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Abstract
One of the foremost objectives of statistical mechanics is the description of the thermodynamic properties of
quantum gases. Despite the great importance of this topic, such achievement is still lacking in the case of
non-Hermitian quantum gases. Here, we investigate the properties of bosonic and fermionic non-Hermitian systems
at finite temperatures. We show that non-Hermitian systems exhibit oscillations both in temperature and imaginary
time. As such, they can be a possible platform to realize an imaginary time crystal (iTC) phase. The Hatano–Nelson
model is identified as a simple lattice model to reveal this effect. In addition, we show that the conditions for the iTC
to be manifest are the same as the conditions for the presence of disorder points, where the correlation functions
show oscillating behavior. This analysis makes clear that our realization of an iTC is effectively a way to filter one
specific Matsubara mode. In this realization, the Matsubara frequency, which usually appears as a mathematical tool
to compute correlation functions at finite temperatures, can be measured experimentally.

Keywords: Non-Hermitian systems, Imaginary time crystals, Non-Hermitian quantum gases, Time crystals,
Quantum statistical mechanics

1 Introduction
The evolution of a system in imaginary time τ is a long
known prescription in quantum field theory to compute
the partition function [1]. In this formalism, periodic
boundary conditions lead to discrete sets of frequencies,
the Matsubara frequencies ωn. Despite their pivotal im-
portance, these frequencies are believed to be just tools to
compute correlation functions. Observing the structure of
the Green’s function G, one concludes that there will be no
poles associated with ωn, but only to the real frequencies,
with a small imaginary part related to the causal structure
of G. A natural question emerges then when one considers
systems with sizable values of the imaginary part of theirs
energies, as it occurs for non-Hermitian systems.
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Non-Hermitian Hamiltonians arise as an effective de-
scription of open systems [2–4] and lead to novel prop-
erties that cannot be observed in a closed system [3, 4].
Some examples are: (i) the extension of the symmetry-
protected topological phases described by the Altland–
Zirnbauer classification from a 10-fold to a 38-fold table
due to the splitting of the usual discrete symmetries [3–6];
ii) the non-Hermitian skin effect (NHSE) [7–15], which
is an accumulation of modes in one of the edges of the
system; (iii) the extensive dependence of boundary condi-
tions, such that systems presenting open boundary condi-
tions (OBC) and periodic boundary conditions (PBC) have
completely different spectrum [8, 9]; and (iv) anomalous
behavior in quantum phase transitions [16, 17].

The simplest kind of non-Hermitian system is a non-
Hermitian quantum gas. A quantum gas is a non-
interacting system, such that its Hamiltonian Ĥ can be de-
composed as the sum of Hamiltonians of some quantum
numbers m, Ĥ = ⊕mĥm. The thermodynamic properties
of a non-Hermitian ideal quantum gas were not explored
so far; yet, in the presence of a pseudo-Hermitian symme-
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try, a biorthogonal thermodynamic description is available
in the literature [18]. Although the thermodynamic limit
is not really achievable for large OBC systems due to the
NHSE, a finite-size thermodynamic analysis is still consis-
tent and one can obtain results in the thermodynamic limit
for PBC and for the surrogate Hamiltonian (SH). The latter
consists of an analytical continuation of the Bloch Hamil-
tonian that reproduces the bulk spectrum of the system
with OBC [7, 9, 19].

Here, we investigate the thermodynamic behavior of
non-Hermitian quantum gases at finite temperature. We
find that for a range of intermediary temperatures, this sys-
tem exhibits oscillations in both β = 1/(kBT) and imag-
inary time τ . This is precisely a footprint of the imagi-
nary time crystal (iTC) phase conjectured by Wilczek in
his original paper on time crystals [20]. The conditions for
the existence of this phase are the same as the ones for
the presence of disorder points [21–27]—critical phases at
which the correlation function has a modulation, together
with the exponential decay. We apply our results to the
Hatano–Nelson model [3, 28] and show how one can ob-
serve these oscillating phases in both space and imaginary
time.

2 Results
2.1 Thermodynamics of the Hatano–Nelson model
We consider the thermodynamics of a non-Hermitian
quantum gas with modes m and energies εm. One can use
a biorthogonal basis to compute the partition function of
these systems, see Methods,

ZB/F =
∏

m

[
1 ∓ exp(–βζm)

]∓1, (1)

where we introduce the subscript B for bosons and F for
fermions, and ζm = εm – μ. From Z , one can obtain all the
thermodynamic quantities, in analogy to what is done in a
Hermitian system.

