We mentioned at

resonance remains isolated. the beginning of Sec. Il that the stationary states of the total
Hamiltonian have an exponentially decreasing amplitude due
VI. VALIDITY OF THE THEORY to loss through spontaneous emission. Accordingly, for a

colliding system to survive during the whole process, this

Our first approximation involves the neglect of fine anddecreasing amplitude must remain significant from the start
hyperfine structures; also the magnitude of the red detuningp the end of the scattering encounter. Leie the initial and
is assumed to be very large as compared with the Rabi frefinal relative speeds of the colliding partnéirs this problem
quency. If we choose\/(27c)~—1.0 cm'!, we satisfy the open channels correspond to the same asymptotic kinetic
both requirements: fine and hyperfine structures are smadinergy. Thus, the time taken for the atoms to move from a
compared with the magnitude of the attractive potential and @istance abouR., to their encounter region is approximately
Rabi frequency corresponding to 1 chimplies an intensity R../v, and from their breaking apart to their reaching the
of I=2x10° W/cn?, meaning that)/|A|<1 for any rea- asymptotic region again is on the same ordy/v. The
sonable value of laser intensity. Adjace?ﬁg resonances total duration of the collision process is abouR.2/v. It
for A/(2mc)~—1.0 cm ! are separated by about 0.14 follows from Sec. lll that the amplitude of the asymptotic
cm . Thus, imposingQ/(27c)<0.14 cm ! implies that stationary states decays as Erp(%¢_)t], with Im(#¢_)
the intensity must satisfy<4.5x 10> W/cn?. Such an in- <0. At the end of the collision, this factor gives
tensity is achievable experimentally, and in this circumstancexd2 Im(%{_)R../v] and we impose Pm(%/_)|R. /v <1,
power broadening is important, requiring changing theorv>2|Im(%{_)|R... Up to the second order i1/|A|, this
present theory to include effects of more than one resonana®ndition becomes
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2

v>2'yRmP- (48

Using y/(2m)~10 MHz, |A|/(2m¢c)~1.0 cm !, R.~4
X 10%a,, and Q/(27c)~1.47966< 10 3y2I cm %, we ob-
tainv/1>0.12 cm/s, where the intensityis given in W/cn?.
Using the reduced mass of sodiup=~1.91x10 22 g, and
defining the collision temperature &s= uv?/(3kg), where
kg is Boltzmann’s constant, according to E48 T must
satisfy the inequality

-
|—>6.6>< 10710 K,

a condition well satisfied in current experiments.

VIl. CONCLUSION

In this article we have developed a non-Hermitian multi-
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truncated the partial waves at the 2 manifold, the inclu-
sion of higher partial waves is straightforward, at least for
this case with no fine or hyperfine structure.

In future work, we will be considering the line shapes of
Egs.(46) and the modification of scattering lengths, E4j7),
in greater detail. We will investigate numerically these quan-
tities for conditions relevant to actual experiments. The dif-
ferences between linear and circular polarization effects will
be examined and we expect them to be appreciable, as in the
case of blue detuninf10], due to the inherently different
topologies of the respective sets of adiabatic potential curves.
Guided by the present model of ultracold collisions, we will
develop a fully numerical close-coupling calculation to treat
the scattering exactly. The exact numerical results will deter-
mine the boundaries of the parameter space within which this
semianalytic theory is valid. We expect that these investiga-
tions will be relevant to the interpretation of many experi-
mental results yet to appear.

channel procedure to treat binary collisions of ultracold at-

oms in the presence of a red-detuned laser field. We have
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