Notice that these expressions have the same functional
form as the ones for Hermitian gases [29]. However, there
are important differences. The first is that the spectrum
of non-Hermitian systems depends on the boundary con-
ditions. This implies that the thermodynamic potentials
will also change for different boundary conditions. In par-
ticular, the system with OBC is unstable for large system
sizes, such that it can only be analyzed for small sizes. Nev-
ertheless, the thermodynamic limit of this system can be
achieved using the surrogate Hamiltonian [16], that has
the same bulk spectrum. Furthermore, responses of the
system, encoded in generalized forces (derivatives of the
grand potential F with respect to the perturbation) are
proportional to a biorthogonal correlation function [18].
More importantly, although the partition function is real
in the presence of pseudo-Hermitian or parity-time (PT)

symmetry [18] (see discussion in Methods), these complex
energies change quantitatively the behavior of the thermo-
dynamic potentials. In special, systems with Im ζm/ Re ζm >
1 will show oscillations in β , together with a monotonic
behavior.

To investigate this matter, we consider one paradigmatic
non-Hermitian system, the Hatano–Nelson model [19, 28]

H = –
M∑

i

[
(t – �)c†

j cj+1 + (t + �)c†
j+1cj

]
, (2)

where M is the lattice size and cj (c†
j ) annihilates (creates) a

particle at site j. This is a simple hopping model with a re-
ciprocal part (proportional to t) and a nonreciprocal part
(proportional to �). The behavior of the spectrum depends
on �/t and the boundary conditions, as discussed in de-
tail in the Additional file 1. In particular, for |�/t| > 1 and
OBC, the system presents a completely imaginary spec-
trum, thus realizing an ideal platform to observe the os-
cillations in β . The results for several thermodynamic po-
tentials are shown in Fig. 1.

We consider the grand potential F , internal energy U
and entropy S for the bosonic, fermionic, and classical re-
alizations of the Hatano–Nelson model, see definitions in
Methods. Some care should be taken with the values cho-
sen for the chemical potential, as for bosons, μ < Re εm for
all modes [29]. Although the PT-broken phase for OBC
displays purely imaginary energies, and hence this is not
a problem, for bosons with PBC we need to choose μ <
–2|t|. Consequently, only energies at the minimum of the
band will show oscillatory behavior, which will decay for
increasing β . Nevertheless, for the other boundary con-
ditions and for fermionic systems, the oscillations in β

should be present, and μ will simply regularize the di-
vergences of the thermodynamic potentials. The results
are shown in Fig. 1 for the system with PBC, for the sur-
rogate Hamiltonian, and for the system with OBC. No-
tice that we are using the intensive quantities that are de-
fined by division of the extensive thermodynamic quan-
tities by the number of sites in the lattice M (f = F/M,
u = U/M and s = S/M), such that we can analyze systems
with different sizes together. For all the boundary con-
ditions, except for bosons with PBC, the grand potential
[Figs. 1(a)–(c)], the internal energy [Figs. 1(d)–(f )], and the
entropy [Figs. 1(g)–(i)] show oscillations as a function of
β . There are slow fluctuations with the period determined
by the typical energy scale �ε of the imaginary part of the
spectrum. For PBC, �ε = �, whereas for both OBC and
the surrogate spectrum, �ε =

√
�2 – t2. Hence, the period

for all components and boundary conditions is given by
π/�ε. Remarkably, the quantum systems show clear peaks
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Figure 1 Thermodynamic potentials as a function of β for the Hatano–Nelson model with t = 0.1 for bosonic (red), fermionic (blue) and classical
(green) systems. We set μ = –10–3, except for the bosonic system with PBC, where we use μ = –2t – 10–3, such that the chemical potential is below
the real part of the bands. For the periodic system we use � = 1, whereas for the open and surrogate systems we use � =

√
1 + t2, such that the

typical energy scale �ε associated with the Hatano–Nelson model is equal to 1 in all cases. The intensive grand potential f is shown in (a) for PBC,
(b) surrogate, and (c) OBC. The intensive internal energy u is shown in (d) for PBC, (e) surrogate, and (f) OBC. The intensive entropy s is shown in (g)
for PBC, (h) surrogate, and (i) OBC. The pronunced peaks that appear occur for 2�εβ = (2n + 1)π for fermions (shown with dashed blue lines in all
figures) and 2�εβ = (2n)π for bosons (shown with dashed red lines in all figures). We use 1000 k-points for the periodic systems (equivalent to a
lattice with 1000 sites) and a lattice with 20 sites for the open boundary system

for some special values of β

β =
π

2�ε
×

{
2n bosons,
2n + 1 fermions,

(3)

where n ∈ Z.
There is, however, a noteworthy difference for the ther-

modynamic potentials for fermions with PBC and for
bosons and fermions with OBC and the surrogate Hamil-
tonian. For PBC [Figs. 1(a), (d) and (g)], only the large scale
peaks are present. This is clearly seen when inspecting the
internal energy, Fig. 1(d), or the entropy, Fig. 1(g), which
show accentuated peaks only for the values of β described
by Eq. (3). For the other boundary conditions [Figs. 1(b),
(c), (e), (f ), (h) and (i)], there are fast oscillations, which
although not visible in fsurr [Figs. 1(b)], are clearly visible
in both usurr and ssurr [Figs. 1(e) and (h)], as they are both
related to derivatives of f . The difference between both be-
haviors could have been anticipated because the spectrum
for PBC has a non-zero real part for every � (see Addi-
tional file 1), whereas the OBC system has a purely imag-
inary spectrum (see Additional file 1) for |�| > |t|. Then,
one can expect that more oscillations will be present.

These oscillations in β are very interesting because u is
usually inversely proportional to β , such that an increasing
temperature (decreasing β) would lead to a larger internal

energy. Although there is a general decay of u for large β ,
which goes to zero in the limit of β → ∞ (T → 0), a small
variation of β can lead to a large variation in the internal
energy, a situation typical of the one occurring in the vicin-
ity of a critical point [29].

The values of the peaks given by Eqs. (3) are the values
that lead to the zeros (poles) of the fermionic (bosonic)
partition function in Eq. (1), such that they describe a
phase transition in the theory of Yang–Lee/Fisher zeros
[27, 29–35]. Later, we will elaborate further on this special
kind of phase transition.

The observation of oscillations in the thermodynamic
quantities is not completely new. Intriguingly, features like
those were also observed, although not discussed in these
terms, in an analysis of a Wigner–Weyl representation of a
non-reciprocal, therefore non-Hermitian, classical system
[36]. Similarly, the Loschmidt overlap, which is the anal-
ogous of the free energy for evolution in real time, shows
similar features for Hermitian dynamical phase transitions
[37]. More interestingly, these oscillations are also a signa-
ture of the iTC phase proposed by Wilczek in his seminal
paper on time crystals [20]. Those were studied in terms of
dissipative systems in Ref. [38]. As we will show now, the
conditions set by Eqs. (3) are precisely the ones that define
the iTC phase.
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2.2 Connection to imaginary time crystals
To investigate this matter, we express now the partition
function as a path integral over coherent states in imagi-
nary (or Euclidean) time τ [1, 39, 40]. This is done using
the Trotter decomposition, where we introduce an (over)
complete set of coherent states at every interval in imag-
inary time [39]. One can build such states using coher-
ent states of a Hermitian operator, such as position, even
for a non-Hermitian Hamiltonian. For completeness, we
show in the Additional file 1 how to do second quantiza-
tion and build coherent states for a pseudo-Hermitian op-
erator. These states are parametrized by the fields 
 and

† and one can write the partition function as a path inte-
gral over them,

Z =
∫

D
†D
e–SE[
† ,
], (4)

where the Euclidean action SE is given (for a quantum gas)
by

SE
[

†,


]
=

∫
�β

0
dτ
†(τ )[�∂τ – μ + H]
(τ ), (5)

with H the Hamiltonian matrix, such that the Hamiltonian
density is 
†

H
 . These fields can depend on some contin-
uum index, such as position or momentum, and can have
also a tensorial structure accounting for spin or other in-
ner degrees of freedom. Integration/summation/contrac-
tion over such degrees of freedom is implied. In addition,
the components of 
 will be Grassmann variables if it de-
scribes a fermionic field. Because for quantum gases the
action is quadratic in the fields, one can exactly integrate
this theory and the thermodynamic behavior is fully de-
termined by �∂τ – μ +H or, equivalently, the inverse of the
Green’s function G. As a matter of fact, [1]

ZB/F = det(�∂τ – μ + H)∓1 = det(G)±1. (6)

Besides determining the thermodynamic behavior of the
system, G describes the response of the system to external
perturbations. Wick theorem states [1] that any correla-
tion function will be proportional to products of two-point
functions, which are given by G. Therefore, G dictates the
whole behavior of a quantum gas.

In particular, it is useful to consider the Fourier trans-
form (FT) of G in τ . Due to the periodic conditions in τ ,
the frequencies will be discrete, being even (odd) multiples
of π/β for bosons (fermions) [1, 39]. Therefore, we have
the Matsubara frequencies ωn

�ωn =
π

β
nM =

π

β

{
2n bosons,
(2n + 1) fermions,

(7)

with nM the Matsubara mode. The FT of G, G̃n, is then
given by

G̃n =
1

–i�ωn – μ + H
=

∑

m
φR

mφL
m

† 1
–i�ωn + ζm

, (8)

where in the second equality we introduced twice the reso-
lution of the identity

∑
m φR

mφL†

m = 1̂ and used the biorthog-
onality of the eigenvectors φR/L

m of H with eigenstate εm.
Notice that H is an operator in position/momentum and a
matrix on the inner degrees of freedom of the fields, but it
is not an operator in the Hilbert space. As such, its eigen-
vectors φR,L

m (which are basically the wavefunctions) are
just vectors of functions of position/momentum. We see
then that the behavior of G̃n, and consequently G, is deter-
mined by ζm. In particular, the poles of this function are
given by

i�ωn = ζm, (9)

which can only be satisfied (for real T or β) when Re ζm =
0 and Im ζm = �ωn = nMπkBT . Notice also that ζ /(kBT)
should be an integer multiple of π . Thus, this is possible
only in the low (or intermediate) temperature limit. When
such conditions are met, both GB(τ ) and GF (τ ) take the
form

G(τ ) ≈ β
∑

m
φR

mφL
m

†(Re ζm)–1e–iωnτ , (10)

where ωn and ζm almost satisfy Eq. (9). A small devia-
tion from this condition, encoded in a very small but finite
Re ζm, is necessary to prevent the function to diverge at the
resonance.

These systems then exhibit oscillatory behavior in imag-
inary time! Moreover, Eqs. (3) are just solutions of Eq. (9)
for the Hatano–Nelson model, see Methods. Therefore,
the oscillations in β are indeed signatures of the iTC phase.

It is remarkable that both G and Gn show a direct signa-
ture of the iTC phase. We present the results for this func-
tion close to the resonance for the fermion mode nM = ±11
and μ = –10–3 in Fig. 2. We plot |G̃F

n | in Figs. 2(a)–(c) in
logscale to better reveal the presence of poles. For PBC
[Fig. 2(a)] and for the surrogate Hamiltonian [Fig. 2(b)],
we investigated it as a function of k, whereas for OBC
[Fig. 2(c)], we inspect G̃F

n (r, 0) ≡ G̃F
n (r) as a function of a

distance r from the left edge of the system (position 0 in
our lattice). Starting from the PBC [Fig. 2(a)], we observe
the poles at k = ±π/2a and nM = ∓11 as expected, see
Methods. The poles for different values of nM are much
less intense as they follow a – sin(ka) function. They oc-
cur because we have set a small μ to prevent divergences
in these functions. Similar features are seen for the surro-
gate Hamiltonian [Fig. 2(b)], with the difference that now
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Figure 2 Green’s function and its FT for the fermionic Hatano–Nelson model at resonance with nM = ±11. Results are for PBC, surrogate
Hamiltonian, and OBC for μ = –10–3, t = 0.1 and β = 1. We choose � such that the resonance condition is met (see main text) for all these boundary
conditions. A different choice of β will only lead to a rescaling of G. We start by showing |̃Gn| as a function of the Matsubara mode nM and k
(distance to the left edge) for the periodic (open) system. A logscale is used for the periodic systems, such that the features besides the peaks of
these functions are visible. This function is shown in (a) for the PBC system, in (b) for the surrogate Hamiltonian, and in (c) for the OBC system. Next,
we show the real part of G(r,τ ) as a function of imaginary time τ and distance r, where the spatial dependence is either computed using a FT in
momentum, in the case of the periodic systems, or is computed from the wavefunctions, for the open system. The results are shown in (d) for PBC, in
(e) for the surrogate Hamiltonian, and in (f) for the OBC system. The results for the imaginary part are similar. We use 100 k-points for the periodic
system and a lattice with 20 sites for the open system

they follow a sin(ka) function, changing the sign relation
between nM and k. The OBC does not allow for an anal-
ysis in momentum space, and we must take into account
effects that are not present for the periodic systems. One is
the NHSE, which localizes φR (φL) in the right (left) edge of
the system. The other is the modification of the spectrum
due to the small size of the system, making the bandwidth
equal to 2

√
�2 – t2 – O(1/M). Hence, we need to look for

conditions of resonance for this value of energy, instead
of 2

√
�2 – t2. However, considering such effects, the real

space analysis [Fig. 2(c)] reveals peaks precisely at the same
values of nM , showing that one can still clearly see this ef-
fect for a small system.

The analysis of G̃n explains directly the behavior of G(τ ).
Because there are poles in k, we also do a FT to ob-
tain G(τ ) in real space for PBC [Fig. 2(d)] and the surro-
gate [Fig. 2(e)], to directly compare with the OBC system
[Fig. 2(f )]. For PBC [Fig. 2(d)], there are oscillations in both
space and imaginary time. The period T = 2/(11�β) and
wavelength λ = 4a are determined by 2π/ωn and 2π/k. The
behavior of this function is that of the plane wave in imag-
inary time exp{i[r/(4a) – 2τ /(11�β)]} + c.c., so the bright
lines observed in Fig. 2(d)] are just wavefronts in imaginary

time. For the surrogate [Fig. 2(e)], similar patterns are vis-
ible but reversed, due to the fact that the poles in Fig. 2(b)
occur for opposite nM and k. These features are more vis-
ible for OBC [Fig. 2(f )], but with the complications com-
mented before on the discussion for G̃n. Although there
is a spatial decay due to the NHSE, the periodicity of this
system does not change.

If �/(kBT) is large, but not resonating, there will be much
less intense poles at |nM| < 2�/π . This is clearly seen for
PBC in Fig. 3(a), where the resonances occur for |nM| =
1, 3, 5, but with a large spreading in momentum. Similar
features are seen for the surrogate in Fig. 3(b). Such peaks
are shown for OBC in Fig. 3(c), but with a stronger peak
at nM = 3. Interestingly, the peaks in real space show dif-
ferent spatial periodicity, reflecting the fact that the peaks
for different nM occur also for different k. This will influ-
ence the properties of G(r, τ ). The absence of a sharp peak
leads to an incoherent behavior, Fig. 3(d)–(f ), resembling
an amorphous phase.

For small values of �/(kBT), as displayed in Fig. 3(g)–(l),
there are no resonances at nM or k for all boundary condi-
tions [Fig. 3(g)–(i)]. Therefore, the system exhibits no os-
cillations in τ and only localization in r Fig. 3(j)–(l)].
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Figure 3 Green’s function and its FT for the fermionic Hatano–Nelson model for non-resonant � . Results are for PBC, surrogate Hamiltonian, and
OBC for μ = –10–3, t = 0.1, and β = 1. For � = 10kBT (β� = 10), the results for |̃Gn| are shown in (a) for the PBC system, in (b) for the surrogate
Hamiltonian, and in (c) for the OBC system. The real part of G(r,τ ) is shown in (d) for PBC, in (e) for the surrogate Hamiltonian, and in (f) for the OBC
system. For � = 0.2kBT (β� = 0.2), the results for |̃Gn| are shown in (g) for the PBC system, in (h) for the surrogate Hamiltonian, and in (i) for the OBC
system. The real part of G(r,τ ) is shown in (j) for PBC, in (k) for the surrogate Hamiltonian, and in (l) for the OBC system. We use 100 k-points for the
periodic system and a lattice with 20 sites for the open system

With these results, we understand which are the condi-
tions for the occurrence of oscillations in imaginary time
and real space. On resonance, Fig. 2, there is ordering in
both imaginary time and real space. For low temperatures
and off resonance, Fig. 3, many peaks will be present simul-

taneously, blurring the oscillations in τ . For high temper-
atures, Fig. 3, the oscillations are lost. The limit of T → 0
(β → ∞) in Eqs. (25) and (28) implies that these conditions
will be satisfied for k = ±π/2a and all values of nM , such
that the oscillations in τ will not be present. The behavior
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for the bosonic system is more intricate and is studied in
the Additional file 1. Now, we discuss the meaning of these
phases in more depth.

3 Discussion
Time crystals are phases where the continuous time trans-
lation symmetry is reduced to a discrete translation sym-
metry, in analogy to what happens for spatial translation
invariance in a crystal [20, 41]. Even though the originally
proposed model has some issues [42, 43], it generated a
substantial offspring [44–46]. From those, we highlight the
recent proposal of time glasses [47], time quasicrystals [48]
and dissipative time crystals [49–52], which are akin to the
iTC phase.

The later was briefly conjectured at the end of Ref. [20],
where the similarity between imaginary time and spatial
dimensions in the Euclidean action are discussed. In anal-
ogy to the spatial variables, τ could also have preferred pe-
riods. In our case, Eq. (9) sets this period to be T = 2π/ωn =
2�β/(nM) when nM is in resonance with a value of ζ . As
the imaginary-time box has length �β , for a resonance of
Eq. (9), exactly nM/2 oscillations will be in the imaginary
time interval, analogously to a standing wave in space. This
is precisely what is seen in Figs. 2(d)–(f ), where 11/2 peaks
or valleys are fitted in the imaginary time box. The same
happens for bosonic systems, see Additional file 1.

The authors of Ref. [38] studied this phase looking at a
bosonic system coupled to a bath. They had a non-local
action in imaginary time, which corresponds to a non-
Markovian evolution of the system and leads to an (imag-
inary) time-dependent Hamiltonian. Nevertheless, the re-
sults found there are similar to ours. Their model presents
a charge-density wave order and the order parameter re-
lated to this phase shows oscillations in both β and τ .
Equations (9) reveals that the peak for a specific Matsub-
ara mode is also the peak for a specific k, see Methods.
This will set a periodicity in space which, as seen from our
results, survives also for a small OBC system, where mo-
mentum is no longer a good quantum number.

The existence of these oscillations in space is not inci-
dental. Equation (9) settles the condition for the presence
of disorder lines for free systems [27] in the general theory
of the Yang–Lee zeros. These phases were first obtained
by Stephenson when studying the classical Ising model in
a triangular lattice [21]. The correlation function of the or-
der parameter has an oscillatory part, together with the ex-
ponential decay, typical of critical systems. The character-
istic modulation length follows scaling laws [21–26] and is
related to the presence of zeros of the partition function in
the complex-parameter space. In the Euclidean action, τ is
on the same footing as the spatial variables, so, intuitively,
the presence of oscillations in imaginary time should not
be surprising. The connection with disorder points also re-
veals that G̃n, for the value of n that presents a resonance,

is a natural order parameter. The characterization of dis-
order points is done by using the Fourier transform of the
correlation function [25, 26] and is analogous to the defi-
nition of the order parameter in charge density waves [53].

However, imaginary time is distinct from real space in
two aspects. First, bosons and fermions have different
boundary conditions in τ , leading to different Matsubara
frequencies for each of them. Second, the imaginary-time
interval is set by temperature, being proportional to β , and
τ is conjugated to energy. Therefore, the evolution in imag-
inary time, given by exp(–Hτ ), can be seen as a weighted
projection on energy states [54]. For τ → ∞ (β → ∞),
the system is projected to the ground state. The presence
of a resonating condition implies that thare is a favored
(imaginary) energy scale, which defines the period of os-
cillations in β . Due to pseudo-Hermiticity, the energies of
the system come in complex conjugated pairs. Because the
imaginary part of the energy is usually associated with dis-
sipation, this can be interpreted as a kind of steady state,
whereas the loss of probability in one mode is compen-
sated by a gain in another. The fact that pseudo-Hermitian
systems can have a biorthogonal unitary evolution [18]
supports this view. Hence, such oscillations in temperature
can be interpreted as a kind of resonating steady-state be-
tween system and reservoir, with the energy received/lost
exhibiting peaks when the coupling of the system to the
reservoir, given by � in this case, resonates with a Matsub-
ara frequency, which is a typical frequency associated to
the thermal state.

In this work, we studied the thermodynamics of non-
Hermitian quantum gases for finite temperatures, with
special focus on the Hatano–Nelson model. The model
was chosen because it exhibits phases with purely imag-
inary single-particle energies for both PBC and OBC. The
presence of such modes lead to the iTC phase conjectured
by Wilczek in Ref. [20]. The existence of this phase is re-
vealed by both, the oscillation in the thermodynamic po-
tentials as a function of β , and by the oscillations of the
Green’s function as a function of imaginary time. There is
also an order in real space because the iTC is a disorder
point.

The iTC phase is interpreted as a resonance occurring
precisely when the energy scale associated with the Mat-
subara frequencies matches the bandwidth of the imagi-
nary part of the system, proportional to the coupling to the
reservoir. Under this condition, the Matsubara frequency,
usually interpreted as a mathematical tool, is manifested
both in the thermodynamic and single-particle properties,
and becomes measurable.

The results obtained here for the Hatano–Nelson model
should be present also in more complicated non-
Hermitian models, as long as they exhibit modes with
purely imaginary energies. Different models will lead to
different crystalline structures in imaginary time. The
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presence of multiple orbitals and spin might unveil more
intriguing phases. Studying these phases from the perspec-
tive of quantum heat engines and temperature dependent
energy levels [55] may also reveal new and interesting heat
phenomena.

An important remark is that the fact that the system is
non-Hermitian ultimately comes from the interaction of
the system with a reservoir. Therefore, the introduction of
imaginary terms in the energies comes from a (zero fre-
quency) imaginary part of a self-energy, similarly to what
was considered in Refs. [38, 56]. A frequency-dependent
self-energy can lead to more intricate resonance condi-
tions. A natural question concerning a more generic inter-
acting system is the impact of many-body effects. In some
discrete Floquet time-crystal, the effect of many-particle
interactions is to stabilize the pre-thermal state, in which
the time-crystalline behavior is observed, making it more
robust [57]. Thermodynamic potentials are also multipar-
ticle quantities and the effect of interaction can lead to
combination of Matsubara frequencies in their observed
behavior. Therefore, a further investigation of many-body
effects in this description constitutes a promising topic for
further research.

As the Hatano–Nelson model can be engineered in
many platforms, the iTC phase can be observed experi-
mentally. The detection of these effects require their real-
ization in a quantum platform. The measurement of a ther-
modynamic quantity will give direct demonstration of the
iTC phase. Measurements of correlation functions for dif-
ferent times (further analytically continued to imaginary
time) should also yield an indication of this phase. More-
over, evolution in imaginary time is related to response to
quantum quenches [54]. In this way, the response of the
system to such a quench can also carry information on the
periodicity in imaginary time.

4 Methods
4.1 Thermodynamic potentials of non-Hermitian quantum

gases
For a non-Hermitian quantum gas, the energies may be-
come complex and there are two kinds of eigenstates that
label a microstate, |{nm}〉R and |{nm}〉L, which are eigen-
states of H and H†, respectively, for each mode m with en-
ergy εm (ε∗

m) and eigenstate |m〉R/L. The right eigenstates
of H alone do not form a complete set. However, the left
and right eigenstates together do form a complete basis
[2, 4, 18]. Using these states as a biorthogonal basis, one
can compute the grand partition function and obtain the
usual result for a quantum gas

Z = Tr
{
exp

[
–β(Ĥ – μN̂)

]}
(11)

=
∑

{n}
L〈{nm}|{exp

[
–β(Ĥ – μN̂)

]}|{nm}〉R

=
∏

m

∑

nm

exp
[
–βnm(ζm)

]
, (12)

where N̂ is the number operator, μ is the chemical poten-
tial (we will consider it to be real), and we define for con-
venience ζm ≡ εm – μ.

The partition function is, in general, complex, but it can
be real in some special cases. In the presence of a pseudo-
Hermitian symmetry, H and H† are related by a similar-
ity transformation H† = gHg–1, g = g†, such that their en-
ergies come in complex-conjugated pairs and their spec-
tra are identical. As such, Z (computed from H) and Z∗
(computed from H†) are the same, and consequently Z is
real [18]. In addition, parity-time (PT) symmetry makes
the energies to be real, and in this case Z is trivially real, as
it is a sum of real numbers. In the following, it will become
clearer that the most interesting effects for non-Hermitian
gases will occur in the PT-symmetry broken phases, when
the energies have a finite imaginary part, but the calcu-
lations presented here hold also if this symmetry is pre-
served.

For bosons, nm ∈ N, whereas nm ∈ {0, 1} for fermions.
For bosons, we need to assume that Re ε ≥ μ (Re ζm ≥ 0),
| exp[–βnmζm]| ≤ 1, otherwise this Laurent series diverges.
The sum yields the familiar [29, 58] partition functions for
bosons and fermions,

ZB/F =
∏

m

[
1 ∓ exp(–βζm)

]∓1. (13)

From Z , one can obtain all the thermodynamic quanti-
ties.

The first is the number of particles:

N = 〈N̂〉 =
1
β

∂ ln(Z)
∂μ

, (14)

which leads to the Bose–Einstein and Fermi–Dirac distri-
butions,

gB/F(β ,μ, ζm) =
[
exp(βζm) ∓ 1

]–1. (15)

Other kinds of potentials that are interesting are the ones
related to the thermal behavior of the system. These are
the grand canonical potential F = –(1/β) lnZ ,

FB/F = ± 1
β

∑

m
ln

[
1 ∓ exp(–βζm)

]
, (16)

the internal energy U

UB/F =
∑

m
εmgB/F(β ,μ, ζm), (17)
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and the entropy S = –∂F/∂T = kBβ2∂F/∂β , which reads

SB/F

kB
= –βFB/F + β

∑

m
ζmβgB/F(β ,μ, ζm)

= –βFB/F + βUB/F – βμN . (18)

Notice that this just follows from the thermodynamic def-
inition of F [29].

These systems have a classical behavior in the limit
| exp(–βμ)| � 1 [29], when the length scale of thermal
fluctuations (proportional to 1/T ) are smaller than the
quantum ones (proportional to μ), which is related to
high temperatures or small densities. In this situation, both
functions reduce to the Boltzmann distribution

gF/B(β ,μ) → gcl =
1
Zcl

∑

m
exp(–βζm). (19)

The thermodynamic potentials then assume the form

Fcl(β ,μ) = –
1
β

∑

m
exp(–βζm), (20)

Ucl(β ,μ) =
∑

m
εm exp(–βζm), (21)

Scl(β ,μ)/kB =
∑

m
(1 + βζm) exp(–βζm). (22)

4.2 Poles of the Hatano–Nelson model
For the system with OBC, one needs to numerically diag-
onalize H, to obtain the spectrum and the wavefunctions.
As the Hatano–Nelson model has only one site per unit
cell, for the periodic and surrogate Hamiltonians H will be
just ε(k) and εsurr(k), respectively, which are numbers, and
consequently do not have eigenvectors. The PBC system
has the spectrum

ε(k) = –2t cos(ka) – 2i� sin(ka), (23)

where a is the lattice parameter. If we just replace this
ε(k) – μ in Eq. (9), we obtain the condition for resonance

i�ωn = –2t cos(ka) – 2i� sin(ka) – μ, (24)

which is satisfied for

k =
1
a

arccos

(
–

μ

2t

)
, � sin(ka) = –nM

π

2
kBT . (25)

Bosonic systems should satisfy μ ≤ –2|t|. Therefore, for
them the only possible solution for the above equations
is k = 0 and nM = 0, which occurs when μ = –2t. Con-
versely, for fermions μ is not restrict and if we choose

μ = 0, the resonance condition simplifies to k = ±π/(2a)
and � = ∓nM(π/2)kBT .

For OBC, a simple analysis is not really feasible. Hence,
we turn to the surrogate Hamiltonian, as it has the same
bulk spectrum. Using the band dispersion

εsurr(k) =
√∣∣�2 – t2

∣∣

× [
sgn(� – t)eika – sgn(� + t)e–ika], (26)

the condition for resonance becomes

i�ωn =

{
2i sgn(�)

√|�2 – t2| sin(ka) – μ, |�| > |t|,
–2 sgn(t)

√|�2 – t2| cos(ka) – μ, |�| < |t|,
(27)

and we find the solutions

μ = 0,
√

�2 – t2 sin(ka) = sgn(�)nM
π

2
kBT ,

|�| > |t|,
k = arccos(– sgn(t)

μ

2
√

t2 – �2
), nM = 0,

|�| < |t|.

(28)

In the PT-broken phase, |�| > |t|, and the first of Eqs. (28)
can be rewritten as

k =
1
a

sgn(�) arcsin

[
–

nM

2
√

�2 – t2/(πkBT)

]
, (29)

such that there will be poles at all values of nM that are
smaller than the ratio 2

√
�2 – t2/(πkBT). For a finite sys-

tem, however, k is of the form k = nπ/(Ma), –M < n ≤ M,
such that some of these modes can be present only for an
infinite lattice, where k can take any value between –π/a
and π/a.
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